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Abstract
The performance of the regional Climate-Weather Research and Forecasting model (CWRF) for downscaling China climate 
characteristics is evaluated using a 1980–2015 simulation at 30 km grid spacing driven by the ECMWF Interim reanalysis 
(ERI). It is shown that CWRF outperforms the popular Regional Climate Modeling system (RegCM4.6) in key features 
including monsoon rain bands, diurnal temperature ranges, surface winds, interannual precipitation and temperature anoma-
lies, humidity couplings, and 95th percentile daily precipitation. Even compared with ERI, which assimilates surface obser-
vations, CWRF better represents the geographic distributions of seasonal mean climate and extreme precipitation. These 
results indicate that CWRF may significantly enhance China climate modeling capabilities.

Keywords  Regional climate model · Downscaling performance · Extreme precipitation · Diurnal temperature range · 
Surface wind · CWRF

1  Introduction

Regional climate models (RCMs) are commonly used in 
high-resolution modeling for physical process understand-
ing, seasonal climate prediction, climate change projec-
tion, and climate impact assessment (Giorgi 2006; Xue 

et al. 2014; Giorgi and Gutowski 2015). Accordingly, over 
a dozen RCMs have been developed and evaluated, with 
the objective of adding value to the larger-scale driving fea-
tures resolved by general circulation model (GCM) simula-
tions or observational reanalyses. The skills and biases of 
various RCMs over major domains have been well docu-
mented in regional model intercomparison projects (Roads 
et al. 2003; Fu et al. 2005; Rinke et al. 2006; Christensen 
et al. 2007; Mearns et al. 2012; Nikulin et al. 2012). This Electronic supplementary material  The online version of this 

article (https​://doi.org/10.1007/s0038​2-018-4257-5) contains 
supplementary material, which is available to authorized users.
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study documents the performance of the Climate-Weather 
Research and Forecasting model (CWRF, Liang et al. 2012) 
over China.

Twelve major RCMs, some with multiple variants, are 
typically used for regional climate modeling over China or 
East Asia. Their relevant applications are summarized in 
Table 1, including model resolutions, integration periods, 
study focuses, and references. [All RCM acronyms and other 
key abbreviations are listed in “Appendix A”.] Seven of 
these models participated in the East Asian Regional Model 
Intercomparison Project (RMIP), which compared present 
performance and future projections given identical driving 
conditions from a GCM simulation or reanalysis (Fu et al. 
2005). These include GRIMs, JSM, MM5, RAMS, RegCM, 
RIEMS, and WRF (Feng and Fu 2006; Feng et al. 2011; 
Niu et al. 2015; Li et al. 2016; Tang et al. 2016; Wu et al. 
2016). RSM was compared with WRF and RegCM for past 
climate performance (Wang et al. 2015), PRECIS, CCLM, 
and LMDZ were individually evaluated in both the present 
and future climate conditions, and IPRC was tested only in 
a summer case study.

The most popular of these models is RegCM, which is 
based on MM5 (Grell et al. 1994) and evolved from version 
2 (Giorgi et al. 1993a, b) to version 3 (Pal et al. 2007) to the 
current version 4 (Giorgi et al. 2012). All three versions have 
been used for climate studies over the region (see Table 1 for 
the references), including sensitivities to model configura-
tions such as lateral/initial conditions and horizontal/vertical 
resolutions; effects of terrain details, land use changes, land/
ocean-atmospheric interactions, and cumulus parameteriza-
tion and other physics improvements; and climate projec-
tions driven by various GCMs. These studies showed a large 
range of RegCM-simulated present climate biases and future 
trend uncertainties.

Recently, WRF has been increasingly used as an RCM for 
China or East Asian climate modeling. Some studies have 
examined its added value for downscaling GCM simulations 
(Yu et al. 2010) and reanalyses (Sato and Xue 2013; Gao 
et al. 2015), as well as its performance sensitivity to driv-
ing lateral conditions (Yang et al. 2012) and land surface 
representations (Li et al. 2015). Others have evaluated its 
ability to hindcast seasonal climate anomalies (Yuan et al. 
2012; Ma et al. 2015) and project future climate changes, 
focusing on extreme events (Yu et al. 2015; Bao et al. 2015). 
Wang et al. (2015) compared the performance of WRF with 
RegCM4 and RSM in simulating China precipitation and 
temperature interannual variations, linear trends and extreme 
events during 1989–2008. Their results showed substantial 
differences in regional climate biases between the models, 
none of which had significantly superior skill.

WRF was designed originally for short-range numerical 
weather prediction but not expressly for long-term climate 
simulation. Liang et al. (2012) noted that direct climate 

applications of WRF are limited by its inadequate represen-
tation of essential physics at relevant scales, and therefore 
developed its climate extension CWRF with crucial improve-
ments to land–atmosphere–ocean, convection–microphysics, 
and cloud–aerosol–radiation interactions, as well as system 
consistency throughout all process modules. As a result, 
CWRF more realistically simulates surface radiation, ter-
restrial hydrology, and precipitation (Choi and Liang 2010; 
Yuan and Liang 2011a; Liang et al. 2012; Liang and Zhang 
2013; Qiao and Liang 2015, 2016a, b), and improves WRF 
regional climate prediction in the United States (Yuan and 
Liang 2011b; Liang et al. 2012; Liu et al. 2016; Chen et al. 
2016). This study evaluates CWRF simulation of China cli-
mate characteristics during 1980–2015, relative to the latest 
RegCM4.6 simulations.

2 � Model description

CWRF has been continuously developed since 2002 as a 
Climate extension of WRF (Skamarock et al. 2008) through 
improvements to the representation of numerous physical 
processes and integration of external (top, surface, lateral) 
forcings crucial to climate scales (Liang et al. 2012). It 
couples a state-of-the-art Conjunctive Surface–Subsurface 
Process model (CSSP) to predict detailed terrestrial hydrol-
ogy and land–atmosphere interaction. CSSP is rooted in the 
Common Land Model (CoLM, Dai et al. 2003, 2004), with 
updates from the Community Land Model (CLM, Oleson 
et al. 2013). It integrates vertical water exchange (precipita-
tion, evaporation, transpiration, infiltration) and hydraulic 
redistribution by deep vegetation roots; it also represents 
horizontal water movement (across grids) as surface and 
subsurface runoff resulting from rainfall excess and satura-
tion depletion, as well as lateral flows due to resolved and 
subgrid topographic controls (Choi et al. 2007, 2013; Choi 
and Liang 2010; Yuan and Liang 2011a). It incorporates 
realistic distributions of surface (soil and vegetation) char-
acteristics (Liang et al. 2005a) and an advanced dynamic-
statistical parameterization of land surface albedo (Liang 
et al. 2005b) to enable credible evaluation of land use/land 
cover effects on regional climate (Xu et al. 2014). CWRF 
also couples a comprehensive multi-level upper ocean model 
(UOM, Ling et al. 2011, 2015) to resolve transient air-sea 
interactions critical to sea surface temperature diurnal cycle 
and daily variations, as well as a detailed Lake, Ice, Snow, 
and Sediment Simulator (LISSS, Subin et al. 2012) to pre-
dict the thermal effects of freshwater lake interactions with 
the atmosphere.

