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Abstract

Due to issues of practicality and confidentiality of genomic data-sharing on a
large scale, typically only meta- or mega-analyzed GWAS summary data, not
individual-level data, are publicly available. Re-analyses of such GWAS summary
data for a wide range of applications have become more and more common and
useful, which often require the use of an external reference panel with
individual-level genotypic data to infer linkage disequilibrium (LD) among
genetic variants. However, with a small sample size in only hundreds, as for the
most popular 1000 Genomes Project European sample, estimation errors for LD
are not negligible, leading to often dramatically increased numbers of false
positives in subsequent analyses of GWAS summary data. To alleviate the
problem in the context of association testing for a group of SNPs, we propose an
alternative estimator of the covariance matrix with an idea similar to multiple
imputation. We use numerical examples based on both simulated and real data to
demonstrate the severe problem with the use of the 1000 Genomes Project

reference panels, and the improved performance of our new approach.
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Introduction

Due to logistic reasons and privacy concerns, often individual-level genotypic and
phenotypic data from large genome-wide association studies (GWAS) are not
publicly available; in contrast, GWAS summary statistics, in the form of the
z-scores and/or p-values of single SNPs based on their univariate/marginal
associations with a GWAS trait, are publicly available. Interestingly, as first
demonstrated by Yang et al. (2012), one can combine GWAS summary statistics
with a reference panel with individual-level genotypic data (that mimic the
original population for the GWAS summary data) to conduct conditional and joint
(COJO) analyses; that is, one can estimate and test the joint effects of multiple
SNPs in a genomic region such as a gene or a pathway, which may be more
powerful and/or interpretable than the standard/marginal single SNP-based
analysis. In addition, based on a joint regression model for multiple SNPs, one
can conduct COJO analysis: conditional on (i.e. after accounting for the effects of)
other SNPs, one can estimate and test for possible association of one SNP (or
multiple SNPs), which is useful in sorting out multiple causal SNPs as in fine
mapping (Hormozdiari et al. 2014; Kichaev et al. 2014; Chen et al. 2015). The
usefulness of such analyses and other ones on some publicly available GWAS

summary datasets has been nicely reviewed in Pasaniuc and Price (2017).

A critical issue in these approaches with GWAS summary statistics is to estimate
linkage disequilibrium (LD) among the SNPs in a genomic region using a
reference panel, which is necessary for estimating the correlation or covariance
matrices of various parameter estimates and their associated testing statistics in
any subsequent conditional or joint analysis. As pointed out by Pasaniuc and
Price (2017), “Conditional association and imputation using summary statistics
crucially rely on accurate LD information from a population reference panel.
Even in the best case, when the reference population closely matches the GWAS
population, the relatively small size of reference panels for which LD information

is publicly available (typically hundreds or at most thousands of individuals)



makes accurate estimation of a large number of LD parameters a challenge.”
Although regularization-based methods for estimating LD or covariance matrices
have been discussed in other related contexts, as to be shown, it is unclear how
to choose tuning parameters associated with any regularization-based method in
the current context of statistical inference, not estimation or prediction
(Pasaniuc et al 2014; Kichaev and Pasaniuc 2015; Shi et al 2016). In spite of the
obvious importance of the issue, however, it has been largely ignored in practice:
although a small reference panel with a sample size in hundreds, such as any of
the 1000 Genomes Project (1000G) racial/ethnic group-specific panels, is often
used, strikingly there has been barely any assessment on its effects on
subsequent statistical inference. As to be shown here, both expectedly and
surprisingly, it often leads to dramatically inflated type I error rates and thus
large numbers of false positives. We also point out that Yang et al. (2012) used a
reference sample of size over 6000, more than 10 times larger than that of the
popular choice with the 1000G data in practice. Even though the total sample
size of the 1000G data (The 1000 Genomes Project Consortium 2015) is more
than 3000, due to the presence of multiple populations or ethnic groups, its
sample size for a single population is no more than a few hundreds, which is

often used in practice.

