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Abstract—Memory errors are one of the most common
vulnerabilities for the popularity of memory unsafe languages
including C and C++. Once exploited, it can easily lead to system
crash (i.e., denial-of-service attacks) or allow adversaries to fully
compromise the victim system. This paper proposes MEDS, a
practical memory error detector. MEDS significantly enhances its
detection capability by approximating two ideal properties, called
an infinite gap and an infinite heap. The approximated infinite
gap of MEDS setups large inaccessible memory region between
objects (i.e., 4 MB), and the approximated infinite heap allows
MEDS to fully utilize virtual address space (i.e., 45-bits memory
space). The key idea of MEDS in achieving these properties is
a novel user-space memory allocation mechanism, MEDSALLOC.
MEDSALLOC leverages a page aliasing mechanism, which allows
MEDS to maximize the virtual memory space utilization but
minimize the physical memory uses. To highlight the detection
capability and practical impacts of MEDS, we evaluated and
then compared to Google’s state-of-the-art detection tool, Ad-
dressSanitizer. MEDS showed three times better detection rates
on four real-world vulnerabilities in Chrome and Firefox. More
importantly, when used for a fuzz testing, MEDS was able to
identify 68.3% more memory errors than AddressSanitizer for
the same amount of a testing time, highlighting its practical
aspects in the software testing area. In terms of performance
overhead, MEDS slowed down 108% and 86% compared to
native execution and AddressSanitizer, respectively, on real-world
applications including Chrome, Firefox, Apache, Nginx, and
OpenSSL.

I. INTRODUCTION

For the popularity of memory unsafe languages like C and
C++, memory errors are one of the most common software
bugs, especially in large-scale software such as browsers and
OS kernels. Memory errors are also one of the most severe bugs
from the security perspective—they can easily lead to system
crash (i.e., denial-of-service attacks) or even allow adversaries
to take full control of the vulnerable system (i.e., arbitrary code
execution and privilege escalation). In the past few decades,
numerous solutions have been proposed to prevent memory
error related attacks [34]. These defense techniques can be put
into two general directions: exploit mitigation techniques and
memory error detectors.
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Exploit mitigation techniques focus on preventing attackers
from utilizing memory errors to perform malicious activities. Be-
cause these techniques tend to have lower runtime performance
overhead (< 10%), most widely deployed mechanisms belong
to this category, such as Data Execution Prevention (DEP),
Address Space Layout Randomization (ASLR), and Control-
Flow integrity (CFI). However, their limitation is also obvious:
they can be easily bypassed by new exploit techniques—from
code injection to return-oriented program [33] to advanced ROP
attacks [29] to data-only attacks [16], attackers have always
been able to find new creative ways to exploit memory errors.

Memory error detectors [17, 21, 22, 24, 25, 31], on the
other hand, aim to detect the root cause. Since these detection
techniques can stop the attacks from happening in the first
place, they have the capability to prevent all memory error
related attacks. Unfortunately, achieving this is not without cost.
First, these techniques tend to have relatively high performance
overhead, ranging from 30% for hardware-based approach [17,
23] to over 100% for pure software-based approaches [21,
22, 24, 25, 31]. Second, some of them have difficulties in
supporting the full language features of C and C++ (see §VIII
for more details).

Despite their drawbacks, we believe memory error detectors
are the more promising direction to fundamentally prevent
memory error related attacks. More specifically, to defeat
existing attacks, we have already accumulated a large set
of exploit mitigation techniques. For example, the latest
Windows system (Windows 10) has the following exploit
mitigation techniques deployed: DEP, ASLR, stack guard,
control-flow guard, return-flow guard, etc. However, as attackers
are now shifting to data-only attacks [16] and information leak
attacks [32], new mitigation techniques must be added. The
problem is, even though the performance overhead of each
individual mitigation technique may be low, the accumulated
overhead could still be high, especially for defeating data-only
attacks (e.g., data-flow integrity [7]) and information leak (e.g.,
dynamic information-flow tracking [37]). Yet, they still could
not provide the strong security guarantees compared to memory
error detectors.

Motivated by the above reasons, we present MEDS, a system
that enhances the detectability of redzone-based memory error
detection. In particular, existing memory error detectors can be
categorized into two directions: redzone-based and pointer-
based. Redzone-based detectors insert undefined memory
between memory objects and prohibit access to the undefined
area. Pointer-based detectors keep track of per-pointer capability
and check the capability when accessing an object. Generally,
redzone-based detectors have better compatibility with C/C++



features but their ability to detect memory errors is not as
powerful as pointer-based one (refer to §II for more details).

The key idea behind MEDS is that full 64-bit virtual
address space can be leveraged to approximate “infinite” gap
between allocated memory regions (so as to detect spatial
errors) and “infinite” heap (so as to avoid reusing freed
memory and to detect temporal errors). More importantly,
MEDS achieves this without blowing up physical memory
use. MEDS realizes this idea through a new memory allocator,
MEDSALLOC. MEDSALLOC uses user-space page aliasing
mechanism (i.e., aliasing between physical and virtual memory
pages) to manage memory pools, thereby maximizing the virtual
address utilization while minimizing the physical memory uses.
The “infinite” gap allows MEDS to detect more spatial memory
errors exhibiting a large out-of-bound offset than the state-of-art
redzone-based memory error detector AddressSanitizer [31].
MEDS also detects temporal memory errors more robustly, as
it fully utilizes available virtual address space for allocation
and thus the virtual address is unlikely reused.

We have implemented MEDS based on the LLVM toolchain,
and evaluated the prototype of MEDS on various real-world
large applications, including Chrome, Firefox, Apache, Nginx,
and OpenSSL. First, we evaluated MEDS on a set of unit tests
and MEDS was able to correctly detect all the tested memory
errors. Then we tested MEDS using four real-world memory
corruption exploits in Chrome and Firefox, and MEDS showed
three times better detection rates than AddressSanitizer (ASAN),
a state-of-the-art memory error detection tool developed by
Google. MEDS imposed a moderate runtime overhead—on
average, MEDS slowed down 108%, which is comparable to
ASAN; and it used 212% more memory.

Utilizing on MEDS’s detection capability, it can be applied
to detect lurking memory errors in production servers or fuzzing
infrastructures, similarly ASAN has been popularly deployed
and used in practice. To clearly demonstrate this aspect, we
performed a fuzz testing with AFL [38], targeting 12 real-world
applications. To summarize, MEDS significantly outperformed
ASAN in assisting memory error detection capability of fuzzing
for most of target applications — 68.3% improvements on
average, ranging from 1% to 256%, depending on applica-
tions (shown in Table IV). Considering the huge popularity of
AFL and ASAN in performing real-world fuzz testing, these
results also signify the strong practical impacts of MEDS. Using
with AFL, MEDS can augment the fuzz testing’s detection
capability, significantly better than the state-of-the-art memory
error detection tool, ASAN. We note that ASAN is part of both
GCC (since v4.8) and LLVM/Clang (since v3.1) mainlines, and
many major vendors and open-source community heavily rely
on ASAN for debugging and fuzz testing.

In summary, this paper makes the following contributions.

e Design. We designed MEDS, a new memory error detector
with enhanced detection capability. The core of MEDS
is MEDSALLOC, a new memory allocator that (1) fully
utilizes the 64-bit virtual address space to provide “infinite”
gaps between objects and to avoid reusing freed virtual
addresses; and (2) leverages a novel memory aliasing
scheme to minimize the physical memory overhead.

e Implementation and Evaluation. We implemented a
prototype of MEDS based on the LLVM toolchain and

have successfully applied it to a set of large real-world
applications including Chrome, Firefox, Apache, Nginx,
and OpenSSL. We evaluated several aspects of MEDS
including (1) its compatibility, (2) its detection capability
against artificial and real attacks, and (3) its runtime
performance and memory overhead.

e Practical Impacts. According to our evaluation in the fuzz
testing (using AFL), MEDS significantly outperformed
ASAN in terms of detecting memory errors. We plan to
opensource MEDS so that software vendors and open
source communities can benefit from using MEDS. As
demonstrated in our evaluation, MEDS is already mature
enough to be released and used for real-world applications.

II. BACKGROUND AND CHALLENGES
A. Memory Errors

There are two general types of memory errors: spatial
errors and temporal errors. Spatial memory errors refer to
accessing memory that are outside the boundary of the allocated
memory. Such errors can be caused by many types of software
bugs, including missing boundary checks, incorrect boundary
checks, insufficient memory allocation, type confusion, etc.
Temporal memory errors can be further put into two sub-
categories: reading uninitialized memory and accessing freed
memory. Reading uninitialized memory can be problematic
because its value is either unpredictable or can be controlled
by attackers. Accessing freed memory is problematic because
the freed memory can be reallocated to store another memory
object, which may be controlled by attackers.