Furthermore, CWRF integrates a comprehensive ensem-
ble of alternate parameterization schemes for each of the key 
physical processes, including surface (land, ocean), plane-
tary boundary layer, cumulus (deep, shallow), microphysics, 
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cloud, aerosol, and radiation (Liang et al. 2012). This facili-
tates the use of an optimized physics ensemble approach to 
improve weather or climate prediction (Liang et al. 2007, 
2012; Zeng et al. 2008; Liu et al. 2009; Yuan et al. 2012) 
while providing reliable uncertainty estimates. In particu-
lar, CWRF has a built-in Cloud-Aerosol-Radiation (CAR) 
ensemble model that incorporates a wide variety of alternate 
parameterizations for cloud properties (cover, water, radius, 
optics, geometry), aerosol properties (type, profile, optics), 
radiation transfers (solar, infrared), and their interactions 
(Liang and Zhang 2013). CAR enables full quantification of 
radiative forcings and climate impacts as well as their uncer-
tainties, all of which strongly depend on the choice of cloud, 
aerosol and radiation schemes (Zhang et al. 2013). CWRF 
also has a built-in ensemble cumulus parameterization 
(ECP), which uses a suite of alternate closure assumptions 
that may drastically affect rainfall distribution, frequency 
and intensity, and diurnal cycle (Liang et al. 2004a; Qiao 
and Liang 2015, 2016a, b). The optimized ECP ensemble 
can significantly improve precipitation prediction.

This study uses the following CWRF physics configura-
tion as the control version: Cumulus—ECP penetrative con-
vection (Qiao and Liang 2016a, b) plus UW shallow convec-
tion (Bretherton and Park 2009), Microphysics—GSFCGCE 
(Tao et al. 2003), Cloud—XRL (Xu and Randall 1996; Liang 
et al. 2004b), Aerosol—MISR (Kahn et al. 2005, 2007; Zhao 
et al. 2009), Radiation—GSFCLXZ (Chou and Suarez 1999; 
Chou et al. 2001), Planetary Boundary Layer (PBL)—CAM 
(improved Holtslag and Boville 1993) plus ORO (Rontu 
2006; Liang et al. 2006), and Surface—CSSP land plus 
UOM ocean (described above). A more detailed description 
of these schemes is provided in Liang et al. (2012), with the 
key differences in the ECP, CSSP, and UOM updates refer-
enced above. For each new regional domain, CWRF must be 
carefully localized to maximize its performance. In addition 
to these physics improvements, the CWRF localization for 
this study region includes the specific domain design and 
construction of surface boundary conditions (see Sect. 3). 
In particular, the dynamic surface albedo parameterization 
(Liang et al. 2005b) must be re-developed according to the 
updated vegetation data (Xu et al. 2014), and stream flow 
directions must be re-constructed (Choi et al. 2013) with 
visual reality check, both of which are time consuming and 
labor intensive.

RegCM4.6 (Giorgi et al. 2012) has been continuously 
developed from MM5 (Grell et al. 1994) over the last three 
decades. The physics configuration chosen for the present 
study includes Cumulus—TDK penetrative plus shallow 
convection (Tiedtke 1989), Microphysics—SUBEX (Pal 
et al. 2000), Cloud + Radiation—CCM3 (Kiehl et al. 1996), 
PBL—CCM3 (Holtslag et al. 1990), and Surface—CLM4.5 
land processes (Oleson et  al. 2013) plus surface fluxes 
over oceans (Zeng et al. 1998). The CCM3 and CAM PBL 

schemes are similarly formulated, as are the CLM4.5 and 
CSSP land schemes. Other physics schemes and the dynamic 
core differ significantly between RegCM4.6 and CWRF. 
Table 2 summarizes their major differences, which include 
dynamics and physics configurations as well as surface and 
lateral boundary conditions.

3 � Model experiment design 
and observational reference data

The CWRF computational domain in this study (Fig. 1) is 
based on the Lambert conformal map projection centered 
at (35.18˚N, 110˚E) with a total of 232 × 172 grid points 
at 30 km spacing. Liu et al. (2008) demonstrated that this 
domain is optimal for modeling China’s regional climate, 
which is determined by interactions between the planetary 
circulation (as forced by lateral boundary conditions or 
LBCs) and East Asian surface processes, including orogra-
phy, soil, vegetation and coastal oceans. Figure 1 depicts a 
small subset of the comprehensive surface boundary condi-
tions (SBCs) used by CWRF (Liang et al. 2005a; Xu et al. 
2014), showing the land cover and ocean depth distributions, 
lakes, major rivers, and main streams. In the buffer zones, 
located across 14 grids along the four edges of the domain, 
varying LBCs were specified using a dynamic relaxation 
technique with linear-exponential nudging coefficients that 
decrease toward the surface and the inner boundaries (Liang 
et al. 2001). By default, CWRF uses 36 terrain-following 
vertical levels with the upper boundary at 5distributions 
over Mainland0 hPa (Liang et al. 2012). Both the horizontal 
and vertical resolutions for CWRF are relatively finer than 
most RCMs applied for long-term simulations in the region, 
which typically use ~ 50 km grids and ~ 20 levels.

RegCM4.6 uses the same domain (Fig. 1), but includes 
only 9 grids in the buffer zones with exponential nudging 
coefficients (Giorgi et al. 1993b). It uses relatively stronger 
(especially near the surface) and faster (toward the inner 
domain) relaxation than does CWRF (Liang et al. 2001). 
As typically applied, the model has only 18 vertical lev-
els, half that of CWRF, with the same 50 hPa upper bound-
ary. As designated for its interactive CLM4.5 (Oleson et al. 
2013), RegCM4.6 employs 7 primary plant function types, 
whose properties (such as leaf and stem area indices) are 
derived from IGBP and other satellite data (Bonan et al. 
2002). These land use/cover specifications differ from those 
of CWRF/CSSP, which incorporates USGS’s 24 dominant 
categories and MODIS satellite data (Liang et al. 2005a, b; 
Xu et al. 2014).

