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Abstract

Many genetic variants affect complex traits through gene expression, which can
be exploited to boost statistical power and enhance interpretation in genome-wide
association studies (GWASs) as demonstrated by the transcriptome-wide association
study (TWAS) approach. Furthermore, due to polygenic inheritance, a complex trait
is often affected by multiple genes with similar functions as annotated in gene path-
ways. Here we extend TWAS from gene-based analysis to pathway-based analysis:
we integrate public pathway collections, expression quantitative trait locus (eQTL)
data and GWAS summary association statistics (or GWAS individual-level data) to
identify gene pathways associated with complex traits. The basic idea is to weight
the SNPs of the genes in a pathway based on their estimated cis-effects on gene
expression, then adaptively test for association of the pathway with a GWAS trait
by effectively aggregating possibly weak association signals across the genes in the
pathway. The p-values can be calculated analytically and thus fast. We applied our
proposed test with the KEGG and GO pathways to two schizophrenia (SCZ) GWAS
summary association data sets, denoted SCZ1 and SCZ2 with about 20,000 and
150,000 subjects respectively. Most of the significant pathways identified by analyz-
ing the SCZ1 data were reproduced by the SCZ2 data. Importantly, we identified 15
novel pathways associated with SCZ, such as GABA receptor complez (GO:1902710),
which could not be uncovered by the standard single SNP-based analysis or gene-
based TWAS. The newly identified pathways may help us gain insights into the
biological mechanism underlying SCZ. Our results showcase the power of incorporat-
ing gene expression information and gene functional annotations into pathway-based

association testing for GWAS.

Keywords: aSPU, aSPUpath, aSPUpath2, gene expression, TWAS.
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Introduction

Although genome-wide association studies (GWASs) have been remarkably successful in
identifying genetic variants associated with complex traits and diseases, only a small to
modest proportion of heritability for most complex traits and diseases can be explained
by the identified genetic variants (Manolio et al., 2009). Furthermore, since the majority
of identified variants are found in non-coding regions that are not in linkage disequilib-
rium (LD) with coding exons, a mechanistic understanding of how these variants influence
traits is generally lacking (Locke et al., 2015; Albert and Kruglyak, 2015). However, it is
now known that an important class of variants, termed expression quantitative trait loci
(eQTLs), affect complex traits by regulating gene expression levels; there is an enrichment
of eQTLs among the GWAS trait-associated variants (Lappalainen et al., 2013; Albert and
Kruglyak, 2015). Accordingly, transcriptome-wide association study (TWAS) and related
methods (Gusev et al., 2016a; Gamazon et al., 2015; Xu et al., 2017b) were proposed to in-
tegrate eQTL data with GWAS data to identify the genes associated with a complex trait.
These methods may iimprove statistical power to detect associations relative to traditional
SNP-based GWAS and gene-based tests that ignore information on gene expression regu-
lation. Nevertheless, due to the limited sample sizes of eQTL data and GWAS data, they
may fail to identify some more weakly associated genes with smaller effect sizes. On the
other hand, genes do not work in isolation; instead, a group of functionally related genes
as annotated in a biological pathway are often involved in the same disease susceptibility
and progression (Heinig et al., 2010). Gene-based analysis testing each gene one-by-one
may miss an important pathway if each gene in the pathway has only a small effect size,
but in aggregation they contribute substantially. Hence, association analysis of a group of
functionally related genes, called pathway-based analysis, has been proposed and applied
in practice to boost statistical power and improve interpretability over gene-based analysis

for GWAS (Wang et al., 2007; Chen et al., 2010; Peng et al., 2010; Wei et al., 2012; Schaid
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et al.; 2012; Pan et al., 2015; Bakshi et al., 2016; Li et al., 2016, 2017).

Here, we extend integrative gene-based testing like TWAS to integrative pathway-
based association analysis to identify pathways associated with complex traits and diseases.
Specifically, we propose a new self-contained test that integrates eQTL-derived weights,
GWAS individual-level or summary data, SNP LD information, and gene functional an-
notations as public pathway collections to identify pathways associated with a complex
trait (Figure 1). As in TWAS, we first estimate the cis-effects of the SNPs in each gene on
its expression level, then adaptively test for association between a pathway and a trait by
effectively aggregating possibly weak association signals across the genes in the pathway.

We note that our methodology differs from existing approaches. In principle, existing
pathway-based analysis methods can be applied in a two-step approach. After obtaining
the p-value for each gene by applying TWAS or a related method, an existing pathway
analysis method, such as gene set enrichment analysis (GSEA; Subramanian et al. (2005))
or DAVID (Huang et al., 2009), can be applied to identify significant pathways. As to
be shown later, a two-step approach, critically depending on the output of a gene-based
test, may lose power as compared to our integrated single-step method. Furthermore,
many existing pathway methods, including GSEA and DAVID, belong to the category of
competitive tests, which compare the p-values of the genes in a given pathway with the
p-values of other background genes to determine the significance level, while our method
is a self-contained test with a null hypothesis that none of any genes in the pathway is
associated with the disease; it is known that a self-contained test is often more powerful
(Goeman and Bithlmann, 2007). In addition, all the existing pathway analysis methods are
only for GWAS data alone while failing to take advantage of eQQTL information, leading to
power loss and difficulties in interpreting the findings.

Our study was motivated by analyses of schizophrenia (SCZ) GWAS summary data.
SCZ is a major chronic and severe mental disorder that is associated with considerable

morbidity and mortality (Tiihonen et al., 2009) and affects about 1% of the population.
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Although the high heritability of SCZ has been demonstrated by previous studies (Sullivan
et al., 2012), to date, one of the largest GWAS meta-analyses, conducted by the Schizophre-
nia Working Group of the Psychiatric Genomics Consortium (PGC), has only identified
128 independent associations spanning 108 conservatively defined loci (Schizophrenia Work-
ing Group, 2014). To improve the statistical power and interpretability of the results, Gusev
et al. (2016a) applied TWAS to the PGC GWAS summary data and identified 157 signif-
icant genes, of which 35 did not overlap with a genome-wide significant locus within 500
kb. However, the pathophysiology of SCZ remains largely unknown and thus it is hard
to develop new drugs with high efficacy and low side effects. Identifying SCZ-associated
pathways is a crucial step for mechanistic understanding of SCZ and thus developing new
drugs. Here, we performed gene- and pathway-based analyses to identify SCZ-associated
genes and pathways, providing insights into the underlying mechanism of SCZ.

