

Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia

Chong Wu and Wei Pan

5 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis,
6 MN 55455, USA

September 9, 2017; revised November 30, 2017 and December 14, 2017

8 Correspondence:

9 Wei Pan

10 Division of Biostatistics

11 A460 Mayo Building, MMC 303

12 Minneapolis, MN 55455

13 Phone: (612)626-2705

¹⁴ Email: wejp@biostat.jhu.edu

Abstract

Many genetic variants affect complex traits through gene expression, which can be exploited to boost statistical power and enhance interpretation in genome-wide association studies (GWASs) as demonstrated by the transcriptome-wide association study (TWAS) approach. Furthermore, due to polygenic inheritance, a complex trait is often affected by multiple genes with similar functions as annotated in gene pathways. Here we extend TWAS from gene-based analysis to pathway-based analysis: we integrate public pathway collections, expression quantitative trait locus (eQTL) data and GWAS summary association statistics (or GWAS individual-level data) to identify gene pathways associated with complex traits. The basic idea is to weight the SNPs of the genes in a pathway based on their estimated cis-effects on gene expression, then adaptively test for association of the pathway with a GWAS trait by effectively aggregating possibly weak association signals across the genes in the pathway. The p-values can be calculated analytically and thus fast. We applied our proposed test with the KEGG and GO pathways to two schizophrenia (SCZ) GWAS summary association data sets, denoted SCZ1 and SCZ2 with about 20,000 and 150,000 subjects respectively. Most of the significant pathways identified by analyzing the SCZ1 data were reproduced by the SCZ2 data. Importantly, we identified 15 novel pathways associated with SCZ, such as *GABA receptor complex* (GO:1902710), which could not be uncovered by the standard single SNP-based analysis or gene-based TWAS. The newly identified pathways may help us gain insights into the biological mechanism underlying SCZ. Our results showcase the power of incorporating gene expression information and gene functional annotations into pathway-based association testing for GWAS.

Keywords: aSPU, aSPUpath, aSPUpath2, gene expression, TWAS.

40 Introduction

41 Although genome-wide association studies (GWASs) have been remarkably successful in
42 identifying genetic variants associated with complex traits and diseases, only a small to
43 modest proportion of heritability for most complex traits and diseases can be explained
44 by the identified genetic variants (Manolio et al., 2009). Furthermore, since the majority
45 of identified variants are found in non-coding regions that are not in linkage disequilib-
46 rium (LD) with coding exons, a mechanistic understanding of how these variants influence
47 traits is generally lacking (Locke et al., 2015; Albert and Kruglyak, 2015). However, it is
48 now known that an important class of variants, termed expression quantitative trait loci
49 (eQTLs), affect complex traits by regulating gene expression levels; there is an enrichment
50 of eQTLs among the GWAS trait-associated variants (Lappalainen et al., 2013; Albert and
51 Kruglyak, 2015). Accordingly, transcriptome-wide association study (TWAS) and related
52 methods (Gusev et al., 2016a; Gamazon et al., 2015; Xu et al., 2017b) were proposed to in-
53 tegrate eQTL data with GWAS data to identify the genes associated with a complex trait.
54 These methods may improve statistical power to detect associations relative to traditional
55 SNP-based GWAS and gene-based tests that ignore information on gene expression regu-
56 lation. Nevertheless, due to the limited sample sizes of eQTL data and GWAS data, they
57 may fail to identify some more weakly associated genes with smaller effect sizes. On the
58 other hand, genes do not work in isolation; instead, a group of functionally related genes
59 as annotated in a biological pathway are often involved in the same disease susceptibility
60 and progression (Heinig et al., 2010). Gene-based analysis testing each gene one-by-one
61 may miss an important pathway if each gene in the pathway has only a small effect size,
62 but in aggregation they contribute substantially. Hence, association analysis of a group of
63 functionally related genes, called *pathway-based analysis*, has been proposed and applied
64 in practice to boost statistical power and improve interpretability over gene-based analysis
65 for GWAS (Wang et al., 2007; Chen et al., 2010; Peng et al., 2010; Wei et al., 2012; Schaid

66 et al., 2012; Pan et al., 2015; Bakshi et al., 2016; Li et al., 2016, 2017).

67 Here, we extend integrative gene-based testing like TWAS to integrative pathway-
68 based association analysis to identify pathways associated with complex traits and diseases.
69 Specifically, we propose a new self-contained test that integrates eQTL-derived weights,
70 GWAS individual-level or summary data, SNP LD information, and gene functional an-
71 notations as public pathway collections to identify pathways associated with a complex
72 trait (Figure 1). As in TWAS, we first estimate the *cis*-effects of the SNPs in each gene on
73 its expression level, then adaptively test for association between a pathway and a trait by
74 effectively aggregating possibly weak association signals across the genes in the pathway.

75 We note that our methodology differs from existing approaches. In principle, existing
76 pathway-based analysis methods can be applied in a two-step approach. After obtaining
77 the *p*-value for each gene by applying TWAS or a related method, an existing pathway
78 analysis method, such as gene set enrichment analysis (GSEA; Subramanian et al. (2005))
79 or DAVID (Huang et al., 2009), can be applied to identify significant pathways. As to
80 be shown later, a two-step approach, critically depending on the output of a gene-based
81 test, may lose power as compared to our integrated single-step method. Furthermore,
82 many existing pathway methods, including GSEA and DAVID, belong to the category of
83 competitive tests, which compare the *p*-values of the genes in a given pathway with the
84 *p*-values of other background genes to determine the significance level, while our method
85 is a self-contained test with a null hypothesis that none of any genes in the pathway is
86 associated with the disease; it is known that a self-contained test is often more powerful
87 (Goeman and Bühlmann, 2007). In addition, all the existing pathway analysis methods are
88 only for GWAS data alone while failing to take advantage of eQTL information, leading to
89 power loss and difficulties in interpreting the findings.

90 Our study was motivated by analyses of schizophrenia (SCZ) GWAS summary data.
91 SCZ is a major chronic and severe mental disorder that is associated with considerable
92 morbidity and mortality (Tiihonen et al., 2009) and affects about 1% of the population.

93 Although the high heritability of SCZ has been demonstrated by previous studies (Sullivan
94 et al., 2012), to date, one of the largest GWAS meta-analyses, conducted by the Schizophre-
95 nia Working Group of the Psychiatric Genomics Consortium (PGC), has only identified
96 128 independent associations spanning 108 conservatively defined loci (Schizophrenia Work-
97 ing Group, 2014). To improve the statistical power and interpretability of the results, Gusev
98 et al. (2016a) applied TWAS to the PGC GWAS summary data and identified 157 signif-
99 icant genes, of which 35 did not overlap with a genome-wide significant locus within 500
100 kb. However, the pathophysiology of SCZ remains largely unknown and thus it is hard
101 to develop new drugs with high efficacy and low side effects. Identifying SCZ-associated
102 pathways is a crucial step for mechanistic understanding of SCZ and thus developing new
103 drugs. Here, we performed gene- and pathway-based analyses to identify SCZ-associated
104 genes and pathways, providing insights into the underlying mechanism of SCZ.

105 We reanalyzed two SCZ GWAS summary data sets, which were downloaded from the
106 PGC website (see URLs): a meta-analyzed SCZ GWAS data set with 8,832 cases and
107 12,067 controls, denoted as SCZ1 (Ripke et al., 2013), and a more recent and larger one
108 with 36,989 cases and 113,075 controls, denoted as SCZ2 (Schizophrenia Working Group,
109 2014). First, we focused on gene-based analysis. By noting that TWAS is the same as
110 the weighted Sum test with gene expression derived weights (Xu et al., 2017b), we applied
111 some more powerful tests, such as the weighted sum of squared score (SSU) test and the
112 weighted adaptive sum of powered score (aSPU) test (Pan et al., 2014). We analyzed the
113 SCZ1 data and identified 51, 108, and 87 significant genes by applying TWAS, (weighted)
114 SSU, and (weighted) aSPU, respectively. Among these identified genes, about 90% genes
115 contained genome-wide significant SNPs within 500 kb in the SCZ2 data, constituting a
116 highly significant and intuitive support for the identified loci. We then applied these tests
117 to the SCZ2 data and identified 75 novel SCZ genes, of which 50 have not been reported
118 in the literature yet. These results further confirm that both weighted SSU and weighted
119 aSPU can improve statistical power to identify more associated genes over that of TWAS.

120 Second, we conducted pathway-based analysis by applying our proposed approach with
121 the Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa and Goto (2000)) and
122 Gene Ontology (GO; Consortium et al. (2004)) candidate pathways to the SCZ1 and SCZ2
123 data. Most of the significant pathways identified by analyzing the SCZ1 data were con-
124 firmed by the SCZ2 data. When analyzing the SCZ2 data, a two-step approach combining
125 TWAS and an existing pathway method, DAVID, identified only one significant pathway,
126 *sequence-specific DNA binding* (GO:0003700), which was also identified by our proposed
127 method. Importantly, by analyzing the SCZ2 data we identified 15 novel significant SCZ-
128 associated pathways, such as pathway *GABA receptor complex* (GO:1902710), which were
129 missed by the gene-based TWAS or aSPU analysis. Hence, pathway-based analysis, as a
130 complementary tool to gene-based analysis, may identify some pathways in which indi-
131 vidual genes may have only too weak effects to be detected but their aggregated effects
132 are strong. Overall, our results showcase the increased power of integrating GWAS sum-
133 mary data, eQTL data, reference LD information, and gene functional annotations to gain
134 insights into the genetic basis of complex traits.

