
The Complexity of Leader Election: A Chasm at Diameter Two
Soumyottam Chatterjee

University of Houston
Department of Computer Science

Houston, TX, USA
schatterjee4@uh.edu

Gopal Pandurangan∗
University of Houston

Department of Computer Science
Houston, TX, USA

gopalpandurangan@gmail.com

Peter Robinson
Royal Holloway, University of London

Department of Computer Science
Egham, Surrey, UK

peter.robinson@rhul.ac.uk

ABSTRACT
Leader election is one of the fundamental problems in distributed
computing. In its implicit version, only the leader must know who
is the elected leader. This paper focuses on studying the message
complexity of leader election in synchronous distributed networks,
in particular, in networks of diameter two. Kutten et al. [JACM
2015] showed a fundamental lower bound of Ω(m) (m is the number
of edges in the network) on the message complexity of (implicit)
leader election that applied also to Monte Carlo randomized algo-
rithms with constant success probability; this lower bound applies
for graphs that have diameter at least three. On the other hand,
for complete graphs (i.e., diameter 1), Kutten et al. [TCS 2015]
established a tight bound of Θ̃(

√
n)1 on the message complexity of

randomized leader election (n is the number of nodes in the network).
For graphs of diameter two, the complexity was not known.

In this paper, we settle this complexity by showing a tight bound
of Θ̃(n) on the message complexity of leader election in diameter-
two networks. We first give a simple randomized Monte-Carlo leader
election algorithm that with high probability (i.e., probability at least
1 − n−c , for some positive constant c) succeeds and uses O (n log3 n)
messages and runs in O (1) rounds; this algorithm works without
knowledge of n (and hence needs no global knowledge). We then
show that any algorithm (even Monte Carlo randomized algorithms
with large enough constant success probability) needs Ω(n) mes-
sages (even when n is known), regardless of the number of rounds.
We also present an O (n logn) messages deterministic algorithm that
takes O (logn) rounds (but needs knowledge of n); we show that this
message complexity is tight for deterministic algorithms.

Our results show that leader election can be solved in diameter-
two graphs in (essentially) linear (in n) message complexity and
thus the Ω(m) lower bound does not apply to diameter-two graphs.
Together with the two previous results of Kutten et al., our results
fully characterize the message complexity of leader election vis-à-vis
the graph diameter.

∗Supported, in part, by NSF grants CCF-1527867, CCF-1540512, IIS-1633720, and
CCF-1717075.
1Notation Ω̃ hides a 1

polylog(n) factor; Õ and Θ̃ hide a polylog(n) factor.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICDCN ’18, January 4–7, 2018, Varanasi, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6372-3/18/01. . . $15.00
https://doi.org/10.1145/3154273.3154308

KEYWORDS
Distributed Algorithm, Leader Election, Randomized Algorithm,
Message Complexity, Time Complexity, Lower Bounds

ACM Reference Format:
Soumyottam Chatterjee, Gopal Pandurangan, and Peter Robinson. 2018. The
Complexity of Leader Election: A Chasm at Diameter Two. In ICDCN ’18:
19th International Conference on Distributed Computing and Networking,
January 4–7, 2018, Varanasi, India. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3154273.3154308

1 INTRODUCTION
Leader election is a classical and fundamental problem in distributed
computing. The leader election problem requires a group of pro-
cessors in a distributed network to elect a unique leader among
themselves, i.e., exactly one processor must output the decision that
it is the leader, say, by changing a special status component of its
state to the value leader [13]. All the rest of the nodes must change
their status component to the value non-leader. These nodes need
not be aware of the identity of the leader. This implicit variant of
leader election is quite standard (cf. [13]), and has been extensively
studied (see e.g., [10] and the references therein) and is sufficient in
many applications, e.g., for token generation in a token ring environ-
ment [12]. In this paper, we focus on this implicit variant.2

The complexity of leader election, in particular, its message and
time complexity, has been extensively studied both in general graphs
as well as in special graph classes such as rings and complete net-
works, see e.g., [10, 11, 13, 16, 18, 19]. While much of the earlier
work focused on deterministic algorithms, recent works have studied
randomized algorithms (see e.g., [10, 11] and the references therein).
Kutten et al. [10] showed a fundamental lower bound of Ω(m) (m is
the number of edges in the network) on the message complexity of
(implicit) leader election that applied even to Monte Carlo random-
ized algorithms with (large-enough) constant success probability;
this lower bound applies for graphs that have diameter at least three.
We point that the Ω(m) lower bound applies even for algorithms
that have knowledge of n,m,D (throughout, n denotes the number
of nodes, m the number of edges, and D the network diameter). The
lower bound proof involves constructing a “dumb-bell" graph G
which consists of two regular subgraphs G1 and G2 (each having
approximately m

2 edges) joined by a couple of “bridge" edges (the
bridge edges are added so that the regularity is preserved). Note
that (even) if G1 and G2 are cliques (in particular, they can be any

2In another variant, called explicit leader election, all the non-leaders change their status
component to the value non-leader, and moreover, every node must also know the
identity of the unique leader. In this variant, Ω(n) messages is an obvious lower bound
(throughout, n denotes the number of nodes in the network) since every node must be
informed of the leader’s identity. Clearly, any lower bound for implicit leader election
applies to explicit leader election as well.

https://doi.org/10.1145/3154273.3154308
https://doi.org/10.1145/3154273.3154308

ICDCN ’18, January 4–7, 2018, Varanasi, India Soumyottam Chatterjee, Gopal Pandurangan, and Peter Robinson

2-connected graph) then G will be of diameter (at least) three. This
is the smallest diameter that makes the lower bound proof work; we
refer to [10] for details.

On the other hand, for complete graphs (i.e., diameter one), Kut-
ten et al. [11] established a tight bound of Θ̃(

√
n) on the message

complexity of randomized leader election (n is the number of nodes
in the network). In other words, they showed an Õ (

√
n) messages

algorithm that elects a (unique) leader with high probability. To
complement this, they also showed that any leader election algo-
rithm in a complete graph requires Ω̃(

√
n) messages to succeed with

(large-enough) constant probability.
For graphs of diameter two, the message complexity was not

known. In this paper, we settle this complexity by showing a tight
bound of Θ̃(n) on the message complexity of leader election in
diameter-two networks. In particular, we present a simple random-
ized leader election algorithm that takes O (n log3 n) messages and
O (1) rounds that works even when n is not known. In contrast, we
show that any randomized algorithm (even Monte Carlo algorithms
with constant success probability) needs Ω(n) messages. Our results
show that leader election can be solved in diameter-two graphs in
(essentially) linear (in n) message complexity which is optimal (up
to a polylog(n) factor) and thus the Ω(m) message lower bound does
not apply to diameter-two graphs. Together with the previous results
[10, 11], our results fully characterize the message complexity of
leader election vis-à-vis the graph diameter (see Table 1).

1.1 Our Results
This paper focuses on studying the message complexity of leader
election (both randomized and deterministic) in synchronous dis-
tributed networks, in particular, in networks of diameter two.

For our algorithms, we assume that the communication is syn-
chronous and follows the standard CONGEST model [17], where
a node can send in each round at most one message of size O (logn)
bits on a single edge. We assume that the nodes have unique IDs.
We assume that all nodes wake up simultaneously at the beginning
of the execution. (Additional details on our distributed computation
model are given in Section 1.3.)