We reanalyzed two SCZ GWAS summary data sets, which were downloaded from the
PGC website (see URLs): a meta-analyzed SCZ GWAS data set with 8832 cases and
12,067 controls, denoted as SCZ1 (Ripke et al., 2013), and a more recent and larger one
with 36,989 cases and 113,075 controls, denoted as SCZ2 (Schizophrenia Working Group,
2014). First, we focused on gene-based analysis. By noting that TWAS is the same as
the weighted Sum test with gene expression derived weights (Xu et al., 2017b), we applied
some more powerful tests, such as the weighted sum of squared score (SSU) test and the
weighted adaptive sum of powered score (aSPU) test (Pan et al.; 2014). We analyzed the
SCZ1 data and identified 51, 108, and 87 significant genes by applying TWAS, (weighted)
SSU, and (weighted) aSPU, respectively. Among these identified genes, about 90% genes
contained genome-wide significant SNPs within 500 kb in the SCZ2 data, constituting a
highly significant and intuitive support for the identified loci. We then applied these tests
to the SCZ2 data and identified 75 novel SCZ genes, of which 50 have not been reported
in the literature yet. These results further confirm that both weighted SSU and weighted

aSPU can improve statistical power to identify more associated genes over that of TWAS.
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Second, we conducted pathway-based analysis by applying our proposed approach with
the Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa and Goto (2000)) and
Gene Ontology (GO; Consortium et al. (2004)) candidate pathways to the SCZ1 and SCZ2
data. Most of the significant pathways identified by analyzing the SCZ1 data were con-
firmed by the SCZ2 data. When analyzing the SCZ2 data, a two-step approach combining
TWAS and an existing pathway method, DAVID, identified only one significant pathway,
sequence-specific DNA binding (G0:0003700), which was also identified by our proposed
method. Importantly, by analyzing the SCZ2 data we identified 15 novel significant SCZ-
associated pathways, such as pathway GABA receptor complez (GO:1902710), which were
missed by the gene-based TWAS or aSPU analysis. Hence, pathway-based analysis, as a
complementary tool to gene-based analysis, may identify some pathways in which indi-
vidual genes may have only too weak effects to be detected but their aggregated effects
are strong. Overall, our results showcase the increased power of integrating GWAS sum-
mary data, eQTL data, reference LD information, and gene functional annotations to gain

insights into the genetic basis of complex traits.

Material and Methods

Data Sets

We downloaded two publicly available SCZ GWAS summary data sets from the PGC
website (see URLs): the SCZ1 data, which contains the meta-analyzed summary statistics
based on 20,899 individuals (Ripke et al., 2013), and the SCZ2 data based on 150,064
individuals (Schizophrenia Working Group, 2014). The sets of gene expression-derived
weights and the 1000 Genomes Project reference panel were downloaded from the TWAS
website (see URLs). Following the TWAS set-up, we removed the SNPs with the strand-

ambiguous alleles (A/T, G/C) from the GWAS summary data. Two pathway collections,
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GO and KEGG, were downloaded from the Molecular Signatures Database (see URLs).

Review of TWAS and Related Methods

We review TWAS and its related methods, which take GWAS summary statistics, a set of
gene expression-derived weights, and SNP LD information as input. Since all the methods
are gene-based by testing the genes one by one, for the purpose of presentation we only
need to consider a single gene.

For a given gene, we only consider a region around it (i.e. its coding region extended
by a certain distance, say +500 kb, upstream and downstream from its TSS and TES
respectively) for its cis-effects. Let Z = (Z1,...,Z,)" be a vector of z-scores of the SNPs
for the gene based on the GWAS summary data, or constructed from the GWAS individual-
level data. The null hypothesis Hy to be tested is that the SNPs in a given SNP set (of
a gene or a pathway) are not associated with a GWAS trait. With W = (w,...,d,),
a vector of the estimated cis-effects of the SNPs on gene expression based on a reference
eQTL data set, TWAS tests on Hp using the weighted z-scores. Note that, with GWAS
individual-level data, TWAS can be interpreted as testing for association between imputed
gene expression and the GWAS trait; however, with GWAS summary data, W’'Z may be
regarded as an imputed z—score for the gene, but not imputed expression level. It turns out
that TWAS is equivalent to the weighted Sum test (Pan, 2009; Xu et al., 2017b). Because
the Sum test implicitly assumes that all variants have an equal effect size and the same
effect direction, the Sum test and thus TWAS, as discussed in the previous studies (Pan,
2009; Wu et al., 2011; Pan et al., 2014), may lose statistical power if the true association
effects are sparse (i.e. with many 0s) or the effect directions are different. Note that, due to
the usually small sample size of the eQTL dataset, there are always estimation errors with
the estimated cis-effects W. More generally, any more powerful tests, such as the weighted
SSU test or the weighted aSPU test, can be applied (Xu et al., 2017b). In particular, the

SPU(y) tests are possible candidates to use, covering some existing ones as special cases
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(Pan et al., 2014). For example, SPU(1) equals to the Sum test, while SPU(2) equals to
SSU and a kernel machine regression-based test (also known as SKAT (Wu et al., 2011) in
rare variant analysis) with a linear kernel. As to be confirmed later, the SPU(2) test may
yield higher statistical power than TWAS (or SPU(1)). Generally, the SPU(~) tests with
veTl ={1,2,...,6,00} can be applied, and their results can be combined by the adaptive
aSPU test (Pan et al., 2014).

Since not all SNPs with non-zero weights (derived from the reference eQTL data set)
were presented in the GWAS summary data, we used the ImpG-Summary software (Pasa-
niuc et al., 2014) to impute missing z-scores to the 1000 Genomes Project reference panel
accordingly. Because the correlations among Z can be approximated by LD among the
SNPs (Kwak and Pan, 2016; Gusev et al., 2016b), we used the 1000 Genomes Project refer-
ence panel (European ancestry) (or other panels for other ethnic/racial groups) to estimate
the LD and thus the correlation matrix for Z. In this study, we used five sets of gene expres-
sion reference weights that were based on the following four eQTL data sets: microarray
gene expression data measured in peripheral blood from 1,245 unrelated subjects from the
Netherlands Twin Registry (NTR), microarray expression array data measured in blood
from 1,264 individuals from the Young Finns Study (YFS), RNA-seq measured in adipose
tissue from 563 individuals from the Metabolic Syndrome in Men study (METSIM), and
RNA-seq measured in the dorsolateral prefrontal cortex from 621 individuals from Com-
monMind Consortium (CMC) (Gusev et al., 2016b). The weights for differentially spliced
introns were further constructed by analyzing CMC data (CMC-introns) (Gusev et al.,
2016b). All these weights were downloaded from the TWAS website (see URLs). To ac-
count for multiple testing, we applied the Bonferroni correction for each set of weights to
maximize the consistency with the previously published results (Gusev et al., 2016b) and
not to over-penalize the use of additional (and often highly correlated) gene expression-
derived weights. Specifically, we reported the number of significant genes after correcting

for the number of genes tested within the use of each of the five gene expression sets (YFS,
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NTR, METSIM, CMC, and CMC-introns; 5004 genes on average with none-zero weights

and being tested).

