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Abstract 

Due to issues of practicality and confidentiality of genomic data-sharing on a 

large scale, typically only meta- or mega-analyzed GWAS summary data, not 

individual-level data, are publicly available. Re-analyses of such GWAS summary 

data for a wide range of applications have become more and more common and 

useful, which often require the use of an external reference panel with 

individual-level genotypic data to infer linkage disequilibrium (LD) among 

genetic variants. However, with a small sample size in only hundreds, as for the 

most popular 1000 Genomes Project European sample, estimation errors for LD 

are not negligible, leading to often dramatically increased numbers of false 

positives in subsequent analyses of GWAS summary data. To alleviate the 

problem in the context of association testing for a group of SNPs, we propose an 

alternative estimator of the covariance matrix with an idea similar to multiple 

imputation. We use numerical examples based on both simulated and real data to 

demonstrate the severe problem with the use of the 1000 Genomes Project 

reference panels, and the improved performance of our new approach. 
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Introduction 

Due to logistic reasons and privacy concerns, often individual-level genotypic and 

phenotypic data from large genome-wide association studies (GWAS) are not 

publicly available; in contrast, GWAS summary statistics, in the form of the 

z-scores and/or p-values of single SNPs based on their univariate/marginal 

associations with a GWAS trait, are publicly available. Interestingly, as first 

demonstrated by Yang et al. (2012), one can combine GWAS summary statistics 

with a reference panel with individual-level genotypic data (that mimic the 

original population for the GWAS summary data) to conduct conditional and joint 

(COJO) analyses; that is, one can estimate and test the joint effects of multiple 

SNPs in a genomic region such as a gene or a pathway, which may be more 

powerful and/or interpretable than the standard/marginal single SNP-based 

analysis. In addition, based on a joint regression model for multiple SNPs, one 

can conduct COJO analysis: conditional on (i.e. after accounting for the effects of) 

other SNPs, one can estimate and test for possible association of one SNP (or 

multiple SNPs), which is useful in sorting out multiple causal SNPs as in fine 

mapping (Hormozdiari et al. 2014; Kichaev et al. 2014; Chen et al. 2015). The 

usefulness of such analyses and other ones on some publicly available GWAS 

summary datasets has been nicely reviewed in Pasaniuc and Price (2017).  

 

A critical issue in these approaches with GWAS summary statistics is to estimate 

linkage disequilibrium (LD) among the SNPs in a genomic region using a 

reference panel, which is necessary for estimating the correlation or covariance 

matrices of various parameter estimates and their associated testing statistics in 

any subsequent conditional or joint analysis. As pointed out by Pasaniuc and 

Price (2017), “Conditional association and imputation using summary statistics 

crucially rely on accurate LD information from a population reference panel. 

Even in the best case, when the reference population closely matches the GWAS 

population, the relatively small size of reference panels for which LD information 

is publicly available (typically hundreds or at most thousands of individuals) 



makes accurate estimation of a large number of LD parameters a challenge.” 

Although regularization-based methods for estimating LD or covariance matrices 

have been discussed in other related contexts, as to be shown, it is unclear how 

to choose tuning parameters associated with any regularization-based method in 

the current context of statistical inference, not estimation or prediction 

(Pasaniuc et al 2014; Kichaev and Pasaniuc 2015; Shi et al 2016). In spite of the 

obvious importance of the issue, however, it has been largely ignored in practice: 

although a small reference panel with a sample size in hundreds, such as any of 

the 1000 Genomes Project (1000G) racial/ethnic group-specific panels, is often 

used, strikingly there has been barely any assessment on its effects on 

subsequent statistical inference. As to be shown here, both expectedly and 

surprisingly, it often leads to dramatically inflated type I error rates and thus 

large numbers of false positives. We also point out that Yang et al. (2012) used a 

reference sample of size over 6000, more than 10 times larger than that of the 

popular choice with the 1000G data in practice. Even though the total sample 

size of the 1000G data (The 1000 Genomes Project Consortium 2015) is more 

than 3000, due to the presence of multiple populations or ethnic groups, its 

sample size for a single population is no more than a few hundreds, which is 

often used in practice.  