We show the following results:
(1) Algorithms: We show that the message complexity of leader
election in diameter-two graphs is Õ (n), by presenting a random-
ized (implicit) leader election algorithm (cf. Section 2), that takes
O (n log3 n) messages and runs in O (1) rounds with high probability
(whp).3 This algorithm works even without knowledge of n. While it
is easy to design an O (n logn) messages randomized algorithm with
knowledge of n (Section 1.2), not having knowledge of n makes the
analysis more involved. We also present a deterministic algorithm
that uses only O (n logn) messages, but it takes O (logn) rounds.
Also this algorithm needs knowledge (or a constant factor upper
bound) of n (or logn) (cf. Section 4). It is not difficult to convert this
algorithm (under the same bounds) to solve explicit leader election,
where the identity of the leader is broadcast to all nodes. Thus broad-
cast, another fundamental problem, can be solved in diameter-two
graphs in O (n logn) messages and O (logn) rounds if n is known
(in contrast we note that Ω(m) is a lower bound for broadcast on

3Throughout, “with high probability" means with probability at least 1 − 1/nc , for
some constant c > 0.

graphs of diameter at least three, even if n is known and even for
randomized algorithms [10]). (We note that all our algorithms will
work seamlessly for complete networks as well.)
(2) Lower Bounds: We show that, in general, it is not possible to
improve over our algorithm substantially, by presenting a lower
bound for leader election that applies also to randomized (Monte
Carlo) algorithms. We show that Ω(n) messages are needed for any
leader election algorithm (regardless of the number of rounds) in a
diameter-two network which succeeds with any constant probability
that is strictly larger than 1

2 (cf. Section 3). This lower bound holds
even in the LOCAL model [17], where there is no restriction on
the number of bits that can be sent on each edge in each round. To
the best of our knowledge, this is the first non-trivial lower bound
for randomized leader election in diameter-two networks.

We also show a simple deterministic reduction that shows that
any super-linear message lower bound for complete networks also
applies to diameter-two networks as well (cf. Section 5). It can be
shown that Ω(n logn) messages is a lower bound for deterministic
leader election in complete networks [1, 9] (under assumption that
the number of rounds is bounded by some function of n) 4 and
by our reduction this lower bound also applies for diameter-two
networks. (We point out that lower bounds for complete networks
do not directly translate to diameter-two networks.)

RANDOMIZED DETERMINISTIC

Diameter Time Messages Time Messages

D = 1: [1, 11]
Upper Bound O (1) O (

√
n log

3
2n) O (1)† O (n logn) †

Lower Bound Ω(1) Ω(
√
n) Ω(1) Ω(n logn)

D = 2: Our Results
Upper Bound O (1) O (n log3 n) O (logn)†† O (n logn)$
Lower Bound Ω(1) Ω(n) Ω(1) Ω(n logn)

D ≥ 3: [10]
Upper Bound O (D) O (m log logn) O (D logn) O (m logn)
Lower Bound Ω(D) Ω(m) Ω(D) Ω(m)

† Note that attaining O (1) time requires Ω(n1+Ω(1)) messages in
cliques, whereas achieving O (n logn) messages requires Ω(logn)
rounds; see [1].

$ Needs knowledge of n.
†† Note that it is easy to show a O (1) round deterministic algorithm

that takes O (m) messages.

Table 1: Message and time complexity of leader election.

1.2 Technical Overview
All our algorithms exploit the following simple “neighborhood inter-
section" property of diameter-two graphs: Any two nodes (that are
non-neighbors) have at least one neighbor in common (please refer
to Observation 1). However, note that unlike complete networks
(which have been extensively studied with respect to leader election
— cf. Section 1.4), in diameter-two networks, nodes generally don’t
have knowledge of n, the network size (in a complete graph, this is
4Afek and Gafni[1] show the Ω(n logn) message lower bound for complete networks
under the non-simultaneous wakeup model in synchronous networks. The same message
bound can be shown to hold in the simultaneous wake-up model as well under the
restriction that the number of rounds is bounded by a function of n [9].

The Complexity of Leader Election: A Chasm at Diameter Two ICDCN ’18, January 4–7, 2018, Varanasi, India

trivially known by the degree). This complicates obtaining sublinear

in m (where m is the number of edges) message algorithms that are

fully localized (don’t have knowledge of n). Indeed, if n is known,

the following is a simple randomized algorithm: each node becomes

a candidate with probability Θ(
logn
n) and sends its ID to all its neigh-

bors; any node that gets one or more messages acts as a “referee"

and notifies the candidate that has the smallest ID (among those it

has received). The neighborhood intersection property implies that

at least one candidate will be chosen uniquely as the leader with

high probability.

If n is not known, the above idea does not work. However, we

show that if each node v becomes a candidate with probability
1+logd (v)

d (v) , (where d (v) is the degree of v) then the above idea can

be made to work. The main technical difficulty is then showing that

at least one candidate is present (cf. Section 2.1) and in bounding the

message complexity (cf. Section 2.2). We use Lagrangian optimiza-

tion to prove that on expectation at least Θ(logn) candidates will be

selected and then use a Chernoff bound to show a high probability

result.

Our Ω(n) randomized lower bound is inspired by the bridge
crossing argument of [10] and [15]. In this argument, we construct a

“dumbbell" graph G which is done by taking two identical regular

graphs G1 and G2, removing an edge from each and adding them as

bridge edges between G1 and G2 (so that regularity is preservered).

The argument is that any leader election algorithm should send

at least one message across one of the two bridge edges (bridge

crossing); otherwise, it can be shown that the executions in G1 and

G2 are identical leading to election of two leaders which is not valid.

The argument in [10] shows that Ω(m) messages are needed for

bridge crossing. As pointed out earlier in Section 1, this construction

makes the diameter of G at least three and hence does not work for

diameter-two graphs. To overcome this, we modify the construction

that takes two complete graphs and add a set of bridge edges (as

opposed to just two); see Fig 1. This creates a diameter-two graph;

however, the large number of bridge edges requires a different style

of argument and results in a bound different compared to [10]. We

show that Ω(n) messages (in expectation) are needed to send a

message across at least one bridge.

We also present a deterministic algorithm that uses O (n logn)
messages, but takes O (logn) rounds. Note that, in a sense, this

improves over the randomized algorithm that sends O (n log3 n) mes-

sages (although, we did not strive to optimize the log factors). How-

ever, the deterministic algorithm is slower by a log(n)-factor and is

more involved compared to the very simple randomized algorithm

(although its analysis is a bit more complicated). Our deterministic

algorithm uses ideas similar to Afek and Gafni’s [1] leader election

algorithm for complete graphs; however, the algorithm is a bit more

involved. Our algorithm assumes knowledge of n (this is trivially

true in complete networks, since every node can infer n from its

degree) which is needed for termination. It is not clear if one can

design an O (n logn) messages algorithm (running in say O (logn)
rounds) that does not need knowledge of n, which is an interesting

open question (cf. Section 6).

Finally, we present a simple reduction that shows that superlinear

(in n) lower bounds in complete networks also imply lower bounds

for diameter-two networks, by showing how using only O (n) mes-

sages and in O (1) rounds, a complete network can be converted to a

diameter-two network in a distributed manner. This shows that our

deterministic algorithm (cf. Section 4) is message optimal.