A New Pathway-based Test

Given a pathway, we would like to test the null hypothesis Hy that none of the genetic

variants in the pathway is associated with a trait. We introduce a new pathway-based test

to integrate gene functional annotations and a reference eQTL dataset with GWAS data.

Figure 1 illustrates the workflow of our new pathway-based analysis. As a comparison, we

also describe a two-step approach combining an existing integrative gene-based test (like

TWAS) and an existing pathway analysis method (like DAVID), in which a gene-based

p-value is calculated for each gene before they are combined in pathway analysis.

Pathway
database (GO, -
KEGG, etc.)
e(Q)TL data
(PrediXcan,
TWAS, etc.)

—

GWAS summary
or individual-
level data

—)

LD information

(1000 Genomes —

Project, etc.)

Pathway:

Pathway 1 Gene 1
Gene 1:

Gene expression derived weights
SNP1

Gene 1 SNP2

W, 0

SNPk,

12 0.5

Summary statistics (score statistics)

Genel SNP1  SNP2

Z,

SNPk,

04 25 09

SNP LD information

v’

TWAS l

P-value for Gene 1

|

P-value for Gene ---

2 Gene n
Gene n:
Gene expression derived weights

Gene n SNP1
wn

SNP2 SNPk,

14 0.3 0.8

Summary statistics (score statistics)

Gene n SNP1
Za

SNP2 SNPk,

13 -1.5 0.6

SNP LD information

o o
L 4

TWAS l

P-value for Gene n

Existing pathway methods: DAVID, GSEA, etc.

Identified significant pathways

Figure 1: Workflow of pathway-based analysis.
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Given a pathway S*, we first remove the genes whose gene expression-derived SNP

28 weights are all 0, resulting in a subset S containing n genes. We partition its z-score vector
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.., Z}.) into the z-score sub-vectors for the genes, say for gene g (with k, SNPs)
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as Zg. = (Zg1,...,Zgr,). For each gene g, we standardize the gene expression derived
weights W,. by W5, = W,/ Efil |Wyi| such that the weights of the genes are in a similar
scale to avoid one or few genes (e.g. with large expression levels) dominate. The standard-
ized weights for the gene set S are W* = (W§,..., W2 )" with Wi =W, .., W;kg). We

propose the following test statistics:

n kg

PathSPU(7) = Y Y (W5 Za)",

g=1 k=1

SPUpath2 = mi A )
a pa Tgﬁg} Prathspu(y)

where Ppawnspu(y) is the p—value of the PathSPU(+y) test. Because PathSPU(1) and Path-
SPU(2) are independent (Derkach et al., 2014), we can obtain the p-value of aSPUpath2

via the following steps:

1. Calculate the p-values, p; = Ppawmspu(1) and ps = Ppamspu(z), based on the theory
that PathSPU(1) and PathSPU(2) asymptotically follow a normal distribution and

a mixture of y? distribution under Hy, respectively (Pan, 2009).
2. Take the minimum p-value of PathSPU(1) and PathSPU(2), that is pyi, = min(py, ps).

3. By the asymptotic independence of PathSPU(1) and PathSPU(2), the p-value for the

aSPUpathQ is PaSPUpath2 — 1— (1 - pmin)g-

The aSPUpath2 test is new in two aspects: first, unlike many other pathway-based
methods aggregating information from only SNP data (Kwak and Pan, 2015; Bakshi et al.,
2016), aSPUpath2 incorporates information in a reference eQTL data set, thus increas-
ing the power and providing mechanistic insights; second, unlike many other methods, for
example fastBAT (Bakshi et al., 2016), which are non-adaptive and thus only powerful
under some specific alternatives, aSPUpath2 adaptively combines information and thus

can maintain relatively high power across a wider range of situations. Finally, we note

10
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that aSPUpath2 is a special case of a more general and adaptive pathway-based test called
aSPUpath (Pan et al., 2015; Kwak and Pan, 2015), motivated by the following two consid-
erations. First, unlike aSPUpath, the p-value of aSPUpath2 can be calculated analytically
and thus fast, though a simulation-based method can be equally applied; as to be demon-
strated in the results section, the analogical method provides a good approximation to the
simulation-based method. Second, aSPUpath2 is tailored to identifying pathways contain-
ing many associated genes or SNPs with only weak effects that cannot be detected by single
SNP- or single gene-based analysis, for which it is more powerful. Hence, aSPUpath2 can
be used either alone or as a fast screening procedure for the more time-consuming and more
general aSPUpath test.

We extracted candidate pathways from two gene functional annotation sources, KEGG
and GO, which were downloaded from the MSigDB database (Subramanian et al. (2005);
see URLs). Because a small pathway gives results not much different from a gene-based
analysis, whereas the biological function of a large pathway is not specific, we restricted our
analyses to the pathways containing between 10 and 200 genes, which is widely adopted
in pathway-based analysis (Network and of the Psychiatric Genomics Consortium, 2015;
Pan et al., 2015). Supplementary Table 1 shows the summary statistics for the candidate
pathways. On average, we analyzed 4,220 gene sets for each set of weights. To account for
multiple testing, we applied the Bonferroni correction within each set of weights and used
a slightly conservative cutoff 0.05/5000 = 1 x 10~°. Owing to the non-independence nature

of many pathways, the Bonferroni correction might be over-conservative here.

