A Time- and Message-Optimal Distributed Algorithm for
Minimum Spanning Trees

Gopal Pandurangan”®
University of Houston
Houston, TX, USA
gopalpandurangan@gmail.com

ABSTRACT

This paper presents a randomized (Las Vegas) distributed algo-
rithm that constructs a minimum spanning tree (MST) in weighted
networks with optimal (up to polylogarithmic factors) time and
message complexity. This algorithm runs in O(D + +/n) time and
exchanges O(m) messages (both with high probability), where n is
the number of nodes of the network, D is the diameter, and m is
the number of edges. This is the first distributed MST algorithm
that matches simultaneously the time lower bound of QD + \/n)
[Elkin, SIAM ]. Comput. 2006] and the message lower bound of
Q(m) [Kutten et al., J. ACM 2015], which both apply to randomized
Monte Carlo algorithms.

The prior time and message lower bounds are derived using
two completely different graph constructions; the existing lower
bound construction that shows one lower bound does not work for
the other. To complement our algorithm, we present a new lower
bound graph construction for which any distributed MST algorithm
requires both QD+ y/n) rounds and Q(m) messages.
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1 INTRODUCTION

The minimum-weight spanning tree (MST) construction problem
is one of the central and most studied problems in distributed
computing. A long line of research aimed at developing efficient
distributed algorithms for the MST problem started more than
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thirty years ago with the seminal paper of Gallager, Humblet, and
Spira [13], which presented a distributed algorithm that constructs
an MST in O(nlog n) rounds and exchanging O(m + nlogn) mes-
sages! (throughout, n and m will denote the number of nodes and
the number of edges of the network, respectively). The message
complexity of this algorithm is (essentially) optimal,? but its time
complexity is not. Hence further research concentrated on improv-
ing the time complexity. The time complexity was first improved to
O(nloglog n) by Chin and Ting [5], further improved to O(nlog" n)
by Gafni [12], and then to O(n) by Awerbuch [2] (see also Faloutsos
and Molle [11]). The O(n) bound is existentially optimal in the
sense that there exist graphs for which this is the best possible.

This was the state of the art till the mid-nineties when Garay,
Kutten, and Peleg [14] raised the question of whether it is possi-
ble to identify graph parameters that can better capture the com-
plexity of distributed network computations. In fact, for many ex-
isting networks, their diameter® D is significantly smaller than
the number of vertices n, and therefore it is desirable to design
protocols whose running time is bounded in terms of D rather
than in terms of n. Garay, Kutten, and Peleg [14] gave the first
such distributed algorithm for the MST problem with running time
O(D + n®%'*log* n), which was later improved by Kutten and Pe-
leg [23] to O(D+ v/nlog" n). However, both these algorithms are not
message-optimal,® as they exchange O(m + n'-%1%) and O(m + n'-%)
messages, respectively. All the above results, as well as the one
in this paper, hold in the synchronous CONGEST model of dis-
tributed computing, a well-studied standard model of distributed
computing [30] (see Section 1.1).

The lack of progress in improving the result of [23], and in partic-
ular breaking the O( +/n) barrier,” led to work on lower bounds for
the distributed MST problem. Peleg and Rubinovich [31] showed
that Q(D + +/n/logn) time is required by any distributed algo-
rithm for constructing an MST, even on networks of small diameter
(D = Q(log n)); thus, this result establishes the asymptotic near-
tight optimality of the algorithm of [23]. The lower bound of Peleg
and Rubinovich applies to exact, deterministic algorithms. Later,

!The original algorithm has a message complexity of O(m log n), but it can be im-
proved to O(m + nlog n).

21t has been shown in [22] that the message complexity lower bound of leader election
(and hence any spanning tree as well) is Q(m), and this applies even to randomized
Monte Carlo algorithms. On the other hand, it can be shown that an MST can be con-
structed using O(m) messages (but time can be arbitrarily large) in any synchronous
network [22, 28].

3In this paper, by diameter we always mean unweighted diameter.

“In this paper, henceforth, when we say “optimal” we mean “optimal up to a polylog(n)
factor”.

5O0(f(n)) and  Q(f(n)) denote O(f(n)
Q(f (n)/ polylog(f(n))), respectively.

polylog(f(n)))  and
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the same lower bound of Q(D + +/n) was shown for randomized
(Monte Carlo) and approximation algorithms as well [6, 9].

To summarize, the state of the art for distributed MST algorithms
is that there exist algorithms which are either time-optimal (i.e.,
they run in O(D + +/n) time) or message-optimal (i.e., they ex-
change O(m) messages), but not simultaneously both. Indeed, the
time-optimal algorithms of [8, 23] (as well as the sublinear time
algorithm of [14]) are not message-optimal, i.e., they require asymp-
totically much more than ©(m) messages. In contrast, the known
message-optimal algorithms for MST (in particular, [2, 13]) are not
time-optimal, i.e., they take significantly more time than O(D+ v/n).
Peleg and Rubinovich [31] in their 2000 SICOMP paper raise the
question of whether one can design a distributed MST algorithm
that is simultaneously optimal with respect to time and message
complexity. In 2011, Kor, Korman, and Peleg [20] also raise this ques-
tion and showed that distributed verification of MST, i.e., verifying
whether a given spanning tree is MST or not, can be done in opti-
mal messages and time, i.e., there exists a distributed verification
algorithm that uses O(m) messages and runs in O(D + +/n) time,
and that these are optimal bounds for MST verification. However,
the original question for MST construction remained open.

The above question addresses a fundamental aspect in distributed
algorithms, namely the relationship between the two basic complex-
ity measures of time and messages. The simultaneous optimization
of both time and message complexity has been elusive for several
fundamental distributed problems (including MST, shortest paths,
and random walks), and consequently research in the last three
decades in distributed algorithms has focused mainly on optimizing
either one of the two measures separately. However, in various
modern and emerging applications such as resource-constrained
communication networks and distributed computation of large-
scale data, it is crucial to design distributed algorithms that optimize
both measures simultaneously [15, 19].

1.1 Model and Definitions

We first briefly describe the distributed computing model in which
our algorithm (as well as all the previously discussed MST algo-
rithms [2, 5, 8, 12-14, 23]) is specified and analyzed. This is the
CONGEST model (see, e.g., the book by Peleg [30]), which is now
standard in the distributed computing literature.

A point-to-point communication network is modeled as an undi-
rected weighted graph G = (V,E, w), where the vertices of V repre-
sent the processors, the edges of E represent the communication
links between them, and w(e) is the weight of edge e € E. Without
loss of generality, we assume that G is connected. We also assume
that the weights of the edges of the graph are all distinct. This
implies that the MST of the graph is unique. The definitions and
the results generalize readily to the case where the weights are not
necessarily distinct. Each node hosts a processor with limited ini-
tial knowledge. Specifically, we make the common assumption that
each node has unique identity numbers (this is not essential, but
simplifies presentation), and at the beginning of computation each
vertex v accepts as input its own identity number and the weights
of the edges incident to it. Thus, a node has only local knowledge.
Specifically we assume that each node has ports (each port having
a unique port number); each incident edge is connected to one
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distinct port. A node does not have any initial knowledge of the
other endpoint of its incident edge (which node it is connected to or
the port number that it is connected to). This model is referred to as
the clean network model in [30] and is also sometimes referred to as
the KTy model, i.e., the initial (K)nowledge of all nodes is restricted
(T)ill radius 0 (i.e., just the local knowledge) [30]. The KTy model is
a standard model in distributed computing and typically used in the
literature (see e.g., [1, 25, 30, 33]), including all the prior results on
distributed MST (e.g., [2, 5, 8, 12-14, 23]) with a notable exception
([18], discussed in some detail in Section 1.3).

The vertices are allowed to communicate through the edges of

the graph G. It is assumed that communication is synchronous and
occurs in discrete rounds (time steps). In each time step, each node
v can send an arbitrary message of O(log n) bits through each edge
e = (v,u) incident to v, and each message arrives at u by the end
of this time step. (If unbounded-size messages are allowed—this
is the so-called LOCAL model—the MST problem can be trivially
solved in O(D) time [30].) The weights of the edges are at most
polynomial in the number of vertices n, and therefore the weight
of a single edge can be communicated in one time step. This model
of distributed computation is called the CONGEST (log n) model or
simply the CONGEST model [30].
Singular Optimality vs. Time-Message Tradeoff. The efficiency
of distributed algorithms is traditionally measured by their time
and message (or, communication) complexities. Time complexity
measures the number of synchronous rounds taken by the algo-
rithm, whereas message complexity measures the total amount
of messages sent and received by all the processors during the
execution of the algorithm. Both complexity measures crucially
influence the performance of a distributed algorithm. We say that
a problem enjoys singular optimality when it admits a distributed
algorithm whose time and message complexity are both optimal.
When the problem fails to admit such a solution, namely, algorithms
with better time complexity for it necessarily incur higher mes-
sage complexity and vice versa, we say that the problem exhibits a
time-message tradeoff.

