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Abstract

In this paper we focus on the numerical solution of the induction equation using Runge-
Kutta Discontinuous Galerkin (RKDG) -like schemes that are globally divergence-free. The
induction equation plays a role in numerical MHD and other systems like it. It ensures that the
magnetic field evolves in a divergence-free fashion; and that same property is shared by the
numerical schemes presented here. The algorithms presented here are based on a novel DG-like
method as it applies to the magnetic field components in the faces of a mesh. (I.e., this is not a
conventional DG algorithm for conservation laws.) The other two novel building blocks of the
method include divergence-free reconstruction of the magnetic field and multidimensional

Riemann solvers; both of which have been developed in recent years by the first author.

Since the method is linear, a von Neumann stability analysis is carried out in two-
dimensions to understand its stability properties. The von Neumann stability analysis that we
develop in this paper relies on transcribing from a modal to a nodal DG formulation in order to
develop discrete evolutionary equations for the nodal values. These are then coupled to a suitable
Runge-Kutta timestepping strategy so that one can analyze the stability of the entire scheme

which is suitably high order in space and time.

We show that our scheme permits CFL numbers that are comparable to those of

traditional RKDG schemes. We also analyze the wave propagation characteristics of the method
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and show that with increasing order of accuracy the wave propagation becomes more isotropic
and free of dissipation for a larger range of long wavelength modes. This makes a strong case for
investing in higher order methods. We also use the von Neumann stability analysis to show that
the divergence-free reconstruction and multidimensional Riemann solvers are essential

algorithmic ingredients of a globally divergence-free RKDG-like scheme.

Numerical accuracy analyses of the RKDG-like schemes are presented and compared
with the accuracy of PNPM schemes. It is found that PNPM retrieve much of the accuracy of the
RKDG-like schemes while permitting a larger CFL number.



I) Introduction

Several important problems in science and engineering rely on the MHD system of
equations. This class of PDEs can indeed be written in a conservation law form. As a result,
methods that have been developed for the treatment of hyperbolic conservation laws are indeed
applicable to them. For MHD, the electric field can be written as E =—-vxB and it governs the

divergence-free evolution of the magnetic field. In two dimensions, B=B x+ B,y is the
magnetic field and v=v X+v J is the velocity. The update of the magnetic field takes place

according to the induction equation:

a—B—Vx(va):O (1.1)
ot

In this paper we develop a von Neumann stability analysis for RKDG schemes that are used to
solve eqn. (1.1). Because such an analysis would be very difficult in three dimensions, most of
this paper describes a two-dimensional situation. Because magnetic monopoles have not been
detected in nature, the magnetic field starts off divergence-free; i.e., V-B=0. The above
induction equation then ensures that the magnetic field remains divergence-free for all time. It is
highly desirable to satisfy this divergence-free constraint in a numerical code because it provides
maximum consistency with the physics ([51], [23], [24]). It is easy to see that the divergence of a
vector field is a topological constraint that is an integral part of the PDE system. Numerical
methods that preserve, in a discrete sense, the symmetries and constraints that are true for the
continuum PDE are referred to as mimetic schemes. A mimetic scheme for the induction
equation should keep the divergence of the vector field zero on the computational mesh, because
the PDE itself has this property. Mimetic schemes for the induction equation, therefore, follow a
Yee-style collocation of variables with the magnetic field components collocated at face centers
and the electric field components at edge centers of a mesh. For that reason, please note that we
are not presenting a conventional Discontinuous Galerkin (DG) scheme for a conservation law
that is defined on the elements of the mesh. Instead, we are describing a DG-like method for the
induction equation that applies to magnetic field components that are defined on the faces of the

elements of the mesh. (For the sake of nomenclatural clarity in the rest of the paper, we will



distinguish between the magnetic field, which is a two or three component vector, and the

component of the magnetic field, which is a scalar that is collocated at the faces of the mesh.)

Higher order Godunov methods have been developed for constraining the evolution of
the magnetic field ([1], [2], [8], [9], [11], [12], [36], [36], [44], [4], [42], [37], [40], [70], [47],
[26]). While early methods were based on one dimensional Riemann solver technology, it had
been well-recognized that multidimensional Riemann solvers were needed for obtaining the
electric field. Such multidimensional Riemann solvers have now been developed (Balsara [13],
[14], [17], [19], Balsara, Dumbser & Abgrall [15] and Balsara & Dumbser [17], Vides et al. [48],
Balsara et al. [21], [22]), opening the door to a more methodical analysis of eqn. (1.1) ([5], [6],
[7], [20], [49]). MHD schemes that are positivity preserving have also been developed ([3], [18],

[25]).