 

We emphasize that the underlying issue discussed here is quite general and 

wide-ranging: although our focus is on conditional and joint analyses of multiple 

SNPs such as in gene-based testing and fine mapping, any approach using GWAS 

summary data and a reference panel may suffer from the same problem, no 

matter it is polygenic risk prediction (Vilhjalmsson et al. 2015), or inferring 

genetic correlations among complex traits (Bulik-Sullivan et al. 2015), or 

Mendelian randomization for causal inference (Burgess et al. 2013). Very 

recently Benner et al (2017) demonstrated the severe problem in the context of 

fine-mapping, while we consider both conditional and global testing with a group 

of SNPs. More importantly, we propose a new method to alleviate the problem. 

We note that, even if a reference panel comes from the same population of the 

GWAS data, using the reference data with a small sample size may still lead to 

increased numbers of false positives. Of course, if the reference sample is from a 



different population, the situation becomes worse; here we mainly focus on the 

former case. The main issue is the ignorance of the small sample size of the 

reference panel, and thus its associated estimation errors or uncertainties. 

Accordingly, we propose using an idea similar to multiple imputations (Rubin 

1996) to alleviate the problem. We provide numerical examples based on both 

simulated and real data to show the impact of small reference panels, even when 

they are drawn from the same GWAS population, and the effectiveness of our 

proposed multiple imputation-type (MI-type) approach. 

Methods 

To be concrete and general, we focus on the joint analysis of a group of SNPs in a 

genomic region, and on the COJO analysis of one of the SNPs (after accounting for 

the effects of other SNPs) with a single quantitative trait. For a quantitative trait 

with a normal distribution, although an F-test is exact, due to the large sample 

size of a typical GWAS, we restrict our attention to the asymptotically equivalent 

Wald chi-squared test.  

 

Suppose that we are interested in 𝐿𝐿 SNPs and one trait, denoted by 𝐗𝐗𝑙𝑙 (𝑙𝑙 =

1 … 𝐿𝐿) and 𝐘𝐘 , which are 𝑛𝑛 × 1 vectors for 𝑛𝑛  subjects. Given the summary 

statistics 𝑏𝑏𝑙𝑙�  and var� (𝑏𝑏𝑙𝑙� ) in marginal analysis 

                           𝐘𝐘 = 𝑏𝑏𝑙𝑙𝐗𝐗𝑙𝑙 + 𝐞𝐞,           (1) 

as well as 𝐂𝐂, an estimate of the correlation matrix of the SNPs from a reference 

panel, we can obtain the regression coefficient estimates and their covariance 

matrix, denoted as 𝛃𝛃� and 𝚺𝚺� respectively (Yang et al. 2012), in the joint model 

                𝐘𝐘 = 𝛽𝛽0 + 𝛽𝛽1𝐗𝐗1 + 𝛽𝛽2𝐗𝐗2+. . . +𝛽𝛽𝐿𝐿𝐗𝐗𝐿𝐿 + 𝛆𝛆.         (2) 

The Wald test statistic is 

                              𝑊𝑊 = 𝛃𝛃�′𝚺𝚺�−1𝛃𝛃�.           (3) 

Under the global/overall null hypothesis H0: 𝛃𝛃 = (𝛽𝛽1 … 𝛽𝛽𝐿𝐿)′ = 0 , 𝑊𝑊 

asymptotically (approximately) follows a chi-squared distribution with 𝐿𝐿 

degrees of freedom. When the covariance matrix 𝚺𝚺� is not invertible, we use the 

Moore-Penrose generalized inverse and modify the degrees of freedom as the 

rank of the covariance matrix. 



 

From our experience, using the estimated correlations of the SNPs based on a 

small reference panel may lead to inflated type I errors, since 𝚺𝚺� may not be 

accurate enough. From a different angle, we can regard that using the reference 

sample only once to estimate LD among the SNPs ignores the non-negligible 

uncertainty in the resulting estimate due to the small sample size. To account for 

the estimation uncertainty, we borrow the idea of multiple imputations (MI) 

(Rubin 1996) and propose a MI-type method. Specifically, in addition to using the 

reference panel to build one model and obtain 𝛃𝛃� and 𝚺𝚺�, we can use the data 

(𝑇𝑇 − 1) more times to get (𝑇𝑇 − 1) estimates of the coefficients, and then inflate 

the covariance estimates for a more conservative inference (to battle the issue of 

inflated type I errors). We denote the parameter estimate and its covariance 

matrix based on the complete reference panel as 𝛃𝛃�1 and 𝚺𝚺�1. In each imputation 