1.2 Our Results

Distributed MST Algorithm. In this paper we present a distributed
MST algorithm in the CONGEST model which is simultaneously
time- and message-optimal. The algorithm is randomized Las Ve-
gas, and always returns the MST. The running time of the algo-
rithm is O(D + /) and the message complexity is O(m), and both
bounds hold with high probability.® This is the first distributed
MST algorithm that matches simultaneously the time lower bound
of Q(D + n) [6, 9] and the message lower bound of Q(m) [22],
which both apply even to randomized Monte Carlo algorithms, thus
closing a more than thirty-year-old line of research in distributed
computing. In terms of the terminology introduced earlier, we can
therefore say that the distributed MST problem exhibits singular
optimality up to polylogarithmic factors. Table 1 summarizes the
known upper bounds on the complexity of distributed MST. We
also observe that in our algorithm the local computation performed
by the vertices is not very heavy.

®Throughout, with high probability (w.h.p.) means with probability > 1 — 1/n%®),

where n is the network size.
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Table 1: Summary of upper bounds on the complexity of dis-
tributed MST.

Reference Time Complexity

Gallager et al. [13] O(nlogn)

Awerbuch [2] O(n)
Garay et al. [14] O(D + n%%1%1og* n)

Message Complexity

O(m + nlogn)
O(m + nlogn)
O(m + n'-01%)

Kutten and Peleg [23]  O(D + nlog* n) O(m + n!-)
Elkin [38] O(u(G,w) + n) O(m + nl-)
This paper O(D + n) O(m)

Lower Bound. Both the aforementioned time and message lower
bounds are existential, and are derived using two completely dif-
ferent graph constructions. However, the graph used to show one
lower bound does not work for the other. To complement our main
result, in Section 4 we present a new graph construction for which
any distributed MST algorithm requires both Q(D + +/n) rounds
and Q(m) messages.

1.3 Other Related Work

Given the importance of the distributed MST problem, there has
been significant work over the last 30 years on this problem and re-
lated aspects. Besides the prior work already mentioned in Section 1,
we now discuss other relevant work on distributed MST.

Other Distributed MST Algorithms. Elkin [8] showed that a pa-
rameter called “MST-radius” captures the complexity of distributed
MST algorithms better. He devised a distributed protocol that con-
structs the MST in O(u(G,w) + /n) time, where (G, w) is the
“MST-radius” of the graph [8] (is a function of the graph topology
as well as the edge weights). The ratio between diameter and MST-
radius can be as large as ©(n), and consequently, on some inputs,
this protocol is faster than the protocol of [23] by a factor of Q( v/n).
However, a drawback of this protocol (unlike the previous MST
protocols [5, 12-14, 23]) is that it cannot detect the termination of
the algorithm in that time (unless u(G,w) is given as part of the
input). On the other hand, it can be shown that for distributed MST
algorithms that correctly terminate Q(D) is a lower bound on the
running time [21, 31]. (In fact, [21] shows that for every sufficiently
large n and every function D(n) with 2 < D(n) < n/4, there exists
a graph G of n’ € ©(n) nodes and diameter D’ € ©(D(n)) which
requires Q(D’) rounds to compute a spanning tree with constant
probability.) We also note that the message complexity of Elkin’s
algorithm is O(m + n3/2).

Time Bounds. From a practical perspective, given that MST con-
struction can take as much as Q(+/n/logn) time even in low-
diameter networks, it is worth investigating whether one can de-
sign distributed algorithms that run faster and output an approx-
imate minimum spanning tree. The question of devising faster
approximation algorithms for MST was raised in [31]. Elkin [9]
later established a hardness result on distributed MST approxima-
tion, showing that approximating the MST problem on a certain
family of graphs of small diameter (e.g., O(logn)) within a ratio
H requires essentially Q(/n/H logn) time. Khan and Panduran-
gan [17] showed that there can be an exponential time gap between
exact and approximate MST construction by showing that there
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exist graphs where any distributed (exact) MST algorithm takes
Q(+/n/logn) rounds, whereas an O(log n)-approximate MST can
be computed in O(log n) rounds. The distributed algorithm of Khan
and Pandurangan [17] outputs a O(log n)-approximate MST, and is
message-optimal but not time-optimal.

Das Sarma et al. [6] settled the time complexity of distributed
approximate MST by showing that this problem, as well as approx-
imating shortest paths and about twenty other problems, satisfies
a time lower bound of Q(D + v/n). This applies to deterministic as
well as randomized algorithms, and to both exact and approximate
versions. In other words, any distributed algorithm for comput-
ing a H-approximation to MST, for any H > 0, takes Q(D + /)
time in the worst case. Lower bounds are known even for quantum
algorithms [10].

Message Bounds. Kutten et al. [22] fully settled the message com-
plexity of leader election in general graphs, even for randomized al-
gorithms and under very general settings. Specifically, they showed
that any randomized algorithm (including Monte Carlo algorithms
with suitably large constant success probability) requires Q(m)
messages; this lower bound holds for any n and m, i.e., given any
n and m, there exists a graph with ©(n) nodes and ©(m) edges for
which the lower bound applies. Since a distributed MST algorithm
can also be used to elect a leader (where the root of the tree is
the leader, which can be chosen using O(n) messages once a tree
is constructed) the above lower bound applies to distributed MST
construction as well, for all m > cn, where c is a sufficiently large
constant. The above bound holds even for non-comparison algo-
rithms, that is algorithms that may also manipulate the actual value
of node’s identities, not just compare identities with each other,
and even if nodes have initial knowledge of n,m, and D. They also
hold for synchronous networks, and even if all the nodes wake
up simultaneously. Finally, they hold not only for the CONGEST
model [30], where sending a message of O(logn) bits takes one
unit of time, but also for the LOCAL model [30], where the number
of bits in a message is allowed to be arbitrary.

Optimality in the KTy Model: Comparison-Based and Ran-
domized Algorithms. It is important to point out that this paper
and all the prior results discussed above (including the prior MST re-
sults [2, 5, 8, 12-14, 23]) assume the so-called clean network model,
ak.a. KTy [30] (cf. Section 1.1), where nodes do not have initial
knowledge of the identity of their neighbors. However, one can
assume a model where nodes have initial knowledge of the identity
of their neighbors. This model is called the KT; model. We note that
the time lower bound of Q(D + /1) holds in the KT; model as well.
Awerbuch et al. [3] show that Q(m) is a message lower bound for
MST for the KT; model, if one allows only comparison-based algo-
rithms (i.e., algorithms that can operate on IDs only by comparing
them); this lower bound for comparison-based algorithms applies
to randomized algorithms as well. (We note that all prior MST algo-
rithms mentioned earlier are comparison-based, including ours.)
Hence, the result of [3] implies that our MST algorithm (which is
comparison-based and randomized) is message- and time-optimal
in the KT; model if one considers comparison-based algorithms.
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Awerbuch et al. [3] also show that the Q(m) message lower
bound applies even to non-comparison based (in particular, algo-
rithms that can perform arbitrary local computations) determin-
istic algorithms in the CONGEST model that terminate in a time
bound that depends only on the graph topology (e.g., a function
of n). On the other hand, for randomized non-comparison-based
algorithms, it turns out that the message lower bound of Q(m)
does not apply in the KT7 model. Recently, King et al. [18] showed
a surprising and elegant result: in the KT; model one can give a
randomized Monte Carlo algorithm to construct a MST in O(n)
messages (Q(n) is a message lower bound) and in é(n) time (this al-
gorithm uses randomness and is not comparison-based). While this
algorithm shows that one can get o(m) message complexity (when
m = w(npolylog n)), it is not time-optimal (it can take significantly
more than O(D + 4/n) rounds). It is an open question whether one
can design a randomized (non-comparison based) algorithm that
takes O(D + +/n) time and O(n) messages in the KT; model.

2 HIGH-LEVEL OVERVIEW OF THE
ALGORITHM

The time- and message-optimal distributed MST algorithm of this
paper builds on prior distributed MST algorithms that were either
message-optimal or time-optimal but not both. We provide a high-
level overview of our algorithm and some intuition behind it; we
also compare and contrast it with previous MST algorithms. The full
description of the algorithm and its analysis are given in Section 3.
The algorithm can be divided into two parts as explained below.