We emphasize that the underlying issue discussed here is quite general and
wide-ranging: although our focus is on conditional and joint analyses of multiple
SNPs such as in gene-based testing and fine mapping, any approach using GWAS
summary data and a reference panel may suffer from the same problem, no
matter it is polygenic risk prediction (Vilhjalmsson et al. 2015), or inferring
genetic correlations among complex traits (Bulik-Sullivan et al. 2015), or
Mendelian randomization for causal inference (Burgess et al. 2013). Very
recently Benner et al (2017) demonstrated the severe problem in the context of
fine-mapping, while we consider both conditional and global testing with a group
of SNPs. More importantly, we propose a new method to alleviate the problem.
We note that, even if a reference panel comes from the same population of the
GWAS data, using the reference data with a small sample size may still lead to

increased numbers of false positives. Of course, if the reference sample is from a



different population, the situation becomes worse; here we mainly focus on the
former case. The main issue is the ignorance of the small sample size of the
reference panel, and thus its associated estimation errors or uncertainties.
Accordingly, we propose using an idea similar to multiple imputations (Rubin
1996) to alleviate the problem. We provide numerical examples based on both
simulated and real data to show the impact of small reference panels, even when
they are drawn from the same GWAS population, and the effectiveness of our

proposed multiple imputation-type (MI-type) approach.

Methods

To be concrete and general, we focus on the joint analysis of a group of SNPs in a
genomic region, and on the COJO analysis of one of the SNPs (after accounting for
the effects of other SNPs) with a single quantitative trait. For a quantitative trait
with a normal distribution, although an F-test is exact, due to the large sample
size of a typical GWAS, we restrict our attention to the asymptotically equivalent

Wald chi-squared test.

Suppose that we are interested in L SNPs and one trait, denoted by X; (I =
1..L) and Y, which are n X 1 vectors for n subjects. Given the summary
statistics b, and var(h;) in marginal analysis
Y = h)X; + e, (1)

as well as C, an estimate of the correlation matrix of the SNPs from a reference
panel, we can obtain the regression coefficient estimates and their covariance
matrix, denoted as B and ¥ respectively (Yang et al. 2012), in the joint model

Y =y + 1 X + X+ 6. X, + & (2)
The Wald test statistic is

w =BT 1B. (3)

Under the global/overall null hypothesis Ho: B=(f; .. f.) =0, W
asymptotically (approximately) follows a chi-squared distribution with L
degrees of freedom. When the covariance matrix £ is not invertible, we use the
Moore-Penrose generalized inverse and modify the degrees of freedom as the

rank of the covariance matrix.



From our experience, using the estimated correlations of the SNPs based on a
small reference panel may lead to inflated type I errors, since £ may not be
accurate enough. From a different angle, we can regard that using the reference
sample only once to estimate LD among the SNPs ignores the non-negligible
uncertainty in the resulting estimate due to the small sample size. To account for
the estimation uncertainty, we borrow the idea of multiple imputations (MI)
(Rubin 1996) and propose a MI-type method. Specifically, in addition to using the
reference panel to build one model and obtain B and Z, we can use the data
(T — 1) more times to get (T — 1) estimates of the coefficients, and then inflate
the covariance estimates for a more conservative inference (to battle the issue of
inflated type I errors). We denote the parameter estimate and its covariance
matrix based on the complete reference panel as B; and E;. In each imputation
t (t > 1), sample n..s subjects from the n. subjects in the reference panel
with replacement. Take these subjects as the reference sample to build a joint
model. Estimate the coefficients as B, and its covariance matrix as Z,. Calculate
B and ¥ using the following formulas, then carry out the Wald test (3):
E = 31:
v, =2,
Vo = —3,B. - BB - B
=V, +(1+2)Vp,

E = iZLz Et- (4)
From our experience, as in MI, usually setting T no more than 50 should be
enough. We can regard the existing approach of using the complete reference
panel only once as a special case of our proposed MI-type approach with T = 1;
with a slight abuse of notation, we denote the approach using individual level

dataas T = 0.

