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Abstract

The performance of the regional Climate-Weather Research and Forecasting model (CWRF) for downscaling China climate
characteristics is evaluated using a 1980-2015 simulation at 30 km grid spacing driven by the ECMWF Interim reanalysis
(ERD). It is shown that CWRF outperforms the popular Regional Climate Modeling system (RegCM4.6) in key features
including monsoon rain bands, diurnal temperature ranges, surface winds, interannual precipitation and temperature anoma-
lies, humidity couplings, and 95th percentile daily precipitation. Even compared with ERI, which assimilates surface obser-
vations, CWREF better represents the geographic distributions of seasonal mean climate and extreme precipitation. These
results indicate that CWRF may significantly enhance China climate modeling capabilities.

Keywords Regional climate model - Downscaling performance - Extreme precipitation - Diurnal temperature range -

Surface wind - CWRF

1 Introduction

Regional climate models (RCMs) are commonly used in
high-resolution modeling for physical process understand-
ing, seasonal climate prediction, climate change projec-
tion, and climate impact assessment (Giorgi 2006; Xue
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et al. 2014; Giorgi and Gutowski 2015). Accordingly, over
a dozen RCMs have been developed and evaluated, with
the objective of adding value to the larger-scale driving fea-
tures resolved by general circulation model (GCM) simula-
tions or observational reanalyses. The skills and biases of
various RCMs over major domains have been well docu-
mented in regional model intercomparison projects (Roads
et al. 2003; Fu et al. 2005; Rinke et al. 2006; Christensen
et al. 2007; Mearns et al. 2012; Nikulin et al. 2012). This
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study documents the performance of the Climate-Weather
Research and Forecasting model (CWREF, Liang et al. 2012)
over China.

Twelve major RCMs, some with multiple variants, are
typically used for regional climate modeling over China or
East Asia. Their relevant applications are summarized in
Table 1, including model resolutions, integration periods,
study focuses, and references. [All RCM acronyms and other
key abbreviations are listed in “Appendix A”.] Seven of
these models participated in the East Asian Regional Model
Intercomparison Project (RMIP), which compared present
performance and future projections given identical driving
conditions from a GCM simulation or reanalysis (Fu et al.
2005). These include GRIMs, JSM, MMS5, RAMS, RegCM,
RIEMS, and WRF (Feng and Fu 2006; Feng et al. 2011;
Niu et al. 2015; Li et al. 2016; Tang et al. 2016; Wu et al.
2016). RSM was compared with WRF and RegCM for past
climate performance (Wang et al. 2015), PRECIS, CCLM,
and LMDZ were individually evaluated in both the present
and future climate conditions, and IPRC was tested only in
a summer case study.

The most popular of these models is RegCM, which is
based on MM5 (Grell et al. 1994) and evolved from version
2 (Giorgi et al. 1993a, b) to version 3 (Pal et al. 2007) to the
current version 4 (Giorgi et al. 2012). All three versions have
been used for climate studies over the region (see Table 1 for
the references), including sensitivities to model configura-
tions such as lateral/initial conditions and horizontal/vertical
resolutions; effects of terrain details, land use changes, land/
ocean-atmospheric interactions, and cumulus parameteriza-
tion and other physics improvements; and climate projec-
tions driven by various GCMs. These studies showed a large
range of RegCM-simulated present climate biases and future
trend uncertainties.

Recently, WRF has been increasingly used as an RCM for
China or East Asian climate modeling. Some studies have
examined its added value for downscaling GCM simulations
(Yu et al. 2010) and reanalyses (Sato and Xue 2013; Gao
et al. 2015), as well as its performance sensitivity to driv-
ing lateral conditions (Yang et al. 2012) and land surface
representations (Li et al. 2015). Others have evaluated its
ability to hindcast seasonal climate anomalies (Yuan et al.
2012; Ma et al. 2015) and project future climate changes,
focusing on extreme events (Yu et al. 2015; Bao et al. 2015).
Wang et al. (2015) compared the performance of WRF with
RegCM4 and RSM in simulating China precipitation and
temperature interannual variations, linear trends and extreme
events during 1989-2008. Their results showed substantial
differences in regional climate biases between the models,
none of which had significantly superior skill.

WREF was designed originally for short-range numerical
weather prediction but not expressly for long-term climate
simulation. Liang et al. (2012) noted that direct climate

@ Springer

applications of WRF are limited by its inadequate represen-
tation of essential physics at relevant scales, and therefore
developed its climate extension CWRF with crucial improve-
ments to land—atmosphere—ocean, convection—microphysics,
and cloud—aerosol-radiation interactions, as well as system
consistency throughout all process modules. As a result,
CWREF more realistically simulates surface radiation, ter-
restrial hydrology, and precipitation (Choi and Liang 2010;
Yuan and Liang 2011a; Liang et al. 2012; Liang and Zhang
2013; Qiao and Liang 2015, 20164, b), and improves WRF
regional climate prediction in the United States (Yuan and
Liang 2011b; Liang et al. 2012; Liu et al. 2016; Chen et al.
2016). This study evaluates CWRF simulation of China cli-
mate characteristics during 1980-2015, relative to the latest
RegCM4.6 simulations.

2 Model description

CWREF has been continuously developed since 2002 as a
Climate extension of WRF (Skamarock et al. 2008) through
improvements to the representation of numerous physical
processes and integration of external (top, surface, lateral)
forcings crucial to climate scales (Liang et al. 2012). It
couples a state-of-the-art Conjunctive Surface—Subsurface
Process model (CSSP) to predict detailed terrestrial hydrol-
ogy and land—atmosphere interaction. CSSP is rooted in the
Common Land Model (CoLM, Dai et al. 2003, 2004), with
updates from the Community Land Model (CLM, Oleson
et al. 2013). It integrates vertical water exchange (precipita-
tion, evaporation, transpiration, infiltration) and hydraulic
redistribution by deep vegetation roots; it also represents
horizontal water movement (across grids) as surface and
subsurface runoff resulting from rainfall excess and satura-
tion depletion, as well as lateral flows due to resolved and
subgrid topographic controls (Choi et al. 2007, 2013; Choi
and Liang 2010; Yuan and Liang 2011a). It incorporates
realistic distributions of surface (soil and vegetation) char-
acteristics (Liang et al. 2005a) and an advanced dynamic-
statistical parameterization of land surface albedo (Liang
et al. 2005b) to enable credible evaluation of land use/land
cover effects on regional climate (Xu et al. 2014). CWRF
also couples a comprehensive multi-level upper ocean model
(UOM, Ling et al. 2011, 2015) to resolve transient air-sea
interactions critical to sea surface temperature diurnal cycle
and daily variations, as well as a detailed Lake, Ice, Snow,
and Sediment Simulator (LISSS, Subin et al. 2012) to pre-
dict the thermal effects of freshwater lake interactions with
the atmosphere.