𝑡𝑡 (𝑡𝑡 > 1), sample 𝑛𝑛ref subjects from the 𝑛𝑛ref subjects in the reference panel 

with replacement. Take these subjects as the reference sample to build a joint 

model. Estimate the coefficients as 𝛃𝛃�𝑡𝑡 and its covariance matrix as 𝚺𝚺�𝑡𝑡. Calculate 

𝛃𝛃� and 𝚺𝚺� using the following formulas, then carry out the Wald test (3): 

                              𝛃𝛃� = 𝛃𝛃�1,         

                             𝐕𝐕𝑤𝑤 = 𝚺𝚺�1,             

                    𝐕𝐕𝑏𝑏 = 1
𝑇𝑇−2

∑ (𝛃𝛃�𝑡𝑡 − 𝛃𝛃�)(𝛃𝛃�𝑡𝑡 − 𝛃𝛃�)′𝑇𝑇
𝑡𝑡=2 ,           

                       𝚺𝚺� = 𝐕𝐕𝑤𝑤 + (1 + 1
𝑇𝑇

)𝐕𝐕𝑏𝑏 ,           

                          𝛃𝛃� = 1
𝑡𝑡−1

∑ 𝛃𝛃�𝑡𝑡𝑇𝑇
𝑡𝑡=2 .            (4) 

From our experience, as in MI, usually setting 𝑇𝑇 no more than 50 should be 

enough. We can regard the existing approach of using the complete reference 

panel only once as a special case of our proposed MI-type approach with 𝑇𝑇 = 1; 

with a slight abuse of notation, we denote the approach using individual level 

data as 𝑇𝑇 = 0. 

 

COJO analysis on an individual SNP can be conducted based on 𝛃𝛃� and 𝚺𝚺�, which 

may be based on individual-level data, or the complete reference sample, or 

MI-type estimation. For example, if we’d like to test H0j: 𝛽𝛽𝑗𝑗 = 0 against H1j: 𝛽𝛽𝑗𝑗 ≠

0, then the Wald test statistic is 

                             𝑊𝑊𝑗𝑗 = 𝛽̂𝛽𝑗𝑗
2

/Σ�𝑗𝑗𝑗𝑗,          (5) 



where Σ�𝑗𝑗𝑗𝑗 is the 𝑗𝑗th diagonal element of 𝚺𝚺�. Under the null hypothesis H0j, the 

test statistic follows a chi-squared distribution with 1 degree of freedom. 

 

There are four ways to conduct a COJO analysis on a SNP (conditioning on other 

SNPs) or a group of SNPs. The first, denoted “Ind”, is based on using 

individual-level data. The second, denoted uses summary statistics but the LD 

matrix X'X is estimated from the original data (i.e. assuming the availability of LD 

from the original data); it was confirmed to give the results exactly the same as 

that of the first method “Ind”, and hence is omitted in the sequel. The third one is 

the naive method of using summary statistics with a reference panel to estimate 

LD or the matrix X'X only once, i.e. with 𝑇𝑇 = 1. The fourth method, denoted 

“Sum-MI”, is our proposed new MI-type method with 𝑇𝑇 > 1. 

 

Alternatively, a general class of approaches to better estimating LD or covariance 

matrices is to apply regularizations: one is to truncate the eigen-values of a 

matrix based on its singular value decomposition (SVD) (Shi et al 2016), while 

the other is to impose a penalty like the ridge penalty (Pasaniuc et al 2014; 

Kichaev and Pasaniuc 2015), which have been studied in other contexts. The 

general ideas can be applied here. Specifically, we can decompose 𝐂𝐂�, estimated 

from the complete reference panel (with T=1), as 

                         𝐂𝐂� = ∑ 𝒖𝒖𝑠𝑠𝑑𝑑𝑠𝑠𝒖𝒖𝑠𝑠′𝑆𝑆
𝑠𝑠=1 ,        (6) 

where  𝑑𝑑𝑙𝑙 , 𝒖𝒖𝑙𝑙  are the 𝑙𝑙th largest eigenvalue and the 𝑙𝑙th eigenvector of 𝐂𝐂�. 