1.3 Distributed Computing Model
The model we consider is similar to the models of [1, 3, 5, 7, 8], with

the main addition of giving processors access to a private unbiased

coin. We consider a system of n nodes, represented as an undirected

graph G = (V ,E). In this paper, we focus on graphs with diameter

D (G) = 2, where D (G) is the diameter of G = (V ,E). An obvious

consequence of this is that G is connected, therefore n − 1 ≤ m ≤
n (n−1)

2 , wherem = |E | and n = |V |.
Each node has a unique identifier (ID) of O (logn) bits and runs

an instance of a distributed algorithm. The computation advances in

synchronous rounds where, in every round, nodes can send messages,

receive messages that were sent in the same round by neighbors inG,

and perform some local computation. Every node has access to the

outcome of unbiased private coin flips (for randomized algorithms).

Messages are the only means of communication; in particular, nodes

cannot access the coin flips of other nodes, and do not share any

memory. Throughout this paper, we assume that all nodes are awake

initially and simultaneously start executing the algorithm. We note

that initially nodes have knowledge only of themselves, in other

words we assume the clean network model — also called the KT0
model [17] which is standard and most commonly used. On the

other hand, if one assumes the KT1 model, where nodes have an

initial knowledge of the IDs of their neighbors, there exists a trivial

algorithm for leader election in a diameter-two graph that uses only

O (n) messages.

1.4 Other Related Works
The complexity of the leader election problem and algorithms for it,

especially deterministic algorithms (guaranteed to always succeed),

have been well-studied. Various algorithms and lower bounds are

known in different models with synchronous/asynchronous commu-

nication and in networks of varying topologies such as a cycle, a

complete graph, or some arbitrary topology (e.g., see [4, 10, 11, 13,

16, 18, 19] and the references therein).

The study of leader election algorithms is usually concerned with

both message and time complexity. We discuss two sets of results,

one for complete graphs and the other for general graphs. As men-

tioned earlier, for complete graphs, Kutten et al. [11] showed that

Θ̃(
√
n) is the tight message complexity bound for randomized (im-

plicit) leader election. In particular, they presented anO (
√
n log3/2 n)

messages algorithm that ran in O (1) rounds; they also showed an al-

most matching lower bound for randomized leader election, showing

that Ω(
√
n) messages are needed for any leader election algorithm

that succeeds with a sufficiently large constant probability.

For deterministic algorithms on complete graphs, it is known

that Θ(n logn) is a tight bound on the message complexity [1, 9]. In

particular, Afek and Gafni [1] presented anO (n logn) messages algo-

rithm for complete graphs that ran in O (logn) rounds. For complete

graphs, Korach et al. [6] and Humblet [3] also presented O (n logn)
message algorithms. Afek and Gafni [1] presented asynchronous and

synchronous algorithms, as well as a tradeoff between the message

ICDCN ’18, January 4–7, 2018, Varanasi, India Soumyottam Chatterjee, Gopal Pandurangan, and Peter Robinson

and the time complexity of synchronous deterministic algorithms

for complete graphs: the results varied from a O (1)-time, O (n2)-
messages algorithm to a O (logn)-time, O (n logn)-messages algo-

rithm. Afek and Gafni [1], as well as [6, 8] showed a lower bound

of Ω(n logn) messages for deterministic algorithms in the general

case.5

For general graphs, the best known bounds are as follows. Kutten

et al. [10] showed that Ω(m) is a very general lower bound on the

number of messages and Ω(D) is a lower bound on the number of

rounds for any leader election algorithm. It is important to point

out that their lower bounds applied for graphs with diameter at
least three. Note that these lower bounds hold even for randomized

Monte Carlo algorithms that succeed even with (some large enough,

but) constant success probability and apply even for implicit leader

election. Earlier results, showed such lower bounds only for deter-

ministic algorithms and only for the restricted case of comparison

algorithms, where it was also required that nodes may not wake up

spontaneously and that D and n were not known. The Ω(m) and

Ω(D) lower bounds are universal in the sense that they hold for all

universal algorithms (namely, algorithms that work for all graphs),

apply to every D ≥ 3, m, and n, and hold even if D, m, and n are

known, all the nodes wake up simultaneously, and the algorithms

can make any use of node’s identities. To show that these bounds

are tight, they also present an O (m) messages algorithm (this algo-

rithm is not time-optimal). An O (D) time leader election algorithm

is known [16] (this algorithm is not message-optimal). They also

presented anO (m log logn) messages randomized algorithm that ran

in O (D) rounds (where D is the network diameter) that is simultane-

ously almost optimal with respect to both messages and time. They

also presented an O (m logn) and O (D logn) deterministic leader

election algorithm for general graphs.

2 A RANDOMIZED ALGORITHM
In this section, we present a simple randomized Monte Carlo algo-

rithm that works in a constant number of rounds. Algorithm 1 is

entirely local, as nodes do not require any knowledge of n. Neverthe-

less, we show that we can sub-sample a small number of candidates

(using only local knowledge) that then attempt to become leader. In

the remainder of this section, we prove the following result.

THEOREM 2.1. There exists a Monte Carlo randomized leader
election algorithm that, with high probability, succeeds in n-node
networks of diameter at most two in O (1) rounds, while sending
O (n log3 n) messages.

2.1 Proof of Correctness: Analyzing the number
of candidates selected

We use the following property of diameter-2 graphs crucially in our

algorithm.

5This lower bound assumes non-simultaneous wakeup though. If nodes are assured
to wake up at the same time in synchronous complete networks, there exists a trivial
algorithm: if a node’s identity is some i , it waits i time before it sends any message
then leader election could be solved (deterministically) in O (n) messages on complete
graphs in synchronous networks. Recently, Kutten [9] shows that the Ω(n logn) lower

bound holds for simulataneous wakeup as well, if the number of rounds is bounded.

Algorithm 1 Randomized leader election in O (1) rounds and

O (n log3 n) message complexity

1: Each node v ∈ V selects itself to be a “candidate” with proba-

bility
1+log (dv)

dv
, where dv is the degree of v.

2: if v becomes a candidate then v sends its ID to all its neighbors.

3: Each node acts as a “referee node” for all its candidate neighbors

(including, possibly itself).

4: If a node w receives ID’s from its neighbors v1,v2, . . . ,vj
(say), then w computes the minimum ID of those and

sends it back to those neighbors. That is, w sends

min
{
ID (v1), ID (v2), . . . , ID (vj)

}
back to each of v1,v2, . . . ,vj .

5: A node v decides that it is the leader if and only if it receives its

own ID from all its neighbors. Otherwise v decides that it is not

the leader.

Observation 1. Let G = (V ,E) be a graph of diameter 2. Then for

any u,v ∈ V , either (u,v) ∈ E or ∃w ∈ V such that (u,w) ∈ E and

(v,w) ∈ E, i.e., u and v has at least one common neighbor w (say).

We note that if one or more candidates are selected, then only the

candidate node with the minimum ID is selected as the leader. That

is, the leader is unique, and therefore the algorithm produces the

correct output. The only case when the algorithm may be wrong is

if no candidates are selected to begin with, in which case no leader

is selected. In this section, we show that, with high probability, at

least two candidates are 6

LEMMA 2.2. Let f (x1,x2, . . . ,xn) be a function of n variables
x1,x2, . . . ,xn , where x1,x2, . . . ,xn are positive reals. f is defined as

f (x1,x2, . . . ,xn)
def

=

n∑

i=1

1 + logxi
xi

.