Furthermore, CWRF integrates a comprehensive ensem-
ble of alternate parameterization schemes for each of the key
physical processes, including surface (land, ocean), plane-
tary boundary layer, cuamulus (deep, shallow), microphysics,
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cloud, aerosol, and radiation (Liang et al. 2012). This facili-
tates the use of an optimized physics ensemble approach to
improve weather or climate prediction (Liang et al. 2007,
2012; Zeng et al. 2008; Liu et al. 2009; Yuan et al. 2012)
while providing reliable uncertainty estimates. In particu-
lar, CWRF has a built-in Cloud-Aerosol-Radiation (CAR)
ensemble model that incorporates a wide variety of alternate
parameterizations for cloud properties (cover, water, radius,
optics, geometry), aerosol properties (type, profile, optics),
radiation transfers (solar, infrared), and their interactions
(Liang and Zhang 2013). CAR enables full quantification of
radiative forcings and climate impacts as well as their uncer-
tainties, all of which strongly depend on the choice of cloud,
aerosol and radiation schemes (Zhang et al. 2013). CWRF
also has a built-in ensemble cumulus parameterization
(ECP), which uses a suite of alternate closure assumptions
that may drastically affect rainfall distribution, frequency
and intensity, and diurnal cycle (Liang et al. 2004a; Qiao
and Liang 2015, 2016a, b). The optimized ECP ensemble
can significantly improve precipitation prediction.

This study uses the following CWRF physics configura-
tion as the control version: Cumulus—ECP penetrative con-
vection (Qiao and Liang 2016a, b) plus UW shallow convec-
tion (Bretherton and Park 2009), Microphysics—GSFCGCE
(Tao et al. 2003), Cloud—XRL (Xu and Randall 1996; Liang
et al. 2004b), Aerosol—MISR (Kahn et al. 2005, 2007; Zhao
et al. 2009), Radiation—GSFCLXZ (Chou and Suarez 1999;
Chou et al. 2001), Planetary Boundary Layer (PBL)—CAM
(improved Holtslag and Boville 1993) plus ORO (Rontu
2006; Liang et al. 2006), and Surface—CSSP land plus
UOM ocean (described above). A more detailed description
of these schemes is provided in Liang et al. (2012), with the
key differences in the ECP, CSSP, and UOM updates refer-
enced above. For each new regional domain, CWRF must be
carefully localized to maximize its performance. In addition
to these physics improvements, the CWREF localization for
this study region includes the specific domain design and
construction of surface boundary conditions (see Sect. 3).
In particular, the dynamic surface albedo parameterization
(Liang et al. 2005b) must be re-developed according to the
updated vegetation data (Xu et al. 2014), and stream flow
directions must be re-constructed (Choi et al. 2013) with
visual reality check, both of which are time consuming and
labor intensive.

RegCM4.6 (Giorgi et al. 2012) has been continuously
developed from MMS5 (Grell et al. 1994) over the last three
decades. The physics configuration chosen for the present
study includes Cumulus—TDK penetrative plus shallow
convection (Tiedtke 1989), Microphysics—SUBEX (Pal
et al. 2000), Cloud + Radiation—CCM3 (Kiehl et al. 1996),
PBL—CCM3 (Holtslag et al. 1990), and Surface—CLM4.5
land processes (Oleson et al. 2013) plus surface fluxes
over oceans (Zeng et al. 1998). The CCM3 and CAM PBL
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schemes are similarly formulated, as are the CLM4.5 and
CSSP land schemes. Other physics schemes and the dynamic
core differ significantly between RegCM4.6 and CWRF.
Table 2 summarizes their major differences, which include
dynamics and physics configurations as well as surface and
lateral boundary conditions.

3 Model experiment design
and observational reference data

The CWRF computational domain in this study (Fig. 1) is
based on the Lambert conformal map projection centered
at (35.18°N, 110°E) with a total of 232 x 172 grid points
at 30 km spacing. Liu et al. (2008) demonstrated that this
domain is optimal for modeling China’s regional climate,
which is determined by interactions between the planetary
circulation (as forced by lateral boundary conditions or
LBCs) and East Asian surface processes, including orogra-
phy, soil, vegetation and coastal oceans. Figure 1 depicts a
small subset of the comprehensive surface boundary condi-
tions (SBCs) used by CWREF (Liang et al. 2005a; Xu et al.
2014), showing the land cover and ocean depth distributions,
lakes, major rivers, and main streams. In the buffer zones,
located across 14 grids along the four edges of the domain,
varying LBCs were specified using a dynamic relaxation
technique with linear-exponential nudging coefficients that
decrease toward the surface and the inner boundaries (Liang
et al. 2001). By default, CWREF uses 36 terrain-following
vertical levels with the upper boundary at Sdistributions
over Mainland( hPa (Liang et al. 2012). Both the horizontal
and vertical resolutions for CWREF are relatively finer than
most RCMs applied for long-term simulations in the region,
which typically use ~50 km grids and ~ 20 levels.

RegCM4.6 uses the same domain (Fig. 1), but includes
only 9 grids in the buffer zones with exponential nudging
coefficients (Giorgi et al. 1993b). It uses relatively stronger
(especially near the surface) and faster (toward the inner
domain) relaxation than does CWRF (Liang et al. 2001).
As typically applied, the model has only 18 vertical lev-
els, half that of CWREF, with the same 50 hPa upper bound-
ary. As designated for its interactive CLM4.5 (Oleson et al.
2013), RegCM4.6 employs 7 primary plant function types,
whose properties (such as leaf and stem area indices) are
derived from IGBP and other satellite data (Bonan et al.
2002). These land use/cover specifications differ from those
of CWRF/CSSP, which incorporates USGS’s 24 dominant
categories and MODIS satellite data (Liang et al. 2005a, b;
Xu et al. 2014).