Both CWRF and RegCM4.6 simulations were driven by 
the ECMWF Interim reanalysis (ERI, Dee et al. 2011), one 
of the best available proxies for observations. They were 
initiated on October 1, 1979 and integrated continuously 
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through December 31, 2015. The first two months are con-
sidered spin-up and were not used in the subsequent analy-
ses. Sea surface temperature (SST) was prescribed from the 
daily observational analysis, available over the global oceans 
on a ¼º longitude by latitude grid mesh from November 
1981 onward (Reynolds et al. 2007; Banzon et al. 2016). 
Before that, SST was supplemented by ERI daily mean 
ground temperature. For CWRF, the daily SST analysis was 
used as relaxation in UOM to predict ocean temperature 
variations (including the diurnal cycle) due to transient air-
sea interactions (Ling et al. 2011, 2015). On the other hand, 
SST in RegCM4.6 varies exactly according to the prescribed 
daily means.

As the reference for model evaluation, observational data 
consist of a gridded (¼º longitude by latitude) daily analysis 
of precipitation, surface air (2 m) temperature and humidity, 
and surface (10 m) wind based on in situ measurements at 
2416 stations in Mainland China from 1961 onward (Wu 
and Gao 2013). Given China’s total area of ~ 9.634M km2, 
these stations, if evenly distributed, would each cover an 
equivalent 63 km grid, coarser than the ¼º analysis grid. 
However, the stations (principal plus ordinary) are sparse in 
western China (Fig. S1), including the Tibetan Plateau and 
the Taklamakan-Gobi Desert, where the analysis contains 

substantial uncertainties due to arbitrary extrapolation from 
missing data. On the other hand, the stations are relatively 
dense in eastern China (east of ~ 100°E, except for the north-
ern border including Inner Mongolia-Heilong Jiang), where 
the analysis represents climate characteristics at a finer reso-
lution than the ERI ~ 80 km grid but still coarser than the 
CWRF 30 km grid. Consequently, our model evaluation 
focuses more on eastern China. Given different classifica-
tions of major climate regimes (Zheng et al. 2013; Shi et al. 
2014; Han and Zhai 2015) and considering topographic 
characteristics and data availability, we further divide Main-
land China into 11 broad regions (Fig. S1 provides names 
and boundaries) to evaluate regional model performance.

ERI uses a 4D-Var analysis to assimilate satellite-
retrieved total column water vapor as a pseudo-observation 
of rainfall, as well as a separate surface analysis of screen-
level temperature and humidity synoptic observations, along 
with station snow depth and satellite snow cover data (Dee 
et al. 2011). As such, precipitation and surface air tempera-
ture data from ERI are among the most realistic proxies of 
observations over East Asia (Zhu et al. 2016; Huang et al. 
2016). Downscaling RCMs do not directly assimilate surface 
measurements, but predict these variables as driven only by 
planetary circulation, especially upper air conditions (Liang 

Table 2   Summary of major differences between CWRF and RegCM4.6 configurations

CWRF RegCM4.6

Dynamics configuration
 Dynamic core Non-hydrostatic WRF Hydrostatic MM5
 Vertical levels 36 18

Lateral boundary conditions
 Buffer zones 14 grids 9 grids
 Dynamic relaxation Linear-exponential nudging coefficients (Liang et al. 

2001)
Exponential nudging coefficients (Giorgi et al. 1993b)

Surface boundary conditions
 Land USGS 24 dominant categories (Liang et al. 2005a; Xu 

et al. 2014)
MODIS 20 categories with hierarchy plant functional 

types (Lawrence 2007)
Physics configuration
 Cumulus ECP penetrative convection (Qiao and Liang 

2016a,b</link>) plus UW shallow convection 
(Bretherton and Park 2009)

TDK penetrative plus shallow convection (Tiedtke 1989)

 Microphysics GSFCGCE (Tao et al. 2003) SUBEX (Pal et al. 2000)
 Cloud XRL (Xu and Randall 1996; Liang et al. 2004b) CCM3 (Kiehl et al. 1996)
 Aerosol MISR (Kahn et al. 2005, 2007; Zhao et al. 2009) None
 Radiation GSFCLXZ (Chou and Suarez 1999; Chou et al. 2001) CCM3 (Kiehl et al. 1996)
 PBL CAM (improved Holtslag and Boville 1993) plus ORO 

(Rontu 2006; Liang et al. 2006)
CCM3 (Holtslag et al. 1990)

 Surface
  Land CoLM-CSSP conjunctive surface–subsurface physical 

and hydrological processes
(Choi 2007,2013; Liang et al. 2005a, b)

CLM4.5 land processes (Oleson et al. 2013)

  Ocean UOM upper ocean with transient air-sea interactions 
(Ling et al. 2011, 2015)

Prescribed SST daily variations
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et al. 2001). Therefore, for RCMs to reproduce these vari-
ables with skill close to that of ERI is a significant achieve-
ment, not a general expectation. However, ERI uses meas-
urements from significantly fewer than the 2416 stations 
used in Wu and Gao (2013), and thus cannot resolve the 
full characteristics in the reference data. As a result, RCMs 
may outperform ERI in certain circumstances, which would 
indicate that they incorporate more realistic physics repre-
sentations (especially surface-atmosphere interactions) than 
ERI at this scale.

4 � Annual cycle

Figure 2 uses a Taylor (2001) diagram to summarize the 
overall performances (relative to the driving ERI) of CWRF 
and RegCM4.6 in simulating seasonal mean precipitation 
geographic distributions over Mainland China. Spatial pat-
tern correlations and normalized standard deviations are 

compared with observations for all four seasonal means 
averaged during 1980–2015. To better describe precipita-
tion characteristics, we include statistics for seasonal aver-
age amount, number of rainy days (> 0.1 mm), and simple 
daily intensity index (total accumulated amount / number 
of rainy days).

For precipitation amount, ERI strongly correlates to 
observed patterns, with some seasonal variation (0.77–0.82). 
It generally overestimates spatial variability (1.1–1.37), 
especially in autumn and summer, with winter closest to 
observations. In comparison, CWRF correlates less in sum-
mer (0.74), similarly in autumn (0.78), and more strongly in 
winter and spring (0.87), and even more significantly over-
estimates spatial variability (1.43–1.69). This increased vari-
ability may arise from the inability of the coarsely-resolved 
reference data to represent the actual signal. In contrast, the 
RegCM4.6 performs significantly worse, with lower corre-
lations ranging from 0.42 (winter), 0.54 (autumn, summer) 
to 0.66 (spring).

Fig. 1   The CWRF computational domain for this study, overlaid with land cover, ocean depth (m), lakes, major rivers, and main streams. The 
hatched edge areas are the buffer zones, where LBCs are specified
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For the number of rainy days as compared with the pre-
cipitation amount, ERI correlates more highly to observed 
patterns (0.83–0.91) except in winter (0.71), and also over-
estimates spatial variability more significantly (1.35–1.46) 
except in summer (1.21). Likewise, CWRF correlates more 
strongly in summer and autumn (0.85), similarly in spring 
(0.87) and less in winter (0.81), while systematically reduc-
ing overestimation of spatial variability, especially in sum-
mer (1.19). As such, overall CWRF performs close to ERI. 
RegCM4.6 generally captures rainy days better than pre-
cipitation amount, with an increased correlation (0.74–0.81) 
except in winter (0.32), and its overestimation of variability 
is reduced (1.04–1.26). However, it is still outperformed by 
CWRF, especially in pattern correlation.