Discontinuous Galerkin (DG) schemes have seen much further development in the last
two decades ([43], [27], [29], [28], [30], [10]). Coupled with strong stability preserving Runge-
Kutta semi-discrete time-stepping schemes ( [90], [91], [45], [46], [38], [39]) they take the
acronym of RKDG schemes. Because of their simple structure, desirable stability properties, and
the potentially high accuracy that they offer, RKDG schemes for fluid dynamics type problems
have enjoyed considerable recent popularity. It is desirable to extend these ideas to divergence-

free MHD and its analogous systems.

Thus the first goal of this paper is to design RKDG-like schemes for the induction
equation that are based on the two building blocks — globally divergence free reconstruction and
multidimensional Riemann solvers. DG schemes that are locally divergence-free within each
element have been attempted by Cockburn et al. [32] and Li and Shu [42]. Such locally
divergence-free schemes are divergence-free within each element, but they produce a jump in the
normal component of the magnetic field at element boundaries. Globally divergence-free central
DG schemes that operate on a pair of staggered meshes have been presented by Li et al. [40].
The present DG-like formulation differs from those early attempts in two respects. First, it is
globally divergence-free at all points of mesh; this includes the interior of an element as well as
its boundary. Second, it obtains the electric field at the edges through a direct application of a
multidimensional Riemann solver. The second goal of this paper is to analyze the stability of the

RKDG-like schemes for the induction equation using von Neumann stability analysis. In doing
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that, we follow the path set down by Zhang and Shu [52] and Liu et al. [41] who analyzed the
stability of conventional RKDG schemes for scalar advection in one dimension. Because such
analyses are intrinsically very difficult, we restrict attention to the two dimensional case. In two
dimensions, the induction equation has a structure that is quite different from an advection
equation. Yang and Li [50] have also analyzed the induction equation. However, their method is
not based on the multidimensional Riemann solver approach used here. Instead, their work relies

on an overlapping mesh approach. Furthermore, their analysis is restricted to first order schemes.

As the order of accuracy of an RKDG scheme is increased, the permissible CFL
decreases. PNPM schemes (Dumbser et al. [35]) are one way of overcoming this problem.
(PNPM schemes evolve an N™ order spatial polynomial, while spatially reconstructing higher
order terms up to M™ order.) The third goal (which is a much smaller goal) of this paper is to
show that PNPM schemes for the induction equation retrieve much of the accuracy of the

RKDG-like schemes while permitting a larger CFL number.

The plan of the paper is as follows. Section II presents the DG-like formulation for the
induction equation. Section III briefly describes the divergence-free reconstruction in a fashion
that is suited for later use in the von Neumann stability analysis. Section IV develops
multidimensional Riemann solvers for the induction equation and explicitly discusses their
dissipation characteristics. Such a discussion enables us to show that the multidimensional
Riemann solvers are always stabilizing. Section V shows how the von Neumann stability
analysis is carried out by using first order (i.e., P=0) and second order (i.e., P=1) DG schemes
with various orders of Runge-Kutta timestepping as a detailed example. Once the second order
case is understood, the extension of the von Neumann stability analysis to even higher orders is
quite easily done with the help of a computer algebra system. Section VI presents the results of
the von Neumann stability analysis for the RKDG-like scheme for the induction equation.
Section VII provides results from accuracy analysis of the resulting linear RKDG-like schemes
and compares them to PNPM schemes for the induction equation. Section VIII presents some

conclusions.

IT) DG Formulation for the Induction Equation



It is very important to begin by pointing out that the method presented here is not a
conventional DG scheme for conservation laws. However, it shares many philosophical features
with a conventional DG scheme, which is why we call it a DG-like scheme. A compare and
contrast between a conventional DG scheme for conservation laws and the DG-like scheme for
the induction equation (that is presented in this paper) would be most useful. The compare and

contrast is presented in pointwise fashion below:

1) DG schemes for conservation laws are based on projecting the solution within an element onto
a set of trial functions that are defined within the same element. The coefficients of those trial
functions form the primal variables of the DG scheme. The DG-like scheme for the induction
equation that is presented here uses the components of the magnetic field, and their higher
moments, that live within the faces of each element as the primal variables. The corresponding

trial functions are also defined within the faces of each element.