Applying the ridge penalty is equivalent to replacing 𝐂𝐂� with ∑ 𝒖𝒖𝑠𝑠(𝑑𝑑𝑠𝑠 + 𝜆𝜆)𝒖𝒖𝑠𝑠′𝑆𝑆
𝑠𝑠=1 , 

while the truncation is to replace 𝐂𝐂� with ∑ 𝒖𝒖𝑙𝑙𝑑𝑑𝑙𝑙𝒖𝒖𝑙𝑙′𝑆𝑆
𝑠𝑠=1 ; 𝜆𝜆 ≥ 0 and 0 < 𝐸𝐸 < 𝐿𝐿 

are the corresponding tuning parameters. Instead of  𝐂𝐂� , one can also apply each 

of the two regularization methods to the estimated X'X, the LD matrix. Then we 

can carry out the Wald test as usual. As expected and to be shown, the 

performance of the regularization methods critically depends on the choice of 

the tuning parameters; however, differing from estimation and prediction, it is 

quite difficult and largely unknown how to choose tuning parameters for a 

regularization method in the current context of hypothesis testing. 



Data Availability 

The 2013 lipid data (Willer et al. 2013) is publicly available at 

http://csg.sph.umich.edu/abecasis/public/lipids2013/. The Lung Health Study 

data can be downloaded from the dbGaP database (accession: phs000335.v3.p2) 

by request. Information on the WTCCC data and how to apply for access can be 

found at https://www.wtccc.org.uk/info/access_to_data_samples.html. The 

method is implemented and freely available in R package jointsum at 

https://github.com/yangq001/conditional. The package will also be available on 

CRAN soon. 

 

Results 

Simulations 

To investigate the reference panels' impact on the testing performance, we first 

did some simulation studies. To be as realistic as possible, we used the 

individual-level genotypic data of 2938 subjects in the control group from the 

WTCCC data (Burton et al 2007). We randomly chose some SNPs in genomic 

regions on chromosome 19 so that none of the pair-wise (absolute) correlations 

was greater than 0.9. For power study, we needed to specify effect sizes. So we 

used the lipid data (Willer et al. 2013) to build a joint model for triglycerides (TG) 

versus SNPs. Denote its coefficients by 𝛃𝛃∗. Since the lipid data only contains 

summary statistics, we used the correlations of the SNPs estimated from the 

WTCCC data. We scaled the significant effects (p-value < 5e-8) while forcing 

insignificant effects as zero to obtain a true regression model. Then we generated 

a quantitative trait for the 2938 subjects using the model (2) with no intercept 

and 𝛽𝛽𝑖𝑖 = 𝑘𝑘𝛽𝛽𝑖𝑖∗ if 𝛽𝛽𝑖𝑖∗ (for SNP i) was significant;  𝛽𝛽𝑖𝑖 = 0 otherwise,  and the error 

term 𝛆𝛆 was an independent normal random variable with mean 0 and variance 

obtained from the joint model. For each replication, we randomly chose 𝑛𝑛ref and 

𝑛𝑛  subjects from 𝑁𝑁 = 2938  subjects as the reference panel and the GWAS 

http://csg.sph.umich.edu/abecasis/public/lipids2013/
https://www.wtccc.org.uk/info/access_to_data_samples.html
https://github.com/yangq001/conditional


sample respectively.  

  

For the approaches based on summary statistics, in addition to a subsample of 

the WTCCC data, we also chose the 1000G data as our reference panel. We used 

the 379 CEU (Utah Residents with Northern and Western Ancestry) samples 

from the 1000G Phase I version 3 Shapeit2 Reference data from the KGG software 

website (Li et al. 2012), denoted as 1000G A. We calculated the rejection rates 

based on 10000 replications for the null case. 

 

Table 1 Type I error rates for simulations in a region with 8 SNPs, none of which 

was associated with the trait. The nominal significance level was at 0.05; in each 

set-up there were 10000 replications; the GWAS sample size was 𝑛𝑛 = 1000.  

𝑛𝑛ref H0: 𝛽𝛽1 = 0 H0: 𝛃𝛃 = 𝟎𝟎 

𝑇𝑇 = 1 𝑇𝑇 = 5 𝑇𝑇 = 10 𝑇𝑇 = 1 𝑇𝑇 = 5 𝑇𝑇 = 10 𝑇𝑇 = 20 𝑇𝑇 = 30 𝑇𝑇 = 50 

900 0.0531 0.0504  0.0502  0.0621 0.0518 0.0507 0.0512 0.0509 0.0510 

500 0.0559 0.0504  0.0506  0.0694 0.0520 0.0500 0.0507 0.0499 0.0507 

379 (1000G 

A) 

0.0548 0.0516 0.0520  0.0092 0.0062 0.0055 0.0057 0.0057 0.0057 

Ind 

(individual) 

0.0515 0.0515 

 

Table 2 Type I error rates of the regularization methods for simulations in a 

region with 8 SNPs, none of which was associated with the trait. The null 

hypothesis tested was H0: 𝛃𝛃 = 𝟎𝟎 with the nominal significance level at 0.05; in 

each set-up there were 10000 replications; the GWAS sample size was 𝑛𝑛 = 1000.  