2.1 First Part: Controlled-GHS

We first run the so-called Controlled-GHS algorithm, which was
first used in the sublinear-time distributed MST algorithm of Garay,
Kutten, and Peleg [14], as well as in the time-optimal algorithm of
Kutten and Peleg [23]. Controlled-GHS is the (synchronous version
of the) classical Gallager-Humblet-Spira (GHS) algorithm [13, 30],
with some modifications. We recall that the synchronous GHS
algorithm, which is essentially a distributed implementation of
Boruvka’s algorithm—see, e.g., [30], consists of O(log n) phases. In
the initial phase each node is an MST fragment, by which we mean
a connected subgraph of the MST. In each subsequent phase, every
MST fragment finds a lightest (i.e., minimum-weight) outgoing
edge (LOE)—these edges are guaranteed to be in the MST by the cut
property [32]. The MST fragments are merged via the LOEs to form
larger MST fragments. The number of phases is O(log n), since the
number of MST fragments gets at least halved in each phase. The
message complexity is O(m + nlog n) (which essentially matches
the optimal message bound of Q(m)) and the time complexity is
O(nlogn). The time complexity is not optimal because much of the
communication during a phase uses only the MST fragment edges.
Since the diameter of an MST fragment can be as large as Q(n) (and
this can be significantly larger than the graph diameter D), the time
complexity of the GHS algorithm is not optimal.

The Controlled-GHS algorithm alleviates this situation by con-
trolling the growth of the diameter of the MST fragments during
merging. At the end of Controlled-GHS, +/n fragments remain,
each of which has diameter O(v/n). These are called as base frag-
ments. Controlled-GHS can be implemented using O(m) messages
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in O(+/n) rounds. (Note that Controlled-GHS as implemented in
the time-optimal algorithm of [23] is not message-optimal—the
messages exchanged can be O(m + n/2); however, a modified ver-
sion can be implemented using O(m) messages as explained in
Section 3.1.)

2.2 Second Part: Merging the v/n Remaining
Fragments

The second part of our algorithm, after the Controlled-GHS part,
is different from the existing time-optimal MST algorithms. The
existing time-optimal MST algorithms [8, 23], as well as the algo-
rithm of [14], are not message-optimal since they use the Pipeline
procedure of [14, 29]. The Pipeline procedure builds a breadth-first
search (BFS) tree of the network, collects all the inter-fragment
edges (these are edges between the y/n MST fragments) at the root
of the BFS tree and then finds the MST locally. The Pipeline algo-
rithm uses the cycle property of the MST [32] to eliminate those
inter-fragment edges that cannot belong to the MST en route of
their journey to the root. While the Pipeline procedure (due to the
pipelining of the edges to the root) takes O(+/n) time (since there
are at most so many MST edges left to be discovered after the end
of the first part), it is not message-optimal. The Pipeline procedure
exchanges O(m + n!*>) messages, since each node in the BFS tree
can send up to O(y/n) edges leading to O(n'->) messages overall
(the BFS tree construction takes O(m) messages).

Our algorithm uses a different strategy to achieve optimality
in both time and messages. The main novelty of our algorithm
(Algorithm 1) is how we merge the \/n base fragments which re-
main at the end of the Controlled-GHS procedure into one resulting
fragment (the MST) in a time- and message-efficient way. Unlike
previous time-optimal algorithms [8, 14, 23], we do not use the
Pipeline procedure of [14, 29] which is not message-optimal (as
explained above). Instead, we continue to merge fragments, a la
Boruvka-style. Our algorithm uses two main ideas to implement the
Boruvka-style merging efficiently. (Merging is achieved by renam-
ing the IDs of the merged fragments to a common ID, i.e., all nodes
in the combined fragment will have this common ID.) The first idea
is a procedure to efficiently merge when D is small (i.e., D = O(+/n))
or when the number of fragments remaining is small (i.e., O(n/D)).
The second idea is to use sparse neighborhood covers and efficient
communication between fragments to merge fragments when D is
large and the number of fragments is large. Accordingly, the second
part of our algorithm can be divided into three phases, which are
described next.

2.2.1 Phase 1: When D is O(+/n). Phase 1 can be treated as a
special case of Phase 3 (as in Algorithm 1). However, we describe
Phase 1 separately as it helps in the understanding of the other
phases as well.

We construct a BFS tree on the entire network and do the merg-
ing process as explained below. Each base fragment finds its LOE
by convergecasting within each of its fragments. This takes O( y/n)
time and O(+/n) messages per base fragment, leading to O(n) mes-
sages overall. The O(4/n) LOE edges are sent by the leaders of the
respective base fragments to the root by upcasting (see, e.g., [30]).
This takes O(D + +/n) time and O(D +/n) messages, as each of the
\/n edges has to traverse up to D edges on the way to the root. The
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root merges the fragments and sends the renamed fragment IDs to
the respective leaders of the base fragments by downcast (which
has the same time and message complexity as upcast [30]). The
leaders of the base fragments broadcast the new ID to all other
nodes in their respective fragments. This takes O( /1) messages
per fragment and hence O(n) messages overall. Thus one iteration
of the merging can be done in O(D + +/n) time and using O(D v/n)
messages. Since each iteration reduces the number of fragments by
at least half, the number of iterations is O(log n). At the end of this
iteration, several base fragments may share the same label. In sub-
sequent iterations, each base fragment finds its LOE (i.e., the LOE
between itself and the other base fragments which do not have the
same label) by convergecasting within its own fragment and (the
leader of the base fragment) sends the LOE to the root; thus O(/n)
edges are sent to the root (one per base fragment), though there are
a lesser number of combined fragments (with distinct labels). The
root finds the overall LOE of the combined fragments and does the
merging. This is still fine, since the time and message complexity
per merging iteration is O(D + +/n) time and O(D+/n) = O(n)
messages respectively, which are as required.

2.2.2  Phase 2: When D and the Number of Fragments are Large.
When D is large (say n'/?*¢, for some 0 < ¢ < 1/2) and the num-
ber of fragments is large (say, ©(/n)) the previous approach of
merging via the root of the global BFS tree does not work directly,
since the message complexity would be O(D v/n). The second idea
addresses this issue: we merge in a manner that respects locality.
That is, we merge fragments that are close by using a local leader
(thus the LOE edges do not have to travel too far). The high-level
idea is to use a hierarchy of sparse neighborhood covers to accomplish
the merging.” A sparse neighborhood cover is a decomposition of a
graph into a set of overlapping clusters that satisfy suitable proper-
ties (see Definition 3.4 in Section 3.4). The main intuitions behind
using a cover are the following: (1) the clusters of the cover have
relatively smaller diameter (compared to the strong diameter of
the fragment and is always bounded by D) and this allows efficient
communication for fragments contained within a cluster (i.e., the
weak diameter of the fragment is bounded by the cluster diameter);
(2) the clusters of a cover overlap only a little, i.e., each vertex be-
longs only to a few clusters; this allows essentially congestion-free
(overhead is at most polylog(n) per vertex) communication and
hence operations can be done efficiently in parallel across all the
clusters of a cover. This phase continues till the number of frag-
ments reduces to O(n/D), when we switch to Phase 3. We next give
more details on the merging process in Phase 2.

Communication-Efficient Paths. An important technical aspect
in the merging process is constructing efficient communication
paths between nearby fragments; the algorithm maintains and
updates these efficient paths during the algorithm. Our algorithm
requires fragments to be “communication-efficient”, in the sense
that there is an additional set of short paths between the fragment
leader f and fragment members. Such a path might use “shortcuts”

"We use an efficient randomized cover construction algorithm due to Elkin [8]; this
is the only randomization used in our algorithm. We note that neighborhood covers
was used by Elkin [8] to improve the running time of the Pipeline procedure of his
distributed MST algorithm; on the other hand, here we use it to replace the Pipeline
part entirely in order to achieve message optimality as well.
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through vertices in V(G)\V (F) to reduce the distance. The following
definition formalizes this idea.

Definition 2.1 (Communication-Efficient Fragment and Path). Let
F be a fragment of G, and let f € F be a vertex designated as the
fragment leader of F. We say that fragment F is communication-
efficient if, for each vertex v € F, there exists a path between
v and f (possibly including vertices in V(G) \ V(F)) of length
O(diamg(F) + \/n), where diamg(F) is the weak diameter of F.
Such a path is called communication-efficient path for F.