Both CWRF and RegCM4.6 simulations were driven by
the ECMWF Interim reanalysis (ERI, Dee et al. 2011), one
of the best available proxies for observations. They were
initiated on October 1, 1979 and integrated continuously
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Table 2 Summary of major differences between CWRF and RegCM4.6 configurations

CWRF RegCM4.6
Dynamics configuration
Dynamic core Non-hydrostatic WRF Hydrostatic MM5
Vertical levels 36 18
Lateral boundary conditions
Buffer zones 14 grids 9 grids

Dynamic relaxation
2001)

Surface boundary conditions

Land
et al. 2014)

Physics configuration

Linear-exponential nudging coefficients (Liang et al.

USGS 24 dominant categories (Liang et al. 2005a; Xu

Exponential nudging coefficients (Giorgi et al. 1993b)

MODIS 20 categories with hierarchy plant functional
types (Lawrence 2007)

Cumulus ECP penetrative convection (Qiao and Liang TDK penetrative plus shallow convection (Tiedtke 1989)
2016a,b</link>) plus UW shallow convection
(Bretherton and Park 2009)
Microphysics GSFCGCE (Tao et al. 2003) SUBEX (Pal et al. 2000)
Cloud XRL (Xu and Randall 1996; Liang et al. 2004b) CCM3 (Kiehl et al. 1996)
Aerosol MISR (Kahn et al. 2005, 2007; Zhao et al. 2009) None
Radiation GSFCLXZ (Chou and Suarez 1999; Chou et al. 2001) CCM3 (Kiehl et al. 1996)
PBL CAM (improved Holtslag and Boville 1993) plus ORO CCM3 (Holtslag et al. 1990)
(Rontu 2006; Liang et al. 2006)
Surface
Land CoLM-CSSP conjunctive surface—subsurface physical CLM4.5 land processes (Oleson et al. 2013)
and hydrological processes
(Choi 2007,2013; Liang et al. 2005a, b)
Ocean UOM upper ocean with transient air-sea interactions Prescribed SST daily variations

(Ling et al. 2011, 2015)

through December 31, 2015. The first two months are con-
sidered spin-up and were not used in the subsequent analy-
ses. Sea surface temperature (SST) was prescribed from the
daily observational analysis, available over the global oceans
on a %° longitude by latitude grid mesh from November
1981 onward (Reynolds et al. 2007; Banzon et al. 2016).
Before that, SST was supplemented by ERI daily mean
ground temperature. For CWREF, the daily SST analysis was
used as relaxation in UOM to predict ocean temperature
variations (including the diurnal cycle) due to transient air-
sea interactions (Ling et al. 2011, 2015). On the other hand,
SST in RegCM4.6 varies exactly according to the prescribed
daily means.

As the reference for model evaluation, observational data
consist of a gridded (¥4° longitude by latitude) daily analysis
of precipitation, surface air (2 m) temperature and humidity,
and surface (10 m) wind based on in situ measurements at
2416 stations in Mainland China from 1961 onward (Wu
and Gao 2013). Given China’s total area of ~9.634M km?,
these stations, if evenly distributed, would each cover an
equivalent 63 km grid, coarser than the %° analysis grid.
However, the stations (principal plus ordinary) are sparse in
western China (Fig. S1), including the Tibetan Plateau and
the Taklamakan-Gobi Desert, where the analysis contains

substantial uncertainties due to arbitrary extrapolation from
missing data. On the other hand, the stations are relatively
dense in eastern China (east of ~ 100°E, except for the north-
ern border including Inner Mongolia-Heilong Jiang), where
the analysis represents climate characteristics at a finer reso-
lution than the ERI~80 km grid but still coarser than the
CWREF 30 km grid. Consequently, our model evaluation
focuses more on eastern China. Given different classifica-
tions of major climate regimes (Zheng et al. 2013; Shi et al.
2014; Han and Zhai 2015) and considering topographic
characteristics and data availability, we further divide Main-
land China into 11 broad regions (Fig. S1 provides names
and boundaries) to evaluate regional model performance.
ERI uses a 4D-Var analysis to assimilate satellite-
retrieved total column water vapor as a pseudo-observation
of rainfall, as well as a separate surface analysis of screen-
level temperature and humidity synoptic observations, along
with station snow depth and satellite snow cover data (Dee
et al. 2011). As such, precipitation and surface air tempera-
ture data from ERI are among the most realistic proxies of
observations over East Asia (Zhu et al. 2016; Huang et al.
2016). Downscaling RCMs do not directly assimilate surface
measurements, but predict these variables as driven only by
planetary circulation, especially upper air conditions (Liang

@ Springer
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Fig.1 The CWRF computational domain for this study, overlaid with land cover, ocean depth (m), lakes, major rivers, and main streams. The

hatched edge areas are the buffer zones, where LBCs are specified

et al. 2001). Therefore, for RCMs to reproduce these vari-
ables with skill close to that of ERI is a significant achieve-
ment, not a general expectation. However, ERI uses meas-
urements from significantly fewer than the 2416 stations
used in Wu and Gao (2013), and thus cannot resolve the
full characteristics in the reference data. As a result, RCMs
may outperform ERI in certain circumstances, which would
indicate that they incorporate more realistic physics repre-
sentations (especially surface-atmosphere interactions) than
ERI at this scale.

4 Annual cycle

Figure 2 uses a Taylor (2001) diagram to summarize the
overall performances (relative to the driving ERI) of CWRF
and RegCM4.6 in simulating seasonal mean precipitation
geographic distributions over Mainland China. Spatial pat-
tern correlations and normalized standard deviations are
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compared with observations for all four seasonal means
averaged during 1980-2015. To better describe precipita-
tion characteristics, we include statistics for seasonal aver-
age amount, number of rainy days (>0.1 mm), and simple
daily intensity index (total accumulated amount / number
of rainy days).

For precipitation amount, ERI strongly correlates to
observed patterns, with some seasonal variation (0.77-0.82).
It generally overestimates spatial variability (1.1-1.37),
especially in autumn and summer, with winter closest to
observations. In comparison, CWRF correlates less in sum-
mer (0.74), similarly in autumn (0.78), and more strongly in
winter and spring (0.87), and even more significantly over-
estimates spatial variability (1.43—1.69). This increased vari-
ability may arise from the inability of the coarsely-resolved
reference data to represent the actual signal. In contrast, the
RegCM4.6 performs significantly worse, with lower corre-
lations ranging from 0.42 (winter), 0.54 (autumn, summer)
to 0.66 (spring).
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Fig.2 Taylor diagram of pattern statistics in Mainland China com- »

paring CWRF, RegCM4.6, and ERI overall performance in simulat-
ing geographic distributions of seasonal average precipitation amount
(PR), number of rainy days (RD), and daily rainfall intensity (DI).
Shown are the pattern correlation (azimuthal) and normalized stand-
ard deviations (radius) compared with observations. The dot marks
the perfect score with a unit correlation and deviation

For the number of rainy days as compared with the pre-
cipitation amount, ERI correlates more highly to observed
patterns (0.83-0.91) except in winter (0.71), and also over-
estimates spatial variability more significantly (1.35-1.46)
except in summer (1.21). Likewise, CWREF correlates more
strongly in summer and autumn (0.85), similarly in spring
(0.87) and less in winter (0.81), while systematically reduc-
ing overestimation of spatial variability, especially in sum-
mer (1.19). As such, overall CWRF performs close to ERIL.
RegCM4.6 generally captures rainy days better than pre-
cipitation amount, with an increased correlation (0.74-0.81)
except in winter (0.32), and its overestimation of variability
is reduced (1.04—1.26). However, it is still outperformed by
CWREF, especially in pattern correlation.