Other Existing Pathway-based Tests

In principle, an existing pathway analysis method, in couple with a gene-based test, can
be applied in a two-step approach. We compared our new method with this two-step
approach using two popular pathway analysis methods, i-GSEA4GWAS (Zhang et al.,

2010) and DAVID (Huang et al., 2009), to further illustrate the power of our proposed

11
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test. Specifically, for i-GSEA4GWAS, we uploading the p-values for the genes (calculated
by TWAS or SSU or aSPU) for a given pathway to the i-GSEA4GWAS server (see URLS).
For DAVID, we uploaded to the DAVID server (see URLSs) the significant genes identified by
TWAS or SSU or aSPU as the gene list and used the genes we analyzed as the background.

Results

TWAS and Related Methods Identify Known and Novel SCZ-

associated Genes

First we applied TWAS (i.e. the weighted Sum test), the (weighted) SSU and (weighted)
aSPU tests (that integrate gene expression-derived weights) to the SCZ1 data (Ripke et al.,
2013) of 20,899 individuals to identify SCZ-associated genes. Then we looked for genome-
wide significant SNPs around these genes in the larger SCZ2 data (Schizophrenia Work-
ing Group, 2014) of 150,064 individuals for partial validation. Table 1 summarizes the
numbers of the significant genes identified by the methods with the SCZ1 data. TWAS,
SSU, and aSPU identified 51, 108, 87 significant genes (after taking the union of the results
using the five sets of weights), respectively. Among these 87 significant genes identified
by aSPU, 64 (around 70%) and 79 (around 90%) contained the genome-wide significant
SNPs (p-value < 5 x 10~®) within 500 kb in the SCZ1 data and the SCZ2 data respectively,
offering a highly significant validation of the identified loci. For TWAS and SSU, we have
the similar proportions of the genes containing the genome-wide significant SNPs in both
the SCZ1 and SCZ2 data. Clearly, SSU and aSPU identified more associated genes than
TWAS. Compared to TWAS, SSU and aSPU can still maintain high power if many of
the weighted SNPs in a gene are not associated with a trait or their associations are in
different directions. Since we do not know the sparsity level and association directions of

the underlying association patterns, we used the adaptive aSPU test. Here, perhaps due to
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the denser association patterns (i.e. with many associated SNPs), SSU identified a larger
number of SCZ-associated genes than aSPU.

Supplementary Table 2 shows the significant gene sets identified by TWAS or SSU or
aSPU based on the SCZ1 data, and Supplementary Figures 1-5 present the Manhattan
plots for the methods with the different sets of weights. The strongest gene association
identified by TWAS and SSU was NT5C2 (MIM: 600417), which was also reported by other
studies (Guan et al., 2016). This analysis also provides additional in silico support for
some reported SCZ-associated genes, including SDCCAG8 (MIM: 613524), ITIH/ (MIM:
600564), and NISCH (MIM: 615507), and many other genes.

Table 1: The numbers of the significant genes identified by analyzing the SCZ1 data for
each single set of the weights and their union across these weights. The numbers a/b/c
in each cell indicate the numbers of (a) the significant genes; (b) the significant genes
covering at least one genome-wide significant SNP within 4500 kb in the SCZ1 data; (c)
the significant genes covering at least one genome-wide significant SNP within +500 kb in

the SCZ2 data.

YFS NTR METSIM CMC-introns CMC Combined
TWAS 14/11/14 13/8/13 8/5/7 18/10/13 16/10/13 51/31/43
SSU 31/25/26 27/19/26 24/14/23 27/17/23 39/25/34 108/67/95
aSPU  29/26/26 23/16/22 21/16/21 26/18/21 28/22/25 87/64/79

Then, we applied TWAS, SSU, and aSPU to the SCZ2 data, listing the number of
significant genes identified by each method in Table 2. The quantile-quantile (Q-Q) and
Manhattan plots for different sets of weights are shown in Supplementary Figures 6-11,
respectively. Here, we analyzed the whole SCZ2 data, which were based on 36,989 cases
and 113,075 controls, while Gusev et al. (2016b) analyzed the non-overlapping case-control
samples with 34,241 cases and 45,604 controls. This data difference led to our findings
slightly different from their published ones (Gusev et al., 2016b): applying TWAS to the
SCZ2 data, we identified 202 significant genes, while Gusev et al. (2016b) identified 157
significant genes. Because the sample size of the SCZ2 is much larger than that of the

SCZ1, applying to the SCZ2 data identified a much larger number of significant genes by
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each method. Again, SSU and aSPU appeared to be more powerful than TWAS in terms
of the number of the identified significant associations. However, because under different
scenarios different tests may be more powerful, each test identified some unique genes
missed by the other tests.

Table 2: The numbers of the significant genes identified by analyzing the SCZ2 data for
each single set of the weights and their union across these weights. The numbers a/b/c
in each cell indicate the numbers of (a) the significant genes; (b) the significant genes
covering at least one genome-wide significant SNP within 4500 kb in the SCZ1 data; (c)
the significant genes covering at least one genome-wide significant SNP within +500 kb in

the SCZ2 data.

YFS NTR METSIM CMC-introns CMC Combined
TWAS 63/19/46 49/22/39 43/11/32 56/17/37 69/21/50  202/63/142
SSU 127/40/94 78/32/59 108/32/76  100/22/61  124/32/85 381/108/255
aSPU  105/40/83 69/34/60 87/33/72 85/24/55 110/34/82 314/110/234

Overall, we identified 410 significant (and unique) genes by the three methods based
on analyzing the SCZ2 data (Supplementary Table 3), of which 142 did not overlap with
any genome-wide significant SNPs within +£500 kb in the SCZ2 data. Next, to consider
the effects of different sets of weights (25,018 tests in total), we used a more stringent
cutoff (0.05/25,018 = 2 x 107°) to report the highly significant genes. We report the new
associations that are more than 500 kb away from any genome-wide significant SNPs in
the SCZ2 data. Supplementary Table 4 lists 75 highly significant genes identified by the
three methods; TWAS, SSU, and aSPU identified 23, 68, and 32 highly significant genes,
respectively, showcasing the increased discovery power of applying other tests over TWAS.
Table 3 reports 32 highly significant genes identified by aSPU. We searched the NHGRI-
EBI GWAS Catalog (MacArthur et al. (2017); see URLS) to determine if these significant
genes have been reported by other studies. Among these 32 genes, 10 have been reported
by other studies. On the other hand, among the 75 significant genes identified by any
method, 20 genes, such as FOXN2 (MIM: 143089; Cross-Disorder Group (2013)), MSRA
(MIM: 601250; Ma et al. (2011), and PAX5 (MIM: 167414; Loo et al. (2012)), have been
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reported by other studies. Overall, these 75 newly identified genes represent a class of
discoveries that would have been missed by the standard single SNP-based test, due to not

only their power differences, but also the distal locations of the genome-wide significant

SNPs.