135 Material and Methods

136 Data Sets

137 We downloaded two publicly available SCZ GWAS summary data sets from the PGC
138 website (see URLs): the SCZ1 data, which contains the meta-analyzed summary statistics
139 based on 20,899 individuals (Ripke et al., 2013), and the SCZ2 data based on 150,064
140 individuals (Schizophrenia Working Group, 2014). The sets of gene expression-derived
141 weights and the 1000 Genomes Project reference panel were downloaded from the TWAS
142 website (see URLs). Following the TWAS set-up, we removed the SNPs with the strand-
143 ambiguous alleles (A/T, G/C) from the GWAS summary data. Two pathway collections,

144 GO and KEGG, were downloaded from the Molecular Signatures Database (see URLs).

145 Review of TWAS and Related Methods

146 We review TWAS and its related methods, which take GWAS summary statistics, a set of
147 gene expression-derived weights, and SNP LD information as input. Since all the methods
148 are gene-based by testing the genes one by one, for the purpose of presentation we only
149 need to consider a single gene.

150 For a given gene, we only consider a region around it (i.e. its coding region extended
151 by a certain distance, say ± 500 kb, upstream and downstream from its TSS and TES
152 respectively) for its *cis*-effects. Let $Z = (Z_1, \dots, Z_p)'$ be a vector of z-scores of the SNPs
153 for the gene based on the GWAS summary data, or constructed from the GWAS individual-
154 level data. The null hypothesis H_0 to be tested is that the SNPs in a given SNP set (of
155 a gene or a pathway) are not associated with a GWAS trait. With $W = (\hat{w}_1, \dots, \hat{w}_p)'$,
156 a vector of the estimated *cis*-effects of the SNPs on gene expression based on a reference
157 eQTL data set, TWAS tests on H_0 using the weighted z-scores. Note that, with GWAS
158 individual-level data, TWAS can be interpreted as testing for association between imputed
159 gene expression and the GWAS trait; however, with GWAS summary data, $W'Z$ may be
160 regarded as an imputed *z-score* for the gene, but not imputed expression level. It turns out
161 that TWAS is equivalent to the weighted Sum test (Pan, 2009; Xu et al., 2017b). Because
162 the Sum test implicitly assumes that all variants have an equal effect size and the same
163 effect direction, the Sum test and thus TWAS, as discussed in the previous studies (Pan,
164 2009; Wu et al., 2011; Pan et al., 2014), may lose statistical power if the true association
165 effects are sparse (i.e. with many 0s) or the effect directions are different. Note that, due to
166 the usually small sample size of the eQTL dataset, there are always estimation errors with
167 the estimated *cis*-effects W . More generally, any more powerful tests, such as the weighted
168 SSU test or the weighted aSPU test, can be applied (Xu et al., 2017b). In particular, the
169 SPU(γ) tests are possible candidates to use, covering some existing ones as special cases

170 (Pan et al., 2014). For example, SPU(1) equals to the Sum test, while SPU(2) equals to
171 SSU and a kernel machine regression-based test (also known as SKAT (Wu et al., 2011) in
172 rare variant analysis) with a linear kernel. As to be confirmed later, the SPU(2) test may
173 yield higher statistical power than TWAS (or SPU(1)). Generally, the SPU(γ) tests with
174 $\gamma \in \Gamma = \{1, 2, \dots, 6, \infty\}$ can be applied, and their results can be combined by the adaptive
175 aSPU test (Pan et al., 2014).

176 Since not all SNPs with non-zero weights (derived from the reference eQTL data set)
177 were presented in the GWAS summary data, we used the ImpG-Summary software (Pasa-
178 niuc et al., 2014) to impute missing z-scores to the 1000 Genomes Project reference panel
179 accordingly. Because the correlations among Z can be approximated by LD among the
180 SNPs (Kwak and Pan, 2016; Gusev et al., 2016b), we used the 1000 Genomes Project refer-
181 ence panel (European ancestry) (or other panels for other ethnic/racial groups) to estimate
182 the LD and thus the correlation matrix for Z . In this study, we used five sets of gene expres-
183 sion reference weights that were based on the following four eQTL data sets: microarray
184 gene expression data measured in peripheral blood from 1,245 unrelated subjects from the
185 Netherlands Twin Registry (NTR), microarray expression array data measured in blood
186 from 1,264 individuals from the Young Finns Study (YFS), RNA-seq measured in adipose
187 tissue from 563 individuals from the Metabolic Syndrome in Men study (METSIM), and
188 RNA-seq measured in the dorsolateral prefrontal cortex from 621 individuals from Com-
189 monMind Consortium (CMC) (Gusev et al., 2016b). The weights for differentially spliced
190 introns were further constructed by analyzing CMC data (CMC-introns) (Gusev et al.,
191 2016b). All these weights were downloaded from the TWAS website (see URLs). To ac-
192 count for multiple testing, we applied the Bonferroni correction for each set of weights to
193 maximize the consistency with the previously published results (Gusev et al., 2016b) and
194 not to over-penalize the use of additional (and often highly correlated) gene expression-
195 derived weights. Specifically, we reported the number of significant genes after correcting
196 for the number of genes tested within the use of each of the five gene expression sets (YFS,

197 NTR, METSIM, CMC, and CMC-introns; 5004 genes on average with non-zero weights
 198 and being tested).

199 A New Pathway-based Test

200 Given a pathway, we would like to test the null hypothesis H_0 that none of the genetic
 201 variants in the pathway is associated with a trait. We introduce a new pathway-based test
 202 to integrate gene functional annotations and a reference eQTL dataset with GWAS data.
 203 Figure 1 illustrates the workflow of our new pathway-based analysis. As a comparison, we
 204 also describe a two-step approach combining an existing integrative gene-based test (like
 205 TWAS) and an existing pathway analysis method (like DAVID), in which a gene-based
 206 p-value is calculated for each gene before they are combined in pathway analysis.

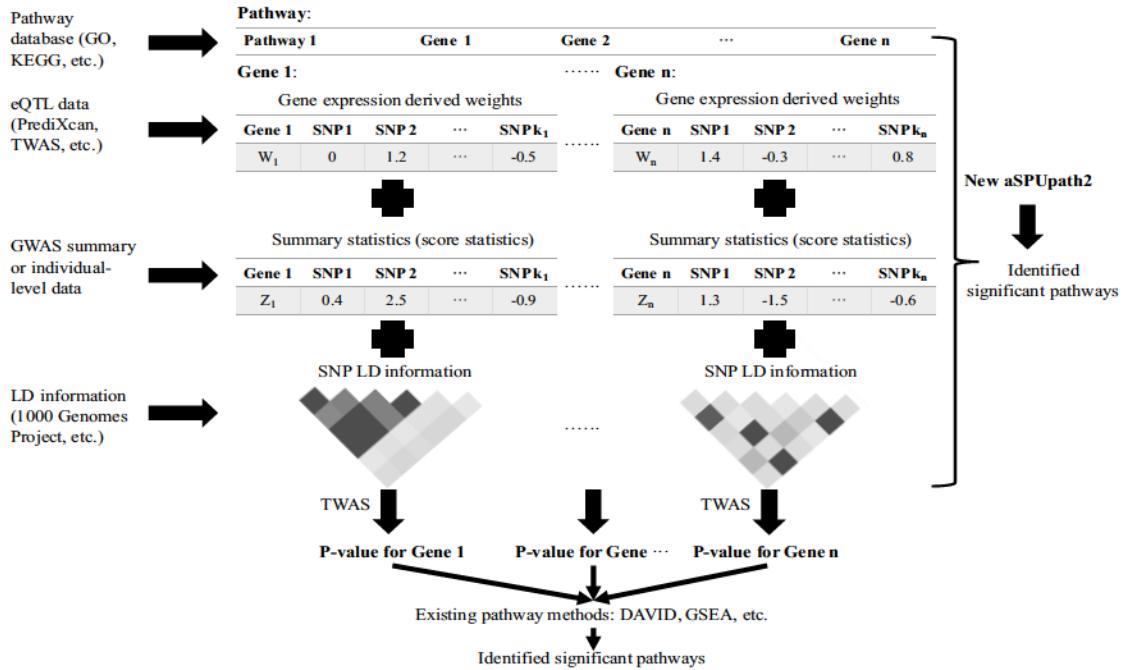


Figure 1: Workflow of pathway-based analysis.

207 Given a pathway S^* , we first remove the genes whose gene expression-derived SNP
 208 weights are all 0, resulting in a subset S containing n genes. We partition its z-score vector
 209 $Z = (Z'_1, \dots, Z'_n)'$ into the z-score sub-vectors for the genes, say for gene g (with k_g SNPs)

210 as $Z_{g\cdot} = (Z_{g1}, \dots, Z_{gk_g})'$. For each gene g , we standardize the gene expression derived
 211 weights $W_{g\cdot}$ by $W_{gi}^s = W_{gi} / \sum_{i=1}^{k_g} |W_{gi}|$ such that the weights of the genes are in a similar
 212 scale to avoid one or few genes (e.g. with large expression levels) dominate. The standard-
 213 ized weights for the gene set S are $W^s = (W_{1\cdot}^s, \dots, W_{n\cdot}^s)'$ with $W_{g\cdot}^s = (W_{g1}^s, \dots, W_{gk_g}^s)$. We
 214 propose the following test statistics:

$$\text{PathSPU}(\gamma) = \sum_{g=1}^n \sum_{k=1}^{k_g} (W_{gk}^s Z_{gk})^\gamma,$$

$$\text{aSPUpath2} = \min_{\gamma \in \{1,2\}} P_{\text{PathSPU}(\gamma)},$$

215 where $P_{\text{PathSPU}(\gamma)}$ is the p -value of the $\text{PathSPU}(\gamma)$ test. Because $\text{PathSPU}(1)$ and Path-
 216 $\text{SPU}(2)$ are independent (Derkach et al., 2014), we can obtain the p -value of aSPUpath2
 217 via the following steps:

- 218 1. Calculate the p -values, $p_1 = P_{\text{PathSPU}(1)}$ and $p_2 = P_{\text{PathSPU}(2)}$, based on the theory
 219 that $\text{PathSPU}(1)$ and $\text{PathSPU}(2)$ asymptotically follow a normal distribution and
 220 a mixture of χ^2 distribution under H_0 , respectively (Pan, 2009).
- 221 2. Take the minimum p -value of $\text{PathSPU}(1)$ and $\text{PathSPU}(2)$, that is $p_{\min} = \min(p_1, p_2)$.
- 222 3. By the asymptotic independence of $\text{PathSPU}(1)$ and $\text{PathSPU}(2)$, the p -value for the
 223 aSPUpath2 is $p_{\text{aSPUpath2}} = 1 - (1 - p_{\min})^2$.