For daily rainfall intensity as compared with the other two
measures, the main performance difference is that all models
more realistically simulate spatial variability. In particular,
CWREF produces standard deviations close to observations
(0.98-1.10), which is an improvement over ERI’s general
underestimation (0.80-0.92). RegCM4.6 also simulates real-
istic variability (0.93—1.03), but has a systematically lower
pattern correlation than CWRF and ERI for all seasons.

Figures 3 and 4 compare geographic distributions of the
seasonal average precipitation amount and daily intensity.
As discussed earlier, ERI assimilates pseudo-observations
and station measurements and thus can well reproduce the
general pattern and magnitude of precipitation in all seasons.
In summer, the observed monsoon system consists of two
major rain bands east of ~ 105°E: along the Yangtze River
and across South China. ERI simulates a smoother struc-
ture, without a well-defined separating dry zone. In contrast,
CWREF reproduces the two bands with a finer structure, but
overestimates rainfall amount in South China, mainly by
inflating the number of rainy days (Fig. S2). CWRF more
realistically simulates daily intensity than ERI, which sys-
tematically underestimates both bands. Therefore, ERI pro-
duces a reasonable total amount by compensating for weaker
intensity with more rainy days, a “drizzling problem” typical
in GCMs (Sun et al. 2006). On the other hand, RegCM4.6
poorly simulates the two rain bands, with little organized
structure and more scattered grid-point storms.

Another key summer feature is the moderate precipita-
tion in the Northeast, which is strongest along the three
mountain ridges surrounding the Northeast Plain (Da and
Xiao Hinggan Liang, and Changbai Shan). ERI captures
this well, in part due to its data assimilation. In contrast,

Normalized STD

Normalized STD

Normalized STD
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Fig.3 Geographic distributions of seasonal average precipitation amount (mm day‘l) observed (OBS), assimilated (ERI), and downscaled by
CWREF and RegCM4.6 for winter (DJF), spring (MAM), summer (JJA), and autumn (SON)

CWREF overpredicts the total amount and daily intensity
but produces rainy days comparable to ERI. However, since
monitoring stations over these mountains are sparse and
mostly located at lower elevations, the reference data likely
underestimate precipitation amount and intensity over moun-
tains (Liang et al. 2004b). A finer-resolution monitoring
network together with an objective topographic adjustment
(Daly et al. 1994) is needed to provide more realistic refer-
ence data, against which model performance can be better
evaluated.

Spring is China’s second most essential precipitation
season, with main rainfall occurring between the Yangtze
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and Pearl Rivers. Observations exhibit two rainfall centers:
immediate south of the Yangtze River and north of the Pearl
River. ERI and CWRF both capture these centers, but ERI
underestimates their intensity while CWRF overestimates
it. On the other hand, RegCM4.6 fails to distinguish the
two organized centers at all, producing scattered precipita-
tion over the entire region. Again, the reference data may
be inadequate to resolve topographic enhancement over this
region, where numerous mountains have elevations exceed-
ing 1 km.

Winter is China’s dry monsoon season, with observed
precipitation typically under 10 mm per day. Precipitation
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Fig.4 Same as Fig. 3 except for seasonal mean daily intensity (mm day™")

is evenly distributed between the Pearl and Yangtze Riv-
ers east of ~105°E. Model simulation of daily intensity
is reasonable, with small underestimation by ERI and
overestimation by CWREF, but less spatial correspondence
by RegCM4.6. Biases are larger in rainy days, with ERI
close to observations, CWRF overestimation (excessive
amount) in the western part, and RegCM4.6 underestima-
tion (deficit amount) in the eastern part. Since winter pre-
cipitation results primarily from non-convective systems,
interactions among surface, PBL, and cloud microphysics
parameterizations must be improved for models to more
realistically capture rainy days.

Autumn is the transition season for China’s summer to
winter monsoon, with the main rainfall retreating west of
~110°E. East of that longitude, precipitation is fairly uni-
form (similar to winter but with broader coverage) except
for enhancement along the southeastern coast where inten-
sity is 10 mm day ™! or higher. A weaker intensity center is
observed over the Yangtze River Basin. These features are
well captured by both CWRF and ERI, with some underesti-
mation by the latter. In contrast, RegCM4.6 shifts the center
over the Yangtze River Basin westward to the upper reach.

Notably, the reference data shows frequent rainfall in
the southern foothills of the Yungui and Tibetan Plateaus,
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especially in summer and spring, with moderate rainfall
(~ 10 mm day~") on 75% of summer days. ERI captures this
feature well, though it increases both intensity and coverage.
Both CWRF and RegCM4.6 also reproduce the feature, but
with a more scattered structure. Again, these areas contain
sparse monitoring stations and hence little observational
reference. The topographic uplifting effect on the prevail-
ing moist southerly flow causes frequent rainfall, likely with
heavier intensity than in the reference data, and the complex
characteristics of the clustered mountains may lead to a more
scattered rainfall structure. Thus, the CWRF or RegCM4.6
results may actually be more reasonable than the reference
data.

For surface air temperature, the magnitude of spatial
variations is much greater than that of model differences.
Therefore, the spatial pattern correlations are all above 0.96
throughout the year. This applies to daily mean, maximum,
and minimum, indicating that comparing these full tempera-
ture fields does not effectively separate model skill differ-
ences. Rather we compare their biases (simulations minus
observations), including seasonal geographic maps and
frequency distributions over Mainland China. Given that
histograms are not smooth and depend on the width and
end points of the bins, we use kernel density estimators to
depict the frequency distributions (Hwang et al. 1994). This
applies to all frequency distribution results presented below.