𝑛𝑛ref ridge penalty SVD-truncation (# eigenvalues) 

𝜆𝜆 = 0 𝜆𝜆 = 0.05 𝜆𝜆 = 0.1 𝜆𝜆 = 0.2 𝑆𝑆 = 5 𝑆𝑆 = 6 𝑆𝑆 = 7 

900 0.0621 0.0248 0.0164 0.0108 0.920 0.0140 0.0362 

500 0.0694 0.0270 0.0175 0.0115 0.833 0.0162 0.0400 

379 (1000G 

A) 

0.0092 0.0048 0.0048 0.0042 0.127 0.0022 0.0046 

Ind  0.0515 



 

 In a representative region with 8 SNPs, as shown in Table 1, in both 

conditional and joint analyses, using a reference sample of size 500 or 900 drawn 

from the same population led to inflated type I error rates, while our proposed 

approach largely corrected the problem with a small T=10. It is noteworthy that 

using the 1000G reference panel also gave an inflated type I error rate for the 

COJO analysis in the naive approach, but yielded very conservative global testing. 

One possible explanation for the latter is the possible difference inherent 

between the 1000G data and the WTCCC data: the correlation structure of the 8 

SNPs in the reference data was different from that of the WTCCC data, leading to 

a huge difference in the test statistics. Since the Wald test statistic involves the 

inverse of the correlation matrix, we examined the eigen-values of the inverse 

correlation matrices estimated from the individual-level WTCCC data and that 

from the 1000G reference data: their largest eigen-values were 17.1 and 14.6 

respectively, explaining why using the 1000G reference data led to a lower 

rejection rate than that of the nominal level. For this situation, it is unknown how 

to avoid conservative inference; our method cannot avoid it either. 

 

We also considered the two regularization methods. Table 2 shows the results for 

regularizing X’X. As expected, the performance critically depends on the choice of 

the tuning parameter, which however is unknown. The same conclusion can be 

drawn on regularizing the covariance matrix 𝐂𝐂� . For example, for the 

SVD-truncation method keeping E= 3, 5 and 7 top eigen-values: the empirical 

type I error rates were 1) 0.002, 0.012 and 0.039, respectively, with the reference 

panel of 900 subjects; 2) 2e-4, 0.001 and 0.005, respectively, with the 1000G A 

reference panel. 

 

 

 

 

 



Table 3 Empirical power for simulations in a region with 8 SNPs. The nominal 

significance level was at 0.05; in each set-up there were 3000 replications; the 

GWAS sample size was n=1000.   

𝛽𝛽1 𝑛𝑛ref H0: 𝛽𝛽1 = 0 H0: 𝛃𝛃 = 𝟎𝟎 

𝑇𝑇 = 1 𝑇𝑇 = 5 𝑇𝑇 = 10 𝑇𝑇 = 1 𝑇𝑇 = 5 𝑇𝑇 = 10 𝑇𝑇 = 30 𝑇𝑇 = 50 

0.01 900 0.738 0.739 0.739 0.408 0.395 0.393 0.398 0.399 

500 0.738 0.737 0.737 0.415 0.388 0.388 0.388 0.389 

379 

(1000G A) 

0.736 0.734 0.738 0.279 0.259 0.257 0.249 0.250 

Ind 0.731 0.405  

0.015 900 0.970 0.970 0.970 0.808 0.798 0.800 0.798 0.798 

500 0.971 0.970 0.971 0.810 0.793 0.794 0.793 0.792 

379 

(1000G A) 

0.970 0.970 0.970 0.722 0.711 0.710 0.702 0.702 

Ind 0.970 0.806  

 

For empirical power, as shown in Table 3, in all situations corresponding to the 

anti-conservative inference of the naive approach, our proposed method barely 

lost power as compared to the individual-level data-based method (or the naive 

method “Sum”). On the other hand, for the global testing, due to the its 

conservativeness with the use of the 1000G A reference panel (for its possible 

difference from the WTCCC data), there was some power loss from the naive and 

our new methods based on summary statistics as compared to the 

individual-level data-based method; nevertheless, at least compared to the naive 

method, our method lost only minimal power.  