Hicks [15] formalize the definition of memory errors into
two styles:

e Access to undefined memory. A memory region is unde-
fined if it has not been allocated (out-of-bound), has not been
initialized, or has been freed. While this definition is simple,
it is not realistic. To support this definition, the gap between
any two allocated regions must be infinite (i.e., infinite gap)
and a freed memory region must never be reused (i.e., infinite
heap).

e Violation to the capability of a pointer. The second
definition associates a pointer with a capability to access
memory between base and end. Capabilities can only be
created through legal operations like allocation and the
addresses taken thus are not forgeable; and are revoked
(i.e., has no capability) when the corresponding memory
region is freed. A memory error can then be defined as
accessing memory outside the capability of a pointer.

Following the definition above, existing approaches to detect
memory errors can then be generally categorized into two
directions: (1) redzone-based detection, which inserts undefined
memory between objects and detects an access to the undefined
area; and (2) pointer-based detection, which keeps track of
per-pointer capability and checks capability when accessing
an object. Both directions have their own advantages and
disadvantages. Generally, redzone-based memory error detectors
have better compatibility with C/C++ language features and
thread model, so they can be applied to large-scale software like
browsers. Pointer-based detectors usually have compatibility
issues. For example, SoftBound is not compatible with some
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Fig. 1: Redzone-based detection in ASAN using redzone and shadow
memory. In the beginning there are three allocated objects (leftmost),
and then obj1 is freed (middle). If the quarantine zone is exhausted
due to repeated allocations, the freed space can be reused (rightmost).

SPEC CPU benchmarks [21] and GCC’s support for Intel
MPX (memory protection extension) is also reported to have
compatibility issues [30]. On the other hand, pointer-based
solutions usually have better detection capability as it is not
realistic to implement infinite gap between objects and never
reuse freed memory. Because we aim to build a practical tool
that can support large-scale C/C++ programs utilizing various
language features, we opt to follow the redzone-based direction
and our description will focus on redzone-based detection in
this section. We will describe more details on pointer-based
detection in §VIII.

B. Redzone-based Memory Error Detection

Redzone-based detectors [5, 20, 25, 26, 31] insert undefined
memory regions (a.k.a. redzones) between valid memory
objects. These detectors then setup mechanisms to capture
attempts accessing redzones (e.g., no virtual page permissions)
such that access to such a region can be detected. In general,
there are two key design factors in redzone-based approaches,
namely (1) how to setup redzones to increase detection rates
and (2) how to actually detect an access attempt to redzones.
For instance, to detect temporal errors, DieHard [5] and its
successor DieHarder [26] populate newly allocated memory
and freed memory with magic values hoping that a later use
of the magic value will cause catchable errors. They also add
redzones around the allocated memory region to detect spatial
errors. Out-of-bound read is captured in the same way as in
detecting temporal errors. Out-of-bound write is captured by
checking if magic value of the redzones has been modified
when the memory is freed. Paged-heap [20] surrounds allocated
region with two extra memory pages (one in each direction) of
no access permission so that out-of-bound accesses will trigger
page faults. Valgrind [25] uses valid value bit and valid address
bit to capture reading undefined memory and out-of-bound
access.

AddressSanitizer (ASAN [31]) is by far the most mature
redzone-based memory error detector which is supported by
both Clang and GCC. It demonstrated a good balance between

detection precision and performance, and is able to handle large
complex software like Google Chrome and Firefox. The key to
ASAN’s high efficiency is in how it represents redzones using
shadow memory (illustrated in Figure 1). Shadow memory is a
bit-vector, showing valid/invalid memory addresses. One bit in
the shadow memory represents one byte in target application’s
virtual memory space, where the bit @ in the shadow memory
represents valid and the bit 1 represents invalid. ASAN enforces
that all memory read and write operations must first refer to
the shadow memory to check validity of the target address (i.e.,
the corresponding bit in the shadow memory should be 8). To
detect out-of-bound access, ASAN surrounds all memory objects
(include stack and global objects) with redzones. Moreover,
to detect use-after-free, ASAN marks the whole freed region
as redzone when an object is freed. Then ASAN maintains
a fixed size of quarantine zone (i.e., 256 MB by default) to
avoid reusing freed memory (i.e., ASAN does not really release
the freed memory regions, but keeps holding those regions
in quarantine zone until the quarantine zone becomes full).
For example, when the object obj3 is freed, the corresponding
region is marked as redzone by updating the corresponding
shadow memory bits as invalid (illustrated in Figure 1 - @).
This freed region will be kept in quarantine zone to avoid reuse.

While this approach is similar to the valid address bit of
Valgrind, ASAN’s special shadow memory address scheme [31]
makes the checks much faster. In particular, ASAN uses a direct
mapping scheme to locate the shadow memory in that it simply
performs bit-shift operations on the virtual address to obtain the
corresponding shadow memory location. This in fact requires
to reserve certain virtual address space for the shadow memory,
but it is efficient as locating the corresponding shadow memory
only involves a simple bit-shift instruction. ASAN has shown
very good compatibility with existing code in practice. It has no
issues in supporting large scale software like browsers, and it
is the default memory error detector for Google’s cloud-based
fuzzing platform [27].

Limitations of Existing Redzone-based Detectors. As
discussed previously, the detectability of a redzone-based
memory error detector relies on (1) how large the redzones
between objects are and (2) how long freed objects remain
as redzones. Specifically, if an out-of-bound access falls into
another allocated memory region or use-after-free access falls
into a re-allocated memory region, then the error cannot be
detected. Unfortunately, existing redzone-based memory error
detectors all failed to implement or approximate the infinite gap
and infinite heap requirements properly; so their detectability
is limited. For example, by default ASAN sets up the redzone
in the range of 16 Byte and 2,048 Byte, which can be easily
bypassed by skipping over this redzone. Moreover, considering
the infinite heap, the default size of its quarantine zone is
only 256 MB; so its detection for temporal errors can also be
bypassed if a program keeps (or an attacker induces a program
to keep) allocating memory objects to force reuses.

To clarify these limitations, Figure 1 illustrates memory
layouts as well as its redzone enforcement through the shadow
memory. In the beginning there are three allocated objects, obj1,
obj2, and obj3 (leftmost). In this setting, suppose a program
performs a pointer arithmetic operation, p = p + idx, where p
is a pointer that is originally pointing the base address of obj1
(i.e., ) and idx is an integer variable. Then further suppose



that the program dereferences using p. Checking the shadow
memory bits, ASAN can correctly determine that dereferencing
is valid when idx is zero (i.e., @) and invalid when idx is the
size of objl (i.e., D), respectively. However, if idx is bigger
than the size of objl, it is possible that the dereference can
be allowed according to the shadow memory bit although this
should not be allowed (i.e., 3). Moreover, although freed obj1
region will be kept in quarantine zone (i.e., after @), such a
region is reused if the quarantine zone is exhausted due to
repeated allocations (i.e., reused for objX after ®). Thus, if
there is another memory dereference using p after obj1 is freed,
it can result in use-after-free (i.e., @).

To see the real-world implications of this limitation, we
also tested four real-world exploits and found that ASAN was
easily bypassed (see Table I). We note it is fundamentally
challenging to enlarge these parameters in ASAN, because it
would significantly increase the memory uses.

III. PROBLEM SCOPE AND OBJECTIVES

In this section we define the problem scope of this paper,
our objectives, and key evaluation metrics we aim to achieve.

Problem Scope. This work focuses on the problem of memory
error detection for user space C/C++ programs. We assume
the operating system kernel, all firmware, and all hardware
as our trusted computing base (TCB). We do not consider
attacks targeting our TCB or launched from within our TCB.
We also do not consider exploit against vulnerabilities other
than memory errors or memory errors in other languages (e.g.,
assembly and dynamically generated code). We do not restrict
which language features the target program can use or where
the memory errors can occur—the vulnerability can exist in
the main executable or any linked libraries. We also do not
restrict how attackers can exploit the vulnerability.

Objectives. As discussed in §1I, different memory detectors
have different capabilities in detecting memory errors—some
of them can only detect spatial errors [17, 20, 21, 24, 36], some
can detect use-after-free but not uninitialized memory [22, 31],
and some can detect all types of errors [5, 25, 26]. Their
detection rate also varies, some can only provide probabilistic
detection [5, 26], some can provide deterministic detection
but can be bypassed [20, 25, 31], and some can detect all
occurrence of the error they can detect thus can provide the
strong memory safe guarantee [17, 21, 22, 24, 36].

In this work, we aim to enhance the detectability on memory
errors for large-scale C/C++ programs. There are two goals
in this statement. First, we aim to handle large-scale programs
such as popular server applications and browsers. We choose
them as the target because of their importance and the belief
that security solutions must be practical to make real impact.
Second, we want to provide better detectability than existing
solutions for large-scale programs. However, providing lower
runtime performance overhead is not our primary goal—we
will try our best to reduce the performance overhead, but when
there is a trade-off between detectability and performance, we
will opt for the detectability.