For the daily mean (Fig. 5), the bias frequency shows
that ERI has a narrow peak around 1 °C, while RegCM4.6
has a widespread flattened pattern. The CWREF pattern is
close to that of ERI, especially for the warm tail, indicating
that it performs better overall than RegCM4.6. Important
regional differences exist. ERI biases vary generally within
+3 °C and mostly between +2 °C in all seasons, except for
autumn, which is systematically 1-3 °C warmer. The ERI
performance results from its surface data assimilation. In
contrast, CWREF biases are comparable with or even smaller
than ERI over broad regions in eastern China, where surface
monitoring stations are relatively dense. This is most obvi-
ous to the south of the Yangtze River from spring to autumn.
Exceptions include systematic colder biases in the Tibetan
Plateau during winter and spring, and warmer biases in the
Taklamakan-Gobi Desert during summer. The reference over
these regions, however, is based on subjective extrapolation
from measurements at a very limited number of stations, and
so contains substantial uncertainties. RegCM4.6 produces
similar biases in these regions. A more realistic reference is
required to determine whether the biases are due to model
errors or data uncertainties. In other regions, RegCM4.6
generates stronger warm biases than CWREF for all seasons,
except for colder biases in North China spring.

For the daily maximum (Fig. S3), the bias frequency
shows that ERI has a sharp peak around — 1 °C (colder),
RegCM4.6 again has a flatter pattern (here even further

@ Springer

widened), and the CWREF distribution is intermediate. ERI
biases are systematically reduced relative to the daily mean,
causing an improvement in most of eastern China and a skill
loss to the west throughout the year. In winter and spring,
ERI and CWREF both have consistent western cold biases;
RegCM4.6 significantly enhances these cold biases, and gen-
erates them in most of northern China, suggesting enlarged
daytime surface radiation deficits. In eastern China, CWRF
performs well, with small biases mostly within +2 °C in
both seasons, whereas RegCM4.6 produces much larger
warm biases (3—7 °C in winter and 1-4 °C in spring) to the
south of the Yangtze River and cold biases (2-6 °C in win-
ter and 2-8 °C in spring) to the north of the Yellow River.
RegCM4.6 may insufficiently represent snow and precipi-
tation processes, since its performance improves (over the
daily mean) in summer and autumn. In these seasons, ERI
and CWREF are realistic across most of eastern China, as
is RegCM4.6 to the north of the Yellow River. Exceptions
include cold biases (1-3 °C) in summer for CWRF in the
Pearl River Basin, and warm biases (2-5 °C) for RegCM4.6
in summer between the Yellow and Yangtze Rivers and in
autumn between the Yellow and Pearl Rivers. These biases
are opposite to precipitation biases shown in Fig. 3.

For the daily minimum (Fig. S4), the bias frequency
shows that ERI peaks around 1 °C in autumn—winter and
2 °C in spring-summer, indicating an overall overestimation,
whereas CWREF peaks near 0 °C with a flatter distribution,
which is similar to but less skewed than RegCM4.6. ERI
generates systematic warm biases (1-4 °C) over most of
China, especially in spring and summer. CWRF also displays
warm biases of similar magnitude, but these are generally
limited to areas with sparse monitoring stations, in northern
China in summer and autumn, and even further north in
winter and spring. It produces cold biases over the Tibetan
Plateau in winter and spring, with magnitudes similar to the
daily mean and maximum biases. CWRF performs excel-
lently across the rest of eastern China throughout the year.
RegCM4.6 performance generally resembles CWRF, except
that the summer and autumn warm biases are enhanced and
expanded into North China, and spring cold biases (1-3 °C)
occur broadly over the Northeast.

For the daily temperature range (maximum minus mini-
mum, Fig. 6), ERI gives systematic underestimates, where
the bias frequency peaks at —2 to — 3 °C throughout the year.
CWREF yields a general improvement, shifting the peaks to
near — 1 °C, albeit with a wider spread. RegCM4.6 produces
a bimodal pattern, most obvious in winter, autumn, and
spring, indicating that it enhances both negative and positive
biases relative to CWRF. Even assimilating 6-hourly surface
data analysis, ERI is still not able to accurately resolve the
diurnal range. In contrast, CWRF, which incorporates only
synoptic conditions above the boundary layer, successfully
captures the diurnal range, especially in eastern China where
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Fig.5 Geographic distributions of ERI, CWRF and RegCM4.6 sea-
sonal average biases (departures from observations) in daily mean
temperature (°C) and their frequency distributions over Mainland

observations are abundant. One exception occurs between
the Yellow and Yangtze Rivers, where CWRF overestimates
the range by 1-3 °C in winter. This occurs as a combination
of warmer maximum and colder minimum, suggesting insuf-
ficient cloud effects to reduce daytime incoming solar and
nighttime outgoing infrared radiation. A similar but weaker
CWREF bias pattern exists in spring. Additionally, CWRF
underestimates the range in northern China areas of sparse
observations, due mainly to warmer minimum tempera-
tures. On the other hand, RegCM4.6 simulates significantly
greater range biases, with overestimation to the south of the

China. The biases colored on the maps are statistically significant at a
confidence level better than 95% with a student test, assuming yearly
independence

Yangtze River and underestimation in western China and
to the north of the Yellow River. This amplification is most
severe in winter, strong in autumn, and notable in spring.
Such patterns are mainly explained by biases in the daily
maximum for winter and spring, but by the combination of
warmer maximum south of the Yellow River and warmer
minimum in northern China for autumn. These imply more
complicated deficiencies in RegCM4.6. Future investigation
should also consider the temperature range effect due to the
precipitation diurnal cycle, which remains a modeling chal-
lenge (Liang et al. 2004a).
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Fig.6 Same as Fig. 5 except for daily temperature range (°C)

Some straight-line patterns appear in CWRF daily tem-
perature range biases (Fig. 6) over the Taklamakan-Gobi
Desert. Relative to the surrounding background, stronger
negative range biases correspond to daily temperature colder
maximum (Fig. S3) and warmer minimum (Fig. S4). They
are identified with wetter soil moisture bands along with
streamflow lines. Over the desert areas with relatively flat
terrain, the existing digital elevation model data are inad-
equate to define actual streams and flow directions. The
unrealistic specification of these and related SBCs causes
CSSP to produce soil and air temperature departures from
their references, which are also uncertain due to the lack of
in situ observations. Correction to these deficiencies will
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require realistic representation of the terrestrial hydrology,
which depends on accurate SBCs and real verification data.