224 The aSPUpath2 test is new in two aspects: first, unlike many other pathway-based
 225 methods aggregating information from only SNP data (Kwak and Pan, 2015; Bakshi et al.,
 226 2016), aSPUpath2 incorporates information in a reference eQTL data set, thus increas-
 227 ing the power and providing mechanistic insights; second, unlike many other methods, for
 228 example fastBAT (Bakshi et al., 2016), which are non-adaptive and thus only powerful
 229 under some specific alternatives, aSPUpath2 adaptively combines information and thus
 230 can maintain relatively high power across a wider range of situations. Finally, we note

231 that aSPUpath2 is a special case of a more general and adaptive pathway-based test called
232 aSPUpath (Pan et al., 2015; Kwak and Pan, 2015), motivated by the following two consider-
233 erations. First, unlike aSPUpath, the *p*-value of aSPUpath2 can be calculated analytically
234 and thus fast, though a simulation-based method can be equally applied; as to be demon-
235 strated in the results section, the analogical method provides a good approximation to the
236 simulation-based method. Second, aSPUpath2 is tailored to identifying pathways contain-
237 ing many associated genes or SNPs with only weak effects that cannot be detected by single
238 SNP- or single gene-based analysis, for which it is more powerful. Hence, aSPUpath2 can
239 be used either alone or as a fast screening procedure for the more time-consuming and more
240 general aSPUpath test.

241 We extracted candidate pathways from two gene functional annotation sources, KEGG
242 and GO, which were downloaded from the MSigDB database (Subramanian et al. (2005);
243 see URLs). Because a small pathway gives results not much different from a gene-based
244 analysis, whereas the biological function of a large pathway is not specific, we restricted our
245 analyses to the pathways containing between 10 and 200 genes, which is widely adopted
246 in pathway-based analysis (Network and of the Psychiatric Genomics Consortium, 2015;
247 Pan et al., 2015). Supplementary Table 1 shows the summary statistics for the candidate
248 pathways. On average, we analyzed 4,220 gene sets for each set of weights. To account for
249 multiple testing, we applied the Bonferroni correction within each set of weights and used
250 a slightly conservative cutoff $0.05/5000 = 1 \times 10^{-5}$. Owing to the non-independence nature
251 of many pathways, the Bonferroni correction might be over-conservative here.

252 Other Existing Pathway-based Tests

253 In principle, an existing pathway analysis method, in couple with a gene-based test, can
254 be applied in a two-step approach. We compared our new method with this two-step
255 approach using two popular pathway analysis methods, i-GSEA4GWAS (Zhang et al.,
256 2010) and DAVID (Huang et al., 2009), to further illustrate the power of our proposed

257 test. Specifically, for i-GSEA4GWAS, we uploading the *p*-values for the genes (calculated
258 by TWAS or SSU or aSPU) for a given pathway to the i-GSEA4GWAS server (see URLs).
259 For DAVID, we uploaded to the DAVID server (see URLs) the significant genes identified by
260 TWAS or SSU or aSPU as the gene list and used the genes we analyzed as the background.

261 Results

262 TWAS and Related Methods Identify Known and Novel SCZ- 263 associated Genes

264 First we applied TWAS (i.e. the weighted Sum test), the (weighted) SSU and (weighted)
265 aSPU tests (that integrate gene expression-derived weights) to the SCZ1 data (Ripke et al.,
266 2013) of 20,899 individuals to identify SCZ-associated genes. Then we looked for genome-
267 wide significant SNPs around these genes in the larger SCZ2 data (Schizophrenia Work-
268 ing Group, 2014) of 150,064 individuals for partial validation. Table 1 summarizes the
269 numbers of the significant genes identified by the methods with the SCZ1 data. TWAS,
270 SSU, and aSPU identified 51, 108, 87 significant genes (after taking the union of the results
271 using the five sets of weights), respectively. Among these 87 significant genes identified
272 by aSPU, 64 (around 70%) and 79 (around 90%) contained the genome-wide significant
273 SNPs (*p*-value $< 5 \times 10^{-8}$) within 500 kb in the SCZ1 data and the SCZ2 data respectively,
274 offering a highly significant validation of the identified loci. For TWAS and SSU, we have
275 the similar proportions of the genes containing the genome-wide significant SNPs in both
276 the SCZ1 and SCZ2 data. Clearly, SSU and aSPU identified more associated genes than
277 TWAS. Compared to TWAS, SSU and aSPU can still maintain high power if many of
278 the weighted SNPs in a gene are not associated with a trait or their associations are in
279 different directions. Since we do not know the sparsity level and association directions of
280 the underlying association patterns, we used the adaptive aSPU test. Here, perhaps due to

281 the denser association patterns (i.e. with many associated SNPs), SSU identified a larger
282 number of SCZ-associated genes than aSPU.

283 Supplementary Table 2 shows the significant gene sets identified by TWAS or SSU or
284 aSPU based on the SCZ1 data, and Supplementary Figures 1–5 present the Manhattan
285 plots for the methods with the different sets of weights. The strongest gene association
286 identified by TWAS and SSU was *NT5C2* (MIM: 600417), which was also reported by other
287 studies (Guan et al., 2016). This analysis also provides additional *in silico* support for
288 some reported SCZ-associated genes, including *SDCCAG8* (MIM: 613524), *ITIH4* (MIM:
289 600564), and *NISCH* (MIM: 615507), and many other genes.

Table 1: The numbers of the significant genes identified by analyzing the SCZ1 data for each single set of the weights and their union across these weights. The numbers a/b/c in each cell indicate the numbers of (a) the significant genes; (b) the significant genes covering at least one genome-wide significant SNP within ± 500 kb in the SCZ1 data; (c) the significant genes covering at least one genome-wide significant SNP within ± 500 kb in the SCZ2 data.

	YFS	NTR	METSIM	CMC-introns	CMC	Combined
TWAS	14/11/14	13/8/13	8/5/7	18/10/13	16/10/13	51/31/43
SSU	31/25/26	27/19/26	24/14/23	27/17/23	39/25/34	108/67/95
aSPU	29/26/26	23/16/22	21/16/21	26/18/21	28/22/25	87/64/79

290 Then, we applied TWAS, SSU, and aSPU to the SCZ2 data, listing the number of
291 significant genes identified by each method in Table 2. The quantile-quantile (Q-Q) and
292 Manhattan plots for different sets of weights are shown in Supplementary Figures 6–11,
293 respectively. Here, we analyzed the whole SCZ2 data, which were based on 36,989 cases
294 and 113,075 controls, while Gusev et al. (2016b) analyzed the non-overlapping case-control
295 samples with 34,241 cases and 45,604 controls. This data difference led to our findings
296 slightly different from their published ones (Gusev et al., 2016b): applying TWAS to the
297 SCZ2 data, we identified 202 significant genes, while Gusev et al. (2016b) identified 157
298 significant genes. Because the sample size of the SCZ2 is much larger than that of the
299 SCZ1, applying to the SCZ2 data identified a much larger number of significant genes by

300 each method. Again, SSU and aSPU appeared to be more powerful than TWAS in terms
 301 of the number of the identified significant associations. However, because under different
 302 scenarios different tests may be more powerful, each test identified some unique genes
 303 missed by the other tests.

Table 2: The numbers of the significant genes identified by analyzing the SCZ2 data for each single set of the weights and their union across these weights. The numbers a/b/c in each cell indicate the numbers of (a) the significant genes; (b) the significant genes covering at least one genome-wide significant SNP within ± 500 kb in the SCZ1 data; (c) the significant genes covering at least one genome-wide significant SNP within ± 500 kb in the SCZ2 data.

	YFS	NTR	METSIM	CMC-introns	CMC	Combined
TWAS	63/19/46	49/22/39	43/11/32	56/17/37	69/21/50	202/63/142
SSU	127/40/94	78/32/59	108/32/76	100/22/61	124/32/85	381/108/255
aSPU	105/40/83	69/34/60	87/33/72	85/24/55	110/34/82	314/110/234

304 Overall, we identified 410 significant (and unique) genes by the three methods based
 305 on analyzing the SCZ2 data (Supplementary Table 3), of which 142 did not overlap with
 306 any genome-wide significant SNPs within ± 500 kb in the SCZ2 data. Next, to consider
 307 the effects of different sets of weights (25,018 tests in total), we used a more stringent
 308 cutoff ($0.05/25,018 = 2 \times 10^{-6}$) to report the highly significant genes. We report the new
 309 associations that are more than 500 kb away from any genome-wide significant SNPs in
 310 the SCZ2 data. Supplementary Table 4 lists 75 highly significant genes identified by the
 311 three methods; TWAS, SSU, and aSPU identified 23, 68, and 32 highly significant genes,
 312 respectively, showcasing the increased discovery power of applying other tests over TWAS.
 313 Table 3 reports 32 highly significant genes identified by aSPU. We searched the NHGRI-
 314 EBI GWAS Catalog (MacArthur et al. (2017); see URLs) to determine if these significant
 315 genes have been reported by other studies. Among these 32 genes, 10 have been reported
 316 by other studies. On the other hand, among the 75 significant genes identified by any
 317 method, 20 genes, such as *FOXN2* (MIM: 143089; Cross-Disorder Group (2013)), *MSRA*
 318 (MIM: 601250; Ma et al. (2011), and *PAX5* (MIM: 167414; Loo et al. (2012)), have been

319 reported by other studies. Overall, these 75 newly identified genes represent a class of
320 discoveries that would have been missed by the standard single SNP-based test, due to not
321 only their power differences, but also the distal locations of the genome-wide significant
322 SNPs.