Let C be a constant ≥ n
√
2. Then f (x1,x2, . . . ,xn) is minimized,

subject to the constraint
∑n
i=1 xi = C, when xi =

C
n , for all 1 ≤ i ≤

n. The minimum value that f (x1,x2, . . . ,xn) takes is at the point

(Cn ,
C
n , . . . ,

C
n), and is given by

f min = f (
C

n
,
C

n
, . . . ,

C

n
) =

n2

C
(1 + log (

C

n
)).

LEMMA 2.3. Let X be a random variable that denotes the total
number of candidates selected in Algorithm 1. Then the expected
number of selected candidates is lower-bounded by E[X] > 2 +
1
2 logn.

PROOF. Let Xv be an indicator random variable that takes the

value 1 if and only ifv becomes a candidate. Then E[Xv] = Pr [Xv =

1] =
1+logdv

dv
. Thus if X denotes the total number of candidates

selected, then

E[X] =
∑

v ∈V
E[Xv] =

∑

v ∈V

1 + log (dv)

dv
.

Since G is connected, m ≥ n − 1 =⇒ 2m ≥ 2n − 2 > n
√
2.

Thus by By Lemma 2.2, E[X] is minimized subject to the constraint∑
v ∈V (G) dv = 2m when dv =

2m
n , i.e., when G is regular.

6Please refer to the full paper for the detailed proofs.

The Complexity of Leader Election: A Chasm at Diameter Two ICDCN ’18, January 4–7, 2018, Varanasi, India

Case 1 (n − 1 ≤ m ≤ n
3
2): The minimum value that E[X] takes is

given by

E[X]|min =
n2

2m
(1 + log (

2m

n
))

>
n2

2m
(since 1 + log (2mn) > 1)

≥
√
n

2
(sincem ≤ n

3
2)

Case 2 (n
3
2 < m ≤

(
n
2

)
): The minimum value that E[X] takes is

given by

E[X]|min =
n2

2m
(1 + log (

2m

n
))

> 1 + log (
2n

3
2

n
) (since n2

2m > 1 andm > n
3
2)

= 1 + log 2 + log (n
1
2) = 2 +

1

2
logn.

�

We use the following variant of Chernoff Bound [14] to show

concentration, i.e., to show that the number of candidates selected is

not too less than its expected value.

THEOREM 2.4 (CHERNOFF BOUND). Let X1,X2, . . . ,Xn be in-
dependent indicator random variables, and let X =

∑n
i=1 Xi . Then

the following Chernoff bound holds: for 0 < δ < 1,

Pr [X ≤ (1 − δ)μ] ≤ (e−δ

(1−δ)1−δ)
μ , where μ

def

= E[X].

LEMMA 2.5. If X denotes the number of candidates selected,
then Pr [X ≤ 1] < n−

1
3 .

2.2 Computing the message complexity
Note that the expected total message complexity of the algorithm

can be bounded as follows. Let random variable Mentire denote the

total messages sent during the course of the algorithm. Let Mv be

the number of messages sent by node v. Thus Mentire =
∑
v ∈V Mv .

A node v becomes a candidate with probability
1+logdv

dv
and, if it

does, it sends d (v) messages (the referees reply to these, but this

increases the total number of messages by a factor of 2). Hence by

linearity of expectation, it follows that E[Mentire] =
∑
v ∈V E[Mv] =∑

v ∈V 2
1+logdv

dv
dv = 2

∑
v ∈V (1 + logdv) ≤ 2

∑
v ∈V (1 + logn) ≤

2n + 2n logn. To show concentration, we cannot directly apply a

standard Chernoff bound that works for 0-1 random variables, since

Mv s are not 0-1 random variables (they take values either 0 or dv).

To handle this, we bucket the degrees into (at most) logn categories

based on their value then use a Chernoff bound as detailed below.

We use the following variant of Chernoff Bound [14] in the fol-

lowing analysis.

THEOREM 2.6 (CHERNOFF BOUND). Let X1,X2, . . . ,Xn be in-
dependent indicator random variables, and let X =

∑n
i=1 Xi . Then

the following Chernoff bound holds: for R ≥ 6E[X], Pr [X ≥ R] ≤
2−R .

Definition 2.7. Let k be a positive integer such that 2k−1 < n ≤
2k . For 0 ≤ j ≤ k, let Vj ⊂ V be the set of vertices with degree in

(2j−1,2j], i.e., if v ∈ Vj , then 2j−1 < dv ≤ 2j .

Remark 1. We note that
∑k
j=0 nj = n, where nj = |Vj | for 0 ≤ j ≤ k .

In particular, nj ≤ n for all j ∈ [0,k].

Analyzing vertices with degree ≤ 2: We recall that Xv is an indica-

tor random variable that takes the value 1 if and only if v becomes a

candidate. Then Pr [Xv = 1] = 1 ifv ∈ V0∪V1, i.e., every vertex with

degree 1 or degree 2 selects itself to be a candidate, deterministically.

For v ∈ V , let mv denote the number of messages that v sends.

So mv = dv if v becomes a candidate, and mv = 0 otherwise. Let

Mj be the total number of messages that members of Vj send, i.e.,

Mj
def

=
∑

v ∈Vj
mv ≤

∑

v ∈Vj
dv ≤

∑

v ∈Vj
2j = nj .2

j ≤ n.2j

=⇒ M0 ≤ n and M1 ≤ 2n.

Analyzing vertices with degree > 2: We recall that for v ∈ V , Xv
is an indicator random variable that takes the value 1 if and only if

v becomes a candidate. Let i be an integer in [2,k] and let v ∈ Vi .
Then

Observation 2. i
2i
< E[Xv] <

3i
2i

.

PROOF. For v ∈ Vi , 2i−1 < dv ≤ 2i . So

E[Xv] = Pr [Xv = 1] (since Xv is an indicator random variable)

=
1 + logdv

dv

=⇒
1 + log (2i−1)

2i
< E[Xv] <

1 + log (2i)

2i−1

[since 2i−1 < dv ≤ 2i]

or,
i

2i
< E[Xv] <

i + 1

2i−1
≤

3i

2i

[since i ≥ 2 =⇒
3i

2
≥ i + 1]

�

For 0 ≤ j ≤ k, let Yj be a random variable that denotes the total

number of candidates selected from Vj .

Observation 3. For 2 ≤ i ≤ k, ini
2i
< E[Yi] <

3ini
2i

.

PROOF.

Yi =
∑

v ∈Vi
Xv =⇒ E[Yi] = E[

∑

v ∈Vi
Xv]

=
∑

v ∈Vi
E[Xv] [by linearity of expectation]

=⇒
∑

v ∈Vi

i

2i
< E[Yi] <

∑

v ∈Vi

3i

2i

=⇒
ini
2i
< E[Yi] <

3ini
2i

�

Remark 2. ∀u,v ∈ V (G), u � v, Xu and Xv are independent, and

for 0 ≤ j ≤ k, we define Yj as Yj =
∑
v ∈Vj Xv , i.e., Yj is a sum

of independent indicator random variables. Hence we can use The-

orem 2.6 to show that Yj is concentrated around its mean, i.e., its

expectation.

ICDCN ’18, January 4–7, 2018, Varanasi, India Soumyottam Chatterjee, Gopal Pandurangan, and Peter Robinson

We recall that for 0 ≤ j ≤ k, Mj is the total number of messages

that members of Vj send, i.e., for 2 ≤ i ≤ k,

Mi =
∑

v ∈Vi
mv =

∑

v ∈Vi ,Xv=1
dv

LEMMA 2.8. For any integer i ∈ [2,k], it holds that Pr [Mi ≥
24n log2 n] ≤ 1

n4 .