New Pathway Method Identifies Known and Novel SCZ-associated

Pathways

We applied the new pathway test aSPUpath2 to both the SCZ1 and SCZ2 data. Figure 2
compares its p-values from the asymptotics- and Monte Carlo simulation-based methods,
showing that the asymptotics gave a good approximation to the gold standard but time-
consuming simulation-based method. The correlation of — log,, p-values between these two
methods for PathSPU(1), PathSPU(2), and aSPUpath were 0.9989, 0.9981, and 0.9972,
respectively. Because the simulation-based method is computationally demanding while
the asymptotics-based method is accurate and much faster, we used the asymptotics-based

method to calculate the p-values of aSPUpath2 for the subsequent analysis.
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Figure 2: Comparison between the asymptotics- and simulation-based p-values of Path-
SPU(1) (left), PathSPU(2) (middle), and aSPUpath (right) based on the SCZ2 data with
the GO Biological Process pathways.

Supplementary Tables 5 and 6 show the significant pathways identified by aSPUpath2
with the CMC- and YFS-based weights when applied to the SCZ1 data, respectively. We

gave the gene sets in the Supplementary Tables 2 and 3 as the SCZ1- and SCZ2-based

15



L0-A2°C SO-HLT €0-HI'C L0-A0'T OLBTT96Y  ¥I¥88G6Y 61  OLINYNS OIND
[1] L0-A2°C SO-HT'S €0-HST 90-d6'T FRIO99LL  899€TILL 8T  GOHNOM INISLAN
L0-08'L L0-AES 80-H9°G LO-HOT TISSVESST  86EEPLRT LT adVSdYd SAA
L0-AT'T L0-H9T FO-HSL 90-HGT  LETEEY68  FI0LLIES 9T §TTdY OIND
L0-AT°T 80-H¥'6 T0HI'C 90-HLT TLLEIL6R  GLOESLES 9T 0Tdaon SUOIYUT-DN D
L0-AT°T 80-H89 TOUP'T L0-H0'G TBLLLE6R  €666€668 9T §840.L SUOIYUT-DN D
LO0-AT'T RO-AT'6 TO-HST 90-dF'T €61VCL68  8EROTL6S 9T  VIdWHO OIND/SIA
L0-AT'T L0-APY  80-HO'S LO-HO'T  PS9€9968  GLIZFI68 9T LAND OIND
L0-HA8°C LO-AST  L0-HE°S  LO-HO0'9  29699FF  TEEROFF 9T LOHO0D OIND
L0-A8°C 90-H€'6 L0-A9'T L0-HO'S  968¥TST  WEILISY 9T  [TVYWN  SUOU-DIND/INISLAN
R0-HG"S R0-HG'8 90-HLT L0HOT CEI8LEE]  TEORTEE] QT casdv suoIur-DIND
[1] L0-d9°T LOART 90-H8'€ 90-HO'T 66078STL  TTIVLELL  ¥I XNOd INISLAIN
[1] L0-HG°T L0-H0E  20-H99 L0-HO'S  TLTEVLSE  2S0T6SSE VI I660VVIN INISLAN
L0-d6°T L0ACE L20-HLT LO-HO'9  BIST6SSE  8L9VGSSE VI DE¥eddd MIN/SAX
L0-AT'Y 90499 €0-H8'9 90-HO'T €9TLSFPEI ¥S60THVET  T1  §60dD0D OIND
[1] 90-18°€¢ RO-HC'6 TO-H6'T 90-HLT 6LIL06TCT 6L69GLTTT  TI IdITO INISLAN/YLN
4 80-HL'9 L0-HTT  L0-H8°C  L0-H0T  69989FLS  612%EVLS 11 SOHHAZ SAA
[1] LO-HLY 80-HF'9 L0-HT'T L0-HOY ZLIOEELE  9FI60TLEZ 6 MAL OIND
90-d6'T 80-HTC T10-HE'8 L0-H0'9 LBIESFIET TOSPIPIET 6 ENMd INISLAN
90-d6'T L0-AC6  L0-AV'9 90-HTT 996VRSTET  €SLOSSTET 6 DOANd SAA
L0-IET L0-A9L L0-HS'8 LO-HO'E TGEITERE  G99897R€ 8 THADA suoIur-DIND
[1] L0-AT'T 80-HE'L 90-H0'C L0-HO'Z 80EZ80LT  8ESETOLT 8  EDHHAZ  SUOMUL-DND/IWNISLAN
[1] L0-Av'1 L0-99'c FO-HS'S 90-U8'T TI9TFEL8  GLIEETLR L 1904V SAA
L0-49°¢ L0467 GO-H9'T 90-HST 6ETISO0FT  TE00800FT G LVINZ OIND
L0-d9°¢ 90-AT'T 90-H9'€ LO-HO'® TLIES00PT 6.€0900¥T ¢ IaNa INISLAIN
L0-9°€ L0-ATY  FO-HT'T 90-H8'T €66VZ00FT ZI06T00VT ¢ 90ONL SAA
90-dG'T SO-H6'T 60-HI'C L0-H0'T 089Z906ET 00E8TOBET & §OXX0 SUOIYUT-DN D
L0-49°¢ L0-AEY  20-A7'9 90-HP'T  FI0CFOOFT €F99Z00¥T G MI SAA
[1] R0-HG"S 90-ALT 90-HT'E 90-HLT OFCVRLLT  €9986TLT €  SAIDAL suoIur-DIND
80-H9°G LO-HSY  20-HSY  LO-HO'L  L00T60TST  6L0€F0TST T 444V suouI-DIND
L0-V'6 80-HF'L TO-HI'L LO-H0'6 VESTEES6  L0SC9ES6 T ENNO SAA
L0-d€°¢ L04L9  L20-HT'S  L0-HO'S  8PFIF99E€  T081899¢ T ITALAVI MIN/SAX
uoryepreA NS SIS 1SON 0SS SVMI  NdS® 1d 0d YHD i) 1YSPAN

'(v10z) dnoxp Sunjiop ermarqdoziyg [g] H(S102)
Te 30 seor) [[] :seouaiajelr Sumorjoj o) ur pereodde suorjerdosse 1eI)-oULS pajeplfes o], “eyep gz)S oyl o) perdde ) Jge
AQ peynuept se qy O0CF UIYIIM SjuRLIRA YSLI GYA\D) umouy ou ()M Surdde[roao sous$ [pAOU pue JUROIYIUSIS o[, ¢ 9[qe],