Section 3.2 defines the routing data structures that are used
to maintain communication-efficient paths. Later, in Section 3.4,
we describe the construction of the paths (and routing data struc-
tures) inductively. We show that, in each iteration, all fragments
find their respective LOEs in time O(+/n + D) and using a total of
O(m) messages. While we cannot merge all fragments (along their
LOEs), as this will create long chains, we use a procedure called
ComputeMaximalMatching (Section 3.5) to merge fragments in a
controlled manner. ComputeMaximalMatching finds a maximal
matching in the fragment graph #; induced by the LOE edges. The
crucial part is using communication-efficient paths to communi-
cate efficiently (both time and message-wise) between the fragment
leader and the nodes in the fragment (while finding LOEs) as well as
between fragment leaders of adjacent fragments (while merging as
well as implementing ComputeMaximalMatching). The procedure
FindLightest (see Section 3.3) describes the LOE finding process
assuming communication-efficient fragments. The maintenance of
such efficient fragments is shown recursively: the base fragments
are efficient and after merging the resulting fragments are also
efficient.

We use a hierarchy of sparse neighborhood covers to construct
communication-efficient fragments (see Section 3.4). Each cover in
the hierarchy consists of a collection of clusters of certain radius—
the lowest cover in the hierarchy has clusters of radius O(+/n)
(large enough to contain at least one base fragment which have
radius O(+/n); subsequent covers in the hierarchy have clusters
of geometrically increasing radii (the last cover in the hierarchy
is simply the BFS tree of the entire graph). Initially, it is easy to
construct communication-efficient paths in base fragments, since
they have strong diameter O(+/n) (cf. Section 3.2, Lemma 3.2). In
subsequent iterations, when merging two adjacent fragments, the
algorithm finds a cluster that is (just) large enough to contain both
the fragments. Figure 1 gives an example of this process. The neigh-
borhood property of the cluster allows the algorithm to construct
communication-efficient paths between merged fragments (that
might take shortcuts outside the fragments, and hence have small
weak diameter) assuming that the fragments before merging are
efficient. Note that it is important to make sure that the number
of fragments in a cluster is not too large in relation to the radius
of the cluster—otherwise the message complexity will be high (as
in the Pipeline scenario). Hence, a key invariant that is maintained
through all the iterations is that the cluster depth times the number
of fragments that are contained in the cluster of such depth is always
bounded by O(n), and this helps in keeping the message complexity
low. This invariant is maintained by making sure that the number
of fragments per cluster goes down enough to compensate for the
increase in cluster radius (Lemma 3.8 in Section 3.4). At the end of
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Phase 3, the invariant guarantees that when the cluster radius is D,
the number of fragments is O(n/D).

2.2.3  Phase 3: When the Cluster Radius is D. When the cluster
radius becomes D (i.e., the cover is just the BFS tree), we switch
to Phase 3. The number of remaining fragments will be O(n/D)
(which is guaranteed at the end of Phase 2). Phase 3 uses a merging
procedure very similar to that of Phase 1. In Phase 1, in every merg-
ing iteration, each base fragment finds their respective LOEs (i.e.,
LOEs between itself and the rest of the fragments) by converge-
casting to their respective leaders; the leaders send at most O( V/n)
edges to the root by upcast. The root merges the fragments and
sends out the merged information to the base fragment leaders by
downcast. In Phase 3, we treat the O(n/D) remaining fragments as
the “base fragments” and repeat the above process. An important
difference to Phase 1 is that the merging leaves the leaders of these
base fragments intact: in the future iterations of Phase 3, each of
these base fragments again tries to find an LOE using the procedure
FindLightest, whereby only edges that have endpoints in fragments
with distinct labels are considered as candidate for the LOE.

Note that the fragment leaders communicate with their respec-
tive nodes as well as the BFS root via the hierarchy of communication-
efficient routing paths constructed in Phase 2; these incur only a
polylogarithmic overhead. This takes O(D+n/D) time (per merging
iteration) since O(n/D) LOE edges are sent to the root of the BFS
tree via communication-efficient paths (in every merging iteration)
and a message complexity of O(D - n/D) = O(n) (per merging it-
eration) since, in each iteration, each of the O(n/D) edges takes
O(D) messages to reach the root. Since there are O(log n) iterations
overall, we obtain the desired bounds.

3 DESCRIPTION AND ANALYSIS OF THE
ALGORITHM

The algorithm operates on the MST forest, which is a partition of
the vertices of a graph into a collection of trees {Ti,. .., Ty} where
every tree is a subgraph of the (final) MST. A fragment F; is the
subgraph induced by V(T;) in G. We say that an MST forest is an
(e, B)-MST forest if it contains at most « fragments, each with a
strong diameter® of at most . Similarly, an MST forest is a weak
(e, B)-MST forest if it contains at most a fragments each of (weak)
diameter at most f.

We define the fragment graph, a structure that is used through-
out the algorithm. The fragment graph ¥; consists of vertices
{F1,...,Fi}, where each Fj (1 < j < k) is a fragment at the start of
iteration i > 1 of the algorithm. The edges of ¥; are obtained by
contracting the vertices of each F; € V(¥) to a single vertex in G
and removing all resulting self-loops of G. We sometimes call the
remaining edges inter-fragment edges. As our algorithm proceeds
by finding lightest outgoing edges (LOEs) from each fragment, we
operate partly on the LOE graph M; of iteration i, which shares
the same vertex set as ¥, i.e., M; C ¥;, but where we remove all
inter-fragment edges except for one (unique) LOE per fragment.

8 Recall that the strong diameter diamp (F) of fragment F refers to the longest shortest
path (ignoring weights) between any two vertices in F that only passes through
vertices in V (F), whereas the weak diameter diamg (F) allows the use of vertices that
arein V(G) \ V(F).
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3.1 The Controlled-GHS Procedure

Our algorithm starts out by running the Controlled-GHS procedure
introduced in [14] and subsequently refined in [23] and in [24].

Algorithm 2 Procedure Controlled-GHS: builds a (y/n,0(+/n))-
MST forest in the network.

1: procedure Controlled-GHS:

2. F =0/ initial MST forest

3: fori=0,...,[log vVn] do

4 C = set of connectivity components of # (i.e., maximal
trees).

5. Each C € C of diameter at most 2! determines the LOE of C
and adds it to a candidate set S.

6:  Add a maximal matching Sy; C S in the graph (C,S) to F.

7. IfC € C of diameter at most 2! has no incident edge in Sy,
it adds the edge it selected into S to F .

Controlled-GHS (Algorithm 2) is a modified variant of the origi-
nal GHS algorithm, whose purpose is to produce a balanced out-
come in terms of number and diameter of the resulting fragments
(whereas the original GHS algorithm allows an uncontrolled growth
of fragments). This is achieved by computing, in each phase, a
maximal matching on the fragment forest, and merging fragments
accordingly. Here we shall resort to the newest variant presented
in [24], since it incurs a lower message complexity than the two
preceding versions. Each phase essentially reduces the number of
fragments by a factor of two, while not increasing the diameter
of any fragment by more than a factor of two. Since the num-
ber of phases of Controlled-GHS is capped at [log y/n],” it pro-
duces a (y/n,0(+/n))-MST forest. The fragments returned by the
Controlled-GHS procedure are called the base fragments, and we
denote their set by 7.

The following result about Controlled-GHS procedure follows
from [24].

LEmMA 3.1. Algorithm 2 outputs a (\/n,0(+/n))-MST forest in
O(+/nlog* n) rounds and sends O(mlogn + n log2 n) messages.

Proor. The correctness of the algorithm is established trough
Lemma 6.15 and Lemma 6.17 of [24]. By Corollary 6.16 of [24],
the i-th iteration of the algorithm can be implemented in time
O(2% log* n). Hence the time complexity of Controlled-GHS is

[og Vnl

O( Z 2! log* n) = O(ﬁlog* n)
i=0
rounds.

We now analyze the message complexity of the algorithm. Con-
sider any of the [log v/n] iterations of the algorithm. The mes-
sage complexity for finding the lightest outgoing edge for each
fragment (Line 5) is O(m). Then (Line 6) a maximal matching is
built using the Cole-Vishkin symmetry-breaking algorithm. As ar-
gued in the proof of Corollary 6.16 of [24], in every iteration of
this algorithm, only one message per fragment needs to be ex-
changed. Since the Cole-Vishkin algorithm terminates in O(log* n)

9Throughout, log denotes logarithm to the base 2.
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Algorithm 1 A Time- and Message-Optimal Distributed MST Algorithm.