323 **New Pathway Method Identifies Known and Novel SCZ-associated
324 Pathways**

325 We applied the new pathway test aSPUpaht2 to both the SCZ1 and SCZ2 data. Figure 2
326 compares its *p*-values from the asymptotics- and Monte Carlo simulation-based methods,
327 showing that the asymptotics gave a good approximation to the gold standard but time-
328 consuming simulation-based method. The correlation of $-\log_{10} p$ -values between these two
329 methods for PathSPU(1), PathSPU(2), and aSPUpaht were 0.9989, 0.9981, and 0.9972,
330 respectively. Because the simulation-based method is computationally demanding while
331 the asymptotics-based method is accurate and much faster, we used the asymptotics-based
332 method to calculate the *p*-values of aSPUpaht2 for the subsequent analysis.

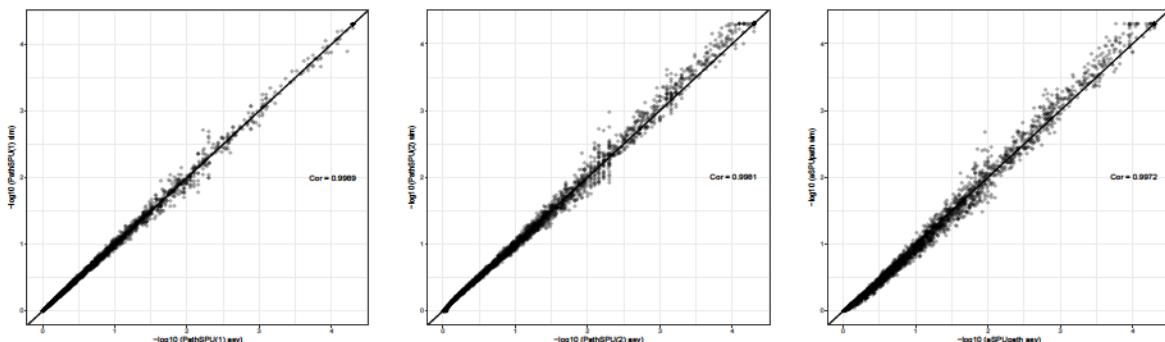


Figure 2: Comparison between the asymptotics- and simulation-based *p*-values of PathSPU(1) (left), PathSPU(2) (middle), and aSPUpaht (right) based on the SCZ2 data with the GO Biological Process pathways.

333 Supplementary Tables 5 and 6 show the significant pathways identified by aSPUpaht2
334 with the CMC- and YFS-based weights when applied to the SCZ1 data, respectively. We
335 gave the gene sets in the Supplementary Tables 2 and 3 as the SCZ1- and SCZ2-based

Table 3: The significant and novel genes overlapping with no known GWAS risk variants within ± 500 kb as identified by aSPU applied to the SCZ2 data. The validated gene-trait associations appeared in the following references: [1] Goes et al. (2015); [2] Schizophrenia Working Group (2014).

	Weight	Gene	CHR	P0	P1	aSPU	TWAS	SSU	Most sig. SNP	Validation
YFS/NTR		<i>MAP7D1</i>	1	36621801	36646448	5.0E-07	5.2E-07	6.7E-07	3.3E-07	
YFS		<i>CNN3</i>	1	95362507	95392834	9.0E-07	7.1E-02	7.4E-08	9.4E-07	
CMC-introns		<i>GABPB2</i>	1	151043079	151091007	7.0E-07	4.5E-07	4.5E-07	5.6E-08	
CMC-introns		<i>TBC1D5</i>	3	17198653	17784240	1.7E-06	3.1E-06	1.7E-06	5.5E-08	[1]
YFS		<i>IK</i>	5	140026643	140042064	1.4E-06	6.4E-07	4.3E-07	3.6E-07	
CMC-introns		<i>CXXC5</i>	5	139028300	139062680	1.0E-07	2.1E-09	1.9E-08	1.5E-06	
YFS		<i>TMCO6</i>	5	140019012	140024993	1.8E-06	1.1E-04	4.2E-07	3.6E-07	
METSIM		<i>DND1</i>	5	140050379	140053171	8.0E-07	3.6E-07	1.1E-06	3.6E-07	
CMC		<i>ZMAT2</i>	5	140080031	140086239	1.5E-06	1.6E-05	1.9E-07	3.6E-07	
YFS		<i>ABCB1</i>	7	87133175	87342611	1.8E-06	5.5E-04	2.5E-07	1.4E-07	[1]
METSIM/CMC-introns		<i>ZDHHC2</i>	8	17013538	17082308	2.0E-07	5.0E-06	7.3E-08	1.1E-07	
CMC-introns		<i>FGFR1</i>	8	38268655	38326352	3.0E-07	8.5E-07	7.6E-07	2.3E-07	
YFS		<i>ENDOG</i>	9	131580753	131584956	1.2E-06	6.4E-07	9.2E-07	1.9E-06	
METSIM		<i>PKN3</i>	9	131464802	131483197	6.0E-07	8.2E-01	2.2E-08	1.9E-06	
CMC		<i>TEK</i>	9	27109146	27230172	4.0E-07	1.1E-07	6.4E-08	4.7E-07	[1]
YFS		<i>ZDHHC5</i>	11	57435219	57468659	2.0E-07	2.2E-07	1.2E-07	6.7E-08	[2]
NTR/METSIM		<i>CLIP1</i>	12	122755979	122907179	1.7E-06	1.9E-04	9.2E-08	3.8E-06	[1]
CMC		<i>CCDC92</i>	12	124420954	124457163	1.0E-06	6.8E-03	6.5E-06	4.1E-07	
YFS/NTR		<i>PPP2R3C</i>	14	35554678	35591519	6.0E-07	2.7E-07	3.2E-07	1.5E-07	
METSIM		<i>KIAA0391</i>	14	35591052	35743271	5.0E-07	6.6E-07	3.0E-07	1.5E-07	[1]
METSIM		<i>PCNX</i>	14	71374122	71582099	1.0E-06	3.8E-06	1.8E-07	1.6E-07	
CMC-introns		<i>AP3B2</i>	15	83328032	83378635	1.0E-07	1.7E-06	8.5E-08	5.5E-08	
METSIM/CMC-introns		<i>NMRAL1</i>	16	4511694	4524896	5.0E-07	1.6E-07	9.3E-06	2.8E-07	
CMC		<i>CORO7</i>	16	4404542	4466962	6.0E-07	5.2E-07	4.8E-07	2.8E-07	
CMC		<i>CPNE7</i>	16	89642175	89663654	1.0E-07	5.0E-08	4.4E-07	1.1E-07	
YFS/CMC		<i>CHMP1A</i>	16	89710838	89724193	1.4E-06	1.5E-02	9.1E-08	1.1E-07	
CMC-introns		<i>TCF25</i>	16	89939993	89977792	5.0E-07	1.4E-02	6.8E-08	1.1E-07	
CMC-introns		<i>CDK10</i>	16	89753075	89762772	1.7E-06	2.1E-01	9.4E-08	1.1E-07	
CMC		<i>RPL13</i>	16	89627064	89633237	1.5E-06	7.8E-04	1.6E-07	1.1E-07	
YFS		<i>PRPSAP2</i>	17	18743398	18834581	1.0E-07	5.6E-08	5.3E-07	7.8E-07	
METSIM		<i>KCNG2</i>	18	77623668	77660184	1.9E-06	4.5E-03	5.1E-08	2.2E-07	[1]
CMC		<i>SNRNP70</i>	19	49588464	49611870	1.0E-07	2.1E-03	1.7E-08	2.2E-07	

336 significant gene sets. For simplicity, we denote them as the *SCZ1* and *SCZ2* gene sets,
337 respectively. Our new method aSPUpah2 with the CMC-based weights identified 33 sig-
338 nificant pathways, of which 24 (around 80%) contained the significant genes in the *SCZ1*
339 gene set while 31 (around 94%) contained the significant ones in the *SCZ2* gene set. In par-
340 ticular, aSPUpah2 with the CMC-based weights identified six significant pathways that
341 contained at least one significant gene in the *SCZ2* gene set but no significant genes in the
342 *SCZ1* gene set, such as pathways *synapse organization* (GO:0050808, *p*-value = 1.14×10^{-6}),
343 *response to transforming growth factor beta* (GO:0071559, *p*-value = 1.83×10^{-6}), *trans-*
344 *forming growth factor beta receptor signaling pathway* (GO:0007179, *p*-value = 4.28×10^{-6}),
345 and *positive regulation of transforming growth factor beta production* (GO:0071636, *p*-value
346 = 5.65×10^{-6}). There exist some biological findings partially supporting these identified
347 pathways that would be otherwise missed by gene-based analysis. Multiple members of
348 transforming growth factor (TGF) beta superfamily play some roles in the developing ner-
349 vous system (Kapelski et al., 2016). Alteration in TGF- β 1 expression has been observed
350 in SCZ patients (Kim et al., 2004). Synapse is an important component in the nervous
351 system and SCZ patients were found to have enriched mutations in the genes belonging
352 to the postsynaptic density at glutamatergic synapses (Hall et al., 2015). In contrast,
353 aSPUpah2 with the YFS-based weights identified 19 significant pathways, all of which
354 contained at least one significant gene in both the *SCZ1* and *SCZ2* gene sets. Perhaps due
355 to that the CMC-based gene expression was measured from the brain tissue and were more
356 closely related to SCZ, while the YFS-based ones from the blood, the CMC-based weights
357 were more informative. Overall, it was confirmed that pathway-based analysis is useful
358 as a complementary tool to gene-based analysis, offering insights into the genetic basis of
359 complex traits.