Figure 7 compares model performances for surface wind
speed. The bias frequency indicates that CWREF is more real-
istic than ERI, with the peak near O rather than 1 (m s in
all seasons. RegCM4.6 is worse than ERI, with the peak
shifted to ~2 (m s7!), indicating systematic overestima-
tion. CWRF’s superior performance is obvious in eastern
China, where the model differs little from the reference that
has abundant observations. In contrast, ERI contains over-
estimations of 1-2 (m s~!) over broad regions like South
China, persistent throughout the year. In western China,
CWREF and ERI share a similar pattern in all seasons, with
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Fig. 7 Same as Fig. 6 except for surface wind speed (m s™')

underestimation in northern West Tibet and overestimation
in South Xinjiang. However, RegCM4.6 overestimates most
severely in East and South Tibet. Since there are very few
observations in these regions, it is uncertain whether these
biases reflect errors in the models or the reference data.

5 Interannual variation
Figure 8 compares CWRF- and RegCM4.6-simulated

surface air temperature interannual temporal correlations
with observations, including seasonal geographic maps

and frequency distributions over only eastern China (due
to its abundant monitoring data). The correlations for ERI
are all high (attributed to its effective surface data assimi-
lation) and are not shown here. The CWRF correlations
are very high from autumn to spring almost everywhere
(except for South Xinjiang and West Tibet, where observa-
tions are lacking), indicating extraordinary model skill in
capturing interannual temperature variations. Good perfor-
mance is also seen in summer, except that most of Central
to South China lacks useful skill. RegCM4.6 shares these
performance features, although somewhat less skillful than
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Fig.8 Geographic distributions of CWRF and RegCM4.6 simulated
temperature interannual correlations with observations and their fre-
quency distributions over eastern China. The correlations larger than

CWREF, with the frequency peak or tail shifted to a smaller
correlation, especially in winter and spring.

Figure 9 compares the precipitation correlations. CWRF
performs very well in winter, with large, significant cor-
relations almost everywhere in eastern China. Good perfor-
mance is also seen in spring, except that correlations in the
western part (105-110°E) of Central to South China and
some portions of North and Northeast China are no longer
significant. The area of significant correlations is further
reduced in autumn, especially in North China and along
the east coast. Overall performance is weakest in summer,
when most areas along the Yangtze River to the south of
the Yellow River lack significant correlations. For all sea-
sons, RegCM4.6 has less overall skill in smaller areas than
CWRF. Summer temperature in Central to South China
consistently performs poorly in both CWRF and RegCM4.6
(Fig. 8). This consistency may indicate a challenging issue
related to regional climate predictability during the summer
monsoon, in which strong convective activities and land-sea-
air interactions occur. Large-scale circulation forcings via
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0.3 as colored are statistically significant at a confidence level better
than 95% with a student test, assuming yearly independence

LBCs are no longer dominant, whereas regional factors and
feedbacks become more critical. Thus, skill enhancement in
this region will likely depend on incorporating surface data
assimilation to improve initialization and system memory
in terrestrial hydrology and coastal oceans (Kumar et al.
2008), and developing an optimized multi-physics ensemble
to improve model representation of key processes such as
convection-microphysics-radiation and surface-atmosphere
interactions (Liang et al. 2012).

The covariability of precipitation and temperature is
a key measure of a model’s ability to capture coupled
physical processes (Trenberth and Shea 2005). Figure 10
compares CWRF and RegCM4.6 simulations to observed
precipitation-temperature interannual correlations for each
season. Observations show strong negative correlations
in summer over most of Central-South China, as well as
in the northern and western parts of the Northeast, Inner
Mongolia, the northern (western) parts of North (South)
Xinjiang, and South Tibet. These latter regions have sparse
data, so the reference itself is uncertain. The negative
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Fig.9 Same as Fig. 8 except for precipitation

correlations reflect more solar heating and less evapora-
tive cooling under dry conditions (Trenberth and Shea
2005). CWREF captures observations in eastern China well,
with a little underestimation in South China. On the other
hand, RegCM4.6 overestimates the relationship, especially
in North China, indicating a too strong coupling between
precipitation and temperature.

Other seasons show much weaker relationships. In spring,
both models well simulate the strong observed negative
correlations in the Southwest; CWRF overestimates and
RegCM4.6 underestimates the weaker correlations between
the Yangtze and Yellow Rivers; CWRF also overestimates
correlations in the southeastern part of the Northeast. In
autumn, observations exhibit weaker correlations, which
RegCM4.6 underestimates in the Southwest but overesti-
mates between the two rivers; in both counts CWRF is more
realistic. In winter, CWRF well captures the strong nega-
tive correlations in the central Northeast, which RegCM4.6
underestimates; stronger correlations occur in the Southwest
and extend to Sichuan, which CWREF simulates realistically
but RegCM4.6 overestimates and expands further into the

area between the upper reaches of the Yangtze and Pearl
Rivers.

In regions where RegCM4.6 simulates stronger precipita-
tion negative correlations with temperature, it also overesti-
mates positive correlations with relative humidity for all sea-
sons (Fig. S5). Thus, RegCM4.6 overestimates the coupling
between precipitation, temperature and humidity, indicating
unrealistic cloud radiative and surface evaporative effects,
especially in summer and autumn. This overestimation is
likely because increased precipitation is associated with
more clouds (so less solar heating) and wetter surfaces (so
more evaporation), both of which favor warmer and moister
near-surface air.

Interestingly, scattered regions of positive precipita-
tion-temperature correlations appear in winter along the
Yangtze River and Jiangsu’s coast, as well as in spring in
Inner Mongolia. Unlike RegCM4.6, CWREF captures both
of these. Such positive correlations may result from pre-
cipitation favored by warm moist advection in extratropi-
cal cyclones and limited by low water availability in cold
conditions (Trenberth and Shea 2005). In addition, CWRF
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Fig. 10 Same as Fig. 8 except for cross correlations between precipitation and temperature observed (OBS) and simulated by CWRF and

RegCM4.6

generates positive correlations along the northern slopes of
the Tibetan Plateau, strong in summer and weaker in autumn
and winter. Perhaps orographic uplift causes warm air hold-
ing large amounts of water to precipitate more, especially
over these high elevation regions. In contrast, RegCM4.6
simulates positive correlations over the Tibetan Plateau,
strong in spring and weaker in summer. Perhaps this pre-
cipitation is associated with low clouds that radiate back to
warm the surface. However, such a regional relationship is
either not evident or can even be reversed (such as in spring
in West Tibet) in CWRF. Negative correlations over the Pla-
teau are also simulated by CWREF in winter (strong) and by

@ Springer

both models in autumn (weaker). Observational data over
the Plateau are needed to understand the actual processes
responsible for these positive correlations.