** Part 1:

16:
17:
18:
19:

20:
21:

22:

23:
24:
25:

27:

28:

29:

30:

: Run Controlled-GHS procedure (Algorithm 2).

: Let 77 be the base fragments obtained from Controlled-GHS.
Part 2:

Start of Phase 1:

. for every fragment F € 77 do

Construct a BES tree T of F rooted at the fragment leader.
Every u € F sets up,,(F,1) to its BFS parent and down,, (F,1) to its BFS children.

: Run the leader election algorithm of [22] to find a constant approximation of diameter D.
: if D = O(+/n) then set ¥’ = ¥ and skip to Phase 3 (Line 32).

Start of Phase 2:

: fori=1,...,[log(D/+y/n)] do / All nodes start iteration i at the same time

Construct cover C; = ComputeCover(2ic; v/n) (cy is a suitably chosen constant).
Every node locally remembers its incident edges of the directed trees in C;.
for each fragment F; € V(F;) do
Let (u,v) = FindLightest(F;) where u € F; and v € Fa. // (u,v) is the LOE of F;. See Section 3.3.
if v € F has an incoming lightest edge e; from F; then
v forwards e; to leader f2 € F; along its ((F2,1),. .., (F2,i))-upward-path.
FindPath(Fi, F2). / Find a communication-efficient path for the merged fragment that connects leaders f; € F; and f, € Fy; this is
needed for merging of fragments and also for iteration i + 1. See Section 3.4.
/ Merging of fragments:
for each fragment F; € V(¥;) do
if F; has a weak diameter of < 2/c; v/n then Fj is marked active.
Let M; C #; be the graph induced by the LOE edges whose vertices are the active fragments.
Let D be the edges output by running ComputeMaximalMatching on M;. / We simulate inter-fragment communication using the
communication-efficient paths.
for each edge (F,F’) € D: Mark fragment pair for merging.
for each active fragment F not incident to an edge in D: Mark LOE of F for merging.
Orient all edges marked for merging from lower to higher fragment ID. A fragment leader whose fragment does not have an outgoing
marked edge becomes dominator.
Every non-dominator fragment leader sends merge-request to its adjacent dominator.
for each dominating leader f do
if leader f received merge-requests from Fy,...,F, then
Node f is the leader of the merged fragment F U F; U - - - U Fy, where F is f’s current fragment.
forj=1,...,{do
f sends 1 = (MergeWith, F) along its (Fj,i)-path to the leader f; of F;.
When f;j receives p, it instructs all nodes v € F; to update their fragment ID to F and update all entries in up and down
previously indexed with Fj, to be indexed with F.
Let Fi+1 be the fragment graph consisting of the merged fragments of M; and the inter-fragment edges.

end of iteration i.

31: Let '}-, = ‘}.l'log(D/ \/H)-|+1'
* Start of Phase 3: / Compute final MST given a fragment graph ¥ ’.
32: for ©(log n) iterations do

33:  Invoke FindLightest(F’) for each fragment F’ € ¥’ in parallel and then upcast the resulting LOE in a BFS tree of G to a root u.

3¢:  Node u receives the LOEs from all fragments in ¥’ and computes the merging locally. It then sends the merged labels to all the
fragment leaders by downcast via the BFS tree.

35:  Each fragment leader relays the new label (if it was changed) to all nodes in its own fragment via broadcast along the communication-
efficient paths.

36: At the end of this iteration, several fragments in ¥’ may share the same label. At the start of the next iteration, each fragment in
¥’ individually invokes FindLightest, whereby only edges that have endpoints in fragments with distinct labels are considered as
candidates for the LOE.

iterations, the message complexity for building the maximal match- (Line 7) can be done with an additional O(nlogn) message com-
ing is O(nlog® n). Afterwards, adding selected edges into S to ¥ plexity. The message complexity of algorithm Controlled-GHS is

therefore O(mlogn + nlog? n). O
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3.2 Routing Data Structures for
Communication-Efficient Paths

For achieving our complexity bounds, our algorithm maintains
efficient fragments in each iteration. To this end, nodes locally
maintain routing tables. In more detail, every node u € G has 2 two-
dimensional arrays up,, and down,, (called routing arrays), which
are indexed by a (fragment ID,level)-pair, where level stands for
the iteration number, i.e., the for loop variable i in Algorithm 1.
Array up,, maps to one of the port numbers in {1,...,dy}, where
dy, is the degree of u. In contrast, array down, maps to a set of
port numbers. Intuitively speaking, up,, (F,i) refers to u’s parent
on a path p towards the leader of F where i refers to the iteration
in which this path was constructed. Similarly, we can think of
downy, (F,i) as the set of u’s children in all communication efficient
paths originating at the leader of F and going through u and we use
downy, to disseminate information from the leader to the fragment
members. Oversimplifying, we can envision up,, and downy, as
a way to keep track of the parent-child relations in a tree that is
rooted at the fragment leader. (Note that level is an integer in the
range [1,0(log v/n)] that corresponds to the iteration number of
the main loop in which this entry was added; see Lines 8-30 of
Algorithm 1.) For a fixed fragment F and some value level = i, we
will show that the up and down arrays induce directed chains of
incident edges.

Depending on whether we use array up or array down to route
along a chain of edges, we call the chain an (F,i)-upward-path
or an (F,i)-downward-path. When we just want to emphasize the
existence of a path between a fragment node v and its leader f,
we simply say that there is a communication-efficient (F,i)-path
between v and f and we omit “(F,i)” when it is not relevant. We
define the nodes specified by downy, (F,i) to be the (F,i)-children
of u and the node connected to port up,, (F,i) to be the (F,i)-parent
of u. So far, we have only presented the definitions of our routing
structures. We will explain their construction in more detail in
Section 3.4.

We now describe the routing of messages in more detail: Suppose
that u € F generates a message y that it wants to send to the leader
of F. Then, u encapsulates y together with F’s ID, the value level = 1,
and an indicator “up” in a message and sends it to its neighbor on
port up,, (F, 1); for simplicity, we use F to denote both, the fragment
and its ID. When node v receives p with values F and level = 1, it
looks up up,,(F,1) and, if up,,(F,1) = a for some integer a, then
v forwards the (encapsulated) message along the specified port.!?
This means that p is relayed to the root w of the (F, 1)-upward-path.
For node w, the value of up,,(F,1) is undefined and so w attempts
to lookup up,, (F,2) and then forwards p along the (F,2)-upward-
path and so forth. In a similar manner, y is forwarded along the path
segments p1 ... p; where p; is the (F,j)-upward-path (1 < j < i)
in the i-th iteration of the algorithm’s main-loop. We will show
that the root of the (F,i)-upward-path coincides with the fragment
leader at the start of the i-th iteration.

On the other hand, when the iteration leader u in the i-th itera-
tion wants to disseminate a message p to the fragment members, it

1"Node v is free to perform additional computations on the received messages as
described by our algorithms, e.g., v might aggregate simultaneously received messages
in some form. Here we only focus on the forwarding mechanism.
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sends y to every port in the set downy, (F,i). Similarly to above, this
message is relayed to the root v of each (F,i)-downward-path, for
which the entry downy, (F, i) is undefined. When i > 1, node v then
forwards y to the ports in down, (F,i — 1) and y traverses the path
segments g; . ..q; where g; is the (F, j)-downward-path. For con-
venience we call the concatenation of g; ... q1 a ((F,i),...,(F,1))-
downward path (or simply ((F,i),...,(F,1))-path), and define a
((F,1),...,(F,i))-upward path similarly.

We are now ready to describe the individual components of
our algorithm in more detail. To simplify the presentation, we will
discuss the details of Algorithm 1 inductively.

We assume that every node u € F € #7 knows its parent and
children in a BFS tree rooted at the fragment leader f € F. (BFS trees
for spanning each respective fragment can easily be constructed
in O(+/n) time and using a total of O(m) messages—this is because
the fragments in 77 are disjoint and have strong diameter O(/n).)
Thus, node u initializes its routing arrays by pointing up,, (F,1)
to its BFS parent and by setting downy, (F,1) to the port values
connecting its BFS children.

LEMMA 3.2. At the start of the first iteration, for any fragment F
and everyu € F, there is an (F,1)-path between F’s fragment leader
and u with a path length of O(+/n).