Evaluation Metrics. Given the current status quo (§II), to
achieve our goals, we can either try to solve the compati-
bility issue of pointer-based solutions, or try to improve the

detectability of redzone-based solutions. This work explores
the second direction, and our evaluation metrics are: (1) MEDS
must be able to run all the programs, the state-of-the-art redzone-
based solution, ASAN can handle; (2) MEDS must be able to
detect more memory errors than ASAN; and (3) the runtime
performance and memory overhead must be comparable to
ASAN.

IV. DESIGN

This section presents the design of MEDS. §IV-A illus-
trates the design overview of MEDS. Then §IV-B introduces
MEDSALLOC, a new memory allocator with page aliasing.
Then §IV-C describes how MEDS manages and enforces
inaccessible memory regions, redzone. §IV-D describes how
all memory objects (including heap, stack, and global objects)
are allocated through MEDSALLOC, such that MEDS compre-
hensively provides redzone for all kinds of memory objects.
Lastly, §IV-E presents user-level copy-on-write schemes for
MEDS.

A. Overview

MEDS takes a redzone-based approach to detect memory
errors because it provides the best compatibility among the
two different directions (§II). As suggested by its name, a
redzone-based approach detect memory errors by inserting
redzones (undefined memory regions) between memory objects
and marking freed memory objects as redzones. Therefore, the
detectability of a redzone-based memory error detector depends
on how closely it can approximate the two ideal properties:

e P1: Infinite gap. To detect all spatial errors, the redzone
between two memory objects must be infinite so that out-of-
bound accesses will always fall into the redzones.

o P2: Infinite heap. To detect all temporal errors, a new
memory object must always be allocated from a fresh virtual
address so that the freed region (redzone) will never be
re-used during the execution.

Unfortunately, due to limited hardware resources (both
physical and virtual memory space) imposed by the current
computing architecture, it is not feasible to fully satisfy these
properties. Thus, state-of-the-art redzone-based detection tools
make practical design trade-offs between security risks and
resource consumption. For instance, by default ASAN [31]
only inserts a 256 Byte redzone between memory objects
to detect spatial errors and only maintains a 256 MB heap
quarantine zone to detect temporal errors. Enlarging any of
these two parameters imposes heavy physical memory usage
unsuitable for large-scale programs. To clearly demonstrate
this, we tried to experiment ASAN with these enlarged settings:
for the redzone size, ASAN includes hard-coded assertions and
design decisions limiting these parameters and thus we were
not able to run; for quarantine zone, ASAN quickly used up
all physical memory space if a large quarantine zone size is
provided, and got killed due to out-of-memory. As a result,
if a spatial memory error happens beyond the redzone size,
such a memory access violation cannot be detected. Similarly,
freed memory will be recycled when the quarantine zone is full,
resulting in undetectable temporal errors. Our evaluation in §VI
clearly demonstrates this limitation in that four real-world



vulnerabilities in Chrome and Firefox were easily bypassed by
slightly modifying an input.

MEDS improves the approximation towards these two ideal
properties through fully utilizing the 64-bit virtual address space.
Specifically, the 64-bit virtual address space has provided us
with a great opportunity to (1) increase the redzone size between
objects and (2) reduce virtual address reuse. The challenge,
however, is how to minimize the physical memory usage. MEDS
overcomes this challenge through a novel combination of page
aliasing and redzones. Page aliasing denotes the intentional
aliasing between virtual and physical memory pages (i.e., a
set of different virtual pages are mapped to the same physical
page), which is a common technique used to reduce use of
physical pages, such as in copy-on-write (CoW) and same-
page merge [4]. However, redzone enforcement with page
aliasing normally comes with the potential for increasing the
fragmentation significantly. This is because the granularity of
memory object allocation differs from that of page access
permission. That is, all the objects within the same virtual
page have to share the same access permission. This makes it
complicated to perform access checks when a single virtual page
contains both a valid object and a redzone. One approach to
overcome this is, as suggested in PageHeap [20], that maps all
the redzone virtual pages (i.e., containing redzones only without
any valid objects) to a single physical page while increasing
the allocation granularity to page level (i.e., allocating at most
one object in a single virtual page) at the cost of generating
the internal fragmentation. Thus, MEDS aims to over-provision
virtual memory space, yet without wasting physical memory, to
meet both P1 and P2. Toward this end, we design new redzone
schemes for MEDS. Since MEDS intensively makes use of
huge virtual address space, simply adopting ASAN’s shadow-
memory based redzones would require impractical physical
memory space to store shadow-memory itself. Thus, MEDS
orchestrates page access permission settings as well as shadow-
memory based redzones to efficiently manage and enforce
redzones for all invalid memory space.

B. MEDSALLOC: A Memory Allocator with Page Aliasing

To implement the above idea, we design MEDSALLOC, a
new user-space allocator which maintains the special mapping
between virtual and physical page and redzone setup. With
MEDSALLOC, we can provide each memory objects with
virtual view as if they don’t share their page with others. Thus,
while objects are tightly packed in the physical memory space,
those are sparsely located in the virtual memory space (Fig-
ure 2). This allows MEDS to meet P1 with low memory
overheads—the target program now sees large redzones between
objects, but these only impose a small memory use as the
redzones are not actually backed by physical memory dedicated
for the redzones. It is worth noting that MEDSALLOC only
uses shadow memory to mark redzone at sub-page level (red
color boxes), and page level gaps (denoted as dots in Figure 2)
are still marked by page table permissions. This further reduces
the memory footprints of shadow memory.

In order to meet P2, MEDSALLOC maintains the allocation
pools for virtual memory space and always try to map the newly
allocated objects to a fresh virtual address so as to fully utilize
whole virtual address space to avoid address reuse. Please
note that MEDSALLOC does not need to be compatible with
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ASLR because MEDS ensures a stronger security guarantee
than ASLR. While MEDS is a memory error detector, ASLR
statistically helps after a memory error has been exploited.
Therefore MEDSALLOC can utilize virtual addresses in a simple
sequential manner.

The rest of this section first provides detailed information
on page aliasing mechanisms as they are the key enabling
features of MEDSALLOC. Then we present more design details
on MEDSALLOC, which takes a two-layered scheme using
global and local allocators (shown in Figure 4).

Page Aliasing. Page aliasing implicates the intentional aliasing
between virtual and physical memory pages such that multiple
virtual pages are mapped to the same physical page. Using
page aliasing, there can be multiple memory views (through
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multiple virtual pages) to the same memory content (backed by
the same physical page). In practice, page aliasing is popularly
used to reduce use of physical pages, such as copy-on-write
(CoW) and same-page merge [4].

Since this page aliasing mechanism has to rely on virtual
memory management, its implementation varies depending
on underlying architecture and kernel. In the case of x86-64
architecture (as well as x86) running Linux, page aliasing can
be realized through invoking mmap() and mremap() syscalls. In
response to the mmap() request, the Linux kernel creates a new
virtual memory page that is mapped to a new physical memory
page. Here, if the MAP_SHARED flag has been specified, the kernel
allows the mapping to be shared later (i.e., the new physical
memory page can be mapped by multiple virtual memory pages
within the same process or with its child processes). We then
use mremap to create additional aliased virtual pages within
the same process’ virtual address space. Suppose a mapping
between a virtual page V1 and a physical page P1 is established
by mmap. The kernel maps a new virtual page V2 to the same
physical page P1 without removing the old mapping between
V1 and P1 when mremap() is invoked with (1) old_address and
new_address pointing to V1 and V2 respectively, (2) old_size
equal to zero, and (3) MAP_FIXED flag being set. Please note
this behavior is undocumented in the man page but is described
in [35].

Figure 3 shows an example of this aliasing process. If a
user process invokes mmap() with the MAP_SHARED flag set, the
kernel creates new virtual pages for the process and returns
the base address of such virtual pages ((D). After that, when
the user invokes mremap () where the old_address parameter
points to the address returned by mmap(), the kernel creates an
aliased page at new_address (). This aliasing can be repeated
as many times as a user process requests, and the kernel returns
yet another new aliased virtual page ().

Global Allocator. To improve the performance of allocators
(by reducing use of locks), modern heap allocators feature a
global allocator (i.e., per-process allocator) which manages
available virtual address space for a running process, and
partitions and then distributes virtual address space to local,
per-thread allocators (illustrated in Figure 4-(). Here, the

key difference between MEDSALLOC and traditional heap
allocators’ design is that MEDSALLOC never requests actual
physical memory from the kernel; instead, it only distributes
virtual addresses to the local allocators and takes over the duty
of managing available virtual addresses from the kernel. This
design choice enables MEDS to meet P2. When MEDS looks for
an unmapped virtual space, instead of trying to reuse a recently
freed virtual space, the global allocator always starts from the
last allocation address and follows a monotonic direction so
it can fully cycle the whole virtual address space and delay
address reuse as late as possible. Again, because as a memory
error detector, MEDS provides stronger security guarantee
than ASLR, so MEDSALLOC does not need to randomize
the allocated virtual addresses.