Figures 11 and 12 compare CWRF and RegCM4.6
simulations with observed temperature and precipitation
monthly anomalies during 1980-2015, averaged over the
five regions with relatively dense monitoring stations
(Southwest, South China, Central China, North China,
Northeast). They are normalized against their own mean
annual cycles of the same period, with the respective
monthly means and interannual standard deviations also
shown. As in the earlier discussion, the mean temperature
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Fig. 11 The 1980-2015 mean and standard deviation annual cycles
(left, C) and normalized interannual anomalies (right) of temperature
simulated by CWRF and RegCM4.6 along with observations (OBS)

as averaged over the five key regions with good data. The models
mean annual cycle is shown as monthly departures from observations
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annual cycle is depicted as the departure from observa-
tions. The results for the six regions with sparse data
records (Inner Mongolia, East Tibet, South Tibet, West
Tibet, South Xinjiang, North Xinjiang) are illustrated in
Figs. S6, S7.

For the five regions with good data, CWRF simulates
the annual cycle for both temperature and precipitation
more realistically overall than RegCM4.6. In particular,
RegCM4.6 is too cold from February to April in the North-
east and North China, and also too hot from July to Sep-
tember in North China. On the other hand, in Central China
CWREF overestimates precipitation from January to June,
while RegCM4.6 underestimates it from July to December;
otherwise, both are realistic. In South China, RegCM4.6
underestimates precipitation throughout the year, while
CWREF overestimates it from May to September. In both
regions, the combination of the two models can better simu-
late observations, suggesting the advantage of an ensemble
approach. Similarly, CWRF performs better than RegCM4.6
in the six regions with sparse data.

Temperature interannual anomaly correlations with
observations are higher for CWRF than RegCM4.6 in all
regions except North China (equal) and South Xinjiang
(smaller). Correlation differences between the models are
generally within 0-0.06, but are substantially larger in South
Tibet (0.12), East Tibet (0.11), West Tibet (0.21), and South
Xinjiang (— 0.14), all areas with sparse data and thus less
confidence. Likewise, precipitation interannual anomaly
correlations with observations are higher for CWRF than
RegCM4.6 in all regions, with notably larger differences
in the Southwest (0.24), South China (0.19), Central China
(0.13), North China (0.15), and the Northeast (0.08), all of
which have good data, as well as in Inner Mongolia (0.08),
East Tibet (0.15), West Tibet (0.11), and North Xinjiang
(0.16), which have sparse data. These results indicate that
CWREF better captures observed characteristics of interan-
nual anomalies along with a more realistic annual cycle than
RegCM4.6, especially for precipitation over most regions
in China.

It is important to identify the key regional anomalies that
substantially differ between models and observations. A
subsequent diagnostic analysis of these anomalies will offer
insight into the climate processes and physical mechanisms
that cause such model deficiencies. We choose 2.0 as the
threshold that the absolute difference in normalized anoma-
lies between simulated and observed must exceed. These
exceedances contain substantial model errors that require
future investigation to improve seasonal prediction skill.
As marked in Figs. 11, 12 and S6, S7, these cases occur
less frequently in CWRF than RegCM4.6, especially for
precipitation. The overall results, including exceptions, are
consistent with those revealed above in correlations. How-
ever, these cases are not coherent between precipitation and

temperature, nor between the models and among the regions,
indicating that process diagnosis will be challenging.

6 Extreme precipitation

CWRF and RegCM4.6 performance relative to ERI in simu-
lating the 1980-2015 mean 95th percentile of daily precipi-
tation in each season over Mainland China is summarized
in a Taylor diagram (Fig. 13). CWRF exhibits outstanding
performance in all seasons, producing a high pattern correla-
tion (0.79-0.90) and realistic spatial variability (0.96—1.09),
improving over ERI’s smaller correlation (0.71-0.88, except
for autumn) and systematic lower variability (0.70-0.87).
RegCM4.6 produces reasonable variability (0.85-1.01) but
a significantly lower correlation (0.59-0.78) than CWRF
and ERI throughout the year. For the larger 99th percen-
tile (not shown), CWRF performance remains high with
an even better correlation (0.84-0.91) but slightly larger
variability (1.05-1.16). On the other hand, the RegCM4.6
performance is further degraded, with an even lower corre-
lation (0.48-0.69) and a systematically reduced variability
(0.78-0.86).

Figure 14 compares seasonal geographic distributions
of the 1980-2015 mean 95th percentile of daily precipi-
tation. In summer, large rainfall (>30 mm day~') occurs
over wide areas extending from South, Central and North
China to the southern coast of the Northeast Plain. A band
of maxima (exceeding 40 mm day™') exists along both the
Yangtze and Pearl Rivers. ERI systematically underestimates
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Fig. 13 Same as Fig. 2 except for the 95th percentile of daily precipi-
tation
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Fig. 14 Same as Fig. 3 except for the 95th percentile of daily precipitation (mm day~")

the extremes, especially in Southeast China, roughly captur-
ing only the centers along the Yangtze River, though even
these are displaced. Similarly, RegCM4.6 fails to simulate
the Pearl River band and also underestimates the Yangtze
River band. In contrast, CWREF realistically reproduces
the location and magnitude of the centers along both riv-
ers. The extremes along the Northeast Plain coast are well
captured by both CWRF and RegCM4.6, but largely under-
estimated by ERI. CWREF generates another band of large
precipitation along the three mountain ridges surrounding
the Northeast Plain. These peaks are very weak in ERI and
RegCM4.6, as well as in the reference data. As discussed
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earlier, monitoring stations along these ridges are rare, and
thus the ground truth is not known.