PROOF.

Mi =
∑

v ∈Vi
mv =

∑

v ∈Vi ,Xv=1
dv

=⇒
∑

v ∈Vi ,Xv=1
2i−1 < Mi ≤

∑

v ∈Vi ,Xv=1
2i [since 2i−1 < dv ≤ 2i]

=⇒ 2i−1.Yi < Mi ≤ 2i .Yi

Case 1 (E[Yi] = 0): E[Yi] = 0 if and only if ni = 0, i.e., if and

only if �v ∈ V such that 2i−1 < dv ≤ 2i . But ni = 0 =⇒ Vi = ϕ,

the empty set. Therefore, Mi = 0.

Case 2 (0 < E[Yi] < 1): Assuming n ≥ 3, 4 logn > 6 > 6E[Yi].
Therefore, by Theorem 2.6,

Pr [Yi ≥ 4 logn] ≤ 2−4 logn = n−4

=⇒ Pr [Mi ≥ 2i .4 logn] ≤ n−4 [since Mi ≤ 2i .Yi]

=⇒ Pr [Mi ≥ 8n logn] ≤ n−4 [since i ≤ k < logn + 1]

Case 3 (E[Yi] ≥ 1): We have shown before that E[Yi] ≤ 3ini
2i

.

But ni ≤ n for all 2 ≤ i ≤ k. Hence E[Yi] ≤ 3ni
2i

. Assuming n ≥ 3,

4 logn > 6. Therefore, by Theorem 2.6,

Pr [Yi ≥ 12n logn.
i

2i
] ≤ Pr [Yi ≥ 4 lognE[Yi]]

≤ 2−4 lognE[Yi] = n−4E[Yi] ≤ n−4 [since E[Yi] ≥ 1]

=⇒ Pr [Mi ≥ 12in logn] ≤ n−4 [since Mi ≤ 2i .Yi]

=⇒ Pr [Mi ≥ 24n log2 n] ≤ Pr [Mi ≥ 12in logn] ≤ n−4

[since i ≤ k < logn + 1 < 2 logn]

�

LEMMA 2.9. If M denotes the total number of messages sent by
the candidates (in the first round only), then Pr [M ≥ 27n log3 n] <
1
n3 .

PROOF.

M
def

=

k∑

i=0

Mi = M0 +M1 +

k∑

i=2

Mi

= n + 2n +
k∑

i=2

Mi [since M0 = n and M1 = 2n]

= 3n +
k∑

i=2

Mi

But for 2 ≤ i ≤ k, Pr [Mi ≥ 24n log2 n] ≤ 1
n4 . Taking the union

bound over 2 ≤ i ≤ k,

Pr [Mi′ ≥ 24n log2 n] for some i ′ ∈ [2,k] is ≤
logn

n4
<

1

n3

=⇒ Pr [
k∑

i=2

Mi ≥ 24n log3 n] <
1

n3

=⇒ Pr [3n +
k∑

i=2

Mi ≥ 3n + 24n log3 n] <
1

n3

=⇒ Pr [M ≥ 3n + 24n log3 n] <
1

n3
[since M = 3n +

k∑

i=2

Mi]

But 3n ≤ 3n log3 n for n ≥ 2, or, 3n+24n log3 n ≤ 27n log3 n. Hence

Pr [M ≥ 27n log3 n] ≤ Pr [M ≥ 3n + 24n log3 n] <
1

n3
.

�

LEMMA 2.10. If Mentire denotes the total number of messages
sent during the entire run of Algorithm 1, then Pr [Mentire ≥ 54n log3 n] <
1
n3 .

PROOF. Let M ′ denote the number of messages sent by the “ref-

eree” nodes in the second round of the algorithm. We recall that M
is the number of messages sent by the “candidate” nodes in the first
round of the algorithm. Then M ′ ≤ M , and Mentire = M +M ′ ≤ 2M ,

and the result follows. �

This completes the proof of Theorem 2.1.

3 A LOWER BOUND FOR RANDOMIZED
ALGORITHMS

In this section we show that Ω(n) is a lower bound on the mes-

sage complexity for solving leader election with any randomized

algorithm in diameter-two networks. Notice that [11] show a lower

bound of Ω(
√
n) for the special case of diameter 1 networks, and

we know from [10] that, for the message complexity becomes Ω(m)
for (most) diameter 3 networks. Thus, Theorem 3.1 completes the

picture regarding the message complexity of leader election when

considering networks according to their diameter.

THEOREM 3.1. Any algorithm that solves implicit leader election
with probability at least 1

2 + ϵ in any n-node network with diameter
at most 2, for any constant ϵ > 0, sends at least Ω(n) messages in
expectation. This holds even if nodes have unique IDs and know the
network size n.

In the remainder of this section, we prove Theorem 3.1. Assume

towards a contradiction, that there is an algorithm that elects a leader

with probability 1
2 + ϵ that sends o(n) messages with probability

approaching 1. In other words, we assume that the event where the

algorithm sends more than o(n) messages (of arbitrary size) happens

with probability at most o(1).

Unique IDs vs Anonymous. Before describing our lower bound

construction, we briefly recall a simple reduction used in [11] that

shows that assuming unique IDs does not change the success prob-

ability of the algorithm by more than 1
n : Since we assume that

nodes have knowledge of n, it is straightforward to see that nodes

The Complexity of Leader Election: A Chasm at Diameter Two ICDCN ’18, January 4–7, 2018, Varanasi, India

can obtain unique IDs (whp) by choosing a random integer in the
range [1,nc], for some constant c ≥ 4. Thus, we can simulate an
algorithm that requires unique IDs in the anonymous case and the
simulation will be correct with high probability. Suppose that there
is an algorithm A that can break the message complexity bound of
Theorem 3.1 while succeeding with probability ≥ 1

2 + ϵ , for some
constant ϵ > 0, when nodes have unique IDs. Then, the above simu-
lation yields an algorithm A′ that works in the case where nodes are
anonymous with the same message complexity bound as algorithm
A and succeeds with probability at least (12 + ϵ −

1
n) ≥

1
2 + ϵ

′, for
some constant ϵ ′ > 0. We conclude that proving the lower bound for
the anonymous case is sufficient to imply a lower bound for the case
where nodes have unique IDs.

The Lower Bound Graph. Our lower bound is inspired by the
bridge crossing argument of [10] and [15]. For simplicity, we assume
that n

4 is an integer. Consider two cliquesC1 andC2 of n
2 nodes each

and letG ′ be the n-node graph consisting of the two (disjoint) cliques.
The port numbering of an edge e = (ui ,vj) ∈ E (G ′) refers to the
port number at ui and the respective port number at vj that connects
e. The port numberings of the edges defines an instance of G ′.

Given an instance of G ′, we will now describe how to obtain an
instance of graph G that has the same node set as G ′. Fix some
arbitrary enumeration u1, . . . ,u n

2
of the nodes 7 in C1 and sim-

ilarly let v1, . . . ,v n
2

be an enumeration of the nodes in C2. To
define the edges of G, we randomly choose a maximal match-
ing M1 of n

4 edges in the subgraph C1. Consider the set of edges
M ′2 = {(vi ,vj) | ∃(ui ,uj) ∈ M1}, which is simply the matching in
C2 corresponding to M1 in C1. We define M2 to be a randomly cho-
sen maximal matching on C2 when using only edges in E (G ′) \M ′2.
Then, we remove all edges in M1 ∪ M2 from G ′. So far, we have
obtained a graph where each node has one unwired port.