Local Allocators. Local allocators (i.e., per-thread allocator)
maintain virtual memory pages assigned from the global
allocator, and maps, or aliases a virtual page to an appro-
priate physical memory page. That is, each local allocator
actually commits physical memory page allocation from kernel.
Furthermore, in order to make efficient physical memory uses
for small object allocations (i.e., smaller than a page size),
each physical memory page is managed with multiple free-
lists, which partitions a page into multiple memory slots. We
employ a size-class allocation scheme for this free-list, similar
to tcmalloc [28]—the class is determined by the allocation
size, and each class has its own free-list. The difference is that
in tcmalloc, free-list is used to manage mapped virtual pages
(i.e., a virtual-physical page pair); but in MEDSALLOC, the
free-list only manages physical pages. A local allocator (1)
uses these free-lists to find a physical page with proper and
empty memory slot for an allocation, (2) picks up a virtual
memory page from a reserved pool, and (3) aliases the virtual
page with the physical page.

For example, during the initialization of a local allocator
(i.e., right after loading the target application and before
executing any target program’s code), it reserves a chunk (e.g.,
256 MB) of virtual addresses with the help of the global
allocator and creates a local virtual page pool (illustrated
in Figure 4-(). Next, upon receiving an allocation request from
a thread, the local allocator selects an available virtual memory
page from the local virtual page pool (illustrated in Figure 4-
@). Next, in order to find an available physical page, it scans
through one of free-lists corresponds to the allocation size and
selects an available physical page and maps it with the available
virtual page above (illustrated in Figure 4-(3), which allocates
objk). If the free-list is used for the first time thus no physical
page has been associated with it, the local allocator maps a
new physical page to the virtual page using mmap() syscall
with (MAP_SHARED |MAP_FIXED) flag. On the other hands, if the
free-list has an associated physical memory, it simply reuses
that physical page with page aliasing (i.e., mremap). After the
object allocation, additional virtual pages are allocated from
the local virtual page pool to setup a redzone of pre-configured
size (e.g., 1 MB) ensuring P1.

Deallocation. When deallocating an object, MEDSALLOC
returns the associated physical memory page back to the free-
list. If the physical page is not associated with any active
objects (i.e., when all objects using the physical page are
freed), the physical page is removed from the free-list. After
that, MEDSALLOC simply unmaps the object region, and the



def enforce_redzone_on_alloc(addr, size):
# Compute the start and end address of object (page-aligned)
start = start_pageaddr(addr)
end = end_pageaddr(addr + size)

1
2
3
4
5
6 # Maps the corresponding shadow memory.

7 # Shadow memory bits are initialized as INVALID.

8 map_shadow_memory(start, end)

9

10 # Set shadow memory bits (VALID) for an object region.
11 # The rest shadow memory bits are left as INVALID.

12 set_shadow_memory(addr, size, VALID)

13 return

(a) Redzone management after allocation

def enforce_redzone_on_dealloc(addr, size):
# Compute the start and end address of object (page-aligned)
start = start_pageaddr(addr)
end = end_pageaddr(addr + size)

# Mark memory space to be deallocated inaccessible.
mprotect(start, end-start, PROT_NONE)

9 # Unmaps the corresponding shadow memory.
10 unmap_shadow_memory(start, end)
return
(b) Redzone management after deallocation

Fig. 5: Pseudo-code algorithms on redzone management (per-byte
granularity) of MEDS.
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Fig. 6: Redzone management on memory (de)allocation

physical page will be automatically returned to kernel because
there is no virtual pages associated with the physical page.

Optimization. MEDS employs an optimization scheme in
allocating objects larger than a page size (i.e., 4 KB, or 2 MB
if a huge page is used). In particular, since there is almost no
advantage of performing page aliasing—the physical page will
be fully occupied for such objects thus no space is left for
aliasing, we directly allocate these objects from physical pages
without searching through a free-list.

C. Redzone Management and Enforcement

We need additional mechanisms, which we call redzone
management and enforcement, to detect spatial memory error.
The MEDSALLOC itself does not provide access control. For
example, in Figure 4, using an address pointing to the objk,

other objects including obj1 and obj2 can also be accessible.
To capture such an offending access, one may simply adopt
shadow-memory-based redzone enforcement exercised in ASAN.
However, since MEDS utilizes much larger redzones than ASAN,
the shadow memory usage for maintaining the redzones would
lead to high memory consumption. Because of the problem, the
simple redzone scheme is not practical for MEDS. Therefore,
MEDS employs two different redzone management schemes,
page level redzone and sub-page level redzone, where only the
sub-page level redzone is actually represented with shadow-
memory. In the following, we first describe how MEDS manages
these two different redzones and then explain how MEDS
enforces redzones (i.e., detecting memory accesses to redzones).

Managing Redzone. In order to manage redzones, MEDS
basically intercepts all allocation and deallocation functions
invoked by the target application in runtime and updates the
shadow memory. A particular challenge here is the memory
consumption, if such redzones are all represented using shadow
memory. That is, MEDS by design produces very large redzones
between memory objects. If MEDS commits dedicated shadow
memory for entire redzones, then shadow memory itself will
occupy a lot of physical memory.

In order to address this challenge, we first categorize
redzones into two different types, a page level redzone (i.e.,
a gap between virtual pages) and a sub-page level redzone
(i.e., gaps within a page). Then we leverage the observation
that one shadow memory page governs exactly 32 KB memory
(i.e., 8 virtual pages), which means our page level redzones
(4 MB) consume shadow memory in the granularity of 128
pages. Since every byte in page level redzones are inaccessible,
the corresponding shadow memory page will be filled with 1.
However, we do not need to allocate individual shadow pages
for page level redzones—we can simply leave those shadow
pages as unmapped so checking against those shadow pages
will always trigger a page fault that will be captured by our
signal handler.

Based on the observation above, MEDS only maintains sub-
page level redzones in shadow memory, and page level redzones
do not impose any physical memory use. Figure 5 shows pseudo
algorithms on how MEDS manages the shadow memory, where
a snapshot of virtual memory changes are illustrated in Figure 6.
At the time of the object allocation (Figure 5-(a)), because the
allocated virtual page is used to be a page level redzone (i.e.,
its corresponding shadow memory is unmapped), MEDS first
mmap new physical page(s) from the kernel for its shadow
memory page(s) and initializes the entire page(s) as INVALID
(1ine 8). Then MEDS sets the corresponding shadow memory
(i.e., a range of object addresses to be allocated, from addr to
addr+size) as VALID (line 12).

At the time of object deallocation (Figure 5-(b)), MEDS first
marks the virtual page(s) which is being deallocated inaccessible
using mprotect (line 7). This permission setting on page level
redzones is always possible in MEDS, because all virtual pages
are always exclusively associated with a single object in the
virtual memory space. Moreover, instead of explicitly marking
the corresponding shadow memory space as INVALID, MEDS
simply unmaps the shadow memory space to mark them as
a redzone (line 10). Again, any attempt to access this freed
memory region will be anyway detected through page fault,



// Before instrumentation
value = *load_addr;

// After instrumentation
if (!check_shadow_memory(load_addr))
report_and_terminate();
value = *load_addr; // Safe to load.
(a) Load instrumentation

RO NIET I ST

// Before instrumentation
“store_addr = value;

// After instrumentation

if (!check_shadow_memory(store_addr))

6 report_and_terminate();

7 *store_addr = value; // Safe to store.
(b) Store instrumentation

[T TR

Fig. 7: Redzone enforcement (per-byte granularity) using memory
access instrumentation on load and store instructions.

because the associated shadow memory is not accessible.

Enforcing Redzone. MEDS ensures that all memory accesses
are valid by enforcing redzones. The security guarantee that all
memory accesses are properly safeguarded is made by the fact
that any access attempt touching redzones is detected because
(1) MEDS explicitly checks shadow memory (for sub-page level
redzones) or (2) MEDS implicitly captures page fault events
(for page level redzones). More specifically, MEDS instruments
all memory access instructions, including load and write, such
that the access is only permitted after checking the validity
through the shadow memory.

Figure 7 illustrates how MEDS instruments load and store
instructions. For load instructions (Figure 7-(a)), MEDS first
checks the shadow memory for a given address to be accessed
(1ine 5). If the given address points to page level redzones,
MEDS will capture page faults while loading the corresponding
shadow memory bit, because such shadow memory space is
not accessible. If the shadow memory bit is properly loaded
but indicates INVALID (i.e., sub-page level redzones), MEDS
does not permit the original load instruction being executed
(1ine 6). For both of these violation attempts, either through
capturing page fault events or detecting the INVALID shadow
memory bit, MEDS reports a detailed information on violation
such that developers or users can easily understand the cause
of access violation. If the bit indicates VALID, MEDS allows
to perform the original load operation (line 7) so that the
program execution semantics are kept intact for benign load
operations. Store instructions are handled in a similar way as
for the load.