 

 

 

 

 

 

 



 

 

 

 

Table 4 Empirical type I error rate (with 𝛽𝛽1=0)  and power (with 𝛽𝛽1 = 0.001) for 

simulations in 100 regions with 5~37 SNPs (17.8 on average), none or only the 

first one of which was associated with the trait. The nominal significance level 

was at 0.05; in each set-up there were 3000 replications (30 per region); the 

GWAS sample size was 𝑛𝑛 = 1000.  

𝛽𝛽1 𝑛𝑛ref H0: 𝛽𝛽1 = 0 H0: 𝛃𝛃 = 𝟎𝟎 

𝑇𝑇 = 1 𝑇𝑇 = 5 𝑇𝑇 = 10 𝑇𝑇 = 1 𝑇𝑇 = 5 𝑇𝑇 = 10 𝑇𝑇 = 30 𝑇𝑇 = 50 

0 900 0.089 0.024 0.022 0.162 0.020 0.016 0.014 0.013 

500 0.107 0.022 0.020 0.197 0.022 0.014 0.012 0.011 

379 

(1000G A) 

0.171 0.048 0.045 0.352 0.085 0.072 0.064 0.063 

Ind 0.053 0.055 

0.001  900 0.580 0.579 0.577 0.827 0.742 0.736 0.732 0.733 

500 0.605 0.577 0.576 0.847 0.740 0.732 0.727 0.724 

379 

(1000G A) 

0.596 0.597 0.589 0.822 0.759 0.745 0.738 0.735 

Ind 0.495 0.794 

 

We did another simulation with 100 randomly selected regions, each including 5 

to 37 SNPs. Most of the regions were larger than the region in Table 1. As shown 

in Table 4, again the naïve method could not control the type I error rate while 

the new method performed much better, though the new method became 

conservative as 𝑇𝑇 went up. A possible explanation is that the sample size 

needed to estimate the LD accurately for a larger number of SNPs should be 

larger. With relatively small reference samples, the estimation of the regression 

coefficients is unstable, leading to large 𝐕𝐕𝑏𝑏  and thus less significant test 

statistics. Nevertheless, the performance improved as the reference sample size 

increased from 500 to 900 with little loss of power.  



LHS data 

Next we applied the methods to the Lung Health Study (LHS) data with 4387 

subjects and 5112 SNPs on chromosome 19, downloaded from the dbGaP 

database (accession: phs000335.v3.p2). Our trait of interest was forced 

expiratory volume (FEV) at the baseline, FEVAC112. First, to adjust for 

non-genetic covariates, we built a linear model:  FEVAS112 ~ AGE + SEX + 

PACKYEAR. Then we treated the residuals as the quantitative trait Y for the SNPs. 

We obtained the summary statistics of the marginal effects for each individual 

SNP on Y after centering the data at 0. 

  

After choosing 4132 subjects with complete outcomes and 5111 SNPs that were 

present in both the LHS and 1000G data, we tested each single SNP and found 

none of them marginally significant. Then we used a sliding window approach to 

test the association between the trait and the SNPs inside each sliding window in 

a joint linear models (with the trait versus multiple SNPs). In each window, we 

selected SNPs so that none of their pair-wise correlation absolute values was 

greater than 0.95. We used two window sizes of 20 and 50 with two moving 

step-sizes/gaps of 1 and 20 respectively. 

 

For the global/overall testing, as shown in Table 5, the Wald test based on the 

individual-level data detected no significant association regardless of the window 

size and moving step size; in contrast, the naive method based on the summary 

statistics (T=1) reported many significant associations, which (or at least most of 

which) are most likely to be false positives. Our new method with T=30 or larger 

eliminated all the false positives. The QQ plot in Figure 1 also demonstrates the 

problem of the naive method with an inflation factor lambda=1.49, much larger 

than 1, while the new method might be a bit conservative with an inflation factor 

less than 1 (Devlin and Roeder 1999). 

 

Similarly, Table 6 shows in the COJO analysis on the first SNP inside each window, 

the individual-level data-based method identified no significant association. 



Again the naive method with summary statistics detected three significant ones, 

most likely false positives; two or all three could be eliminated by the new 

method. 