The edge set of G consists of all the remaining edges of G ′ in
addition to the set M = {(u1,v1), . . . , (u n

2
,v n

2
)}, where we connect

these bridge edges by using the unwired ports that we obtained by
removing the edges as described above. We say that an edge is an
intra-clique edge if it has both endpoints in either C1 or C2. Observe
that the intra-clique edges of G are a subset of the intra-clique edges
of G ′. Figure 1 gives an illustration of this construction.

LEMMA 3.2. Graph G is an n-node network of diameter 2 and
the port numbering of each intra-clique edge in G is the same as of
the corresponding edge in G ′.

A state σ of the nodes in C1 is a n
2 -size vector of the local states

of the n/2 nodes in C1. Since we assume that nodes are anonymous,
a state σ that is reached by the nodes in C1, can also be reached by
the nodes in C2. More formally, when executing the algorithm on
the disconnected network G ′, we can observe that every possible
state σ (of n

2 nodes) has the same probability of occurring in C1 as
in C2. Thus, a state where there is exactly one leader among the n

2
nodes of a clique in G ′, is reached with some specific probability q
depending on the algorithm. By a slight abuse of notation, we also
use G ′ and G to denote the event that the algorithm executes on G ′

respectively G. For the probability of the event One, which occurs

7This enumeration is used solely for the description of the lower bound construction
and is unbeknownst to the nodes.

u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

Figure 1: The lower bound graph construction used in Theo-
rem 3.1 for n = 12, with cliques C1 and C2, where V (C1) =
{u1 , . . . ,u6} and V (C2) = {v1 , . . . ,v6}. The dotted red edges
are the edges in M1 and M2 that are removed from C1 and C2
when constructingG and the blue dashed inter-clique edges are
given by the maximal matching M between C1 and C2. Each
blue edge incident to some node ui is connected by using the
port number of ui ’s (removed) red edge.

when there is exactly 1 leader among the n nodes, we get

Pr
[
One ��� G

′] = 2q(1 − q) ≤
1
2
, (1)

which holds for any value of q. Since G ′ is disconnected, the al-
gorithm does not need to succeed with nonzero probability when
being executed on G ′. However, below we will use this observation
to obtain an upper bound on the probability of obtaining (exactly)
one leader in G.

Now consider the execution on the diameter 2 network G (ob-
tained by modifying the ports of G ′ as described above) and let
C1 ↮ C2 be the event that no message is sent across the bridges
between C1 and C2. Since we assume the port numbering model
where nodes are unaware of their neighbors initially, it follows by
Lemma 3.2 that

Pr [One | C1↮C2,G] = Pr
[
One ��� G

′] . (2)

Let M be the event that the algorithm sends o(n) messages. Recall
that we assume towards a contradiction that Pr [M | G] = 1 − o(1).

LEMMA 3.3. Pr [C1 ↔ C2 | G,M] = o(1).

PROOF. The proof is inspired by the guessing game approach of
[2] and Lemma 16 in [15]. Initially, any node u ∈ C1 has n

2 − 1 ports
that are all equally likely (i.e., a probability p = 1

n
2 −1

) to be con-
nected to the (single) bridge edge incident to u. As u sends messages
to other nodes, it might learn about some of its ports connecting to
non-bridge edges and hence this probability can increase over time.
However, we condition on event M , i.e., the algorithm sends at most
o(n) messages in total and hence at least n

4 ports of each node u
remain unused at any point.

It follows that the probability of some node u to activate a (previ-
ously unused) port that connects a bridge edge is at most 4

n at any
point of the execution. Let X be the total number of ports connecting
bridge edges that are activated during the run of the algorithm and

ICDCN ’18, January 4–7, 2018, Varanasi, India Soumyottam Chatterjee, Gopal Pandurangan, and Peter Robinson

let Xu be the indicator random variable that is 1 iff node u sends a

message across its bridge edge. Let Su be the number of messages

sent by node u. It follows by the hypergeometric distribution that

E[Xu | G,M] = Su
1

Θ(n)
,

for each node u and hence,

E[X | G,M] =
∑

u ∈V (G)

Su
Θ(n)

=
1

Θ(n)

∑

u ∈V (G)
Su = o(1)

where we have used the fact that
∑
u ∈V (G) Su = o(n) due to condi-

tioning on event M . By Markov’s Inequality, it follows that the event

C1 ↔ C2, i.e., X ≥ 1, occurs with probability at most o(1). �

We now combine the above observations to obtain

Pr [One | G,M] = Pr [One | C1�C2,G,M] Pr [C1�C2 | G,M]

+ Pr [One | C1 ↔ C2,G,M] Pr [C1 ↔ C2 | G,M]

≤ Pr [One | C1�C2,G,M] + o(1) (by Lem. 3.3)

≤
1

2
+ o(1), (3)

where the last inequality follows by first using (2) and noting that

the upper bound (1) still holds when conditioning on the event M .

Finally, we recall that the algorithm succeeds with probability at

least 1
2 + ϵ and Pr [M | G] ≥ 1 − o(1), which yields

1

2
+ ϵ ≤ Pr [One | G] ≤ Pr [One | G,M] + o(1) ≤

1

2
+ o(1),

which is a contradiction, since we have assumed that ϵ > 0 is a

constant.

4 A DETERMINISTIC ALGORITHM
Our algorithm (Algorithm 2) is inspired by the solution of Afek and

Gafni [1] for the n-node clique. However, there are some complica-

tions that we explain below, since we cannot rely on all nodes to be

connected by an edge. Note that our algorithm assumes that n (or a

constant factor upper bound for logn) is known to all nodes.

For any node v ∈ V , we denote the degree of v by dv and the

ID of v by IDv . At any time-point in the algorithm, Lv denotes the

highest ID that v has so far learned (among all the probe messages it

has received, in the current round or in some previous round).

The algorithm proceeds as a sequence of Θ(logn) phases. Initially

every node is a “candidate” and is “active”. Each node v numbers

its neighbors from 1 to dv , denoted by wv,1,wv,2, . . . ,wv,dv respec-

tively. In phase i, if a node v is active, v sends probe-messages

containing its ID to its neighbors wv,2i−1 , . . . ,wv,k , where k =

min
{
dv ,2

i − 1
}
. Each one of them replies back with the highest

ID it has seen so far. If any on those ID’s is higher than IDv , then v
stops being a candidate and becomes inactive. Node v also becomes

inactive if it has finished sending probe-messages to all its neighbors.

After finishing the Θ(logn) phases v becomes leader if it is still a

candidate.

The idea behind the algorithm is to exploit the neighborhood
intersection property (cf. Observation 1) of diameter-2 networks.

Since for any u,v ∈ V , there is an x ∈ V that is connected to both u
and v (unless u and v are directly connected via an edge) and acts as

a “referee” node for candidates u and v. This means that x serves to

inform u and v who among them is the winner, i.e., has the higher

Algorithm 2 Deterministic Leader Election in O (logn) rounds and

with O (n logn) messages: Code for a node v

1: v becomes a “candidate” and “active”.

2: Lv ← IDv .

3: Nv ← IDv .

4: v numbers its neighbors from 1 to dv , which are called

wv,1,wv,2, . . . ,wv,dv respectively.