Optimization. Similar to ASAN, for memory intrinsic func-
tions like memset () and memcpy O, instead of checking the safety
of all repeated load/store instructions within these memory
intrinsic functions, MEDS checks its safety using its parameters.
However, due to its small redzone size, after checking the start,
end, and mid of the buffer, if all checks succeed, ASAN still
needs to check the shadow values for all the bytes of the buffer.
However, because MEDS uses a much larger gap between
objects, we only need to check the start, end, and well-aligned
bytes (e.g., 4 MB-aligned, which is the current default redzone
size of MEDS).

D. Memory Object Allocation

MEDS allocates all memory objects using MEDSALLOC
(§IV-B), such that all memory objects are surrounded by
approximated infinite gap and its allocation pool follows the
concept of approximated infinite heap. Generally there can be
three different types of memory objects depending on where
an object is allocated—heap, stack, and global objects. As
each object type goes through a different allocation mechanism,
MEDS properly caters its allocation process per allocation type
so that all memory objects are allocated using MEDSALLOC.

Heap Objects. Heap objects are allocated through a limited
set of runtime functions (e.g., malloc, calloc, etc.'). Similar to
ASAN, we install interception hooks to these functions so that
MEDS can take control over allocation processes. Then, upon
receiving a heap allocation request from a user program, MEDS
simply leverages MEDSALLOC to return an aliased memory
object.

Stack Objects. Stack objects are allocated within a corre-
sponding function’s stack frame. Unlike heap objects, MEDS
takes different approaches in handling stack objects depending
on whether they are allocated implicitly or explicitly. For the
implicitly allocated stack objects such as return addresses and
spilled registers, since accesses to them are always safe, MEDS
does not need to protect them (a.k.a., safe stack [19]) with
redzones. On the other hand, MEDS migrates the explicitly
allocated stack objects (i.e., stack variables) into heap space
using MEDSALLOC so as to easily leverage the features of
MEDSALLOC for safeguarding them with redzones. For each
stack object in a function, MEDS instruments a runtime function
call alloc_stack_obj(size, alignment) at the corresponding
function’s prologue. This function performs dynamic heap
allocation using MEDSALLOC for a given size while observing
the alignment constraint for the allocated object. MEDS also
instruments another runtime function call free_stack_obj(ptr)
at the function’s epilogue, which properly frees a stack object
(located in heap space under MEDS) right before the function
returns. MEDS also registers this free runtime function call to
exception handling chains so that the stack objects can be freed
when a stack unwinding happens due to an exception. In this
way, MEDS places all the stack variables in heap, where its
allocation is always performed by MEDSALLOC.

Global Objects. Unlike stack and heap objects, the addresses
for global objects are located at the time of loading a program.
More precisely, in the case of an ELF executable, the ELF
loader maps virtual memory pages as specified in a program
header section of the ELF format.

A straightforward design decision leveraging MEDSALLOC
would be simply creating aliased memory pages for each global
object, while considering mapped data pages by the loader as
packed physical memory pages. However, we found this is
not feasible without compromising compatibility. Because the
built-in ELF loader implemented in the Linux kernel always
assigns MAP_PRIVATE (instead of assigning MAP_SHARED) when
mapping data memory pages, those memory pages cannot be
aliased. We may workaround this issue through either 1) using a

'Handling malloc() typically covers cases using C++ allocation operators
(i.e., new), as generated code for a new operator eventually invokes malloc to
allocate memory space.



user-level custom ELF loader instead of using the built-in ELF
loader or 2) simply modifying the built-in ELF loader to specify
MAP_SHARED. Both of these workaround approaches may have
negative impacts on compatibility. It might be cumbersome to
setup an execution environment using a custom loader for end-
users, or it is generally discouraged to modify the underlying
kernel.

Therefore, in order to preserve compatibility, MEDS im-
plements user-level re-allocation schemes for global objects.
After loading a target program but before executing the original
entry point of the program, MEDS enumerates a list of global
objects and re-allocates each of them using MEDSALLOC. If
a global object requires initialization (i.e., data with non-zero
bytes), MEDS accordingly copies those underlying data as well.
Since now the locations of global objects have been migrated to
heap space, MEDS relocates all the references (which pointed
to original global objects) to reallocated ones in heap space
by referring a relocation table in ELF. While this scheme for
global objects may seem performance expensive, we highlight
that this procedural only needs to be performed once and thus
it only adds an one-time fixed cost to the program loading
procedural.

E. User-level Copy-on-Write (CoW)

As noted in §IV-B, MEDS uses mmap() syscall with a
MAP_SHARED flag to alias a physical page with multiple virtual
pages, but this approach has compatibility issue with the CoW
scheme of the Linux kernel. More specifically, when the fork()
syscall is invoked, the child process shares the same physical
pages with its parent process. Then, the kernel CoW to perform
lazy copy and unshare the modified physical pages. However,
pages mapped with the MAP_SHARED are not subjected for CoW,
as the kernel interprets that such pages should be shared
between a parent and child process. As a result, for process
protected by MEDS, fork() will break the normal isolation
guarantees between processes.

To address this issue, MEDS designs a user-level copy-on-
write mechanism. First, MEDS intercepts all fork-like syscalls.
Right before fork(), MEDS marks all virtual pages allocated by
MEDS with MAP_SHARED as non-writable. After fork(), when
a process attempts to write any of such pages, a pre-installed
signal handler catches the attempt via page fault. Then MEDS
allocates a new physical page, maps it to a temporary virtual
address (with MAP_SHARED), hard-copies the content from the
old physical page, unmaps the old physical page, remaps a
new physical page to the old virtual address, unmaps the new
physical page from the temporary address, and then passes
control back to the process to continue the write operation.
This mechanism can also be implemented at the kernel-level
by adding a dedicated flag for page aliasing, but we chose
to implement user-level solutions to avoid installing a kernel
extension for better compatibility.

V. IMPLEMENTATION

We have implemented a prototype of MEDS based on the
LLVM Compiler project (version 4.0). MEDS is implemented
in total 10,812 lines of ¢ and c++ code. Overall, MEDS
takes C or C++ source code of a target application as input,
and generates executables. The instrumentation module is

implemented as an extra LLVM pass. The runtime library
module is based on sanitizer routines in LLVM. All standard
allocation and deallocation functions are hooked to be delegated
by MEDSALLOC. Copy-on-write (COW) is implemented by
hooking fork() and installing a custom signal handler to
capture invalid memory access attempts.

VI. EVALUATION

In this section, we evaluate our prototype of MEDS against
our objectives (§III) by answering the following questions:

o Compatibility. Does MEDS introduce compatibility issue
to our target large-scale production programs? (§VI-A)

e Detectability. Does MEDS properly detect memory er-
rors against attacking exploits (§VI-B) and in fuzz test-
ing (§VI-C)?

e Performance. How much performance overhead does
MEDS impose? (§VI-D)

Experimental Configuration. MEDS is configured to have
4 MB of the redzone and 80 TB of the quarantine zone. ASAN
is configured to have default parameters—from 16 Byte to
2,048 Byte to the redzone?, and 256 MB of the quarantine zone.
As noted before, enlarging ASAN’s parameters ends up having
out-of-memory issues due to heavy physical memory uses.

Experimental Setup. All our evaluations were performed
on Intel(R) Xeon(R) CPU E5-4655 v4 @ 2.50GHz (30MB
cache) with 512GB RAM. We ran Ubuntu 16.04 with Linux
4.4.0 64-bits. We have used MEDS to build the following
five applications for evaluation: Chrome browser (58.0.2992.0),
Firefox browser (53.0al), Apache web server (2.4.25), Nginx
web server (1.11.8), and OpenSSL library (1.0.1f).

A. Compatibility

One of the key goals of MEDS is to maintain compatibility
in running target applications, especially for the large-scale
commodity programs. In order to check such compatibility, we
ran the basic functionality unit tests provided by respected
vendors: 2,242 test cases in Chrome, 781 test cases in
Firefox, and 1,772 test cases in Nginx. MEDS passed all of
these unittests, implying that MEDS truly meets compatibility
requirements for complex programs.

B. Detectability against Attacking Exploits

Recall that MEDS detects memory errors by approximating
the concept of the infinite gap and heap. In this subsection, we
first test the detection capability of MEDS on a set of simple
unit tests that cause memory corruptions. Then we use real-
world vulnerabilities to see MEDS’s detection capability in
practical use-cases. Lastly, we show various measures showing
the effectiveness of MEDS’s approximation on the infinite gap
and heap.

Memory Error Unit Tests. To see whether MEDS can detect
all different kinds of memory errors, we ran a set of unit

2 ASAN takes the minimum and maximum size of redzone. Then, depending
on the allocation size, ASAN picks the redzone size within this minimum and
maximum range.



tests available in the LLVM ASAN. It has 50 unit test cases,

including stack overflows, heap overflows, use-after-free, etc.