For daily rainfall intensity as compared with the other two 
measures, the main performance difference is that all models 
more realistically simulate spatial variability. In particular, 
CWRF produces standard deviations close to observations 
(0.98–1.10), which is an improvement over ERI’s general 
underestimation (0.80–0.92). RegCM4.6 also simulates real-
istic variability (0.93–1.03), but has a systematically lower 
pattern correlation than CWRF and ERI for all seasons.

Figures 3 and 4 compare geographic distributions of the 
seasonal average precipitation amount and daily intensity. 
As discussed earlier, ERI assimilates pseudo-observations 
and station measurements and thus can well reproduce the 
general pattern and magnitude of precipitation in all seasons. 
In summer, the observed monsoon system consists of two 
major rain bands east of ~ 105°E: along the Yangtze River 
and across South China. ERI simulates a smoother struc-
ture, without a well-defined separating dry zone. In contrast, 
CWRF reproduces the two bands with a finer structure, but 
overestimates rainfall amount in South China, mainly by 
inflating the number of rainy days (Fig. S2). CWRF more 
realistically simulates daily intensity than ERI, which sys-
tematically underestimates both bands. Therefore, ERI pro-
duces a reasonable total amount by compensating for weaker 
intensity with more rainy days, a “drizzling problem” typical 
in GCMs (Sun et al. 2006). On the other hand, RegCM4.6 
poorly simulates the two rain bands, with little organized 
structure and more scattered grid-point storms.

Another key summer feature is the moderate precipita-
tion in the Northeast, which is strongest along the three 
mountain ridges surrounding the Northeast Plain (Da and 
Xiao Hinggan Liang, and Changbai Shan). ERI captures 
this well, in part due to its data assimilation. In contrast, 

Fig. 2   Taylor diagram of pattern statistics in Mainland China com-
paring CWRF, RegCM4.6, and ERI overall performance in simulat-
ing geographic distributions of seasonal average precipitation amount 
(PR), number of rainy days (RD), and daily rainfall intensity (DI). 
Shown are the pattern correlation (azimuthal) and normalized stand-
ard deviations (radius) compared with observations. The dot marks 
the perfect score with a unit correlation and deviation

▸
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CWRF overpredicts the total amount and daily intensity 
but produces rainy days comparable to ERI. However, since 
monitoring stations over these mountains are sparse and 
mostly located at lower elevations, the reference data likely 
underestimate precipitation amount and intensity over moun-
tains (Liang et al. 2004b). A finer-resolution monitoring 
network together with an objective topographic adjustment 
(Daly et al. 1994) is needed to provide more realistic refer-
ence data, against which model performance can be better 
evaluated.

Spring is China’s second most essential precipitation 
season, with main rainfall occurring between the Yangtze 

and Pearl Rivers. Observations exhibit two rainfall centers: 
immediate south of the Yangtze River and north of the Pearl 
River. ERI and CWRF both capture these centers, but ERI 
underestimates their intensity while CWRF overestimates 
it. On the other hand, RegCM4.6 fails to distinguish the 
two organized centers at all, producing scattered precipita-
tion over the entire region. Again, the reference data may 
be inadequate to resolve topographic enhancement over this 
region, where numerous mountains have elevations exceed-
ing 1 km.

Winter is China’s dry monsoon season, with observed 
precipitation typically under 10 mm per day. Precipitation 

Fig. 3   Geographic distributions of seasonal average precipitation amount (mm day−1) observed (OBS), assimilated (ERI), and downscaled by 
CWRF and RegCM4.6 for winter (DJF), spring (MAM), summer (JJA), and autumn (SON)
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is evenly distributed between the Pearl and Yangtze Riv-
ers east of ~ 105°E. Model simulation of daily intensity 
is reasonable, with small underestimation by ERI and 
overestimation by CWRF, but less spatial correspondence 
by RegCM4.6. Biases are larger in rainy days, with ERI 
close to observations, CWRF overestimation (excessive 
amount) in the western part, and RegCM4.6 underestima-
tion (deficit amount) in the eastern part. Since winter pre-
cipitation results primarily from non-convective systems, 
interactions among surface, PBL, and cloud microphysics 
parameterizations must be improved for models to more 
realistically capture rainy days.

Autumn is the transition season for China’s summer to 
winter monsoon, with the main rainfall retreating west of 
~ 110°E. East of that longitude, precipitation is fairly uni-
form (similar to winter but with broader coverage) except 
for enhancement along the southeastern coast where inten-
sity is 10 mm day−1 or higher. A weaker intensity center is 
observed over the Yangtze River Basin. These features are 
well captured by both CWRF and ERI, with some underesti-
mation by the latter. In contrast, RegCM4.6 shifts the center 
over the Yangtze River Basin westward to the upper reach.

Notably, the reference data shows frequent rainfall in 
the southern foothills of the Yungui and Tibetan Plateaus, 

Fig. 4   Same as Fig. 3 except for seasonal mean daily intensity (mm day−1)
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especially in summer and spring, with moderate rainfall 
(~ 10 mm day−1) on 75% of summer days. ERI captures this 
feature well, though it increases both intensity and coverage. 
Both CWRF and RegCM4.6 also reproduce the feature, but 
with a more scattered structure. Again, these areas contain 
sparse monitoring stations and hence little observational 
reference. The topographic uplifting effect on the prevail-
ing moist southerly flow causes frequent rainfall, likely with 
heavier intensity than in the reference data, and the complex 
characteristics of the clustered mountains may lead to a more 
scattered rainfall structure. Thus, the CWRF or RegCM4.6 
results may actually be more reasonable than the reference 
data.

For surface air temperature, the magnitude of spatial 
variations is much greater than that of model differences. 
Therefore, the spatial pattern correlations are all above 0.96 
throughout the year. This applies to daily mean, maximum, 
and minimum, indicating that comparing these full tempera-
ture fields does not effectively separate model skill differ-
ences. Rather we compare their biases (simulations minus 
observations), including seasonal geographic maps and 
frequency distributions over Mainland China. Given that 
histograms are not smooth and depend on the width and 
end points of the bins, we use kernel density estimators to 
depict the frequency distributions (Hwang et al. 1994). This 
applies to all frequency distribution results presented below.