5: for phase i = 1 to Θ(logn) do
6: if v is active then
7: v sends a “probe" message containing its ID to its neigh-

bors wv,2i−1 , . . . ,wv,min{dv ,2i−1} .
8: if dv ≤ 2i − 1 then
9: v becomes inactive.

10: end if
11: end if
12: Let X be the set (possibly empty) of neighbors of v from

whom v receives messages in this round.

13: Let ID be the set of ID’s sent to v by the members of X .

14: Let IDu be the highest ID in ID.

15: if IDu > Lv then
16: v sends IDu to Nv .

17: Lv ← IDu . � v stores the highest ID seen so far in Lv .

18: Nv ← x . � v remembers neighbor who told v about Lv .

19: v becomes “inactive” and “non-candidate”.

20: end if
21: v tells every member of X about Lv , i.e., the highest ID it

has seen so far.

22: end for
23: if v is still a candidate then
24: v elects itself to be the leader.

25: end if

ID. Thus at the end of the algorithm, every node except the one with

the highest ID should know that he is not a leader. We present the

formal analysis of Theorem 4.1 in Sections 4.1 and 4.2.

THEOREM 4.1. There exists a deterministic leader election al-
gorithm for n-node networks with diameter at most 2 that sends
O (n logn) messages and terminates in O (logn) rounds.

In the pseudocode and the subsequent analysis we use v and IDv

interchangeably to denote the node v.

4.1 Proof of Correctness
Define vmax to be the node with the highest ID in G.

LEMMA 4.2. vmax becomes a leader.

PROOF. Since vmax has the highest ID in G, the if-clause of Line

15 of Algorithm 2 is never satisfied for vmax. Therefore vmax never

becomes a non-candidate, and hence becomes a leader at the end of

the algorithm. �

LEMMA 4.3. No other node except vmax becomes a leader.

PROOF. Consider any u ∈ V such that u � vmax.

• Case 1 (vmax andu are connected via an edge): Sincevmax

has the highest ID in G, the if-clause of Line 15 of Algorithm

The Complexity of Leader Election: A Chasm at Diameter Two ICDCN ’18, January 4–7, 2018, Varanasi, India

2 is never satisfied forvmax. Thereforevmax becomes inactive

only if it has already sent probe-messages to all its neighbors

(or vmax never becomes inactive). In particular, u always

receives a probe-message fromvmax containing IDvmax . Since

IDvmax > IDu , u becomes a non-candidate at that point (if u
was still a candidate until that point) and therefore does not

become a leader.

• Case 2 (vmax and u do not have an edge between them):
By Observation 1, there is some x ∈ V such that both vmax

and u have edges going to x . And we have already established

that vmax will always send a probe-message to x at some

point of time or another.

– Case 2(a) (u does not send a probe-message to x): This

implies that u became inactive before it could send a probe-

message to x . But then u could have become inactive only

if the if-clause of Line 15 of Algorithm 2 got satisfied at

some point. Thenu became a non-candidate too at the same

time and therefore would not become a leader.

– Case 2(b) (u sends a probe-message to x before vmax

does): Suppose u sends a probe-message to x at round i
and vmax sends a probe-message to x at round i ′, where

1 ≤ i < i ′ ≤ logn. If x had seen an ID higher than IDu up

until round i, then x immediately informs u and u becomes

a non-candidate.

So suppose not. Then, after round i, x sets its local variables

Lx and Nx to IDu and u respectively. Let j > i be the

smallest integer such that x receives a probe-message from

a neighboru ′ at round j, where IDu′ > IDu . Note thatvmax

will always send a probe-message to x , therefore such a

u ′ exists. Then, after round j, x sets its local variables Lx
and Nx to IDu′ and u ′ respectively, and informs u of this

change. u becomes a non-candidate at that point of time.

– Case 2(c) (u and vmax each sends a probe-message to x
at the same time): Since IDvmax is the highest ID in the

network, Lx is assigned the value IDvmax at this point, and

x tells u about Lx = IDvmax > IDu , causing u to become a

non-candidate.

– Case 2(d) (u sends a probe-message to x after vmax

does): Suppose vmax sends a probe-message to x at round

i and u sends a probe-message to x at round i ′, where

1 ≤ i < i ′ ≤ logn. Then x sets its local variables Lx
and Nx to IDvmax and vmax, respectively, after round i. So

when u comes probing at round i ′ > i, x tells u about

Lx = IDvmax > IDu , causing u to become a non-candidate.

�

4.2 Message Complexity
LEMMA 4.4. At the end of round i, there are at most n

2i
“active”

nodes.

PROOF. Consider a node v that is active at the end of round i.
This implies that the if-clause of Line 15 of Algorithm 2 has not so

far been satisfied for v, which in turn implies that IDv > IDwv,j for

1 ≤ j ≤ 2i − 1, therefore none of wv,1,wv,2, . . . ,wv,2i−1 is active

after round i. Thus for every active node at the end of round i, there

are at least 2i − 1 inactive nodes. We call this set of inactive nodes,

together with v itself, the “kingdom” of v, i.e.,

KINGDOM (v)
def

= {v} ∪
{
wv,1,wv,2, . . . ,wv,2i−1

}

and |KINGDOM (v) | = 2i .

If we can show that these kingdoms are disjoint for two different

active nodes, then we are done.

Proof by contradiction: Suppose not. Suppose there are two

nodes u and v such that

u � v and KINGDOM (u) ∩ KINGDOM (v) � ϕ

(after some round i, 1 ≤ i ≤ logn). Let x be such that x ∈
KINGDOM (u) ∩ KINGDOM (v). Since an active node obviously

cannot belong to the kingdom of another active node, this x equals

neither u nor v, and therefore

x ∈
{
wv,1,wv,2, . . . ,wv,2i−1

}
∩
{
wu,1,wu,2, . . . ,wu,2i−1

}
,

that is, both u and v have sent their respective probe-messages to x .

Without loss of generality, let IDv > IDu .

• Case 1 (u sends a probe-message to x before v does): Sup-

pose u sends a probe-message to x at round j and v sends a

probe-message to x at round j ′, where 1 ≤ j < j ′ ≤ i. If x
had seen an ID higher than IDu up until round j, then x im-

mediately informs u and u becomes inactive. Contradiction.

So suppose not. Then, after round j, x sets its local variables

Lx and Nx to IDu andu respectively. Let k > j be the smallest

integer such that x receives a probe-message from a neighbor

u ′ at round k, where IDu′ > IDu . Note that v sends a probe-

message to x at round j ′, where j < j ′ ≤ i, and IDv > IDu .

Therefore such a u ′ exists. Then, after round k , x sets its local

variables Lx and Nx to IDu′ and u ′ respectively, and informs

u of this change. u becomes inactive at that point of time, i.e.,

after round k, where k ≤ j ′ ≤ i. Contradiction.

• Case 2 (u and v each sends a probe-message to x at the
same time): Suppose thatu andv each sends a probe-message

to x at the same round j, where 1 ≤ j ≤ i. Since IDv > IDu , x
has at least one neighbor u ′ such that IDu′ > IDu . Therefore

x would not set Lx to IDu (or Nx to u), and x would inform

u about that after round j, causing u to then become inactive.

Contradiction.