In addition to these cases, in order to better compare MEDS
against ASAN and demonstrate MEDS’s limitation as well, we
also added the following four tests: two heap overflow cases
accessing beyond the redzone of either ASAN or MEDS (4 MB),
respectively; and two heap use-after-free cases which allocate
either less or more than the quarantine zone size, respectively.
In all of these tests, a simple vulnerable program is run with a
specific input triggering a memory error, and the test passes
if the program properly stops and reports an error. Overall,
MEDS was able to pass most of these tests except one, showing
that MEDS does handle all different memory error cases. This
exception case, as expected, was in heap overflows accessing
beyond MEDS’s redzone size (4 MB). As for ASAN, it failed
to detect three cases due to its small redzone and quarantine
zone size. According to these unit test results, the detection
capability of MEDS is arguably a super set of ASAN.

Juliet Test Suite. NIST provides the Juliet test suite [6], which
is developed for testing the effectiveness of software assurance
tools. Every test case has two versions, a call to a bad function
with a vulnerability (so as to measure false negatives) and a call
to a good function that have patched the vulnerability (so as to
measure false positives). We particularly focused our testing on
memory corruption related testcases in Juliet, a total of 11,414
testcases: 3,124 tests for Stack buffer overflow (CWE 121), 3,870
tests for Heap buffer overflow (CWE 122), 1,168 tests for buffer
underwrite (CWE 124), 870 tests for buffer overread (CWE 126),
1,168 tests for buffer underread(CWE 127), 820 tests for double
free (CWE 415), and 394 tests use-after-free (CWE 416). We
compiled all of these testcases using MEDS as well as ASAN,
and measured false positives and false negatives in terms of
detectability. In most of time, both MEDS and ASAN showed
0 false positives and false negatives. However, sometimes both
showed false negatives on the testcases, ranging from zero to
288. We analyzed the details of those false negative cases and
found that these test cases involve random memory access (i.e.,
an access address is computed through rand function seeded
by time). In other words, these random accesses may skip over
the redzone size enforced by both schemes, resulting in false
negatives.

In order to better compare the detection capability and
understand its practical implications with respect to this random
access, we modified those 288 cases with the following
constraints: (1) allocating a thousand more objects (currently
Juliet tests only allocate one object for each test) and (2) limit
the random access within the range of stack/heap segments. The
first constraint takes account of practical running environments,
where most real-world programs allocate a huge number of
memory objects at runtime. The second constraint considers
general programming practice — in practice a pointer value is
mostly deduced from an address of existing objects. We applied
these changes to 288 testcases, and ran a million times to
measure the detection probability. Our result shows that MEDS
detected 98% of those while ASAN detected 35% of those.
Although this modification on Juliet test is arguably in favor of
MEDS, we still believe this outstanding detection probability
of MEDS demonstrates enough its significant improvement in
detection capability over ASAN.

Detecting Real-world Memory Errors. To better understand
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App. CVE Types Detection
ASAN MEDS
Chrome 2016-1653 S, W A v
Chrome 2016-5182 S, W A A
Chrome 2016-5184 T, RW A A
Firefox  2016-2798 S, R JAN A

TABLE I: Detection capability of MEDS on real-world vulnerabilities:
S - spatial memory errors; T - temporal memory errors; W - a write
violation; R - a read violation; v - detected; A - partially detected
(difficult to bypass); A - partially detected (easy to bypass)

whether MEDS can truly detect memory errors in realistic use-
cases, we launched memory corruption attacks against a set of
vulnerabilities in popular applications including Chrome and
Firefox. For each vulnerability, we first rolled back the target
application’s source code to the vulnerable version, and then
used both ASAN and MEDS to build the application to compare
the detection capability.

As shown in Table I, MEDS enhanced its detection capability
in Chrome and Firefox over ASAN, both in spatial and temporal
memory errors. In fact, the table demonstrates not only the
effectiveness of MEDS’s approximated infinite gap and heap
but also its limitation. In the case of CVE-2016-1653, since the
vulnerability offers a limited range of violation access less than
4 MB (i.e., less than MEDS’s redzone size), MEDS was able to
fully detect it whereas ASAN was not. However, for the rest
three cases, because these offer full control over the pointer (i.e.,
complete arbitrary memory read or write vulnerability), MEDS
was also bypassed as ASAN did. We still note that bypassing
MEDS is more difficult than ASAN, thus those are marked as
A in MEDS and A in ASAN, respectively.

Effectiveness of Approximation. MEDS elevates the level of
detection capability by approximating the infinite gap and heap,
but apparently there should be a certain upper bound due to the
limited memory resources. Thus, we study practical impacts of
those limits in terms of detection capability. In particular, an
offset size of memory accesses directly impacts the effectiveness
of redzone based detection. In fact, this offset size is strongly
related to the allocated object size, because intermediate pointer
arithmetic only involves in shifting a pointer within the same
object. Therefore, the possible difference caused by pointer
arithmetic is mostly smaller than the associated object size.
Thus, we measured the size of each allocation across all the
applications under our evaluation, and found that all objects
were smaller than 4 MB, which implicates 4 MB redzone would
provide reasonably good detection capability. This measurement
also shows the limitation of ASAN, as 11% of objects were
bigger than 256 Bytes (i.e., the default redzone size of ASAN)
and accessing routines onto those 11% of objects may be
abused to bypass a redzone size. As noted before in §IV,
enlarging this parameter in ASAN is not suitable for large-scale
applications due to out-of-memory issues. It is worth noting
that MEDS can be further augmented through strictly restricting
the pointer arithmetic up to the maximum object size (i.e., 4 MB
in these applications). This will enable MEDS to truly achieve
the infinite gap.

MEDS also approximates the infinite heap by cycling



Recycle frequency (min)

App.

H HS HSG
Chrome 503 152 15.1
Firefox  160.7 32.1 32.0
Apache 1412 95.7 95.7
Nginx 4.5 0.5 0.5

TABLE II: The frequency of virtual address recycling on MEDS: H
- aliasing heap objects; HS - aliasing heap and stack objects; HSG -
aliasing all objects including heap, stack, and global. Note that first
virtual address reuse on ASAN is done very quickly at initialization
in case of Chrome and Firefox.

Buffer overflow Use-after-free

ASAN MEDS Improv ASAN MEDS  Improv

First crash 631.85  51.64  1223x 98510  86.02  11.45x
time (s)

Crashes per an 876 2774 3.16x 748 2085 2.78x

hour

TABLE III: Detection performance of MEDS and ASAN with micro-
benchmarks.

through 64-bits of virtual memory space. More precisely, MEDS
alone cannot fully use such 64-bits space, but it currently
utilizes 80 TB virtual memory space— given the total of 47-
bits user-land virtual address space in x86 (total 128 TB), it
reserves 16 TB for shadow memory, another 16 TB is reserved
for internal memory allocations for MEDS, and yet another
16 TB is reserved for Linux stack. Therefore, since MEDS starts
reusing virtual memory space after allocating objects over
80 TB, we try to project a time taken to trigger this action from
the end-user perspective. Specifically, we ran MEDS applied
versions of Chrome and Firefox, which visited websites every 5
minutes using the same tab; and ran those of Apache and Nginx
which serves 25,000 requests (with concurrency level 50) per
a second. According to our running results (Table II), Chrome,
Firefox, and Apache started to reuse the address space after 49
minutes, 160 minutes, and 141 minutes, respectively. We believe
this is a reasonably long enough time, not interfering end-user
experiences, especially when considering that most users would
frequently close and create new tabs. Nginx quickly drained
the virtual address space though—it only took 4 minutes until
the recycle. We suspect this is because Nginx is designed to
repeat heavy memory reallocations. Although this would not
be an ideal, in this case the Nginx process can be re-spawned
frequently before reaching this virtual address recycling time.

C. Detectability in Fuzz Testing

In order to demonstrate MEDS’s effectiveness in detecting
memory errors while performing fuzz testing, we run a
fuzz testing using both micro-benchmarks and real-world
applications. We used American Fuzzy Lop (AFL) as a fuzzing
framework [38], which is one of the most popular fuzzers in
practice. Target programs were first instrumented using AFL
to enable its feedback based fuzzing functionality, and further
instrumented with either MEDS and ASAN to compare the
detection capability.

Fuzzing Micro-benchmark Programs. In this evaluation,
we developed and tested two simple yet realistic vulnerable
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programs, exhibiting buffer overflow or use-after-free vulnera-
bilities, respectively. These testing programs were written to
highlight the effectiveness of MEDS, especially in terms of
non-linear memory violation cases (i.e., beyond the size of
a redzone) and temporal violation cases with heavy memory
allocations (i.e., beyond the size of a quarantine zone). Thus,
these may not represent general detection capability of all
memory error cases. However, since these vulnerable codes
were taken and simplified from real-world vulnerabilities, we
believe this testing still has practical implications in terms of
memory error detection, which we will further showcase using
real-world applications.