For the daily mean (Fig. 5), the bias frequency shows 
that ERI has a narrow peak around 1 °C, while RegCM4.6 
has a widespread flattened pattern. The CWRF pattern is 
close to that of ERI, especially for the warm tail, indicating 
that it performs better overall than RegCM4.6. Important 
regional differences exist. ERI biases vary generally within 
± 3 °C and mostly between ± 2 °C in all seasons, except for 
autumn, which is systematically 1–3 °C warmer. The ERI 
performance results from its surface data assimilation. In 
contrast, CWRF biases are comparable with or even smaller 
than ERI over broad regions in eastern China, where surface 
monitoring stations are relatively dense. This is most obvi-
ous to the south of the Yangtze River from spring to autumn. 
Exceptions include systematic colder biases in the Tibetan 
Plateau during winter and spring, and warmer biases in the 
Taklamakan-Gobi Desert during summer. The reference over 
these regions, however, is based on subjective extrapolation 
from measurements at a very limited number of stations, and 
so contains substantial uncertainties. RegCM4.6 produces 
similar biases in these regions. A more realistic reference is 
required to determine whether the biases are due to model 
errors or data uncertainties. In other regions, RegCM4.6 
generates stronger warm biases than CWRF for all seasons, 
except for colder biases in North China spring.

For the daily maximum (Fig. S3), the bias frequency 
shows that ERI has a sharp peak around − 1 °C (colder), 
RegCM4.6 again has a flatter pattern (here even further 

widened), and the CWRF distribution is intermediate. ERI 
biases are systematically reduced relative to the daily mean, 
causing an improvement in most of eastern China and a skill 
loss to the west throughout the year. In winter and spring, 
ERI and CWRF both have consistent western cold biases; 
RegCM4.6 significantly enhances these cold biases, and gen-
erates them in most of northern China, suggesting enlarged 
daytime surface radiation deficits. In eastern China, CWRF 
performs well, with small biases mostly within ± 2 °C in 
both seasons, whereas RegCM4.6 produces much larger 
warm biases (3–7 °C in winter and 1–4 °C in spring) to the 
south of the Yangtze River and cold biases (2–6 °C in win-
ter and 2–8 °C in spring) to the north of the Yellow River. 
RegCM4.6 may insufficiently represent snow and precipi-
tation processes, since its performance improves (over the 
daily mean) in summer and autumn. In these seasons, ERI 
and CWRF are realistic across most of eastern China, as 
is RegCM4.6 to the north of the Yellow River. Exceptions 
include cold biases (1–3 °C) in summer for CWRF in the 
Pearl River Basin, and warm biases (2–5 °C) for RegCM4.6 
in summer between the Yellow and Yangtze Rivers and in 
autumn between the Yellow and Pearl Rivers. These biases 
are opposite to precipitation biases shown in Fig. 3.

For the daily minimum (Fig. S4), the bias frequency 
shows that ERI peaks around 1 °C in autumn–winter and 
2 °C in spring-summer, indicating an overall overestimation, 
whereas CWRF peaks near 0 °C with a flatter distribution, 
which is similar to but less skewed than RegCM4.6. ERI 
generates systematic warm biases (1–4 °C) over most of 
China, especially in spring and summer. CWRF also displays 
warm biases of similar magnitude, but these are generally 
limited to areas with sparse monitoring stations, in northern 
China in summer and autumn, and even further north in 
winter and spring. It produces cold biases over the Tibetan 
Plateau in winter and spring, with magnitudes similar to the 
daily mean and maximum biases. CWRF performs excel-
lently across the rest of eastern China throughout the year. 
RegCM4.6 performance generally resembles CWRF, except 
that the summer and autumn warm biases are enhanced and 
expanded into North China, and spring cold biases (1–3 °C) 
occur broadly over the Northeast.

For the daily temperature range (maximum minus mini-
mum, Fig. 6), ERI gives systematic underestimates, where 
the bias frequency peaks at − 2 to − 3 °C throughout the year. 
CWRF yields a general improvement, shifting the peaks to 
near − 1 °C, albeit with a wider spread. RegCM4.6 produces 
a bimodal pattern, most obvious in winter, autumn, and 
spring, indicating that it enhances both negative and positive 
biases relative to CWRF. Even assimilating 6-hourly surface 
data analysis, ERI is still not able to accurately resolve the 
diurnal range. In contrast, CWRF, which incorporates only 
synoptic conditions above the boundary layer, successfully 
captures the diurnal range, especially in eastern China where 



CWRF performance at downscaling China climate characteristics﻿	

1 3

observations are abundant. One exception occurs between 
the Yellow and Yangtze Rivers, where CWRF overestimates 
the range by 1–3 °C in winter. This occurs as a combination 
of warmer maximum and colder minimum, suggesting insuf-
ficient cloud effects to reduce daytime incoming solar and 
nighttime outgoing infrared radiation. A similar but weaker 
CWRF bias pattern exists in spring. Additionally, CWRF 
underestimates the range in northern China areas of sparse 
observations, due mainly to warmer minimum tempera-
tures. On the other hand, RegCM4.6 simulates significantly 
greater range biases, with overestimation to the south of the 

Yangtze River and underestimation in western China and 
to the north of the Yellow River. This amplification is most 
severe in winter, strong in autumn, and notable in spring. 
Such patterns are mainly explained by biases in the daily 
maximum for winter and spring, but by the combination of 
warmer maximum south of the Yellow River and warmer 
minimum in northern China for autumn. These imply more 
complicated deficiencies in RegCM4.6. Future investigation 
should also consider the temperature range effect due to the 
precipitation diurnal cycle, which remains a modeling chal-
lenge (Liang et al. 2004a).

Fig. 5   Geographic distributions of ERI, CWRF and RegCM4.6 sea-
sonal average biases (departures from observations) in daily mean 
temperature (°C) and their frequency distributions over Mainland 

China. The biases colored on the maps are statistically significant at a 
confidence level better than 95% with a student test, assuming yearly 
independence
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Some straight-line patterns appear in CWRF daily tem-
perature range biases (Fig. 6) over the Taklamakan-Gobi 
Desert. Relative to the surrounding background, stronger 
negative range biases correspond to daily temperature colder 
maximum (Fig. S3) and warmer minimum (Fig. S4). They 
are identified with wetter soil moisture bands along with 
streamflow lines. Over the desert areas with relatively flat 
terrain, the existing digital elevation model data are inad-
equate to define actual streams and flow directions. The 
unrealistic specification of these and related SBCs causes 
CSSP to produce soil and air temperature departures from 
their references, which are also uncertain due to the lack of 
in situ observations. Correction to these deficiencies will 

require realistic representation of the terrestrial hydrology, 
which depends on accurate SBCs and real verification data.