16



337

330

341

342

350

361

362

363

354

365

356

367

368

350

360

361

362

significant gene sets. For simplicity, we denote them as the SCZ1 and SCZ2 gene sets,
respectively. Our new method aSPUpath2 with the CMC-based weights identified 33 sig-
nificant pathways, of which 24 (around 80%) contained the significant genes in the SCZ1
gene set while 31 (around 94%) contained the significant ones in the SCZ2 gene set. In par-
ticular, aSPUpath2 with the CMC-based weights identified six significant pathways that
contained at least one significant gene in the SCZ2 gene set but no significant genes in the
SCZ1 gene set, such as pathways synapse organization (GO:0050808, p-value = 1.14x107°),
response to transforming growth factor beta (GO:0071559, p-value = 1.83 x 107°), trans-
forming growth factor beta receptor signaling pathway (GO:0007179, p-value = 4.28 x 107°),
and positive requlation of transforming growth factor beta production (GO:0071636, p-value
= 5.65 x 107%). There exist some biological findings partially supporting these identified
pathways that would be otherwise missed by gene-based analysis. Multiple members of
transforming growth factor (TGF) beta superfamily play some roles in the developing ner-
vous system (Kapelski et al., 2016). Alteration in TGF-81 expression has been observed
in SCZ patients (Kim et al., 2004). Synapse is an important component in the nervous
system and SCZ patients were found to have enriched mutations in the genes belonging
to the postsynaptic density at glutamatergic synapses (Hall et al., 2015). In contrast,
aSPUpath2 with the YFS-based weights identified 19 significant pathways, all of which
contained at least one significant gene in both the SCZ1 and SCZ2 gene sets. Perhaps due
to that the CMC-based gene expression was measured from the brain tissue and were more
closely related to SCZ, while the YFS-based ones from the blood, the CMC-based weights
were more informative. Overall, it was confirmed that pathway-based analysis is useful
as a complementary tool to gene-based analysis, offering insights into the genetic basis of
complex traits.

As an adaptive test, aSPUpath2 can maintain high power under various scenarios. For
example, based on the SCZ1 data, for pathway nuclear speck (GO:0016607) with the CMC-

based weights, there were 300 marginally significant and negatively associated SNPs (z-
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score < —1.96) and 309 marginally and positively associated SNPs (z-score > 1.96) among
5741 SNPs with non-zero weights. The varying association directions among marginally
significant SNPs led to a non-significant p-value= 3.0 x 102 of PathSPU(1). In contrast,
because PathSPU(2) was robust to varying association directions, it yielded a significant p-
value= 2.1 x 107%. By combining the results of PathSPU(1) and PathSPU(2), aSPUpath2
yielded a significant p-value= 4.1 x 107%. Furthermore, this pathway contained at least
two significant genes in both the SCZ1 and SCZ2 gene sets, supporting the significance
of the pathway. For pathway regulation of cellular senescence (GO:2000772) with the
CMC-based weights; there were 86 marginally and negatively associated SNPs (z-score
< —1.96) and 45 marginally but positively associated SNPs (z-score > 1.96) among 1516
SNPs with non-zero weights. The associations in different directions were not completely
canceled out since the number of the negatively associated SNPs was almost twice as that
of the positively associated SNPs. PathSPU(1) yielded a significant p-value (= 1.9 x 1077),
while PathSPU(2) yielded a non-significant p-value (= 2.4 x 107?). Again by combining
information from the two tests, aSPUpath2 yielded a significant p-value (= 3.8 x 1077).
This pathway also contained at least one significant gene in both the SCZ1 and SCZ2 gene
sets. Generally, as any non-adaptive test, PathSPU(1) or PathSPU(2) may lose statistical
power under different situations; however, by contrast, aSPUpath2 that data-adaptively
aggregates information can maintain relatively high power across a wide range of situations.

Then we analyzed the SCZ2 data. The new test aSPUpath2 with the CMC- and YFS-
based weights identified 235 and 242 significant pathways, respectively (see Supplementary
Table 6 and 7 for details). Table 4 shows the 6 significant KEGG pathways identified
by aSPUpath2 with the CMC-based weights. All of these significant pathways covered at
least one significant gene in the SCZ2 gene set while three pathways, Alzheimer’s disease
(hsa05010, p-value = 2.4 x 107®), systemic lupus erythematosus (hsa05322, p-value = 0.0),
and hypertrophic cardiomyopathy (hsa05410, p-value = 2.3 x 107?), have been reported by
other studies to be associated with SCZ (Wu et al., 2016; Santarelli et al., 2011).
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Table 4: The significant KEGG pathways identified by aSPUpath2 with the CMC-based
weights for the SCZ2 data.

ID Pathway name PathSPU(1) PathSPU(1) aSPUpath2 +# sig. genes
hsa05322 Systemic lupus erythematosus 2.6E-04 5.5E-10 1.1E-09 16
hsa05410 Hypertrophic cardiomyopathy 8.3E-02 1.5E-09 2.9E-09 2
hsa05414 Dilated cardiomyopathy 4.0E-01 3.1E-08 6.3E-08 2
hsa04120 Ubiquitin mediated proteolysis 6.1E-02 2.9E-07 5.8E-07 5
hsa05010 Alzheimer’s disease 6.7E-01 9.1E-07 1.8E-06 5
hsa05016 Huntington’s disease 4.7E-01 2.3E-06 4.5E-06 5

300 Table 5 shows the significant and novel pathways containing no significant genes in the

a1 SCZ2 gene set but detected by aSPUpath2 with either the CMC- or the YFS-based weights.
w2 Perhaps due to that the CMC-based weights were derived from the brain tissue and thus
33 more relevant to SCZ than the YFS-based weights, using the CMC-based weights identified
a4 12 significant and novel pathways, while using the YFS-based identified only three. Some
w5 existing studies partially supported the newly identified pathways. For example, GABA
w6 system plays an important role in orchestrating the synchronicity of local networks and
w7 affects cognitive and emotional behavior (Rudolph and Méhler, 2014). Further, cognitive
28 symptoms in SCZ are attributed to a cortical GABAergic deficit (Rudolph and Méhler,
w0 2014), partially supporting that pathway GABA receptor complez (GO:1902710) is possibly
wo related to SCZ. Overall, these 15 newly identified pathways represent a class of discoveries

w1 that would have been missed by gene-based analysis.