The first case on buffer overflow vulnerability is caused by
an integer overflow on allocation size. It takes width and height
of the canvas and allocates the canvas. After that, the program
takes offset, size, and data to write on the canvas. There is an
integer overflow when computing the canvas size. The second
case has a use-after-free vulnerability. Initially, it has a set
of pointers, each of which points to a heap object. Then the
program takes an integer value k, which frees & number of
objects. After freeing the objects, it allocates new objects more
than freed objects, and attempts to access one of the pointers
that were pointing to heap.

We have performed 10 times for the micro-benchmarks and
Table III shows the average times taken to encounter the first
crash, and average crashes per an hour. MEDS encounters the
first crash 12 times earlier than ASAN in our micro-benchmark.
When running the input for the first crash of MEDS with ASAN,
ASAN usually cannot detect the vulnerability. Also, MEDS has
3 times higher average crashes than ASAN during fuzzing. The
result shows MEDS can find a target vulnerability faster than
ASAN. In other words, MEDS is effective in terms of detecting
performance.

Fuzzing Real-world Programs. To clearly demonstrate
practical aspects of MEDS in augmenting fuzz testing capability,
we also run AFL using real-world programs. Table IV shows the
results while fuzzing each program for six hours. We collected a
set of target applications from GitHub and the Debian repository,
where its popularity is implicated by either the popularity
pair (the number of forks and the number of stars in GitHub)
and the installation ranking (among 26,762 applications in
Debian repositories), respectively. The applications are all
recent versions so that bugs found from this test are all
new bugs, and we are already contacting the corresponding
development community to report these issues. The complexity
of applications are represented in terms of the lines of code
(LoC). The total number of executions denotes the number of
executed instances during six hours of the fuzz testing. Since
the same memory error can be triggered through many different
inputs, AFL only keeps the crash exhibiting unique execution
paths, which is called a unique crash.

Overall MEDS outperformed ASAN in augmenting memory
error detection capability of fuzzing for all target applications
we run, in terms of the total number of unique crashes—
68.3% improvements on average, ranging from 1% to 256%.
In fact, these results are particularly interesting because MEDS
is no better than ASAN in terms of execution speeds (although
sometimes MEDS is faster than ASAN), as it is highly depending
on application’s runtime characteristics (i.e., memory allocation



App. Description Popularity Complexity Total execs (K) Total unique crashes Unique crahses per 1M execs

GitHub® Debian” (LoC) ASAN MEDS ASAN MEDS Improv ASAN MEDS Improv
PH7 PHP interpreter (35, 321) 43K 387 360 8 29 256% 20.67 79.17 283%
Ici LCODE interpreter (61, 355) 50K 413 820 21 54 157% 50.85 65.85 30%
picoc C interpreter (161, 1240) 68K 4,535 6,020 108 231 114% 23.81 38.37 61%
ImageMagick  Image tool (212, 933) 622K 110 58 9 14 56% 81.82 241.38 195%
wren Sciprt language (190, 1991) 13K 340 222 92 110 20% 270.59 495.50 83%
espruino JS interpreter (359, 1157) 18K 167 143 260 295 13% 1,556.89  2,062.94 33%
tinyvm Tiny virtual macine (123, 1154) 30K 182 170 73 80 10% 399.17 468.69 17%
raptor RDF format parser - 699 162K 1,320 1,250 2 5 150% 1.52 4.00 164%
swftools Tools for SWF files - 6,476 158K 44 50 97 123 27%  2,20455  2,460.00 12%
exifprobe Probe EXIF files - 6,512 45K 573 666 135 150 11% 0.24 0.23 -4%
metacam Probe EXIF files - 8,355 4K 504 457 58 61 5% 115.03 133.48 16%
jhead Image tool - 4,010 10K 1,490 2,470 85 86 1% 57.04 34.82 -39%

TABLE IV: Fuzzing real-world applications to compare memory error detection capability of ASAN and MEDS. « denotes (the number of
forks, the number of stars) in GitHub, and 8 denotes the installation ranking from the Debian popularity contest. Each application was fuzzed

for 6 hours using the AFL fuzzer [38].

behavior). This execution speed can be deduced from the
total number of executions. For example, in the case of PH7,
MEDS was slightly slower than ASAN (i.e., 7 % slower).
Seven applications were slower when running with MEDS,
however, more unique crashes occur during the fuzz testing.
Five applications (i.e., Ici, picoc, swftools, exifprobe, and jhead)
were faster when running with MEDS. Among these, in terms
of unique crashes per executions MEDS was slower in two
applications (i.e., exifprobe and jhead). We suspect this is
because MEDS reached to the point earlier than ASAN, where
AFL gets saturated in exploring more execution paths in these
two applications. After being saturated, MEDS spent the rest
fuzzing cycles, more cycles than ASAN as MEDS has faster
execution speeds, without finding new unique crashes. In other
words, MEDS found most of unique crashes faster than ASAN,
but spent the rest fuzzing time without finding more as AFL
gets saturated. For the rest of three applications (i.e., Ici, picoc,
and swftools), they have higher unique crashes per executions
when running with MEDS.

Even for the seven applications that showed slower execu-
tion speeds in MEDS (i.e., PH7, ImageMagick, wren, espruino,
tinyvm, raptor, and metacam), MEDS still was able to find more
unique crashes than ASAN. This implicates that, the advantages
in providing enhanced detection capability outweighs the
disadvantages in slowing down the execution speed, resulting
in overall fuzzing performance improvements made by MEDS
(in terms of finding more unique crashes).

We believe this clearly demonstrates the improved memory
error detection capability of MEDS over ASAN. Considering
the huge popularity of AFL and ASAN in performing real-
world fuzz testing, these results also signify the strong practical
impacts of MEDS— when used together with AFL, the proto-
type of MEDS can help the fuzz testing processes, significantly
better than the state-of-the-art memory error detection tool,
ASAN.

D. Performance Overheads

The security service of MEDS obviously comes with cost,
which mainly impacts two performance factors: runtime speed
and physical memory usage.

Runtime Speed. The major factors imposing runtime speed
overheads for MEDS are (1) it executes extra instructions to
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check all memory load and store instructions; (2) since MEDS
utilizes more virtual address space, there will be more TLB
misses; and (3) each object allocation needs to invoke mremap
syscalls for page aliasing.

To better understand these aspects, we ran benchmarks
for applications — Table V shows the running results of
Chrome, Firefox, Apache, and Nginx, and Table VI shows
that of OpenSSL. For Chrome and Firefox, we used Octane
benchmarks [14]; for Apache and Nginx, we used Apache
benchmark [13] which serves 25,000 requests per second;
and for OpenSSL, we used OpenSSL’s speed command to
encrypt memory blocks using SHA1 [12]. For each run, we
applied three different settings of MEDS to better understand
performance impacts from object coverage. In other words,
the MEDS column with H denotes that MEDS safeguards
heap objects (i.e., all heap objects have been allocated using
MEDSALLOC). Similarly, HS denotes for both heap and stack
objects, and HSG denotes for all object types including heap,
stack, and global.

On average, MEDS slowed down the execution about 27%
on MEDS-H, 94% on MEDS-HS, and 108% on MEDS-HSG
compared to the baseline. First, as MEDS increases the object
coverage (from heap object types to all object types), the
execution gradually slowed down because MEDS will miss
more TLB and invoke more system calls. This performance
change is especially noticeable between MEDS-H and MEDS-
HS for Nginx (i.e., 24% to 250%). This is because Nginx
allocates a huge number of stack objects at runtime, which in
turn incurs a huge number of allocations (when a function is
invoked) and deallocation (when a function returns) for MEDS.
The stack object allocation is not a performance bottleneck
for the baseline, however, as it only requires to shift the stack
pointer to reserve and release stack memory space for objects.

Compared to ASAN, MEDS slowed down the execution
about 11%, 73%, and 86%. As MEDS does not impose signifi-
cant overheads in terms of instrumented instructions compared
to ASAN (i.e., both check the shadow memory bit), we inspected
other performance factors—TLB misses (Table VII) and the
number of invoked system calls (Table VIII). Overall MEDS
indeed incurs much more TLB misses (i.e., on average 499%
more than ASAN) and invokes much more system calls (i.e.,
on average 32 times more than ASAN). However, we believe



Performance (Slowdown)

App Benchmark Baseline
(Metric) Performance ASAN MEDS
H HS HSG
Chrome Octane 28,177 24,117 (17%) 21,553 31%) 20,713 (B36%) 19,525 (44%)
Firefox (Score, high) 26,970 23,076 (22%) 20,043 (35%) N/A N/A
Apache ApachBench 5,671 5,087 (11%) 4,826 (18%) 4,540 (25%) 4,327 (31%)
Nginx (# of requests, high) 8,132 7,370 (10%) 6,538 (24%) 2,528 (222%) 2,364 (250%)

TABLE V: Runtime performance (a score for Octane, and # of requests per second for ApacheBench; the higher the better) overheads of
MEDS, along with ASAN and the baseline for comparison. Overall, on average MEDS slows down an execution 108% compared to the baseline,

and 86% to ASAN.