Figure 7 compares model performances for surface wind 
speed. The bias frequency indicates that CWRF is more real-
istic than ERI, with the peak near 0 rather than 1 (m s−1) in 
all seasons. RegCM4.6 is worse than ERI, with the peak 
shifted to ~ 2 (m s−1), indicating systematic overestima-
tion. CWRF’s superior performance is obvious in eastern 
China, where the model differs little from the reference that 
has abundant observations. In contrast, ERI contains over-
estimations of 1–2 (m s−1) over broad regions like South 
China, persistent throughout the year. In western China, 
CWRF and ERI share a similar pattern in all seasons, with 

Fig. 6   Same as Fig. 5 except for daily temperature range (°C)
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underestimation in northern West Tibet and overestimation 
in South Xinjiang. However, RegCM4.6 overestimates most 
severely in East and South Tibet. Since there are very few 
observations in these regions, it is uncertain whether these 
biases reflect errors in the models or the reference data.

5 � Interannual variation

Figure  8 compares CWRF- and RegCM4.6-simulated 
surface air temperature interannual temporal correlations 
with observations, including seasonal geographic maps 

and frequency distributions over only eastern China (due 
to its abundant monitoring data). The correlations for ERI 
are all high (attributed to its effective surface data assimi-
lation) and are not shown here. The CWRF correlations 
are very high from autumn to spring almost everywhere 
(except for South Xinjiang and West Tibet, where observa-
tions are lacking), indicating extraordinary model skill in 
capturing interannual temperature variations. Good perfor-
mance is also seen in summer, except that most of Central 
to South China lacks useful skill. RegCM4.6 shares these 
performance features, although somewhat less skillful than 

Fig. 7   Same as Fig. 6 except for surface wind speed (m s−1)
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CWRF, with the frequency peak or tail shifted to a smaller 
correlation, especially in winter and spring.

Figure 9 compares the precipitation correlations. CWRF 
performs very well in winter, with large, significant cor-
relations almost everywhere in eastern China. Good perfor-
mance is also seen in spring, except that correlations in the 
western part (105–110°E) of Central to South China and 
some portions of North and Northeast China are no longer 
significant. The area of significant correlations is further 
reduced in autumn, especially in North China and along 
the east coast. Overall performance is weakest in summer, 
when most areas along the Yangtze River to the south of 
the Yellow River lack significant correlations. For all sea-
sons, RegCM4.6 has less overall skill in smaller areas than 
CWRF. Summer temperature in Central to South China 
consistently performs poorly in both CWRF and RegCM4.6 
(Fig. 8). This consistency may indicate a challenging issue 
related to regional climate predictability during the summer 
monsoon, in which strong convective activities and land-sea-
air interactions occur. Large-scale circulation forcings via 

LBCs are no longer dominant, whereas regional factors and 
feedbacks become more critical. Thus, skill enhancement in 
this region will likely depend on incorporating surface data 
assimilation to improve initialization and system memory 
in terrestrial hydrology and coastal oceans (Kumar et al. 
2008), and developing an optimized multi-physics ensemble 
to improve model representation of key processes such as 
convection-microphysics-radiation and surface-atmosphere 
interactions (Liang et al. 2012).

The covariability of precipitation and temperature is 
a key measure of a model’s ability to capture coupled 
physical processes (Trenberth and Shea 2005). Figure 10 
compares CWRF and RegCM4.6 simulations to observed 
precipitation-temperature interannual correlations for each 
season. Observations show strong negative correlations 
in summer over most of Central-South China, as well as 
in the northern and western parts of the Northeast, Inner 
Mongolia, the northern (western) parts of North (South) 
Xinjiang, and South Tibet. These latter regions have sparse 
data, so the reference itself is uncertain. The negative 

Fig. 8   Geographic distributions of CWRF and RegCM4.6 simulated 
temperature interannual correlations with observations and their fre-
quency distributions over eastern China. The correlations larger than 

0.3 as colored are statistically significant at a confidence level better 
than 95% with a student test, assuming yearly independence
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correlations reflect more solar heating and less evapora-
tive cooling under dry conditions (Trenberth and Shea 
2005). CWRF captures observations in eastern China well, 
with a little underestimation in South China. On the other 
hand, RegCM4.6 overestimates the relationship, especially 
in North China, indicating a too strong coupling between 
precipitation and temperature.

Other seasons show much weaker relationships. In spring, 
both models well simulate the strong observed negative 
correlations in the Southwest; CWRF overestimates and 
RegCM4.6 underestimates the weaker correlations between 
the Yangtze and Yellow Rivers; CWRF also overestimates 
correlations in the southeastern part of the Northeast. In 
autumn, observations exhibit weaker correlations, which 
RegCM4.6 underestimates in the Southwest but overesti-
mates between the two rivers; in both counts CWRF is more 
realistic. In winter, CWRF well captures the strong nega-
tive correlations in the central Northeast, which RegCM4.6 
underestimates; stronger correlations occur in the Southwest 
and extend to Sichuan, which CWRF simulates realistically 
but RegCM4.6 overestimates and expands further into the 

area between the upper reaches of the Yangtze and Pearl 
Rivers.

In regions where RegCM4.6 simulates stronger precipita-
tion negative correlations with temperature, it also overesti-
mates positive correlations with relative humidity for all sea-
sons (Fig. S5). Thus, RegCM4.6 overestimates the coupling 
between precipitation, temperature and humidity, indicating 
unrealistic cloud radiative and surface evaporative effects, 
especially in summer and autumn. This overestimation is 
likely because increased precipitation is associated with 
more clouds (so less solar heating) and wetter surfaces (so 
more evaporation), both of which favor warmer and moister 
near-surface air.

Interestingly, scattered regions of positive precipita-
tion-temperature correlations appear in winter along the 
Yangtze River and Jiangsu’s coast, as well as in spring in 
Inner Mongolia. Unlike RegCM4.6, CWRF captures both 
of these. Such positive correlations may result from pre-
cipitation favored by warm moist advection in extratropi-
cal cyclones and limited by low water availability in cold 
conditions (Trenberth and Shea 2005). In addition, CWRF 

Fig. 9   Same as Fig. 8 except for precipitation
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generates positive correlations along the northern slopes of 
the Tibetan Plateau, strong in summer and weaker in autumn 
and winter. Perhaps orographic uplift causes warm air hold-
ing large amounts of water to precipitate more, especially 
over these high elevation regions. In contrast, RegCM4.6 
simulates positive correlations over the Tibetan Plateau, 
strong in spring and weaker in summer. Perhaps this pre-
cipitation is associated with low clouds that radiate back to 
warm the surface. However, such a regional relationship is 
either not evident or can even be reversed (such as in spring 
in West Tibet) in CWRF. Negative correlations over the Pla-
teau are also simulated by CWRF in winter (strong) and by 

both models in autumn (weaker). Observational data over 
the Plateau are needed to understand the actual processes 
responsible for these positive correlations.