COJO analysis on an individual SNP can be conducted based on B and E, which
may be based on individual-level data, or the complete reference sample, or
MlI-type estimation. For example, if we'd like to test Hoj: f; = 0 against Hij: f; #

0, then the Wald test statistic is

W =415 (5)



where fjj is the jth diagonal element of Z. Under the null hypothesis Hoj, the

test statistic follows a chi-squared distribution with 1 degree of freedom.

There are four ways to conduct a COJO analysis on a SNP (conditioning on other
SNPs) or a group of SNPs. The first, denoted “Ind”, is based on using
individual-level data. The second, denoted uses summary statistics but the LD
matrix X'X is estimated from the original data (i.e. assuming the availability of LD
from the original data); it was confirmed to give the results exactly the same as
that of the first method “Ind”, and hence is omitted in the sequel. The third one is
the naive method of using summary statistics with a reference panel to estimate
LD or the matrix X'X only once, i.e. with T = 1. The fourth method, denoted

“Sum-MTI", is our proposed new MI-type method with T > 1.

Alternatively, a general class of approaches to better estimating LD or covariance
matrices is to apply regularizations: one is to truncate the eigen-values of a
matrix based on its singular value decomposition (SVD) (Shi et al 2016), while
the other is to impose a penalty like the ridge penalty (Pasaniuc et al 2014;
Kichaev and Pasaniuc 2015), which have been studied in other contexts. The
general ideas can be applied here. Specifically, we can decompose C, estimated
from the complete reference panel (with T=1), as
C =X udsuy, (6)

where d;, u; are the Ith largest eigenvalue and the Ith eigenvector of C.
Applying the ridge penalty is equivalent to replacing C with ¥3_, us(ds + Du,’,
while the truncation is to replace C with Y3_;uw;,dju;’; 1>0 and 0 <E <L
are the corresponding tuning parameters. Instead of C, one can also apply each
of the two regularization methods to the estimated X'X, the LD matrix. Then we
can carry out the Wald test as usual. As expected and to be shown, the
performance of the regularization methods critically depends on the choice of
the tuning parameters; however, differing from estimation and prediction, it is
quite difficult and largely unknown how to choose tuning parameters for a

regularization method in the current context of hypothesis testing.



Data Availability

The 2013 lipid data (Willer et al. 2013) is publicly available at
http://csg.sph.umich.edu/abecasis/public/lipids2013/. The Lung Health Study
data can be downloaded from the dbGaP database (accession: phs000335.v3.p2)

by request. Information on the WTCCC data and how to apply for access can be

found at https://www.wtccc.org.uk/info/access to data samples.html. The

method is implemented and freely available in R package jointsum at
https://github.com/yangq001/conditional. The package will also be available on
CRAN soon.

Results

Simulations

To investigate the reference panels' impact on the testing performance, we first
did some simulation studies. To be as realistic as possible, we used the
individual-level genotypic data of 2938 subjects in the control group from the
WTCCC data (Burton et al 2007). We randomly chose some SNPs in genomic
regions on chromosome 19 so that none of the pair-wise (absolute) correlations
was greater than 0.9. For power study, we needed to specify effect sizes. So we
used the lipid data (Willer et al. 2013) to build a joint model for triglycerides (TG)
versus SNPs. Denote its coefficients by fB*. Since the lipid data only contains
summary statistics, we used the correlations of the SNPs estimated from the
WTCCC data.  We scaled the significant effects (p-value < 5e-8) while forcing
insignificant effects as zero to obtain a true regression model. Then we generated
a quantitative trait for the 2938 subjects using the model (2) with no intercept
and B; = kf; if B; (for SNP i) was significant; B; = 0 otherwise, and the error
term € was an independent normal random variable with mean 0 and variance
obtained from the joint model. For each replication, we randomly chose n..s and

n subjects from N = 2938 subjects as the reference panel and the GWAS
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sample respectively.