« Comparisons Between aSPUpath2 and Other Methods

w03 With the application to the SCZ2 data with the CMC-based weights, we compared our
sws proposed method with the two-step approach combining a gene-based test and an ex-
ws isting pathway analysis method, including the popular DAVID (Huang et al., 2009) or
ws 1-GSEAAGWAS (Zhang et al., 2010). We also compared it with the more general and
w7 standard aSPUpath (Pan et al., 2015).
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We applied DAVID (Huang et al., 2009) with the CMC-based weights and identi-
fied one significant pathway: transcription factor activity, sequence-specific DNA binding
(GO:0003700, Benjamini-corrected p-value = 4.2 x 10~3). This pathway was excluded in our
earlier analysis because it contained more than 200 genes; when applied, aSPUpath2 could
identify this pathway as well (p-value = 4.5 x 1077). We also applied i-GSEA4GWAS
(Zhang et al.; 2010) but failed to identify any significant pathways. In addition to the
two-step nature of the above two pathway methods (thus depending on the output or per-
formance of the gene-based testing in the first step), in contrast to the one-step approach
of aSPUpath2, they also differ with respect to their null hypotheses being tested: both
DAVID and i-GSEA4GWAS belong to the category of “competitive tests” testing for the
enrichment of the associated genes in the pathway being tested as compared to other path-
ways, while our aSPUpath2 method is a “self-contained test” as a global test for identifying
whether there is (are) any significant gene(s) in the pathway; due to the difference between
the null hypotheses being tested, a self-contained test is in general more powerful than a
corresponding competitive test.

Figure 3 shows the running times for aSPUpath2 and aSPUpath. Due to the com-
putational constraint, we ran at most B = 10° simulations to calculate the p-values for
aSPUpath. For the simulation-based method, the running time increased rapidly with the
number of simulations, for which a larger value is required for a more significant p-value.
In contrast, since the p-values of aSPUpath2 was calculated by the asymptotics-based
method, the running time was invariant to the p-values. Supplementary Table 9 shows the
179 significant pathways identified by aSPUpath with the CMC-based weights, of which 139
(around 80%) were also identified by applying aSPUpath2 with the CMC-based weights,
constituting a highly significant overlap between their results. Furthermore, aSPUpath2
identified a total of 235 significant pathways, showcasing possibly higher statistical power
over aSPUpath for the SCZ2 data. In summary, aSPUpath2 is several orders faster than

aSPUpath, more so for large and highly significant pathways, and can be more powerful
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for densely associated pathways (i.e. those containing many associated SNPs/genes), thus

16 we recommend using aSPUpath2 either alone or as a fast screening procedure for the more

s7  time-consuming and more general aSPUpath test.
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Figure 3: Comparison between running times of aSPUpath2 and aSPUpath for the SCZ2
data with the pathways in the GO Biological Process.

Simulations

We conducted simulation studies to evaluate and compare the performance of our proposed
new aSPUpath2 test with the aSPUpath test. We generated simulated data to mimic real
data: we used the GO Biological Process pathways and CMC-derived SNP weights, and
simulated z-scores as GWAS summary statistics for SNPs. Specifically, for a given pathway
S* in the GO Biological Process pathway database, we first removed the genes whose CMC-
derived SNP weights were all 0, resulting in a subset S containing n genes and p SNPs with
none-zero weights. We generated a z-score vector from a multivariate normal distribution,
Z ~ N(p,X), where p = (pq,...,pp) was the mean and ¥ was the LD matrix based on
the 1000 Genomes Project reference panel (European ancestry), respectively. Note that
z-scores are expected to have a multivariate normal distribution asymptotically. To save

computing time, we assumed that the SNPs from different chromosomes were independent

22



450

4561

452

453

454

455

456

457

458

450

460

461

462

463

464

465

466

467

468

460

470

471

and only considered the pathways with less than 2000 SNPs. In total, we considered 1905
pathways. Further, we defined SNP j was associated or informative with the corresponding
u; = sign(W;)e, where W; was the CMC-derived weight for SNP j, ¢ # 0 was some positive
constant, and sign(a) gave the sign of a; in contrast, SNP j was non-informative with p; = 0.
Note that we also considered non-constant |u;| for associated SNPs. To evaluate type I
error rates, we considered the null case (set-up A) with no informative SNP (x = 0). To
evaluate power, we further considered the following four set-ups under different situations:
set-up B, 50% SNPs in each gene were informative; set-up C, 10% SNPs in each gene were
informative; set-up D, only one SNP in each gene was informative; and set-up E, only
one SNP in 20% of the genes in the pathway was informative. Other SNPs were set to
non-informative and we varied the true association strength ¢ to generate power curves for
set-up B to E. After generating a z-score vector for each pathway, we applied both the
aSPUpath2 and aSPUpath tests. The entire procedure was repeated about 38,000 times
(i.e. 20 per pathway) for set-up A. For other set-ups, with different ¢, we repeated the entire
procedure about 1,900 times (1 per pathway) and fixed the nominal significance level at
a = 0.05.

Table 6 shows the empirical type I error rates, indicating that the PathSPU(1), Path-
SPU(2), and aSPUpath2 could control their type I rates satisfactorily under various nominal
significance levels.

Table 6: Empirical type I error rates of our proposed pathway-based tests with some varying
nominal significance levels a under simulation set-up A.

a 0.05 0.01 0.001

PathSPU(1) 49 x 1072 98 x10™® 12x 1073
PathSPU(2) 53 x 1072 1.1x107? 1.3x 1073
aSPUpath2 44 x1072 1.0x107% 12x107?