360 As an adaptive test, aSPUpah2 can maintain high power under various scenarios. For
361 example, based on the *SCZ1* data, for pathway *nuclear speck* (GO:0016607) with the CMC-
362 based weights, there were 300 marginally significant and negatively associated SNPs (z-

363 score < -1.96) and 309 marginally and positively associated SNPs (z-score > 1.96) among
364 5741 SNPs with non-zero weights. The varying association directions among marginally
365 significant SNPs led to a non-significant p -value = 3.0×10^{-3} of PathSPU(1). In contrast,
366 because PathSPU(2) was robust to varying association directions, it yielded a significant p -
367 value = 2.1×10^{-8} . By combining the results of PathSPU(1) and PathSPU(2), aSPUpa
368 th2 yielded a significant p -value = 4.1×10^{-8} . Furthermore, this pathway contained at least
369 two significant genes in both the *SCZ1* and *SCZ2* gene sets, supporting the significance
370 of the pathway. For pathway *regulation of cellular senescence* (GO:2000772) with the
371 CMC-based weights, there were 86 marginally and negatively associated SNPs (z-score
372 < -1.96) and 45 marginally but positively associated SNPs (z-score > 1.96) among 1516
373 SNPs with non-zero weights. The associations in different directions were not completely
374 canceled out since the number of the negatively associated SNPs was almost twice as that
375 of the positively associated SNPs. PathSPU(1) yielded a significant p -value (= 1.9×10^{-7}),
376 while PathSPU(2) yielded a non-significant p -value (= 2.4×10^{-3}). Again by combining
377 information from the two tests, aSPUpa th2 yielded a significant p -value (= 3.8×10^{-7}).
378 This pathway also contained at least one significant gene in both the *SCZ1* and *SCZ2* gene
379 sets. Generally, as any non-adaptive test, PathSPU(1) or PathSPU(2) may lose statistical
380 power under different situations; however, by contrast, aSPUpa th2 that data-adaptively
381 aggregates information can maintain relatively high power across a wide range of situations.

382 Then we analyzed the SCZ2 data. The new test aSPUpa th2 with the CMC- and YFS-
383 based weights identified 235 and 242 significant pathways, respectively (see Supplementary
384 Table 6 and 7 for details). Table 4 shows the 6 significant KEGG pathways identified
385 by aSPUpa th2 with the CMC-based weights. All of these significant pathways covered at
386 least one significant gene in the *SCZ2* gene set while three pathways, *Alzheimer's disease*
387 (hsa05010, p -value = 2.4×10^{-8}), *systemic lupus erythematosus* (hsa05322, p -value = 0.0),
388 and *hypertrophic cardiomyopathy* (hsa05410, p -value = 2.3×10^{-9}), have been reported by
389 other studies to be associated with SCZ (Wu et al., 2016; Santarelli et al., 2011).

Table 4: The significant KEGG pathways identified by aSPUpath2 with the CMC-based weights for the SCZ2 data.

ID	Pathway name	PathSPU(1)	PathSPU(1)	aSPUpath2	# sig. genes
hsa05322	Systemic lupus erythematosus	2.6E-04	5.5E-10	1.1E-09	16
hsa05410	Hypertrophic cardiomyopathy	8.3E-02	1.5E-09	2.9E-09	2
hsa05414	Dilated cardiomyopathy	4.0E-01	3.1E-08	6.3E-08	2
hsa04120	Ubiquitin mediated proteolysis	6.1E-02	2.9E-07	5.8E-07	5
hsa05010	Alzheimer's disease	6.7E-01	9.1E-07	1.8E-06	5
hsa05016	Huntington's disease	4.7E-01	2.3E-06	4.5E-06	5

390 Table 5 shows the significant and novel pathways containing no significant genes in the
 391 SCZ2 gene set but detected by aSPUpath2 with either the CMC- or the YFS-based weights.
 392 Perhaps due to that the CMC-based weights were derived from the brain tissue and thus
 393 more relevant to SCZ than the YFS-based weights, using the CMC-based weights identified
 394 12 significant and novel pathways, while using the YFS-based identified only three. Some
 395 existing studies partially supported the newly identified pathways. For example, GABA
 396 system plays an important role in orchestrating the synchronicity of local networks and
 397 affects cognitive and emotional behavior (Rudolph and Möhler, 2014). Further, cognitive
 398 symptoms in SCZ are attributed to a cortical GABAergic deficit (Rudolph and Möhler,
 399 2014), partially supporting that pathway *GABA receptor complex* (GO:1902710) is possibly
 400 related to SCZ. Overall, these 15 newly identified pathways represent a class of discoveries
 401 that would have been missed by gene-based analysis.

402 Comparisons Between aSPUpath2 and Other Methods

403 With the application to the SCZ2 data with the CMC-based weights, we compared our
 404 proposed method with the two-step approach combining a gene-based test and an ex-
 405 isting pathway analysis method, including the popular DAVID (Huang et al., 2009) or
 406 i-GSEA4GWAS (Zhang et al., 2010). We also compared it with the more general and
 407 standard aSPUpath (Pan et al., 2015).

Table 5: The significant and novel gene sets containing no significant genes as identified by aSPUpath2 with the CMC- or YFS-based weights.

ID	Description	# genes	PathSPU(1)	PathSPU(2)	aSPUpath2	Weights
GO:1902710	GABA receptor complex	18	9.6E-03	0.0E+00	0.0E+00	CMC
GO:1901661	quinone metabolic process	29	7.4E-01	1.0E-08	2.0E-08	YFS
GO:0043162	ubiquitin-dependent protein catabolic process	18	5.8E-01	4.4E-08	8.8E-08	CMC
GO:0016339	calcium-dependent cell-cell adhesion	27	5.7E-01	1.1E-07	2.2E-07	CMC
GO:0030315	T-tubule	45	7.3E-02	1.1E-07	2.3E-07	CMC
GO:0007528	neuromuscular junction development	36	4.7E-01	2.9E-07	5.7E-07	CMC
GO:0003143	embryonic heart tube morphogenesis	62	5.5E-03	4.7E-07	9.5E-07	CMC
GO:0007569	cell aging	67	2.0E-04	8.1E-07	1.6E-06	CMC
GO:0035050	embryonic heart tube development	73	2.3E-02	8.8E-07	1.8E-06	CMC
GO:0004181	metallo-carboxypeptidase activity	27	7.3E-01	9.7E-07	1.9E-06	CMC
hsa00590	Arachidonic acid metabolism	56	3.0E-01	1.2E-06	2.5E-06	YFS
GO:0051279	regulation of release of sequestered calcium ion into cytosol	75	2.7E-06	2.2E-05	5.3E-06	CMC
GO:0072665	protein localisation to vacuole	46	3.5E-01	3.0E-06	6.1E-06	CMC
GO:0010880	regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum	25	5.6E-06	3.0E-06	6.1E-06	CMC
GO:1901800	positive regulation of proteasomal protein catabolic process	98	1.5E-03	4.4E-06	8.7E-06	YFS

408 We applied DAVID (Huang et al., 2009) with the CMC-based weights and identi-
409 fied one significant pathway: *transcription factor activity, sequence-specific DNA binding*
410 (GO:0003700, Benjamini-corrected p -value = 4.2×10^{-3}). This pathway was excluded in our
411 earlier analysis because it contained more than 200 genes; when applied, aSPUpaht2 could
412 identify this pathway as well (p -value = 4.5×10^{-7}). We also applied i-GSEA4GWAS
413 (Zhang et al., 2010) but failed to identify any significant pathways. In addition to the
414 two-step nature of the above two pathway methods (thus depending on the output or per-
415 formance of the gene-based testing in the first step), in contrast to the one-step approach
416 of aSPUpaht2, they also differ with respect to their null hypotheses being tested: both
417 DAVID and i-GSEA4GWAS belong to the category of “competitive tests” testing for the
418 enrichment of the associated genes in the pathway being tested as compared to other path-
419 ways, while our aSPUpaht2 method is a “self-contained test” as a global test for identifying
420 whether there is (are) any significant gene(s) in the pathway; due to the difference between
421 the null hypotheses being tested, a self-contained test is in general more powerful than a
422 corresponding competitive test.

423 Figure 3 shows the running times for aSPUpaht2 and aSPUpaht. Due to the com-
424 putational constraint, we ran at most $B = 10^6$ simulations to calculate the p -values for
425 aSPUpaht. For the simulation-based method, the running time increased rapidly with the
426 number of simulations, for which a larger value is required for a more significant p -value.
427 In contrast, since the p -values of aSPUpaht2 was calculated by the asymptotics-based
428 method, the running time was invariant to the p -values. Supplementary Table 9 shows the
429 179 significant pathways identified by aSPUpaht with the CMC-based weights, of which 139
430 (around 80%) were also identified by applying aSPUpaht2 with the CMC-based weights,
431 constituting a highly significant overlap between their results. Furthermore, aSPUpaht2
432 identified a total of 235 significant pathways, showcasing possibly higher statistical power
433 over aSPUpaht for the SCZ2 data. In summary, aSPUpaht2 is several orders faster than
434 aSPUpaht, more so for large and highly significant pathways, and can be more powerful

435 for densely associated pathways (i.e. those containing many associated SNPs/genes), thus
 436 we recommend using aSPUpath2 either alone or as a fast screening procedure for the more
 437 time-consuming and more general aSPUpath test.