Slowdown # of system calls Overhead

Block Baseline App-

Size Performance ASAN MEDS Baseline ASAN MEDS ASAN MEDS
(Bytes) H HS  HSG Chrome 82313 100,893 1,788,698  1.23x 21.73x

Firefox 213388 227352 1,805388  1.06x 8.46x

16 72K 248%  624%  672%  T59% Apache 548684 949493 1213057  1.73x 221x
64 201K 276%  357%  424%  483% Nginx 275311 280279 535,144  1.02x 1.94x
256 434K 150%  169%  209%  238% OpenSSL 127 7184 9I5416  5757x  7.680.44x
1024 635K 60%  95%  102%  118% : i i
8192 746K 12%  19%  22%  25%

TABLE VI: OpenSSL performance (# of KB processed per a second)
of MEDS, along with the baseline and ASAN. Larger block size

TABLE VIII: The number of system calls invoked while running
benchmarks

decreas'es t.he (.)\{erhead of both ASAN and MEDS. Especially, the . Overhead
block size is critical to the performance of MEDS. App Baseline
: Memory Usage ASAN MEDS
H HS  HSG
Application # of TLB misses Overhead Chrome 733MB  111%  83% 110% 116%
Baseline ASAN MEDS ~ ASAN  MEDS Firefox 725MB  128%  95% 130% 136%
Chrome 27,821k 40,185k 119855k  44%  331% Apache 217KB - 82%  44%  58%  T4%
Firefox 42,548k 44711k 121,062k 5%  185% Nginx 195KB 98% 8% 292% 301%
Apache 3391k 3,640k 3,741k 10% 10% OpenSSL 339KB 57% 367% 409% 432%
Nginx 452k 542k LISk 20%  154%
OpenSSL 9%k  L126k Ado8k 9% IM% TABLE IX: Physical memory uses of MEDS, along with the baseline

TABLE VII: TLB utilization while running benchmarks

it is a reasonable cost of MEDS’s enhanced security services,
in terms of detectability.

Physical Memory. MEDS imposes more physical memory
uses because it keeps extra metadata for shadow memory as
well as page-alias mapping information. As shown in Table IX,
MEDS-H, HS, and HSG imposed 133%, 200%, and 212% more

physical memory uses on average than the baseline, respectively.

In particular, while MEDS imposed 432% in OpenSSL, and
301% in Apache, it imposed 109% on average for the rest
of four applications. This is because all memory allocations
in OpenSSL were small sized allocations (i.e., from 8 to
32 Byte) and MEDS appends 8 Byte of per-object metadata to
keep aliasing information. Also, OpenSSL does not deallocate
memory objects during the evaluation. Thus, corresponding

shadow memory pages are mapped to physical memory pages.

This runtime characteristic was also captured in TLB misses
in Table VII—OpenSSL incurred the highest TLB misses as it
intensely stretches virtual address space. On the contrary, ASAN
imposed 95% more on average than the base line, because
ASAN actually commits physical memory space for the redzone
as well as the quarantine zone. We believe this demonstrates the
effectiveness of our page aliasing mechanism in that MEDS does
not impose impractical physical memory uses while utilizing
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and ASAN for comparison. Overall, on average MEDS uses physical
memory 218% more than the baseline, and it uses 68% more than
ASAN.

immense virtual address space.

VII. DISCUSSION

Potential Use-cases. Throughout this paper, we tried to neu-
tralize use-cases of MEDS as we believe MEDS’s contribution
is general in enhancing memory error detection capability. One
specific use-cases would be in deploying MEDS for mitigating
memory corruption attacks for large scale applications. Since
MEDS indeed meets compatibility requirements (as it can
run large scale programs including Chrome, Firefox, Nginx,
and Apache) and enhances detection capability compared
to other detection tools, it would be a good fit for these
cases especially focusing on detection itself. However, the
performance overheads that MEDS introduces can be an issue,
so it may not be suitable for performance critical applications.

The other use-cases of MEDS would be augmenting the
fuzz testing. As we have shown in §VI-C, MEDS significantly
outperforms the state-of-the-art memory error detection tool,
ASAN. Recognizing the importance of fuzz testing, the vast
majority of vendors today employ fuzz testing in their regular
software development cycles with huge computing resources.
For example, Google reported that they are dedicating a cluster



of hundreds of virtual machines for fuzzing, which runs around
6,000 Chrome instances simultaneously. Because MEDS is
capable of finding more memory errors than ASAN given the
same computing time, we believe MEDS will be useful not
only saving computing resources for fuzzing, but also notifying
the memory error bugs earlier in their development cycles.

Kernel-Level Support for Performance Improvements.
This paper focused on keeping the compatibility of MEDS,
particularly without introducing new features in an underlying
operating system, Linux. As shortly mentioned before, the
performance of MEDS can be further improved if it can
leverage a few kernel changes in the future. For example,
when implementing a user-level copy-on-write (COW) (§IV-E),
the kernel can be modified to maintain a special flag for
page aliasing. This would require to add a few additional
flags in mremap() system calls. By doing this, MEDS does
not need to implement relatively expensive user-level COW
mechanisms, reducing runtime overheads of MEDS. As another
example, MEDS has to re-allocate all the list of global objects
at loading time §IV-D. This is because the kernel always
assigns MAP_PRIVATE in memory pages used for global objects,
prohibiting to be used for a page aliasing mechanism. This
redundant allocation phase can be avoided if we can provide
yet another ELF loader in the Linux kernel, which specifies
MAP_SHARED for those memory pages.

VIII. ADDITIONAL RELATED WORK

Pointer-based Memory Error Detection. Pointer-based
detection techniques keep track of pointer capabilities and
check the validity of memory access based on the capabilities.
Depending on where the capabilities of pointers are stored,
pointer-based detectors can be further classified into fat-
pointer-based and disjoint-metadata-based. CCured [24] is a
representative work for fat-pointer-based approaches where
unsafe (WILD) pointers are extended with its capabilities stored
together with the pointer itself. One drawback of software
fat-pointer-based approaches is that they break the memory
layout compatibility with unprotected code, which requires
special hardware support (e.g., CHERI [36]) to eliminate.
SoftBound [21] is a representative work in disjoint-metadata-
based approach where the capabilities are stored in a dedicated
table. While this approach does not break the memory layout
of objects, accessing metadata is usually more expensive. Intel
MPX [17] is a new hardware-based security feature introduced
in the latest Intel processors, which is essentially a hardware
implementation of SoftBound. There is a couple of works [10]
and [11] which utilizes the pointer-based approach with low
overhead. SGXBound [18] uses 32-bit of pointer values to store
the upper bound of the object, and the upper bound address
stores the lower bound of the object. However, it only utilizes
32-bit of virtual address, since they assume that the applications
run on Intel SGX which has limited memory.

A critical limitation of pointer-based approaches is in its
limited compatibility with C/C++ language features. In order to
function correctly, these approaches must propagate capabilities
correctly between pointers, which is not easy for certain
language features. As a result, they all suffer from backward-
compatibility issues especially for C++ programs. For instance,
CCured only supports limited features of C and the prototype
of SoftBound cannot compile all C benchmarks in the SPEC
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CPU benchmark suite, so there is still a long way to go before
they can support large-scale complex software like Chrome
and Firefox. Even commodity features like Intel MPX has
false positives in running Chrome browsers [30]. As this issue
is deeply connected to the difficulty of covering all different
C/C++ syntax use-cases as well as applying optimization for
Intel MPX, it is unclear whether it can be resolved in the near
future.

Memory Error Exploits and Mitigation. Memory errors
(ultimately) will allow attackers to perform arbitrary memory
read and write. Attackers can then leveraging such capabilities
to launch different attacks. For example, a simple stack buffer
overflow bug may allow attackers to overwrite (1) stack content
with malicious shellcode and (2) the return address, leading
to arbitrary code execution when the function returns. Based
on how these capabilities are abused, Szekeres et. al [34]
classify existing attacks into four categories: code corruption
attacks, control-flow hijacking attacks, data-only attacks, and
information leak. For each specific exploit strategy, a set of
corresponding mitigation mechanisms are then developed. For
instance, code integrity measurement (e.g., code signing) [3]
and data execution prevention (DEP) [2] is developed to defeat
code corruption attacks. And a large number of techniques
have been proposed to prevent control-flow hijacking attacks,
including Stack cookie [8], shadow stack [9], control-flow
integrity (CFI) [1], vtable pointer integrity [39], and code
pointer integrity [19]. The problem with mitigation techniques
is that arbitrary read and write capability is too powerful that
it usually allows attackers to find a new way to launch the
attacks.

IX. CONCLUSION

This paper presents MEDS to enhance the detectability of
memory errors. MEDS achieves this via utilizing the 64-bit
virtual address space to approximate the infinite gap and infinite
heap. A novel allocator MEDSALLOC uses page-aliasing
scheme to approximate above properties while minimizing
physical memory overhead. Our evaluation on MEDS using
large-scale real-world programs showed that MEDS provides
good compatibility and detectability with moderate runtime
overhead.
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