 

 

 

Table 5 Numbers of the significant sliding windows for global testing with the 

LHS data. The nominal significance was at 0.05 with the Bonferroni adjustment 

with a cutoff 0.05/#windows. The reference sample size was 𝑛𝑛ref = 379 based 

on the 1000G A reference panel. 𝑈𝑈, 𝜉𝜉, 𝑓𝑓 and Gap were the total number of SNPs, 

window size, the number of windows and the moving-step/gap size, respectively. 

𝑈𝑈 𝜉𝜉 Gap  𝑓𝑓 Ind 𝑇𝑇 = 1 𝑇𝑇 = 5  𝑇𝑇 = 10 𝑇𝑇 = 20 𝑇𝑇 = 30 𝑇𝑇 = 50 

5111 20 1 5092 0 20 4 0 0 0 0 

20 255 0 2 1 0 0 0 0 

50 1 5062 0 103 51 17 4 0 0 

50 102 0 7 3 2 1 0 0 

 

Figure 1 QQ plots for the LHS data. 𝜉𝜉 and the gap size are both 20. 

   Individual, 𝜆𝜆 = 1.09            𝑇𝑇 = 1, 𝜆𝜆 = 1.49 

 

    𝑇𝑇 = 10, 𝜆𝜆 = 0.87            𝑇𝑇 = 50, 𝜆𝜆 = 0.86 

 

 



 

 

 

 

 

 

Table 6 Numbers of the windows with the first SNP being significant in COJO 

analysis with the LHS data. The statistical significance cutoff was 0.05/#windows. 

𝑈𝑈, 𝜉𝜉, 𝑓𝑓 and Gap were the total number of SNPs, window size, the number of 

windows and the moving-step/gap size, respectively. 

𝑈𝑈 𝜉𝜉 Gap  𝑓𝑓 Ind T=1 𝑇𝑇 = 5  𝑇𝑇 = 10 𝑇𝑇 = 30 𝑇𝑇 = 50 

5111 20 1 5092 0 1 0 0 0 0 

20 255 0 0 0 0 0 0 

50 1 5062 0 2 0 1 1 1 

50 102 0 0 0 0 0 0 

 

Lipid data 

We applied the methods to the 2010 and 2013 lipid data (Teslovich et al. 2010; 

Willer et al. 2013), testing the association between TG and SNPs on chromosome 

19 that are present in both datasets. To save space, we only present the results 

for the 2013 lipid data in the following. We chose 7366 SNPs that were present in 

both the lipid data and the 1000 Genomes Phase 3 data with 503 subjects from 

the European population as the reference panel (denoted as 1000G B reference 

panel in the following), with minor allele frequencies larger than 0.01. First, we 

looked at the marginal p-values of each SNP, and found 86 of the 7366 SNPs with 

p-values less than 0.05/7366, and 911 with p-values less than 0.05. The 

estimated inflation factor was 1.0.   

 

In addition to the 1000G B reference panel, we also used various subsets of the 

LHS data as a reference panel. We randomly sampled 𝑛𝑛ref = 1000 𝑡𝑡𝑡𝑡 4000 



subjects from the 4136 subjects in the LHS data as the reference data before 

applying the sliding window approach to the 4364 overlapping SNPs in the 2013 

lipid data. As shown in Table 7 for global testing, as expected, the naive method 

gave much larger numbers of significant associations than that of the proposed 

new method, in which T=30 or larger seemed to give stable results. The same 

conclusion can be drawn for the COJO analysis as shown in Table 8. In summary, 

we expect that the naive method gave too many false positives. 

 

Table 7 Numbers of the significant sliding windows for global testing with the 

2013 lipid data, using subsamples of the LHS data as reference with 𝑛𝑛ref ≥ 1000, 

or using the 1000G B data with 𝑛𝑛ref = 503. The statistical significance cut-off 

was 0.05/#windows; 𝑈𝑈, 𝜉𝜉 and 𝑓𝑓 were the total number of SNPs, window size, 

and the number of windows respectively; the moving-step size or gap size was 

equal to the window size. The numbers of overlapping SNPs between T=1 and 

others are shown in the parentheses. 