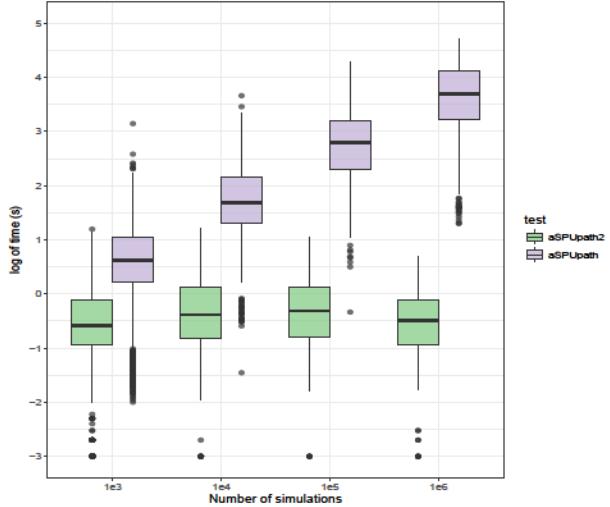


Figure 3: Comparison between running times of aSPUpath2 and aSPUpath for the SCZ2 data with the pathways in the GO Biological Process.

438 Simulations

439 We conducted simulation studies to evaluate and compare the performance of our proposed
 440 new aSPUpath2 test with the aSPUpath test. We generated simulated data to mimic real
 441 data: we used the GO Biological Process pathways and CMC-derived SNP weights, and
 442 simulated z-scores as GWAS summary statistics for SNPs. Specifically, for a given pathway
 443 S^* in the GO Biological Process pathway database, we first removed the genes whose CMC-
 444 derived SNP weights were all 0, resulting in a subset S containing n genes and p SNPs with
 445 non-zero weights. We generated a z-score vector from a multivariate normal distribution,
 446 $Z \sim N(\mu, \Sigma)$, where $\mu = (\mu_1, \dots, \mu_p)'$ was the mean and Σ was the LD matrix based on
 447 the 1000 Genomes Project reference panel (European ancestry), respectively. Note that
 448 z-scores are expected to have a multivariate normal distribution asymptotically. To save
 449 computing time, we assumed that the SNPs from different chromosomes were independent

450 and only considered the pathways with less than 2000 SNPs. In total, we considered 1905
 451 pathways. Further, we defined SNP j was associated or informative with the corresponding
 452 $\mu_j = \text{sign}(W_j)c$, where W_j was the CMC-derived weight for SNP j , $c \neq 0$ was some positive
 453 constant, and $\text{sign}(a)$ gave the sign of a ; in contrast, SNP j was non-informative with $\mu_j = 0$.
 454 Note that we also considered non-constant $|\mu_j|$ for associated SNPs. To evaluate type I
 455 error rates, we considered the null case (set-up A) with no informative SNP ($\mu = 0$). To
 456 evaluate power, we further considered the following four set-ups under different situations:
 457 set-up B, 50% SNPs in each gene were informative; set-up C, 10% SNPs in each gene were
 458 informative; set-up D, only one SNP in each gene was informative; and set-up E, only
 459 one SNP in 20% of the genes in the pathway was informative. Other SNPs were set to
 460 non-informative and we varied the true association strength c to generate power curves for
 461 set-up B to E. After generating a z-score vector for each pathway, we applied both the
 462 aSPUpah2 and aSPUpah tests. The entire procedure was repeated about 38,000 times
 463 (i.e. 20 per pathway) for set-up A. For other set-ups, with different c , we repeated the entire
 464 procedure about 1,900 times (1 per pathway) and fixed the nominal significance level at
 465 $\alpha = 0.05$.

466 Table 6 shows the empirical type I error rates, indicating that the PathSPU(1), Path-
 467 SPU(2), and aSPUpah2 could control their type I rates satisfactorily under various nominal
 468 significance levels.

Table 6: Empirical type I error rates of our proposed pathway-based tests with some varying nominal significance levels α under simulation set-up A.

α	0.05	0.01	0.001
PathSPU(1)	4.9×10^{-2}	9.8×10^{-3}	1.2×10^{-3}
PathSPU(2)	5.3×10^{-2}	1.1×10^{-2}	1.3×10^{-3}
aSPUpah2	4.4×10^{-2}	1.0×10^{-2}	1.2×10^{-3}

469 Figure 4 shows statistical power under set-ups B to E. In set-up B, because 50% of
 470 the SNPs in the pathway were informative with dense association signals, PathSPU(1) was
 471 expected to be most powerful as confirmed in Figure 4; since aSPUpah2 combined the

472 information from both the PathSPU(1) and PathSPU(2), aSPUpath2 also achieved high
473 power close to PathSPU(1). When the association signals were less dense with only 10% of
474 the SNPs as informative (set-up C), all the tests performed similarly, though aSPUpath2
475 and PathSPU(1) had a slight edge over aSPUpath and PathSPU(2) respectively. When
476 most SNPs (set-up D) or most genes were not associated with the trait (set-up E), aSPU-
477 path was expected to be more powerful than aSPUpath2 because aSPUpath2 is tailored
478 to identifying dense associations of pathways containing many associated SNPs/genes with
479 only weak effects. In other simulation set-ups with varying $|\mu_j|$ for associated SNPs and/or
480 different proportions of associated SNPs/genes, we obtained similar results as shown in
481 Supplementary Figure 12. Note that, by theory, there is no uniformly most powerful test
482 for pathway analysis; aSPUpath is more general and thus expected to be high powered
483 across a wider range of scenarios than aSPUpath2, which is tailored for and more powerful
484 for detecting dense association signals like in set-up A. However, aSPUpath2 is much faster
485 than aSPUpath. Hence, as mentioned earlier, we recommend using aSPUpath2 either alone
486 to detect densely associated pathways, or as a fast screening procedure for aSPUpath if
487 one is interested in both densely and sparsely associated pathways.

488 Discussion

489 In this work, we have presented a powerful and adaptive method that integrates genetic and
490 transcriptional variations to identify pathways associated with a complex trait. Using gene
491 expression to construct weights and then adaptive weighting to identify significant pathways
492 has some potential advantages. First, a pathway may be a more interpretable biological unit
493 than a single SNP or gene, and may shed light into biological mechanisms underlying a trait
494 or disease. Second, pathway-based analysis, complementary to gene-based analysis, and
495 as demonstrated here, can identify important pathways that may be missed by gene-based
496 analysis. Since different tests will be powerful under different underlying true association

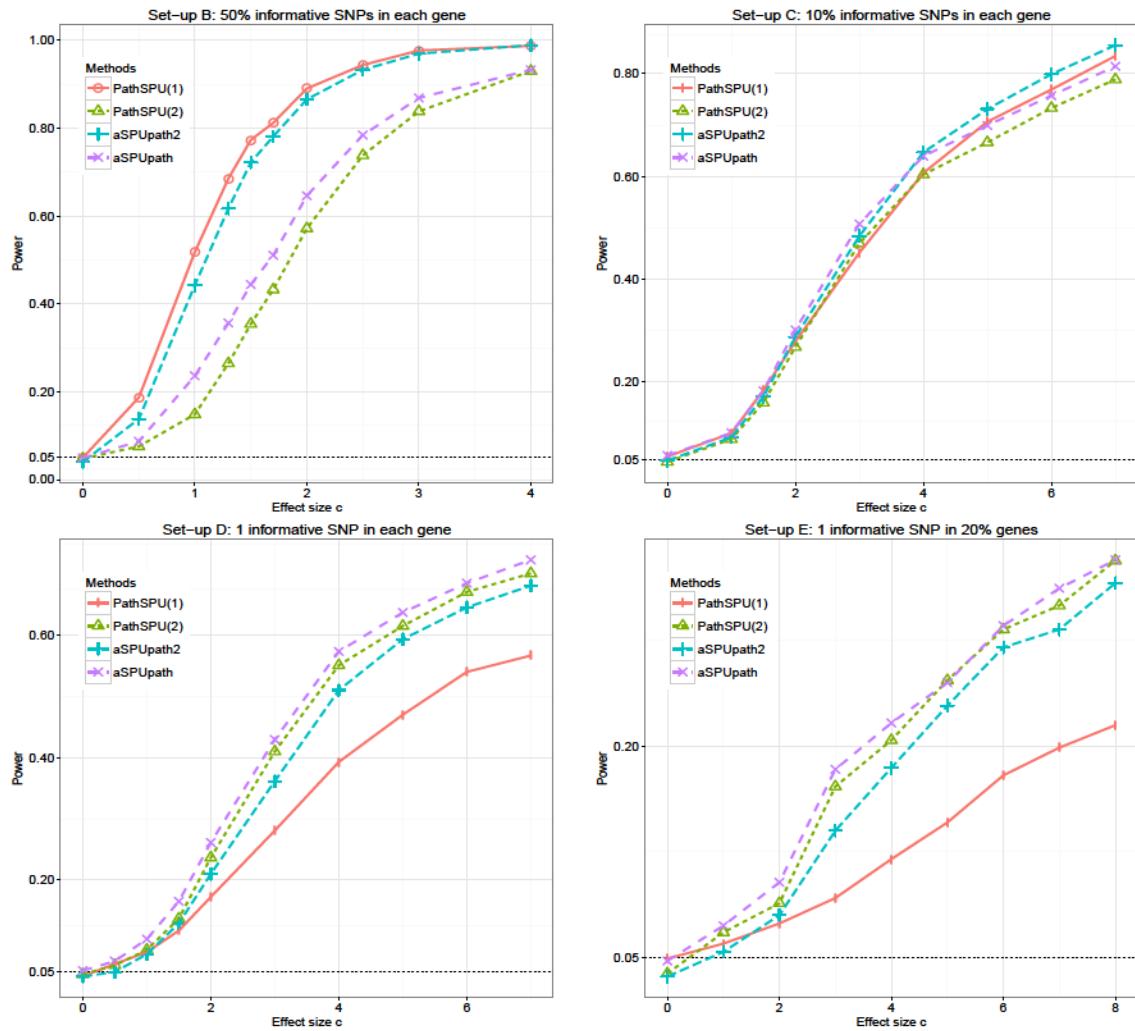


Figure 4: Empirical power at $\alpha = 0.05$ under different simulation set-ups (B-E).