Figure 4 shows statistical power under set-ups B to E. In set-up B, because 50% of
the SNPs in the pathway were informative with dense association signals, PathSPU(1) was

expected to be most powerful as confirmed in Figure 4; since aSPUpath2 combined the

23



472

473

474

475

476

477

478

470

480

481

482

483

484

485

486

487

488

480

400

401

492

403

404

405

406

information from both the PathSPU(1) and PathSPU(2), aSPUpath2 also achieved high
power close to PathSPU(1). When the association signals were less dense with only 10% of
the SNPs as informative (set-up C), all the tests performed similarly, though aSPUpath2
and PathSPU(1) had a slight edge over aSPUpath and PathSPU(2) respectively. When
most SNPs (set-up D) or most genes were not associated with the trait (set-up E), aSPU-
path was expected to be more powerful than aSPUpath2 because aSPUpath2 is tailored
to identifying dense associations of pathways containing many associated SNPs/genes with
only weak effects. In other simulation set-ups with varying |u;| for associated SNPs and/or
different proportions of associated SNPs/genes, we obtained similar results as shown in
Supplementary Figure 12. Note that, by theory, there is no uniformly most powerful test
for pathway analysis; aSPUpath is more general and thus expected to be high powered
across a wider range of scenarios than aSPUpath2, which is tailored for and more powerful
for detecting dense association signals like in set-up A. However, aSPUpath2 is much faster
than aSPUpath. Hence, as mentioned earlier, we recommend using aSPUpath2 either alone
to detect densely associated pathways, or as a fast screening procedure for aSPUpath if

one is interested in both densely and sparsely associated pathways.

Discussion

In this work, we have presented a powerful and adaptive method that integrates genetic and
transcriptional variations to identify pathways associated with a complex trait. Using gene
expression to construct weights and then adaptive weighting to identify significant pathways
has some potential advantages. First, a pathway may be a more interpretable biological unit
than a single SNP or gene, and may shed light into biological mechanisms underlying a trait
or disease. Second, pathway-based analysis, complementary to gene-based analysis, and
as demonstrated here, can identify important pathways that may be missed by gene-based

analysis. Since different tests will be powerful under different underlying true association
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Figure 4: Empirical power at @ = 0.05 under different simulation set-ups (B-E).
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patterns, in particular, our proposed test may maintain relatively high statistical power
across a wider range of situations due to its adaptive nature of aggregating association
information across the genes in a pathway. Third, our proposed method is similar to
other integrative gene-based methods, such as TWAS (Gusev et al., 2016a), PrediXcan
(Gamazon et al., 2015) and aSPU (Xu et al., 2017b), that incorporate eQTL information
into GWAS analysis. However, differing from that the above integrative methods are
gene-based, our method aggregates information across the genes to identify significant
pathways. Importantly, unlike TWAS and PrediXcan, which use a simple weighted linear
combination of genetic variants (or their z-scores) to construct test statistics, our approach
adaptively (and non-linearly) weights the genetic variants and thus aggregates information
based on the underlying association patterns to increase discovery power. As shown in
our applications, our method could identify some important pathways that were missed by
the above integrative gene-based tests, even followed with a standard pathway analysis.
Finally, we note that our proposed approach is in the category of “self-contained tests”, in
which we are interested in identifying any pathway containing one or more genes or SNPs
associated with a trait. This is different from the “competitive tests”, such as DAVID and
GSEA, that would detect pathways enriched with associated genes or SNPs as compared
to background pathways.

Application of our proposed and other integrative gene-based methods to two SCZ sum-
mary data not only recapitulated many known genes or pathways but also identified many
new ones. Specifically, we identified 75 significant genes without any known associated
SNPs within 500 kb, of which 50 have not been reported in any studies yet. It is possible
that some of these significant genes represent new findings that have been missed due to
the lower statistical power in other standard single SNP- or gene-based test without in-
corporating gene expression data. Furthermore, some pathways may contain only genes
with small effect sizes, which may not be detected even by integrative gene-based tests like

TWAS, but may be by our proposed pathway test. Here, we identified 15 novel significant
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pathways associated with SCZ, such as pathway GABA receptor complex (GO:1902710),
which could be missed by gene-based TWAS or aSPU. Taken together, our results showcase
the power of incorporating reference gene expression data into gene-based or pathway-based
association testing for GWAS. The newly identified genes and pathways may help us gain
insights into the biological mechanism underlying SCZ.

Although in this study we have mainly focused on SCZ and applied the various methods
to two GWAS summary data sets, it is natural to apply our method to other complex traits
with either individual-level or summary data. We expect that applying our proposed and
other integrative methods like TWAS to other existing GWAS data may identify more
novel associations and shed more light on the underlying biological mechanisms. We note
that our proposed methodology can be applied with other endophenotype-derived weights
(Xu et al., 2017a) or even without weights (i.e. all SNPs with an equal weight).

Finally we comment on our view that TWAS is a weighted Sum test and its related
issues, which are also discussed by Wainberg et al. (2017) and in http://hakyimlab.org/
post/vulnerabilities/. Although TWAS was originally proposed to identify GWAS
associations through gene expression, any such discovery based on a single eQTL/GWAS
dataset is at most only suggestive to mediating effects of gene expression. As discussed in
Xu et al. (2017b), in spite of the connections of TWAS with two-stage least squares and
Mendelian randomization (MR), due to the adopted strong assumptions that are likely to be
violated in practice, cautions should be taken to avoid extrapolating any discovered GWAS
associations to causal effects mediated through gene expression. Hence, we simply regard
TWAS as a special case of weighted association testing. In this view, we yield a few benefits
while avoiding possible over-interpretation of an association as a causal effect. First, due to
some well-known limitations of the Sum test and inherent errors in estimating the cis-effects
(i.e. weights) of genetic variants with usually small eQTL datasets, modifications to TWAS
may lead to more powerful analysis methods, such as based on the SSU/SPU(2) and aSPU

tests (Xu et al 2017a). Other tests, like aSPU, with a more flexible weighting scheme,
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may also identify associations through other non-gene expression-mediated mechanisms.
Second, in addition to gene expression, other molecular or clinical intermediate phenotypes
can be used to construct weights for weighted GWAS association analysis (Xu et al., 2017a).

The proposed statistical tests are implemented in R package aSPU2 that is currently
publicly available on GitHub (and will be put on CRAN); the online manual and example

computer code are publicly available at wuchong.org/aspupath2.html.

Supplemental Data

Supplemental Data include 12 Supplementary Figures and 9 Supplementary Tables.

Web Resources

The URLs for data presented herein are as follows:

DAVID server: https://david.ncifcrf.gov;
o iGSEA4AGWAS server: http://gseadgwas.psych.ac.cn;

o MSigDB: http://software.broadinstitute.org/gsea/msigdb/collections. jsp#

C3;
« NHGRI-EBI GWAS Catalog: http://www.ebi.ac.uk/gwas/home;
o PGC summary data: https://www.med.unc.edu/pgc/downloads;

o TWAS website: http://gusevlab.org/projects/fusion.
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