Proor. From the initialization of the routing tables up and down
it is immediate that we reach the leader when starting at a node
u € F and moving along the (F, 1)-upward-path. Similarly, starting
at the leader and moving along the (F,1)-downward-path, allows
us to reach any fragment member. The bound on the path length
follows from the strong diameter bound of the base fragments, i.e.,
O(+/n) (see Lemma 3.1). u]

3.3 Finding the Lightest Outgoing Edges (LOEs):
Procedure FindLightest

We now describe Procedure FindLightest(F), which enables the
fragment leader f to obtain the lightest outgoing edge, i.e., the
lightest edge that has exactly 1 endpoint in F. Consider iteration
i > 1. Initially, FindLightest(F) requires all fragment nodes to
exchange their fragment IDs with their neighbors to ensure that
every node v knows its set of incident outgoing edges E,. If a node
v is a leaf in the BFS trees of its base fragment, i.e., it does not
have any (F,1)-children, it starts by sending the lightest edge in
E, along the ((F,1),...,(F,i))-upward-path. In general, a node u
on an (F,j)-upward-path (j > 1) waits to receive the lightest-edge
messages from all its (F, j)-children (or its (F,j — 1)-children if any),
and then forwards the lightest outgoing edge that it has seen to its
parent in the ((F,j),. .., (F,i))-upward-path.

The following lemma proves some useful properties of FindLightest.
Note that we do not yet claim any bound on the message complexity
at this point, as this requires us to inductively argue on the structure
of the fragments, which requires properties that we introduce in the
subsequent sections. Hence we postpone the message complexity
analysis to Lemma 3.12.

LEmMA 3.3 (EFFICIENT LOE COMPUTATION). Suppose that every
fragment in F € F; is communication-efficient at the start of iteration
i > 1. Then, the fragment leader of F obtains the lightest outgoing
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edge by executing Procedure FindLightest(F) in O(+/n + diamg(F))
rounds.

ProorF. To accurately bound the congestion, we must consider
the simultaneous invocations of FindLightest for each fragment
in 7;. Since, by assumption, every fragment is communication-
efficient, every fragment node u can relay its lightest outgoing
edge information to the fragment leader along a path p of length
O(diamg (F) + +/n). Note that p is precisely the ((F,1),...,(F,i))-
upward path to the leader starting at u. To bound the congestion, we
observe that the (F,1)-upward subpath of p is confined to nodes in
F,, where F,, is the base fragment that u was part of after executing
Controlled-GHS. As all base fragments are disjoint and lightest
edge messages are aggregated within the same base fragment, the
base fragment leader (who might not be the leader of the current
fragment F) accumulates this information from nodes in F,, within
O(+/n) rounds (cf. Lemma 3.2). After having traversed the (F,1)-
upward path (i.e., the first segment of p) of each base fragment, the
number of distinct messages carrying lightest edge information
is reduced to O(+/n) in total. Hence, when forwarding any such
message along a subsequent segment of p, i.e., an (Fj)-upward path
for j > 1, the maximum congestion at any node can be O(+/n).
Using a standard upcast (see, e.g., [30]) and the fact that the length
of path p is O(diamg (F) + +/n), it follows that the fragment leader
receives all messages in O(diamg (F) + 4/n) rounds, as required. O

3.4 Finding Communication-Efficient Paths:
Procedure FindPath

After executing FindLightest(Fp), the leader fy of Fy has obtained
the identity of the lightest outgoing edge e = (u,v) where v is in
some distinct fragment F;. Before invoking our next building block,
Procedure FindPath(Fy,F1), we need to ensure that both leaders
are aware of e and hence we instruct the node v to forward e along
its ((F1,1),. .., (F1,i))-upward-path to its leader f; (see Lines 13-14
of Algorithm 1).

We now describe FindPath(Fy, F1) in detail. The main goal is to
compute a communication-efficient path between leaders fj and f;
that can be used to route messages between nodes in this fragment.
In Section 3.5, we will see how to leverage these communication-
efficient paths to efficiently merge fragments.

A crucial building block for finding an efficient path are the
sparse neighborhood covers, which we precompute initially (see
Line 9 of Algorithm 1), and which we recall here. (Note that the
cover definition assumes the underlying unweighted graph, i.e., all
distances are just the hop distances.)

Definition 3.4. A sparse (k,W)-neighborhood cover of a graph
is a collection C of trees, each called a cluster, with the following
properties.

(1) (Depth property) For each tree 7 € C, depth(r) = O(W - k).

(2) (Sparsity property) Each vertex v of the graph appears in
O(x - n!/*) different trees r € C.

(3) (Neighborhood property) For each vertex v of the graph
there exists a tree 7 € C that contains the entire
W-neighborhood of vertex v.

Sparse neighborhood covers were introduced in [4], and were
found very useful for various applications. We will use an efficient
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Figure 1: Fragments Fy,. . ., F4. In the first iteration, F;, F4 and
F5,F3 form adjacent fragment pairs that communicate along
communication-efficient paths. F; and F4 execute FindPath
and send probe messages along clusters of covers Cy,...,Cp
and finally succeed to find a communication-efficient path
in a cluster C; € Cy, which goes through the cluster leader
x1 € Cp. Similarly F, and F; obtain a communication-
efficient path in cluster C; € Cy, after sending probe mes-
sages in clusters of covers Cj,...,C. In the next iteration,
the merged fragments F; UF, and F, UF;3 are (respectively) ad-
jacent and proceed to construct a communication-efficient
path in cluster C| € Cj, after probing covers Cy,. .. ,C;.

distributed (randomized) cover construction due to Elkin [8], which
we recall here.!!

THEOREM 3.5 ([8, THEOREM A.8]). There exists a distributed ran-
domized (Las Vegas) algorithm (which we call ComputeCover) that
constructs a (i, W)-neighborhood cover in time O(x? -nl/x logn-W)
and using O(m - k - n*/* - log n) messages (both bounds hold with
high probability) in the CONGEST model.

In our MST algorithm, we shall invoke Elkin’s ComputeCover
procedure with k = log n, and write ComputeCover(W), where W
is the neighborhood parameter.

We are now ready to describe the communication-efficient paths
construction. As we want to keep the overall message complex-
ity low, we start at the smallest cover construction C; and care-
fully probe for a cluster (tree) in C; that induces a communication-
efficient path between fy and fi. Recall that every node locally
keeps track of its incident cluster edges for each of the precom-
puted covers but we need to keep in mind that these structures are

1 Although the algorithm as described in [8] is Monte Carlo, it can be easily converted
to Las Vegas.



STOC’17, June 2017, Montreal, Canada

independent of the up and down arrays. We instruct both leaders
fo and f7 to send a copy of their probe message to each of their C;-
parents. The parent nodes forward u’s probe message along their
cluster tree to the root of their respective cluster tree. Depending
on whether a root receives the probe message in a timely fashion,
we consider two cases:

Case 1: If there exists a Cy, € C; such that fo, fi € C,,, then the
probe message of both leaders reaches the root w € C,, within
2'¢; Vi + O(+/nlog? n) rounds, where the first term is depth(Cy)
and the second term is to account for congestion caused by si-
multaneous probe messages from the other fragment leaders (cf.
Lemma 3.7). Suppose that w receives the probe message from fj
on path py and fi’s probe message on path p; within 2'¢; vn +
O(+/nlog? n) rounds. Then, w replies by sending a “success” mes-
sage back to fy and fi by reversing po and p; to inform the leaders
that they have found a communication-efficient path.

Note that it is possible for fj to receive multiple “success” re-
ply messages. However, since a cluster root only sends a success
message if it receives probe messages from both leaders, fy and f
receive exactly the same set M of success messages. Thus they both
pick the same success message sent by the cluster root node with
the largest ID in M (without loss of generality, assume that it is w)
to identify the communication-efficient path and discard the other
messages in M.

Suppose that fy received the message from w along a path pg in

cluster tree Cy,. Then, f; sends a message along py and instructs
every node v in py to set up,, (F1,i) to the port of its successor
(towards the root w) in py and points up,,(Fo, i) to its predecessor
in po. When a node v updates its up,,(Fi,i) array to some port
a, it contacts the adjacent node v’ connected at this port who in
turn updates down,y (Fy,i) to point to v. Similarly, leader f; and
all nodes on the path p; proceeds updating their respective up and
down entries with the information provided by p; towards w. Then,
fo contacts its successor in py to update its routing information
whereas fi sends a similar request to its successor in p;. After these
requests reach the cluster root w, the concatenated path pg p; is a
communication-efficient path between leaders fp and fi.
Case 2: On the other hand, if there is no appropriate cluster in C;
that covers both leader nodes, then at least one of the two probe
messages will arrive untimely at every cluster root and the leaders
do not receive any success messages. Then, fy and fi rerun the
probing process by sending a probe message along their incident
C; cluster edges and so forth. Note that all fragment leaders syn-
chronize before executing the probing process. Eventually, f; and
f1 obtain a value k, where C is the cover having the smallest depth
such that fy and fj are covered by some cluster in C (but not by
any cluster in Ci_1) and we can apply Case 1.