497 patterns, in particular, our proposed test may maintain relatively high statistical power
498 across a wider range of situations due to its adaptive nature of aggregating association
499 information across the genes in a pathway. Third, our proposed method is similar to
500 other integrative gene-based methods, such as TWAS (Gusev et al., 2016a), PrediXcan
501 (Gamazon et al., 2015) and aSPU (Xu et al., 2017b), that incorporate eQTL information
502 into GWAS analysis. However, differing from that the above integrative methods are
503 gene-based, our method aggregates information across the genes to identify significant
504 pathways. Importantly, unlike TWAS and PrediXcan, which use a simple weighted linear
505 combination of genetic variants (or their z-scores) to construct test statistics, our approach
506 adaptively (and non-linearly) weights the genetic variants and thus aggregates information
507 based on the underlying association patterns to increase discovery power. As shown in
508 our applications, our method could identify some important pathways that were missed by
509 the above integrative gene-based tests, even followed with a standard pathway analysis.
510 Finally, we note that our proposed approach is in the category of “self-contained tests”, in
511 which we are interested in identifying any pathway containing one or more genes or SNPs
512 associated with a trait. This is different from the “competitive tests”, such as DAVID and
513 GSEA, that would detect pathways enriched with associated genes or SNPs as compared
514 to background pathways.

515 Application of our proposed and other integrative gene-based methods to two SCZ sum-
516 mary data not only recapitulated many known genes or pathways but also identified many
517 new ones. Specifically, we identified 75 significant genes without any known associated
518 SNPs within 500 kb, of which 50 have not been reported in any studies yet. It is possible
519 that some of these significant genes represent new findings that have been missed due to
520 the lower statistical power in other standard single SNP- or gene-based test without in-
521 corporating gene expression data. Furthermore, some pathways may contain only genes
522 with small effect sizes, which may not be detected even by integrative gene-based tests like
523 TWAS, but may be by our proposed pathway test. Here, we identified 15 novel significant

524 pathways associated with SCZ, such as pathway *GABA receptor complex* (GO:1902710),
525 which could be missed by gene-based TWAS or aSPU. Taken together, our results showcase
526 the power of incorporating reference gene expression data into gene-based or pathway-based
527 association testing for GWAS. The newly identified genes and pathways may help us gain
528 insights into the biological mechanism underlying SCZ.

529 Although in this study we have mainly focused on SCZ and applied the various methods
530 to two GWAS summary data sets, it is natural to apply our method to other complex traits
531 with either individual-level or summary data. We expect that applying our proposed and
532 other integrative methods like TWAS to other existing GWAS data may identify more
533 novel associations and shed more light on the underlying biological mechanisms. We note
534 that our proposed methodology can be applied with other endophenotype-derived weights
535 (Xu et al., 2017a) or even without weights (i.e. all SNPs with an equal weight).

536 Finally we comment on our view that TWAS is a weighted Sum test and its related
537 issues, which are also discussed by Wainberg et al. (2017) and in <http://hakyimlab.org/post/vulnerabilities/>. Although TWAS was originally proposed to identify GWAS
538 associations through gene expression, any such discovery based on a single eQTL/GWAS
539 dataset is at most only suggestive to mediating effects of gene expression. As discussed in
540 Xu et al. (2017b), in spite of the connections of TWAS with two-stage least squares and
541 Mendelian randomization (MR), due to the adopted strong assumptions that are likely to be
542 violated in practice, cautions should be taken to avoid extrapolating any discovered GWAS
543 associations to causal effects mediated through gene expression. Hence, we simply regard
544 TWAS as a special case of weighted association testing. In this view, we yield a few benefits
545 while avoiding possible over-interpretation of an association as a causal effect. First, due to
546 some well-known limitations of the Sum test and inherent errors in estimating the cis-effects
547 (i.e. weights) of genetic variants with usually small eQTL datasets, modifications to TWAS
548 may lead to more powerful analysis methods, such as based on the SSU/SPU(2) and aSPU
549 tests (Xu et al 2017a). Other tests, like aSPU, with a more flexible weighting scheme,

551 may also identify associations through other non-gene expression-mediated mechanisms.
552 Second, in addition to gene expression, other molecular or clinical intermediate phenotypes
553 can be used to construct weights for weighted GWAS association analysis (Xu et al., 2017a).

554 The proposed statistical tests are implemented in R package **aSPU2** that is currently
555 publicly available on GitHub (and will be put on CRAN); the online manual and example
556 computer code are publicly available at wuchong.org/aspupath2.html.

557 **Supplemental Data**

558 Supplemental Data include 12 Supplementary Figures and 9 Supplementary Tables.

559 **Web Resources**

560 The URLs for data presented herein are as follows:

- 561 • DAVID server: <https://david.ncifcrf.gov>;
- 562 • iGSEA4GWAS server: <http://gsea4gwas.psych.ac.cn>;
- 563 • MSigDB: <http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C3>;
- 565 • NHGRI-EBI GWAS Catalog: <http://www.ebi.ac.uk/gwas/home>;
- 566 • PGC summary data: <https://www.med.unc.edu/pgc/downloads>;
- 567 • TWAS website: <http://gusevlab.org/projects/fusion>.

568 **Acknowledgment**

569 The authors thank the reviewers for many helpful comments. This research was supported
570 by NIH grants R21AG057038, R01HL116720, R01GM113250 and R01HL105397, and by
571 the Minnesota Supercomputing Institute.

572 References

573 Albert, F. W. and Kruglyak, L. (2015). The role of regulatory variation in complex traits
574 and disease. *Nature Reviews. Genetics*, 16(4):197–212.

575 Bakshi, A., Zhu, Z., Vinkhuyzen, A. A., Hill, W. D., McRae, A. F., Visscher, P. M., and
576 Yang, J. (2016). Fast set-based association analysis using summary data from GWAS
577 identifies novel gene loci for human complex traits. *Scientific Reports*, 6:32894.

578 Chen, L. S., Hutter, C. M., Potter, J. D., Liu, Y., Prentice, R. L., Peters, U., and Hsu, L.
579 (2010). Insights into colon cancer etiology via a regularized approach to gene set analysis
580 of GWAS data. *The American Journal of Human Genetics*, 86(6):860–871.

581 Consortium, G. O. et al. (2004). The Gene Ontology (GO) database and informatics re-
582 source. *Nucleic Acids Research*, 32(Database issue):D258–D261.

583 Cross-Disorder Group, P. G. C. (2013). Identification of risk loci with shared effects on five
584 major psychiatric disorders: a genome-wide analysis. *The Lancet*, 381(9875):1371–1379.

585 Derkach, A., Lawless, J. F., Sun, L., et al. (2014). Pooled association tests for rare genetic
586 variants: a review and some new results. *Statistical Science*, 29(2):302–321.

587 Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K.,
588 Carroll, R. J., Eyler, A. E., Denny, J. C., Nicolae, D. L., Cox, N. J., et al. (2015). A
589 gene-based association method for mapping traits using reference transcriptome data.
590 *Nature Genetics*, 47(9):1091–1098.

591 Goeman, J. J. and Bühlmann, P. (2007). Analyzing gene expression data in terms of gene
592 sets: methodological issues. *Bioinformatics*, 23(8):980–987.

593 Goes, F. S., McGrath, J., Avramopoulos, D., Wolyniec, P., Pirooznia, M., Ruczinski, I.,
594 Nestadt, G., Kenny, E. E., Vacic, V., Peters, I., et al. (2015). Genome-wide association

595 study of schizophrenia in ashkenazi jews. *American Journal of Medical Genetics Part B: Neuropsychiatric Genetics*, 168(8):649–659.

597 Guan, F., Zhang, T., Li, L., Fu, D., Lin, H., Chen, G., and Chen, T. (2016). Two-
598 stage replication of previous genome-wide association studies of as3mt-cnnm2-nt5c2 gene
599 cluster region in a large schizophrenia case-control sample from han chinese population.
600 *Schizophrenia Research*, 176(2):125–130.

601 Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., Jansen, R., De Geus,
602 E. J., Boomsma, D. I., Wright, F. A., et al. (2016a). Integrative approaches for large-scale
603 transcriptome-wide association studies. *Nature Genetics*, 48(3):245–252.

604 Gusev, A., Mancuso, N., Finucane, H. K., Reshef, Y., Song, L., Safi, A., Oh, E., Mc-
605 Caroll, S., Neale, B., Ophoff, R., et al. (2016b). Transcriptome-wide association study
606 of schizophrenia and chromatin activity yields mechanistic disease insights. *bioRxiv*,
607 067355.

608 Hall, J., Trent, S., Thomas, K. L., O'Donovan, M. C., and Owen, M. J. (2015). Genetic
609 risk for schizophrenia: convergence on synaptic pathways involved in plasticity. *Biological
610 Psychiatry*, 77(1):52–58.