For the approaches based on summary statistics, in addition to a subsample of

the WTCCC data, we also chose the 1000G data as our reference panel. We used

the 379 CEU (Utah Residents with Northern and Western Ancestry) samples

from the 1000G Phase I version 3 Shapeit2 Reference data from the KGG software

website (Li et al. 2012), denoted as 1000G A. We calculated the rejection rates

based on 10000 replications for the null case.

Table 1 Type I error rates for simulations in a region with 8 SNPs, none of which

was associated with the trait. The nominal significance level was at 0.05; in each

set-up there were 10000 replications; the GWAS sample size was n = 1000.

Npef Hy: 51 =0 Ho:B=0
T=1 T=5 | T=10| T=1 T=5 |T=10 | T=20 T =30 T =50
900 0.0531 | 0.0504 | 0.0502 | 0.0621 | 0.0518 | 0.0507 | 0.0512 0.0509 0.0510
500 0.0559 | 0.0504 | 0.0506 | 0.0694 | 0.0520 | 0.0500 | 0.0507 0.0499 0.0507
379 (1000G | 0.0548 | 0.0516 | 0.0520 | 0.0092 | 0.0062 | 0.0055 | 0.0057 0.0057 0.0057
A)
Ind 0.0515 0.0515
(individual)

Table 2 Type I error rates of the regularization methods for simulations in a

region with 8 SNPs, none of which was associated with the trait. The null

hypothesis tested was H,: =0 with the nominal significance level at 0.05; in

each set-up there were 10000 replications; the GWAS sample size was n = 1000.

Npef ridge penalty SVD-truncation (# eigenvalues)
A= A=005| 1=01 | 21=0.2 S = S=6 S=
900 0.0621 0.0248 0.0164 0.0108 0.920 0.0140 0.0362
500 0.0694 0.0270 0.0175 0.0115 0.833 0.0162 0.0400
379 (1000G | 0.0092 0.0048 0.0048 0.0042 0.127 0.0022 0.0046
A)
Ind 0.0515




In a representative region with 8 SNPs, as shown in Table 1, in both
conditional and joint analyses, using a reference sample of size 500 or 900 drawn
from the same population led to inflated type I error rates, while our proposed
approach largely corrected the problem with a small T=10. It is noteworthy that
using the 1000G reference panel also gave an inflated type I error rate for the
COJO analysis in the naive approach, but yielded very conservative global testing.
One possible explanation for the latter is the possible difference inherent
between the 1000G data and the WTCCC data: the correlation structure of the 8
SNPs in the reference data was different from that of the WTCCC data, leading to
a huge difference in the test statistics. Since the Wald test statistic involves the
inverse of the correlation matrix, we examined the eigen-values of the inverse
correlation matrices estimated from the individual-level WTCCC data and that
from the 1000G reference data: their largest eigen-values were 17.1 and 14.6
respectively, explaining why using the 1000G reference data led to a lower
rejection rate than that of the nominal level. For this situation, it is unknown how

to avoid conservative inference; our method cannot avoid it either.

We also considered the two regularization methods. Table 2 shows the results for
regularizing X'X. As expected, the performance critically depends on the choice of
the tuning parameter, which however is unknown. The same conclusion can be
drawn on regularizing the covariance matrix €. For example, for the
SVD-truncation method keeping E= 3, 5 and 7 top eigen-values: the empirical
type I error rates were 1) 0.002, 0.012 and 0.039, respectively, with the reference
panel of 900 subjects; 2) 2e-4, 0.001 and 0.005, respectively, with the 1000G A

reference panel.



Table 3 Empirical power for simulations in a region with 8 SNPs. The nominal
significance level was at 0.05; in each set-up there were 3000 replications; the

GWAS sample size was n=1000.