• Case 3 (u sends a probe-message to x after v does): Sup-

pose v sends a probe-message to x at round j and u sends a

probe-message to x at round j ′, where 1 ≤ j < j ′ ≤ i. Then x
sets its local variables Lx and Nx to IDv and v, respectively,

after round j. So when u comes probing at round j ′ > j, x
tells u about Lx ≥ IDv > IDu , causing u to become inactive.

Contradiction.

�

LEMMA 4.5. In round i, at most 3n messages are transmitted.

PROOF. In round i, each active node sends exactly 2i−1 probe

messages, and each probe-message generates at most two responses

(corresponding to Lines 16 and 21 of Algorithm 2). Thus, in round i,
each active node contributes to, directly or indirectly, at most 3.2i−1

messages. The result immediately follows from Lemma 4.4. �

ICDCN ’18, January 4–7, 2018, Varanasi, India Soumyottam Chatterjee, Gopal Pandurangan, and Peter Robinson

Since the algorithm runs for logn rounds, Theorem 4.1 immedi-
ately follows.

5 A DETERMINISTIC LOWER BOUND
We will show a lower bound of Ω(n logn) message complexity by
reducing the problem of “leader election in complete graphs” to that
of “leader election in graphs of diameter two”. This reduction itself
would take two rounds and O (n) messages. Then, since the former
is known to have Ω(n logn) message complexity, the latter would
have the same lower bound too (cf. Section 1.1).

SupposeA is a leader election algorithm that works for any graph
of diameter two. Let G = (V ,E) be our input instance for the prob-
lem of “leader election in complete graphs”, i.e., G is the complete
graph on n nodes, say.

The reduction: G sparsifies itself into a diameter-two graph (G ′,
say, whereG ′ = (V ,E ′), where E ′ ⊊ E) on whichA works thereafter.
This sparsification takes O (n) messages and a constant number of
rounds (two, to be exact) and is done as follows.
• Round 1: Each node v chooses one of its neighbours (any

arbitrary one) and asks its ID. If this neighbour’s ID is larger
than its own ID, then v will “drop" that edge, i..e., it won’t
use that for communication in the subsequent simulation of
A. Otherwise v will keep that edge.
Forv ∈ V , ifv has ⌈n2 ⌉ or more edges removed, thenv makes
itself a “candidate”.
• Round 2: The candidates from the previous round send their

ID’s to all the nodes in the network using edges of G. By
Lemma 5.1, there can be at most two such nodes. Thus the
total number of messages sent is still O (n). Then each node
(including the candidates themselves) receives the ID’s of up
to two candidates and chooses the highest of them to be the
ID of the leader.

If no such node exists which has had ⌈n2 ⌉ or more edges removed,
then G ′ has diameter two (please refer to Lemma 5.2), and we run
A on G ′. A returns a leader on G ′ which makes itself the leader of
G too, and informs all its neighbors. This takes O (n) messages.

5.1 Proof of Correctness
Observation 4. E has at most n − 1 edges more than E ′.

PROOF. Each node except the node with the highest ID drops at
most one edge. The node with the highest ID drops no edge. □

LEMMA 5.1. For n ≥ 3, there can be at most two nodes in G ′

that has had ⌈n2 ⌉ or more edges removed.

LEMMA 5.2. If no node exists in G ′ which has had ⌈n2 ⌉ or more
edges removed, then G ′ has diameter two.

6 CONCLUSION
We settle the message complexity of leader election throughout
the diameter spectrum, by presenting almost tight bounds (tight
upto polylog(n) factors) for diameter-two graphs which were left
open by previous results [10, 11]. Several open problems arise from
our work. Is it possible to show an high probability bound of O (n)
messages for randomized leader election that runs in O (1) rounds?

This will match the lower bounds, by closing the polylog(n) factor.
It might be possible to improve the analysis of our randomized
algorithm to show O (n logn) messages. Another very interesting
question is whether explicit leader election (i.e., where all nodes
should also know the identity of the leader) can be performed in
Õ (n) messages in diameter-two graphs (this is true for complete
graphs, but not for diameter three and beyond). Also removing the
assumption of the knowledge of n (or showing that it is not possible)
for deterministic algorithms with Õ (n) message complexity and
running in Õ (1) rounds is open.

REFERENCES
[1] Yehuda Afek and Eli Gafni. Time and message bounds for election in synchronous

and asynchronous complete networks. SIAM Journal of Computing, 20(2):376–
394, 1991.

[2] Seth Gilbert, Peter Robinson, and Suman Sourav. Brief announcement: Gossiping
with latencies. In Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 255–257,
2017.

[3] P Humblet. Electing a leader in a clique in O (n logn) messages. Intern. Memo.,
Laboratory for Information and Decision Systems, M.I.T., Cambridge, Mass,
1984.

[4] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar.
Efficient distributed approximation algorithms via probabilistic tree embeddings.
In Proceedings of the twenty-seventh ACM symposium on Principles of distributed
computing, PODC ’08, pages 263–272, New York, NY, USA, 2008. ACM.

[5] E. Korach, S. Kutten, and S. Moran. A modular technique for the design of
efficient distributed leader finding algorithms. ACM Trans. Program. Lang. Syst.,
12(1):84–101, January 1990.

[6] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some
distributed algorithms for a complete network of processors. In Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing, PODC
’84, pages 199–207, New York, NY, USA, 1984. ACM.

[7] E. Korach, S. Moran, and S. Zaks. The optimality of distributive constructions of
minimum weight and degree restricted spanning trees in a complete network of
processors. SIAM Journal on Computing, 16(2):231–236, 1987.

[8] E. Korach, S. Moran, and S. Zaks. Optimal lower bounds for some distributed
algorithms for a complete network of processors. Theoretical Computer Science,
64(1):125 – 132, 1989.

[9] Shay Kutten. Private communication. 2017.
[10] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh

Trehan. On the complexity of universal leader election. Journal of the ACM,
62(1):7:1–7:27, March 2015. Invited paper from ACM PODC 2013.

[11] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh
Trehan. Sublinear bounds for randomized leader election. Theoretical Computer
Science, 561, Part B:134 – 143, 2015. Special Issue on Distributed Computing
and Networking.

[12] Gérard Le Lann. Distributed systems - towards a formal approach. In IFIP
Congress, pages 155–160, 1977.

[13] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[14] Michael Mitzenmacher and Eli Upfal. Probability and Computing - Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.

[15] Shreyas Pai, Gopal Pandurangan, Sriram V. Pemmaraju, Talal Riaz, and Peter
Robinson. Symmetry breaking in the CONGEST model: Time- and message-
efficient algorithms for ruling sets. In DISC 2017, Vienna, to appear.

[16] David Peleg. Time-optimal leader election in general networks. Journal of Parallel
and Distributed Computing, 8(1):96 – 99, 1990.

[17] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM,
2000.

[18] Nicola Santoro. Design and Analysis of Distributed Algorithms (Wiley Series on
Parallel and Distributed Computing). Wiley-Interscience, 2006.

[19] Gerard Tel. Introduction to distributed algorithms. Cambridge University Press,
New York, NY, USA, 1994.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Distributed Computing Model
	1.4 Other Related Works

	2 A Randomized Algorithm
	2.1 Proof of Correctness: Analyzing the number of candidates selected
	2.2 Computing the message complexity

	3 A Lower Bound for Randomized Algorithms
	4 A Deterministic Algorithm
	4.1 Proof of Correctness
	4.2 Message Complexity

	5 A Deterministic Lower Bound
	5.1 Proof of Correctness

	6 Conclusion
	References