Chr 𝜉𝜉 𝑛𝑛ref 𝑈𝑈 (𝑓𝑓) 𝑇𝑇 = 1 𝑇𝑇 = 5 𝑇𝑇 = 10 𝑇𝑇 = 30 𝑇𝑇 = 50 

19 10 503 

(1000G B) 

7366 

(735) 

57 22 (22) 20 (20) 22 (22) 22 (22) 

1000 4364 

(435) 

38 19 (19) 15 (15) 14 (14) 15 (15) 

2000 37 19 (19) 17 (17) 15 (15) 15 (15) 

4000 40 17 (17) 16 (16) 15 (15) 15 (15) 

20 503 

(1000G B) 

7366 

(367) 

59 27 (27) 20 (20) 17 (17) 17 (17) 

1000 4364 

(217) 

35 23 (23) 14 (14) 10 (10) 9 (9) 

2000 35 17 (17) 12 (12) 10 (10) 10 (10) 

4000 33 18 (18) 10 (10) 11 (11) 11 (11) 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Table 8 Numbers of the windows with the first SNP being significant in COJO 

analysis with the 2013 lipid data, using subsamples of the LHS data as reference 

with 𝑛𝑛ref ≥ 1000, or using the 1000G B data with 𝑛𝑛ref = 503. The statistical 

significance cut-off was 0.05/#windows; 𝑈𝑈, 𝜉𝜉 and 𝑓𝑓 were the total number of 

SNPs, window size, and the number of windows respectively; the moving-step 

size or gap size was equal to the window size. The numbers of overlapping SNPs 

between T=1 and others are shown in the parentheses. 

Chr 𝑈𝑈 𝜉𝜉 (𝑓𝑓) 𝑛𝑛ref 𝑇𝑇 = 1 𝑇𝑇 = 5 𝑇𝑇 = 10 𝑇𝑇 = 30 𝑇𝑇 = 50 𝑇𝑇 = 100 

19 4364 10 

(435) 

1000 6 2 (2) 1(1) 1 (1) 2 (2) 2 (2) 

2000 8 4 (4) 2 (2) 2 (2) 3 (3) 3 (3) 

4000 8 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 

20 

(217) 

1000 6 3 (3) 3 (3) 1 (1) 2 (2) 2 (2) 

2000 6 4 (4) 3 (3) 3 (3) 3 (3) 3 (3) 

4000 6 2 (2) 2 (2) 3 (3) 2 (2) 2 (2) 

 

 

Discussion 

Using simulated and real data, we have convincingly shown the severe problem 

of inflated type I error rates in integrating GWAS summary data with small 

reference panels for joint and conditional analyses, which have been widely 



applied in the last few years, ranging from gene-based testing with one or more 

traits (Kwak and Pan 2016, 2017; Deng and Pan 2017) to fine mapping. In 

particular, as a gene-based testing approach to integrating eQTL data with GWAS 

summary data, the recently proposed transcriptome-wide association studies 

(TWAS) are expected to share the same problem with small reference panels 

(Gamazon et al 2015; Gusev et al 2016; Xu et al 2017). We emphasize that, 

although we have focused on conditional and global testing on a group of SNPs, 

the same issue of using small reference panels persists in many new and existing 

applications: to name a few, fine mapping (Benner et al 2017), polygenic risk 

prediction (Vilhjalmsson et al. 2015), inferring genetic correlations among 

complex traits (Bulik-Sullivan et al. 2015), and Mendelian randomization for 

causal inference (Burgess et al. 2013). Although standard reference panel 

samples, as for the 1000G data, are continuing growing with increasing sample 

sizes, the current and almost exclusive use of the popular 1000G reference panels 

is expected to suffer from the small sample issue as demonstrated here. 

Furthermore, even with a larger reference panel, if a GWAS sample size is larger 

(Benner et al 2017) or if we expand the SNPs to be tested to cover less frequent 

or rare ones and/or with those in high LD, as in fine mapping with sequencing 

data, the problem may still arise. Our proposed method, or its idea, could be 

applied (possibly after suitable modifications) to at least check whether the 

problem is severe in a given situation. Finally, we note that it is unclear how to 

deal with the problem if there are genotypic discrepancies between the reference 

panel and the GWAS data, which may happen in practice, especially with 

meta-analyzed GWAS summary statistics with multiple racial/ethnic 

subpopulations, for which any reference sample from a single population may 

not suffice (for the mixed GWAS population). In this case, perhaps the most 

straightforward solution is to conserve and share the LD structure from the 

original GWAS data. This problem is similar to meta-analysis of rare variants with 

sequencing data (Lee et al 2013). We hope that this study, along with Benner et al 

(2017), will raise the awareness of and attention to this important and urgent 

problem in light of the increasing use of GWAS summary data and (small) 

reference panels.  
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