By Npef Ho: 1 =0 Ho: =0
T= T=5 T=10 T= T= T=10 T =30 T =50
0.01 900 0.738 0.739 0.739 0.408 0.395 0.393 0.398 0.399
500 0.738 0.737 0.737 0.415 0.388 0.388 0.388 0.389
379 0.736 0.734 0.738 0.279 0.259 0.257 0.249 0.250
(1000G A)
Ind 0.731 0.405
0.015 900 0.970 0.970 0.970 0.808 0.798 0.800 0.798 0.798
500 0.971 0.970 0.971 0.810 0.793 0.794 0.793 0.792
379 0.970 0.970 0.970 0.722 0.711 0.710 0.702 0.702
(1000G A)
Ind 0.970 0.806

For empirical power, as shown in Table 3, in all situations corresponding to the
anti-conservative inference of the naive approach, our proposed method barely
lost power as compared to the individual-level data-based method (or the naive
method “Sum”). On the other hand, for the global testing, due to the its
conservativeness with the use of the 1000G A reference panel (for its possible
difference from the WTCCC data), there was some power loss from the naive and
our new methods based on summary statistics as compared to the
individual-level data-based method; nevertheless, at least compared to the naive

method, our method lost only minimal power.




Table 4 Empirical type I error rate (with g,=0) and power (with g, =0.001) for
simulations in 100 regions with 5~37 SNPs (17.8 on average), none or only the
first one of which was associated with the trait. The nominal significance level
was at 0.05; in each set-up there were 3000 replications (30 per region); the

GWAS sample size was n = 1000.

By Nref Hy: 5, =0 Hy: =0
T=1 T=5 T =10 T=1 T=5 T =10 T =30 T =50
0 900 0.089 0.024 0.022 0.162 0.020 0.016 0.014 0.013
500 0.107 0.022 0.020 0.197 0.022 0.014 0.012 0.011
379 0.171 0.048 0.045 0.352 0.085 0.072 0.064 0.063
(1000G A)
Ind 0.053 0.055
0.001 900 0.580 0.579 0.577 0.827 0.742 0.736 0.732 0.733
500 0.605 0.577 0.576 0.847 0.740 0.732 0.727 0.724
379 0.596 0.597 0.589 0.822 0.759 0.745 0.738 0.735
(1000G A)
Ind 0.495 0.794

We did another simulation with 100 randomly selected regions, each including 5
to 37 SNPs. Most of the regions were larger than the region in Table 1. As shown
in Table 4, again the naive method could not control the type I error rate while
the new method performed much better, though the new method became
conservative as T went up. A possible explanation is that the sample size
needed to estimate the LD accurately for a larger number of SNPs should be
larger. With relatively small reference samples, the estimation of the regression
coefficients is unstable, leading to large V, and thus less significant test
statistics. Nevertheless, the performance improved as the reference sample size

increased from 500 to 900 with little loss of power.




LHS data

Next we applied the methods to the Lung Health Study (LHS) data with 4387
subjects and 5112 SNPs on chromosome 19, downloaded from the dbGaP
database (accession: phs000335.v3.p2). Our trait of interest was forced
expiratory volume (FEV) at the baseline, FEVAC112. First, to adjust for
non-genetic covariates, we built a linear model: FEVAS112 ~ AGE + SEX +
PACKYEAR. Then we treated the residuals as the quantitative trait Y for the SNPs.
We obtained the summary statistics of the marginal effects for each individual

SNP on Y after centering the data at 0.

After choosing 4132 subjects with complete outcomes and 5111 SNPs that were
present in both the LHS and 1000G data, we tested each single SNP and found
none of them marginally significant. Then we used a sliding window approach to
test the association between the trait and the SNPs inside each sliding window in
a joint linear models (with the trait versus multiple SNPs). In each window, we
selected SNPs so that none of their pair-wise correlation absolute values was
greater than 0.95. We used two window sizes of 20 and 50 with two moving

step-sizes/gaps of 1 and 20 respectively.