Figure 1 gives an example for the construction of communication-
efficient paths.

LEMMA 3.6. The number of probe messages that are generated
by distinct fragment leaders and that are in transit simultaneously
during an iteration of FindPath is O(+/nlog? n) w.h.p.

ProOF. Since, by Lemma 3.1, there are O( y/n) base fragments,
the total number of leaders at any point that are sending probe
messages simultaneously is O( y/n). Note that, when exploring the
communication efficient paths of a cover Cj, a leader needs to send
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a copy of its probe message to its parent in each of its O(log? n)
clusters of C; that it is contained in. O

LEMMA 3.7. After the execution of FindPath(Fy,F1), there exists
a communication-efficient path between leader fy and leader fi of
length at most 2K c1 \/n, where k is the smallest integer such that there
exists a cluster tree C € Cy. such that fy, fi € C. FindPath(Fy,F;)
requires O(2K \/nlog® n) messages and terminates in

O( \/ﬁlog2 n+ min{2k Vn, diam(G)})
rounds with high probability.

ProoF. By description of FindPath, leaders fy and f both start
sending a probe message along their incident C;-edges towards
the respective cluster roots, for j = 1,.. ., [log \/n]. First, note that
fo and f; will not establish an efficient communication path for a
cluster C’ in some Cj (j < k), since, by definition, fy and f; are not
both in C” and hence one of the probe messages will not reach the
root of C’. Let w be the root of C.

We now argue the message complexity bound. Apart from the
probe messages sent to discover the communication-efficient path
in a cluster of cover Cy, we also need to account for the probe
messages sent along cluster edges of covers Cy,. . .,Ci_1, thus gen-
erating at most

k k
Z O(depth(Cy) log? n) = Z 0(2/ Vnlog? n)

j=1 j=1
< 2K o(y/nlog? n)
= O(depth(Cy) log? n)

messages, as required.

Since fo and fi can communicate efficiently via a path p leading
through a cluster of cover Cy, it follows that the length of p is
< 2depth(Cy). Applying Lemma 3.6 to take into account the addi-
tional congestion caused by simultaneous probe messages, yields a
time complexity of O(depth(Cy) + vnlog? n). O

Lemma 3.8. At the start of each iteration i, the fragment graph F;
induces a weak (O(\/n/2'),0(2" \/n))-MST forest in G.

Proor. We adapt the proof of Lemmas 6.15 and 6.17 of [24]. For
the case i = 0, the claim follows directly from Lemma 3.1. We now
focus on the inductive step i > 0.

Suppose that 7; is a weak (v/n/2%,6 - 2ic; /n)-MST forest. We
first argue that every new fragment in ;1 must have a weak
diameter of at most 6 - 2i*1¢y v/n.

Consider the subgraph M of #; induced by the edges marked
for merging. By Lines 20-21 of Algorithm 1, each component of
M can contain at most one marked edge that was in the output
of ComputeMaximalMatching. Thus, analogously to Lemma 6.15
in [24], it follows that each component in M contains at most one
fragment of weak diameter > 2ic; v/n, since only fragments of
weak diameter at most 2¢¢; v/n become active and participate in the
matching. Note that the maximality of the matching implies that
each component of M has diameter (in the fragment subgraph M) at
most 3. Moreover, all except at most 1 fragment of such a component
must have a weak diameter of at most 2¢¢; v/n since a fragment of a
larger weak diameter does not select any edges for merging in this
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iteration. It follows by the inductive hypothesis that the merged
component has a weak diameter of at most 6- 2l Vn+3-2fc;\n <
6 -2+ Vn.

We now argue that each fragment contains at least 2/ c; v/n nodes
at the start of iteration i > 0, assuming that it is true for all
j = 0,...,i — 1. To this end, consider the merging of fragments
in iteration i — 1. If a fragment F € ¥; contains less than 2iey
nodes it must have a weak diameter of at most 2‘¢c, v/n and hence
marks itself as active in Line 17. By the description of the merging
process, F is guaranteed to merge with at least one other fragment
F’. By the inductive hypothesis, both F and F’ consist of at least
2i=1¢y y/n nodes and hence the merged fragment must have at least
2icy y/n nodes, as required. O

LEMMA 3.9. Consider an iteration i and suppose that FindPath is
invoked simultaneously for each lightest outgoing edge. Then, the
total message complexity of all invocations is O(nlog> n) and the
time complexity is O(+/n + diam(G)) with high probability.

Proor. From Lemma 3.8, we know that every fragment in 7;
has weak diameter of O(2! y/n). Thus, every pair of adjacent frag-
ments Fy, F1 € ¥; is covered by some cluster in cover Cj4+1. In this
case, Lemma 3.7 tells us that a single invocation of FindPath re-
quires O(2/*1 \/nlog? n) messages. Lemma 3.8 tells us that there are
O(+/n/2") fragments in 7; (and thus also O(v/n/2') LOEs). Hence
the total number of messages incurred by all pairs of fragments
connected by an LOE is

02" \/nlog? n) - O(v/n/2') = O(nlog? n).
Summing up over all i, we obtain the claimed bound on the message
complexity.
Finally we observe that Lemma 3.7 already takes into account
the congestion caused by simultaneous invocations, which yields
the bound on the time complexity. O

To summarize, Procedure FindPath enables leaders of adjacent
fragments to communicate with each other by sending messages
along the communication-efficient paths given by the routing tables
up and down.

3.5 Merging Fragments

We will avoid long chains of merged fragments by using procedure
ComputeMaximalMatching. Procedure ComputeMaximalMatching
in [24] outputs a maximal matching on a fragment forest, where
fragments in F; are treated as super-vertices of a graph connected
by inter-fragment edges. Procedure ComputeMaximalMatching
simulates the Cole-Vishkin symmetry-breaking distributed algo-
rithm, which terminates in O(log™ n) iterations [24, Theorem 1.7].
We next show how to do the simulation efficiently in the fragment
graph.

Procedure FindPath enables communication via communication-
efficient paths between any two adjacent fragment leaders in M.
This allows us to simulate ComputeMaximalMatching on the net-
work induced by M;, where the leaders in M; perform the com-
putation required by ComputeMaximalMatching. The following
lemma follows directly from Lemma 3.9.

LEMMA 3.10. Suppose that every fragment in F; is efficient and let
M C Fi be the lightest outgoing edge graph obtained by running
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FindPath. Then, we can simulate ComputeMaximalMatching on the
network defined by M;, requiring O(diam(G) + \/n)) rounds and
O(n) messages.

Every non-dominator fragment F sends a (MergeReq) message
to the leader f] of an arbitrarily chosen adjacent dominator frag-
ment F. The dominator fragment processes all merge-requests in
parallel and replies by sending a (MergeWith, F) message to the
leader f’ of each fragment F’ from which it received (MergeReq);
in turn, f’ forwards this request along the ((F’,i),...,(F’,1))-
downward path to every node in F’. Upon receiving a (MergeWith, F)
message, node u’ € F’ updates its fragment ID to F, and also
updates its routing table by setting up,(F,{) = up, (F’,f) and
downy/ (F,€) = downy (F’,{), for every value of . Note that the
leader of the dominator fragment becomes the new leader of the
merged fragment.

LEmMA 3.11. Consider iterationi. If, for every j < i, every fragment
in Fj is communication-efficient, then the following hold.

(1) With high probability, the message complexity for merging
fragments in iteration i is O(m) and the process completes
within O(diam(G) + /n) rounds.

(2) Every fragment in Fjy1 is communication-efficient.