The comparative summer features above are generally
retained in spring. The area of large rainfall (> 30 mm day ')
shrinks, losing North China and the Northeast Plain coast,
but the two bands of maxima remain along the Yangtze and
Pearl Rivers. CWREF realistically captures this characteristic
better than ERI and RegCM4.6, which both miss the Pearl
River band. The increased correlation in the Taylor diagram
shows that the spring patterns produced by ERI, CWRF, and
RegCM4.6 are all more realistic than the respective sum-
mer patterns. This improvement tendency is also seen from
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spring to winter, when the percentile magnitude is reduced
below 25 mm day~'. As a transition toward the dry winter
monsoon, the autumn pattern resembles that of summer but
with a systematic reduction in magnitude. Observations still
show a band of maxima close to 25 mm day~! along the
Yangtze River. This is visible in CWRF but more scattered,
whereas it is further weaker in ERI and displaced to the
west in RegCM4.6. Another key feature in autumn is the
large rainfall band along China’s entire southeastern coast.
This feature is well captured by CWRF and RegCM4.6, but
totally missed in ERI. These results indicate that the RCMs
are better able to resolve rainfall enhancement by sea breezes
along the coast than the coarser ERI.

7 Conclusion

The performance of CWRF for modeling regional climate
in China has been rigorously evaluated relative to the most
popular RegCM4.6 and the driving ERI through intercom-
parison of historical simulations during 1980-2015. The
comparison focuses on the ability to reproduce the annual
cycle, interannual variation, and extreme statistics including
precipitation and surface temperature. It is demonstrated that
CWREF performs better overall than RegCM4.6, as meas-
ured by various quantitative metrics such as bias, correla-
tion, intensity, frequency, and extremes. In particular, CWRF
captures the two major summer monsoon rain bands along
the Yangtze River and across South China more realistically
than RegCM4.6 and even ERI, despite the latter’s assimila-
tion of surface observations. CWREF better represents the
diurnal temperature range throughout the year, which ERI
systematically underestimates, while RegCM4.6 enhances
both negative and positive biases. It improves representa-
tion of surface wind, which ERI and especially RegCM4.6
overestimate. For all seasons, CWRF has more skill than
RegCM4.6 in simulating interannual anomalies of precipita-
tion and temperature as well as their couplings with humid-
ity. Furthermore, CWREF exhibits outstanding performance
in reproducing the 95th percentile of daily precipitation,
which ERI persistently underestimates and RegCM4.6 simu-
lates with less coherence. In all ranges of intensity for both
daily and monthly precipitation, CWRF generates consist-
ently higher scores than RegCM4.6.

It is challenging to identify which formulation differences
listed in Table 2 explain the better performance of CWRF
over RegCM4.6. Unexpectedly, increasing the vertical reso-
lution to match CWREF further degrades the RegCM4.6 per-
formance in all the metrics presented above, especially for
precipitation related quantities. On the other hand, experi-
ments varying CWREF physics configurations among alterna-
tive cumulus, microphysics, cloud, aerosol, radiation, PBL,
and surface schemes reveal different levels of sensitivity. In

summer, the primary sensitivity comes from the cumulus
parameterization, where the CWRF default ECP scheme
(Qiao and Liang 2016a, b) simulates more realistic monsoon
precipitation characteristics than that used in RegCM4.6
(Tiedtke 1989). The secondary sensitivity lies in cloud-radi-
ation and PBL-surface interactions, while microphysics and
aerosol effects are relatively minor. However, the sensitivi-
ties change between seasons and variables. A comprehensive
study of these sensitivities, which is underway, may help
understand key physics parameterizations attributable to the
CWRF-RegCM4.6 performance difference. Nonetheless, the
comparative results presented in this study justify the initial
release of the latest CWRF model together with its computa-
tional domain, comprehensive SBCs, and physics configura-
tion, all of which are well tested at 30 km grid spacing for
regional climate modeling applications over China.

This CWREF release has no intention to discourage the
continuous use of RegCM4.6 or any other RCMs. In fact, the
RegCM4.6 performance presented above is based on a single
realization with a typical physics configuration conveniently
available to us. RegCM4.6 currently includes 3 surface, 2
PBL, 2 microphysics, 6 cumulus, and 2 radiation schemes,
so that 144 combinations can be configured. A systematic
assessment of the RegCM4.6 performance with various
physics configurations is yet to be conducted and compared
more appropriately at the same finer vertical resolution as
in CWREF. Similarly, CWRF has incorporated many more
alternate physics schemes than are presented here, with the
total combinations exceeding available computing resources
to fully examine (Liang et al. 2012; Liang and Zhang 2013),
and the skill of each configuration possibly depending on
both horizontal and vertical resolutions. The released
version likely does not represent the best performance of
CWREF, since only a tiny set of its physics configurations
has been tested. A more desirable approach would be an
ensemble of multiple physics configurations of CWRF or
RegCM4.6 or multiple RCMs. Such an ensemble approach
can incorporate performance-based weighting for individual
member’s contributions to optimize the outcome, offering a
pragmatic way to enhance regional climate prediction skill
(Liang et al. 2012). Furthermore, observational data at a
finer resolution comparable to the model grid are needed.
The available data used in this study are inadequate, espe-
cially in western China, causing large uncertainties in model
performance evaluation. These are areas of future research
focus, some of which are in progress.
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Appendix A: Acronyms and Abbreviations

CAR Cloud aerosol radiation

CCLM COSMO (Consortium for Small Scale Model-
ling) Climate local model

CLM Community land model

CCM Community climate model

CSSP Conjunctive surface—subsurface process model

CAM Community atmosphere model

CMA China Meteorological Administration

CSSP Conjunctive surface—subsurface process model

CWRF Climate-weather research and forecasting
model

ECP Ensemble cumulus parameterization

ECMWF European Centre for Medium-Range Weather
Forecasts

ERI ECMWEF reanalysis interim

GRIMs Global/regional integrated model system

GSFCLXZ Goddard Space Flight Center Liang, Xin-
zhong radiation scheme

GSFCGCE Goddard Space Flight Center Goddard Cumu-
lus Ensemble

IGBP International geosphere-biosphere programme

IPRC International Pacific Research Center model

JISM Japan spectral model

LMDZ Laboratoire de météorologie dynamique-zoom
model

LISSS Lake ice snow and sediment simulator

MISR Multiangle imaging spectra radiometer

MMS5 Fifth-generation mesoscale model

MODIS Moderate resolution 1imaging
spectroradiometer

PRECIS Providing regional climates for impacts studies
model

RAMS Regional atmospheric modeling system

RegCM Regional climate modeling system

RIEMS Regional integrated environment model
system

RMIP Regional model intercomparison project

RSM Regional spectral model

SUBEX Subgrid explicit moisture scheme

@ Springer

TDK Tiedtke convective scheme

UOM Upper ocean model

USGS United states geological survey

uw University of Washington moist turbulence
parameterization

WRF Weather research and forecasting model

XRL Xu-Randall-Liang cloud cover
parameterization
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