For the global/overall testing, as shown in Table 5, the Wald test based on the
individual-level data detected no significant association regardless of the window
size and moving step size; in contrast, the naive method based on the summary
statistics (T=1) reported many significant associations, which (or at least most of
which) are most likely to be false positives. Our new method with T=30 or larger
eliminated all the false positives. The QQ plot in Figure 1 also demonstrates the
problem of the naive method with an inflation factor lambda=1.49, much larger
than 1, while the new method might be a bit conservative with an inflation factor

less than 1 (Devlin and Roeder 1999).

Similarly, Table 6 shows in the COJO analysis on the first SNP inside each window,

the individual-level data-based method identified no significant association.



Again the naive method with summary statistics detected three significant ones,

most likely false positives; two or all three could be eliminated by the new

method.

Table 5 Numbers of the significant sliding windows for global testing with the

LHS data. The nominal significance was at 0.05 with the Bonferroni adjustment

with a cutoff 0.05/#windows. The reference sample size was n..f = 379 based

on the 1000G A reference panel. U, &, f and Gap were the total number of SNPs,

window size, the number of windows and the moving-step/gap size, respectively.

U & Gap f Ind T=1 T=5 T=10 | T=20 | T=30 | T=50
5111 | 20 1 5092 0 20 4 0 0 0 0
20 255 0 2 1 0 0 0 0
50 1 5062 0 103 51 17 4 0 0
50 102 0 7 3 2 1 0 0
Figure 1 QQ plots for the LHS data. ¢ and the gap size are both 20.
Individual, 4 = 1.09 T=1 1=149
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Table 6 Numbers of the windows with the first SNP being significant in COJO
analysis with the LHS data. The statistical significance cutoff was 0.05/#windows.
U, & f and Gap were the total number of SNPs, window size, the number of

windows and the moving-step/gap size, respectively.

U & | Gap f Ind T=1 T=5 T=10 T =30 T =50
5111 | 20 1 5092 0 1 0 0 0 0
20 255 0 0 0 0 0 0
50 1 5062 0 2 0 1 1 1
50 102 0 0 0 0 0 0
Lipid data

We applied the methods to the 2010 and 2013 lipid data (Teslovich et al. 2010;
Willer et al. 2013), testing the association between TG and SNPs on chromosome
19 that are present in both datasets. To save space, we only present the results
for the 2013 lipid data in the following. We chose 7366 SNPs that were present in
both the lipid data and the 1000 Genomes Phase 3 data with 503 subjects from
the European population as the reference panel (denoted as 1000G B reference
panel in the following), with minor allele frequencies larger than 0.01. First, we
looked at the marginal p-values of each SNP, and found 86 of the 7366 SNPs with
p-values less than 0.05/7366, and 911 with p-values less than 0.05. The

estimated inflation factor was 1.0.

In addition to the 1000G B reference panel, we also used various subsets of the

LHS data as a reference panel. We randomly sampled n..s = 1000 to 4000




subjects from the 4136 subjects in the LHS data as the reference data before
applying the sliding window approach to the 4364 overlapping SNPs in the 2013
lipid data. As shown in Table 7 for global testing, as expected, the naive method
gave much larger numbers of significant associations than that of the proposed
new method, in which T=30 or larger seemed to give stable results. The same
conclusion can be drawn for the COJO analysis as shown in Table 8. In summary,

we expect that the naive method gave too many false positives.

Table 7 Numbers of the significant sliding windows for global testing with the
2013 lipid data, using subsamples of the LHS data as reference with n..; = 1000,
or using the 1000G B data with n..s = 503. The statistical significance cut-off
was 0.05/#windows; U, ¢ and f were the total number of SNPs, window size,
and the number of windows respectively; the moving-step size or gap size was
equal to the window size. The numbers of overlapping SNPs between T=1 and

others are shown in the parentheses.