Proor SKETCH. To show (1), we argue recursively starting at
iteration i, as follows: note that forwarding the (MergeWith) and
(MergeReq) messages requires communicating between neighbor-
ing fragments and thus by Lemma 3.10 we require O(diam(G) + y/n)
rounds and O(nlog? n) messages. Consider an adjacent pair of frag-
ments Fy and F; and suppose that Fy merges with the dominator
fragment F;. Since we eventually need to broadcast the new frag-
ment ID to every node u € Fy we need to ensure that the routing
tables up,, (Fy,-) and downy, (Fy,-) are updated correctly to route
messages towards the new leader f; € F; (and vice versa from f;
to all nodes in F;), when we compute the lightest outgoing edge
of the merged fragment Fy U F; in subsequent iterations. If i > 1,
then Fy might be composed of merged fragments Fj U - - - U F; that
merged in previous iterations; without loss of generality, suppose
that this iteration is i — 1. By assumption, #;_1 consisted of efficient
fragments. As nodes do not remove routing information from up
and down, the leader fj can use the communication-efficient paths
obtained by invoking FindPath in iteration i — 1 to forward the new
fragment ID to the leaders of the Fy, . . ., F;, which we call the (i—1)-
iteration fragments. Applying Lemma 3.10 to M;_1 reveals that we
can use the paths obtained by invoking FindPath in iteration i — 1
to relay the new fragment ID to (i — 1)-iteration fragments while
incurring only O(diam(G) + /) rounds and O(n log? n) messages
in total. Recursively applying this argument until iteration 1, allows
us to reason that O((diam(G) + v/n) log n) rounds and O(nlog® n)
messages are sufficient to relay all new fragment IDs to the base
fragment leaders. At this point, every base fragment leader uses the
BFS tree of the base fragments to broadcast this information to the
base fragment nodes, requiring O( y/n) rounds and O(m) messages.

To show (2), we observe that F; consists of communication-
efficient fragments, and hence every fragment node u € Fj of a
newly merged fragment F = F; U --- U Fp (€ > j) can already
communicate efficiently with the leader f; in its subfragment Fj,
which has now become part of F. Moreover, the paths obtained by
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FindPath ensure that fj can communicate efficiently with leader
f € F and hence it follows transitively that u has a communication-
efficient path to f, as required. O

The analysis of the message complexity of merging fragments
allows us to obtain a bound on the number of messages required
for computing a lightest outgoing edge in each fragment.

LEMMA 3.12. The message complexity of all parallel invocations
of FindLightest is O(m) in total w.h.p.

PRroOF SKETCH. In the first step of FindLightest, each node ex-
changes messages with its neighbors requiring ©(m) messages. Let
F = F; U---U Fp where Fy,...,Fy are base fragments and con-
sider some u € Fy. As argued above, u relays its LOE information
along the ((F,1),...,(F;))-upward path to the fragment leader and
the segment formed by the (F,1)-upward path ends at the base
fragment leader of F;, which are exactly the BFS trees yielded by
Controlled-GHS. A crucial observation is that u only sends its LOE
information to its parent in the path, after receiving the LOE mes-
sages from all its children (see Section 3.3). This ensures that each
node sends exactly one message and hence we obtain a bound of
Zle O(IV(Fj)|) = O(IV(F)|) on the number of messages sent in
the (F,1)-upward path of the nodes in F. This is subsumed in the
message complexity of exchanging messages with neighbors in the
first step, which is O(m).

At this point, each base fragment leader f; of F; (j = 1,...,{)
holds exactly one (aggregated) lightest outgoing edge information
message fij, which needs to be relayed to the fragment leader f of F
along the respective ((F,2),. .., (F,i))-upward path of O(diamg (F))
hops (see Definition 2.1).

By reversing the argument used for proving part (2) of Lemma 3.11,
we can inductively apply Lemma 3.10 to finally obtain a bound of
O(nlog® n) messages per iteration and thus the total message com-
plexity is O(m + nlog® n) = O(m). O

LEMMA 3.13. Phase 3 of the algorithm requires O(m) messages
and O(D + +/n) time and ensures that all fragments have the same
label (i.e., are merged).

ProoF. Note that our algorithm either executes Phase 3 directly
after Phase 1 (thus skipping Phase 2) or after executing Phase 2.
First we argue (for both cases) that all fragments have the same
fragment ID after the ©(logn) iterations in Phase 3. To see that
the number of fragment labels is at least halved in each iteration,
note that, when executing FindLightest, all nodes exchange their
fragment IDs with their neighbors (requiring O(m) messages) and
then only choose candidate LOE edges that have their endpoint in
fragments with distinct IDs. This ensures that every fragment pairs
up with another fragment and hence one of the two distinct IDs
will be removed; note that long “chains” of fragments connected
by LOE edges are possible and result in an even faster reduction of
distinct labels—all fragments in the chain adapt the root fragment
ID (cf. Phase 3 in the pseudo code). Thus, after the last iteration of
Phase 3, all fragments carry the same fragment ID and no more LOE
edges are required as all fragments are considered to be merged.

Now we consider the message and time complexity of Phase 3.
According to Lemma 3.3, the time complexity of finding the LOEs
is O(D + +/n), and according to Lemma 3.12 O(m) messages are
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required to find the LOEs. This is true independently of whether
we called Phase 3 directly after Phase 1 or after Phase 2.

Now, consider the case where we execute Phase 3 directly after
Phase 1 (thus skipping Phase 2), i.e., D = O(/n). Here, FindLightest
results in each node locally determining the incident LOE and then
aggregating the LOE to the base fragment leader. In addition to
the base fragment BFS trees, we also construct a global BFS tree
T, which, has O(+/n) diameter by assumption. The base fragment
leaders then forward their respective LOE along towards the root u
of T. Since we have O(+/n) distinct base fragments, there are at most
O(+/n) LOE edges sent upward in T, thus resulting in an additional
message complexity of O(D 4/n) = O(n). Taking into account that it
takes O( 4/n) rounds for the base fragment leaders to determine the
LOE of their fragment, the time complexity amounts to O(D + +/n).

We now argue the message and time complexity for the case
where we execute Phase 3 after Phase 2. Here, we start out with
O(n/D) distinct fragments each having their own fragment ID and
a global BFS tree T of depth O(D). Since each fragment finds 1
LOE which is first aggregated at the fragment leader and then
forwarded along T to the global BFS root, this requires O(;D) =
O(n) messages in total and O(D + n/D) = O(D) rounds, since
D = Q(+/n) by assumption, completing the proof. O

Combining the complexity bounds from the previous lemmas
we obtain the following theorem.

THEOREM 3.14. Consider a synchronous network (in the KT0 model)
of n nodes, m edges, and diameter D, and suppose that at most O(log n)
bits can be transmitted over each link in every round. Algorithm 1
computes an MST and, with high probability, runs in O(D + /n)
rounds and exchanges O(m) messages.

4 A SIMULTANEOUSLY TIGHT LOWER
BOUND

As mentioned in Section 1.2, the existing graph construction of
[6, 9] that shows the time lower bound of Q(D + +/n) rounds does
not simultaneously yield the message lower bound of Q(m); sim-
ilarly the existing lower bound graph construction of [22] that
shows the message lower bound of Q(m) does not simultaneously
yield the time lower bound of Q(D + +/n) (note that these lower
bound constructions apply to randomized algorithms). Previously,
[6] presented a sparse graph of O(n) edges to obtain the QD+ n)
time bound for almost all choices of D, while [22] showed that
Q(m) messages are required to solve broadcast and hence also for
constructing a (minimum) spanning tree.!?

The following result presents a “universal lower bound” for MST
in the sense that it shows that for essentially any n, m, and D, there
exists a class of graphs of n nodes, m edges, and a diameter of D, for
which every randomized MST algorithm takes Q(D + +/n) rounds
and Q(m) messages to succeed with constant probability. Our proof
combines two lower bound techniques: hardness of distributed
symmetry breaking, used to show the lower bound on message
complexity [22], and communication complexity, used to show the

12 Any algorithm that constructs an spanning tree using O (f (n)) messages can be used
to elect a leader using O(f (n) + n) messages in total, by first constructing a spanning
tree and then executing any broadcast algorithm restricting its communication to the
O(n) spanning tree edges.
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lower bound on time complexity [6]. The full proof is deferred to
the full version of the paper.

THEOREM 4.1. There is a class of graphs of n nodes, m edges (for
n<m< (;’)) and diameter D = Q(logn) for which every ¢-

error distributed MST algorithm requires Q(m) messages and Q(D +
\/n) time in expectation in the KT0 model, for any sufficiently small
constant € > 0. This holds even if nodes have unique IDs and have
knowledge of the network size n.

5 CONCLUSION

We presented a distributed algorithm for the fundamental minimum
spanning tree problem which is simultaneously time- and message-
optimal (up to polylog(n) factors). This algorithm is randomized:
an intriguing open question is whether randomization is necessary
to simultaneously achieve time and message optimality.

Currently, it is not known whether other important problems,
such as shortest paths and random walks, enjoy singular optimality.
These problems admit distributed algorithms which are (essentially)
time-optimal but not message-optimal [7, 16, 26, 27]. Further work
is needed to address these questions.
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