Figures  11 and 12 compare CWRF and RegCM4.6 
simulations with observed temperature and precipitation 
monthly anomalies during 1980–2015, averaged over the 
five regions with relatively dense monitoring stations 
(Southwest, South China, Central China, North China, 
Northeast). They are normalized against their own mean 
annual cycles of the same period, with the respective 
monthly means and interannual standard deviations also 
shown. As in the earlier discussion, the mean temperature 

Fig. 10   Same as Fig.  8 except for cross correlations between precipitation and temperature observed (OBS) and simulated by CWRF and 
RegCM4.6
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Fig. 11   The 1980–2015 mean and standard deviation annual cycles 
(left, C) and normalized interannual anomalies (right) of temperature 
simulated by CWRF and RegCM4.6 along with observations (OBS) 

as averaged over the five key regions with good data. The models 
mean annual cycle is shown as monthly departures from observations
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Fig. 12   Same as Fig. 11 except for precipitation (mm day−1)
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annual cycle is depicted as the departure from observa-
tions. The results for the six regions with sparse data 
records (Inner Mongolia, East Tibet, South Tibet, West 
Tibet, South Xinjiang, North Xinjiang) are illustrated in 
Figs. S6, S7.

For the five regions with good data, CWRF simulates 
the annual cycle for both temperature and precipitation 
more realistically overall than RegCM4.6. In particular, 
RegCM4.6 is too cold from February to April in the North-
east and North China, and also too hot from July to Sep-
tember in North China. On the other hand, in Central China 
CWRF overestimates precipitation from January to June, 
while RegCM4.6 underestimates it from July to December; 
otherwise, both are realistic. In South China, RegCM4.6 
underestimates precipitation throughout the year, while 
CWRF overestimates it from May to September. In both 
regions, the combination of the two models can better simu-
late observations, suggesting the advantage of an ensemble 
approach. Similarly, CWRF performs better than RegCM4.6 
in the six regions with sparse data.

Temperature interannual anomaly correlations with 
observations are higher for CWRF than RegCM4.6 in all 
regions except North China (equal) and South Xinjiang 
(smaller). Correlation differences between the models are 
generally within 0-0.06, but are substantially larger in South 
Tibet (0.12), East Tibet (0.11), West Tibet (0.21), and South 
Xinjiang (− 0.14), all areas with sparse data and thus less 
confidence. Likewise, precipitation interannual anomaly 
correlations with observations are higher for CWRF than 
RegCM4.6 in all regions, with notably larger differences 
in the Southwest (0.24), South China (0.19), Central China 
(0.13), North China (0.15), and the Northeast (0.08), all of 
which have good data, as well as in Inner Mongolia (0.08), 
East Tibet (0.15), West Tibet (0.11), and North Xinjiang 
(0.16), which have sparse data. These results indicate that 
CWRF better captures observed characteristics of interan-
nual anomalies along with a more realistic annual cycle than 
RegCM4.6, especially for precipitation over most regions 
in China.

It is important to identify the key regional anomalies that 
substantially differ between models and observations. A 
subsequent diagnostic analysis of these anomalies will offer 
insight into the climate processes and physical mechanisms 
that cause such model deficiencies. We choose 2.0 as the 
threshold that the absolute difference in normalized anoma-
lies between simulated and observed must exceed. These 
exceedances contain substantial model errors that require 
future investigation to improve seasonal prediction skill. 
As marked in Figs. 11, 12 and S6, S7, these cases occur 
less frequently in CWRF than RegCM4.6, especially for 
precipitation. The overall results, including exceptions, are 
consistent with those revealed above in correlations. How-
ever, these cases are not coherent between precipitation and 

temperature, nor between the models and among the regions, 
indicating that process diagnosis will be challenging.

6 � Extreme precipitation

CWRF and RegCM4.6 performance relative to ERI in simu-
lating the 1980–2015 mean 95th percentile of daily precipi-
tation in each season over Mainland China is summarized 
in a Taylor diagram (Fig. 13). CWRF exhibits outstanding 
performance in all seasons, producing a high pattern correla-
tion (0.79–0.90) and realistic spatial variability (0.96–1.09), 
improving over ERI’s smaller correlation (0.71–0.88, except 
for autumn) and systematic lower variability (0.70–0.87). 
RegCM4.6 produces reasonable variability (0.85–1.01) but 
a significantly lower correlation (0.59–0.78) than CWRF 
and ERI throughout the year. For the larger 99th percen-
tile (not shown), CWRF performance remains high with 
an even better correlation (0.84–0.91) but slightly larger 
variability (1.05–1.16). On the other hand, the RegCM4.6 
performance is further degraded, with an even lower corre-
lation (0.48–0.69) and a systematically reduced variability 
(0.78–0.86).

Figure 14 compares seasonal geographic distributions 
of the 1980–2015 mean 95th percentile of daily precipi-
tation. In summer, large rainfall (> 30 mm day−1) occurs 
over wide areas extending from South, Central and North 
China to the southern coast of the Northeast Plain. A band 
of maxima (exceeding 40 mm day−1) exists along both the 
Yangtze and Pearl Rivers. ERI systematically underestimates 

Fig. 13   Same as Fig. 2 except for the 95th percentile of daily precipi-
tation
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the extremes, especially in Southeast China, roughly captur-
ing only the centers along the Yangtze River, though even 
these are displaced. Similarly, RegCM4.6 fails to simulate 
the Pearl River band and also underestimates the Yangtze 
River band. In contrast, CWRF realistically reproduces 
the location and magnitude of the centers along both riv-
ers. The extremes along the Northeast Plain coast are well 
captured by both CWRF and RegCM4.6, but largely under-
estimated by ERI. CWRF generates another band of large 
precipitation along the three mountain ridges surrounding 
the Northeast Plain. These peaks are very weak in ERI and 
RegCM4.6, as well as in the reference data. As discussed 

earlier, monitoring stations along these ridges are rare, and 
thus the ground truth is not known.

The comparative summer features above are generally 
retained in spring. The area of large rainfall (> 30 mm day−1) 
shrinks, losing North China and the Northeast Plain coast, 
but the two bands of maxima remain along the Yangtze and 
Pearl Rivers. CWRF realistically captures this characteristic 
better than ERI and RegCM4.6, which both miss the Pearl 
River band. The increased correlation in the Taylor diagram 
shows that the spring patterns produced by ERI, CWRF, and 
RegCM4.6 are all more realistic than the respective sum-
mer patterns. This improvement tendency is also seen from 

Fig. 14   Same as Fig. 3 except for the 95th percentile of daily precipitation (mm day−1)
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spring to winter, when the percentile magnitude is reduced 
below 25 mm day−1. As a transition toward the dry winter 
monsoon, the autumn pattern resembles that of summer but 
with a systematic reduction in magnitude. Observations still 
show a band of maxima close to 25 mm day−1 along the 
Yangtze River. This is visible in CWRF but more scattered, 
whereas it is further weaker in ERI and displaced to the 
west in RegCM4.6. Another key feature in autumn is the 
large rainfall band along China’s entire southeastern coast. 
This feature is well captured by CWRF and RegCM4.6, but 
totally missed in ERI. These results indicate that the RCMs 
are better able to resolve rainfall enhancement by sea breezes 
along the coast than the coarser ERI.