Chr | & Myef U{f)| T=1 T=5 T =10 T =30 T =50

19 | 10 503 7366 57 22 (22) 20 (20) 22 (22) 22 (22)
(1000GB) | (735)

1000 4364 38 19 (19) 15 (15) 14 (14) 15 (15)

2000 (435) 37 19 (19) 17 (17) 15 (15) 15 (15)

4000 40 17 (17) 16 (16) 15 (15) 15 (15)

20 503 7366 59 27 (27) 20 (20) 17 (17) 17 (17)
(1000GB) | (367)

1000 4364 35 23 (23) 14 (14) 10 (10) 9(9)
2000 (217) 35 17 (17) 12 (12) 10 (10) 10 (10)
4000 33 18 (18) 10 (10) 11 (11) 11 (11)




Table 8 Numbers of the windows with the first SNP being significant in COJO
analysis with the 2013 lipid data, using subsamples of the LHS data as reference
with n.er = 1000, or using the 1000G B data with n..s = 503. The statistical
significance cut-off was 0.05/#windows; U, ¢ and f were the total number of
SNPs, window size, and the number of windows respectively; the moving-step
size or gap size was equal to the window size. The numbers of overlapping SNPs

between T=1 and others are shown in the parentheses.

Chr | U | & (f) | mer | T=1 T=5 T=10 | T=30 | T=50 | T=100
19 | 4364 | 10 1000 6 2(2) 1(1) 1(1) 2(2) 2(2)
(435) | 2000 8 4 (4) 2(2) 2(2) 3(3) 3(3)
4000 8 2(2) 2(2) 2(2) 2(2) 2(2)
20 1000 6 3(3) 3(3) 1(1) 2(2) 2(2)
(217) | 2000 6 4 (4) 3(3) 3(3) 3(3) 3(3)
4000 6 2(2) 2(2) 3(3) 2(2) 2(2)
Discussion

Using simulated and real data, we have convincingly shown the severe problem
of inflated type I error rates in integrating GWAS summary data with small

reference panels for joint and conditional analyses, which have been widely




applied in the last few years, ranging from gene-based testing with one or more
traits (Kwak and Pan 2016, 2017; Deng and Pan 2017) to fine mapping. In
particular, as a gene-based testing approach to integrating eQTL data with GWAS
summary data, the recently proposed transcriptome-wide association studies
(TWAS) are expected to share the same problem with small reference panels
(Gamazon et al 2015; Gusev et al 2016; Xu et al 2017). We emphasize that,
although we have focused on conditional and global testing on a group of SNPs,
the same issue of using small reference panels persists in many new and existing
applications: to name a few, fine mapping (Benner et al 2017), polygenic risk
prediction (Vilhjalmsson et al. 2015), inferring genetic correlations among
complex traits (Bulik-Sullivan et al. 2015), and Mendelian randomization for
causal inference (Burgess et al. 2013). Although standard reference panel
samples, as for the 1000G data, are continuing growing with increasing sample
sizes, the current and almost exclusive use of the popular 1000G reference panels
is expected to suffer from the small sample issue as demonstrated here.
Furthermore, even with a larger reference panel, if a GWAS sample size is larger
(Benner et al 2017) or if we expand the SNPs to be tested to cover less frequent
or rare ones and/or with those in high LD, as in fine mapping with sequencing
data, the problem may still arise. Our proposed method, or its idea, could be
applied (possibly after suitable modifications) to at least check whether the
problem is severe in a given situation. Finally, we note that it is unclear how to
deal with the problem if there are genotypic discrepancies between the reference
panel and the GWAS data, which may happen in practice, especially with
meta-analyzed GWAS summary statistics with multiple racial/ethnic
subpopulations, for which any reference sample from a single population may
not suffice (for the mixed GWAS population). In this case, perhaps the most
straightforward solution is to conserve and share the LD structure from the
original GWAS data. This problem is similar to meta-analysis of rare variants with
sequencing data (Lee et al 2013). We hope that this study, along with Benner et al
(2017), will raise the awareness of and attention to this important and urgent
problem in light of the increasing use of GWAS summary data and (small)

reference panels.
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