611 Heinig, M., Petretto, E., Wallace, C., Bottolo, L., Rotival, M., Lu, H., Li, Y., Sarwar, R.,
612 Langley, S. R., Bauerfeind, A., et al. (2010). A trans-acting locus regulates an anti-viral
613 expression network and type 1 diabetes risk. *Nature*, 467(7314):460–464.

614 Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009). Systematic and integra-
615 tive analysis of large gene lists using david bioinformatics resources. *Nature Protocols*,
616 4(1):44–57.

617 Kanehisa, M. and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.
618 *Nucleic Acids Research*, 28(1):27–30.

619 Kapelski, P., Skibińska, M., Maciukiewicz, M., Zaremba, D., Jasiak, M., and Hauser, J.
620 (2016). Family association study of transforming growth factor beta1 gene polymor-
621 phisms in schizophrenia. *Psychiatr. Pol.*, 50(4):761–770.

622 Kim, Y.-K., Myint, A.-M., Lee, B.-H., Han, C.-S., Lee, H.-J., Kim, D.-J., and Leonard,
623 B. E. (2004). Th1, th2 and th3 cytokine alteration in schizophrenia. *Progress in Neuro-
624 Psychopharmacology and Biological Psychiatry*, 28(7):1129–1134.

625 Kwak, I.-Y. and Pan, W. (2015). Adaptive gene-and pathway-trait association testing with
626 GWAS summary statistics. *Bioinformatics*, 32(8):1178–1184.

627 Kwak, I.-Y. and Pan, W. (2016). Adaptive gene-and pathway-trait association testing with
628 GWAS summary statistics. *Bioinformatics*, 32(8):1178–1184.

629 Lappalainen, T., Sammeth, M., Friedländer, M. R., AC't Hoen, P., Monlong, J., Rivas,
630 M. A., Gonzalez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., et al. (2013).
631 Transcriptome and genome sequencing uncovers functional variation in humans. *Nature*,
632 501(7468):506–511.

633 Li, J., Wei, Z., Chang, X., Cardinale, C. J., Kim, C. E., Baldassano, R. N., Hakonarson,
634 H., Consortium, I. I. G., et al. (2016). Pathway-based genome-wide association studies
635 reveal the association between growth factor activity and inflammatory bowel disease.
636 *Inflammatory Bowel Diseases*, 22(7):1540–1551.

637 Li, L., Wang, X., Xiao, G., and Gazdar, A. (2017). Integrative gene set enrichment analysis
638 utilizing isoform-specific expression. *Genetic Epidemiology*, 41:498–510.

639 Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R., Powell, C.,
640 Vedantam, S., Buchkovich, M. L., Yang, J., et al. (2015). Genetic studies of body mass
641 index yield new insights for obesity biology. *Nature*, 518(7538):197–206.

642 Loo, S. K., Shtir, C., Doyle, A. E., Mick, E., McGough, J. J., McCracken, J., Biederman,
643 J., Smalley, S. L., Cantor, R. M., Faraone, S. V., et al. (2012). Genome-wide association
644 study of intelligence: additive effects of novel brain expressed genes. *Journal of the*
645 *American Academy of Child & Adolescent Psychiatry*, 51(4):432–440.

646 Ma, X., Deng, W., Liu, X., Li, M., Chen, Z., He, Z., Wang, Y., Wang, Q., Hu, X., Collier,
647 D., et al. (2011). A genome-wide association study for quantitative traits in schizophrenia
648 in china. *Genes, Brain and Behavior*, 10(7):734–739.

649 MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMa-
650 hon, A., Milano, A., Morales, J., et al. (2017). The new NHGRI-EBI Catalog of published
651 genome-wide association studies (GWAS Catalog). *Nucleic Acids Research*, 45(Database
652 issue):D896–D901.

653 Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J.,
654 McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., et al. (2009). Finding
655 the missing heritability of complex diseases. *Nature*, 461(7265):747–753.

656 Network, T. and of the Psychiatric Genomics Consortium, P. A. S. (2015). Psychiatric
657 genome-wide association study analyses implicate neuronal, immune and histone path-
658 ways. *Nature Neuroscience*, 18(2):199–209.

659 Pan, W. (2009). Asymptotic tests of association with multiple SNPs in linkage disequilib-
660 rium. *Genetic Epidemiology*, 33(6):497–507.

661 Pan, W., Kim, J., Zhang, Y., Shen, X., and Wei, P. (2014). A powerful and adaptive
662 association test for rare variants. *Genetics*, 197(4):1081–1095.

663 Pan, W., Kwak, I.-Y., and Wei, P. (2015). A powerful pathway-based adaptive test for
664 genetic association with common or rare variants. *The American Journal of Human*
665 *Genetics*, 97(1):86–98.

666 Pasaniuc, B., Zaitlen, N., Shi, H., Bhatia, G., Gusev, A., Pickrell, J., Hirschhorn, J.,
667 Strachan, D. P., Patterson, N., and Price, A. L. (2014). Fast and accurate imputa-
668 tion of summary statistics enhances evidence of functional enrichment. *Bioinformatics*,
669 30(20):2906–2914.

670 Peng, G., Luo, L., Siu, H., Zhu, Y., Hu, P., Hong, S., Zhao, J., Zhou, X., Reveille, J. D.,
671 Jin, L., et al. (2010). Gene and pathway-based second-wave analysis of genome-wide
672 association studies. *European Journal of Human Genetics*, 18(1):111–117.

673 Ripke, S., O'Dushlaine, C., Chambert, K., Moran, J. L., Kähler, A. K., Akterin, S., Bergen,
674 S. E., Collins, A. L., Crowley, J. J., Fromer, M., et al. (2013). Genome-wide association
675 analysis identifies 13 new risk loci for schizophrenia. *Nature Genetics*, 45(10):1150–1159.

676 Rudolph, U. and Möhler, H. (2014). Gabaa receptor subtypes: Therapeutic potential
677 in down syndrome, affective disorders, schizophrenia, and autism. *Annual Review of
678 Pharmacology and Toxicology*, 54:483–507.

679 Santarelli, D. M., Beveridge, N. J., Tooney, P. A., and Cairns, M. J. (2011). Upregulation
680 of dicer and microrna expression in the dorsolateral prefrontal cortex brodmann area 46
681 in schizophrenia. *Biological psychiatry*, 69(2):180–187.

682 Schaid, D. J., Sinnwell, J. P., Jenkins, G. D., McDonnell, S. K., Ingle, J. N., Kubo, M.,
683 Goss, P. E., Costantino, J. P., Wickerham, D. L., and Weinshilboum, R. M. (2012).
684 Using the gene ontology to scan multilevel gene sets for associations in genome wide
685 association studies. *Genetic Epidemiology*, 36(1):3–16.

686 Schizophrenia Working Group, t. P. G. C. (2014). Biological insights from 108
687 schizophrenia-associated genetic loci. *Nature*, 511(7510):421–427.

688 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A.,
689 Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al. (2005). Gene set en-

690 enrichment analysis: a knowledge-based approach for interpreting genome-wide expression
691 profiles. *Proceedings of the National Academy of Sciences*, 102(43):15545–15550.

692 Sullivan, P. F., Daly, M. J., and O'donovan, M. (2012). Genetic architectures of psychiatric
693 disorders: the emerging picture and its implications. *Nature Reviews Genetics*, 13(8):537–
694 551.

695 Tiihonen, J., Lönnqvist, J., Wahlbeck, K., Klaukka, T., Niskanen, L., Tanskanen, A.,
696 and Haukka, J. (2009). 11-year follow-up of mortality in patients with schizophrenia: a
697 population-based cohort study (FIN11 study). *The Lancet*, 374(9690):620–627.

698 Wainberg, M., Sinnott-Armstrong, N., Knowles, D., Golan, D., Ermel, R., Ruusalepp, A.,
699 Quertermous, T., Hao, K., Bjorkegren, J. L., Rivas, M. A., et al. (2017). Vulnerabilities
700 of transcriptome-wide association studies. *bioRxiv*, 206961.

701 Wang, K., Li, M., and Bucan, M. (2007). Pathway-based approaches for analysis of
702 genomewide association studies. *The American Journal of Human Genetics*, 81(6):1278–
703 1283.

704 Wei, P., Tang, H., and Li, D. (2012). Insights into pancreatic cancer etiology from pathway
705 analysis of genome-wide association study data. *PLoS One*, 7(10):e46887.

706 Wu, J. Q., Green, M. J., Gardiner, E. J., Tooney, P. A., Scott, R. J., Carr, V. J., and
707 Cairns, M. J. (2016). Altered neural signaling and immune pathways in peripheral blood
708 mononuclear cells of schizophrenia patients with cognitive impairment: A transcriptome
709 analysis. *Brain, Behavior, and Immunity*, 53:194–206.

710 Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. (2011). Rare-variant
711 association testing for sequencing data with the sequence kernel association test. *The
712 American Journal of Human Genetics*, 89(1):82–93.

713 Xu, Z., Wu, C., Pan, W., Initiative, A. D. N., et al. (2017a). Imaging-wide association
714 study: Integrating imaging endophenotypes in GWAS. *NeuroImage*, 159:159–169.

715 Xu, Z., Wu, C., Wei, P., and Pan, W. (2017b). A powerful framework for integrating eqtl
716 and GWAS summary data. *Genetics*, 207(3):893–902.

717 Zhang, K., Cui, S., Chang, S., Zhang, L., and Wang, J. (2010). i-GSEA4GWAS: a web
718 server for identification of pathways/gene sets associated with traits by applying an
719 improved gene set enrichment analysis to genome-wide association study. *Nucleic Acids
720 Research*, 38(Web Server issue):W90–W95.