7 � Conclusion

The performance of CWRF for modeling regional climate 
in China has been rigorously evaluated relative to the most 
popular RegCM4.6 and the driving ERI through intercom-
parison of historical simulations during 1980–2015. The 
comparison focuses on the ability to reproduce the annual 
cycle, interannual variation, and extreme statistics including 
precipitation and surface temperature. It is demonstrated that 
CWRF performs better overall than RegCM4.6, as meas-
ured by various quantitative metrics such as bias, correla-
tion, intensity, frequency, and extremes. In particular, CWRF 
captures the two major summer monsoon rain bands along 
the Yangtze River and across South China more realistically 
than RegCM4.6 and even ERI, despite the latter’s assimila-
tion of surface observations. CWRF better represents the 
diurnal temperature range throughout the year, which ERI 
systematically underestimates, while RegCM4.6 enhances 
both negative and positive biases. It improves representa-
tion of surface wind, which ERI and especially RegCM4.6 
overestimate. For all seasons, CWRF has more skill than 
RegCM4.6 in simulating interannual anomalies of precipita-
tion and temperature as well as their couplings with humid-
ity. Furthermore, CWRF exhibits outstanding performance 
in reproducing the 95th percentile of daily precipitation, 
which ERI persistently underestimates and RegCM4.6 simu-
lates with less coherence. In all ranges of intensity for both 
daily and monthly precipitation, CWRF generates consist-
ently higher scores than RegCM4.6.

It is challenging to identify which formulation differences 
listed in Table 2 explain the better performance of CWRF 
over RegCM4.6. Unexpectedly, increasing the vertical reso-
lution to match CWRF further degrades the RegCM4.6 per-
formance in all the metrics presented above, especially for 
precipitation related quantities. On the other hand, experi-
ments varying CWRF physics configurations among alterna-
tive cumulus, microphysics, cloud, aerosol, radiation, PBL, 
and surface schemes reveal different levels of sensitivity. In 

summer, the primary sensitivity comes from the cumulus 
parameterization, where the CWRF default ECP scheme 
(Qiao and Liang 2016a, b) simulates more realistic monsoon 
precipitation characteristics than that used in RegCM4.6 
(Tiedtke 1989). The secondary sensitivity lies in cloud-radi-
ation and PBL-surface interactions, while microphysics and 
aerosol effects are relatively minor. However, the sensitivi-
ties change between seasons and variables. A comprehensive 
study of these sensitivities, which is underway, may help 
understand key physics parameterizations attributable to the 
CWRF-RegCM4.6 performance difference. Nonetheless, the 
comparative results presented in this study justify the initial 
release of the latest CWRF model together with its computa-
tional domain, comprehensive SBCs, and physics configura-
tion, all of which are well tested at 30 km grid spacing for 
regional climate modeling applications over China.

This CWRF release has no intention to discourage the 
continuous use of RegCM4.6 or any other RCMs. In fact, the 
RegCM4.6 performance presented above is based on a single 
realization with a typical physics configuration conveniently 
available to us. RegCM4.6 currently includes 3 surface, 2 
PBL, 2 microphysics, 6 cumulus, and 2 radiation schemes, 
so that 144 combinations can be configured. A systematic 
assessment of the RegCM4.6 performance with various 
physics configurations is yet to be conducted and compared 
more appropriately at the same finer vertical resolution as 
in CWRF. Similarly, CWRF has incorporated many more 
alternate physics schemes than are presented here, with the 
total combinations exceeding available computing resources 
to fully examine (Liang et al. 2012; Liang and Zhang 2013), 
and the skill of each configuration possibly depending on 
both horizontal and vertical resolutions. The released 
version likely does not represent the best performance of 
CWRF, since only a tiny set of its physics configurations 
has been tested. A more desirable approach would be an 
ensemble of multiple physics configurations of CWRF or 
RegCM4.6 or multiple RCMs. Such an ensemble approach 
can incorporate performance-based weighting for individual 
member’s contributions to optimize the outcome, offering a 
pragmatic way to enhance regional climate prediction skill 
(Liang et al. 2012). Furthermore, observational data at a 
finer resolution comparable to the model grid are needed. 
The available data used in this study are inadequate, espe-
cially in western China, causing large uncertainties in model 
performance evaluation. These are areas of future research 
focus, some of which are in progress.
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Appendix A: Acronyms and Abbreviations

CAR​	� Cloud aerosol radiation
CCLM	� COSMO (Consortium for Small Scale Model-

ling) Climate local model
CLM	� Community land model
CCM	� Community climate model
CSSP	� Conjunctive surface–subsurface process model
CAM	� Community atmosphere model
CMA	� China Meteorological Administration
CSSP	� Conjunctive surface–subsurface process model
CWRF	� Climate-weather research and forecasting 

model
ECP	� Ensemble cumulus parameterization
ECMWF	� European Centre for Medium-Range Weather 

Forecasts
ERI	� ECMWF reanalysis interim
GRIMs	� Global/regional integrated model system
GSFCLXZ	� Goddard Space Flight Center Liang, Xin-

zhong radiation scheme
GSFCGCE	� Goddard Space Flight Center Goddard Cumu-

lus Ensemble
IGBP	� International geosphere-biosphere programme
IPRC	� International Pacific Research Center model
JSM	� Japan spectral model
LMDZ	� Laboratoire de météorologie dynamique-zoom 

model
LISSS	� Lake ice snow and sediment simulator
MISR	� Multiangle imaging spectra radiometer
MM5	� Fifth-generation mesoscale model
MODIS	� M o d e r a t e  r e s o l u t i o n  i m a g i n g 

spectroradiometer
PRECIS	� Providing regional climates for impacts studies 

model
RAMS	� Regional atmospheric modeling system
RegCM	� Regional climate modeling system
RIEMS	� Regional integrated environment model 

system
RMIP	� Regional model intercomparison project
RSM	� Regional spectral model
SUBEX	� Subgrid explicit moisture scheme

TDK	� Tiedtke convective scheme
UOM	� Upper ocean model
USGS	� United states geological survey
UW	� University of Washington moist turbulence 

parameterization
WRF	� Weather research and forecasting model
XRL	� X u - R a n d a l l - L i a n g  c l o u d  c o v e r 

parameterization
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