2) In a conventional DG scheme for conservation laws a vector identity associated with the
divergence is applied to the product of a test function and the flux. By contrast, in the present
DG-like scheme for the induction equation we apply a vector identity associated with the curl to

the product of the test function and the facial magnetic field component.

3) Consequently, in a conventional DG scheme for conservation laws, the update equations for
the zone-centered flow variables and their higher moments depends on the fluxes at the zone
boundaries as well as a volumetric integration term. In the present DG-like scheme for the
induction equation, the update equations for the face-centered magnetic field components, as
well as their higher order moments, depends on the electric fields at the vertices of the mesh and

a further facial area-integrated term.

4) For a conventional DG scheme for conservation laws, the fluxes at the zone boundaries are
obtained by using a weak form solution of the one-dimensional Riemann problems at the zone
boundaries. In the present DG-like scheme for the induction equation, the electric fields at the
vertices of the mesh are obtained by using a weak form solution of the multidimensional

Riemann problems at the vertices of the mesh.

We see that there are very close analogies between a conventional DG scheme for a conservation

law and the DG-like schemes that we have developed for the induction equation. For that reason,
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we adopt a short form and refer to the DG-like schemes as DG schemes in the ensuing

discussion.
Recall that DG schemes for conservation laws derive from the well-known vector identity

V(4F)=¢ V-F+F-V¢

where F takes on the role of a flux and ¢ is a test function. Use of Gauss’ theorem then yields a
weak form update for the PDE, where the flux terms at the boundary of a zone are replaced with
fluxes that are obtained from a Riemann solver. Clearly, the curl operator in eqn. (1.1) suggests
the use of Stokes’ theorem. This time, since each magnetic field component resides in a face of
the mesh, we wish to use Stokes theorem within a face. To that end, we assert the well-known

vector identity
Vx(¢ E)=(V@)xE+¢ VXE 2.1

within each face of the mesh. In this paper, and for the sake of simplicity, we use a two-

dimensional Cartesian mesh with zones of size Ax and Ay in the x- and y-directions. Let i be

a unit normal to a face 4, . The governing equation is taken to be

88_]: +VxE=0 (2.2)

In order to obtain the most general interpretation of eqn. (2.2), we think of applying this equation
to a two-dimensional face of a three-dimensional mesh; please see Fig. 1 from Balsara [6]. We
wish to project the governing eqn. (2.2) into a space of test functions. However, we need to
devise a projection strategy that is applied to the faces of the mesh, this is done as follows. Our

test functions are chosen to be identical to our trial functions. First we multiply the governing

equation by the test function ¢ . Next, we restrict our attention to the face 4, by taking a dot

product with the unit normal n to that face. We then integrate over that face to get

Q(I(ﬁ.gw dAn}r j (¢ E)-dZ—jﬁ-[(v;zs)xE]dAn =0 (2.3)

at A, 04,



The boundary of the face under consideration is denoted by 04, .The infinitesimal vector d 7 in

the middle term of eqn. (2.3) runs along 04, and denotes the length of the element. The

existence of a unit normal, n, lends a right-handed directionality to di. Eqn. (2.3) gives us the
desired Galerkin projection strategy; but please realize that it applied to a curl-type equation in
the faces of the mesh. Notice that the second term in eqn. (2.3) is interpreted in a weak form
using a multidimensional Riemann solver and is analogous to the flux term in a traditional DG
method for conservation laws. The third term in eqn. (2.3) is analogous to the volume term in a

traditional DG method for conservation laws.

As with traditional DG methods, observe that when the test function is taken to be ¢=1
we retrieve the traditional Yee-type update equation for the mean magnetic field within face 4, .

The third term in eqn. (2.3) then becomes zero and we see that the mean magnetic field within a
face is updated by the electric field that resides in the edges of that face. This electric field is
obtained by using multidimensional Riemann solvers. For a three-dimensional problem,
quadrature points can be chosen along each edge so that the middle term is evaluated with
suitable accuracy by invoking multidimensional Riemann problems at each of those quadrature
points. In two dimensions, the edge integral reduces to a single evaluation of the electric field at
the vertices of the mesh for each sub-step in the Runge-Kutta method. When the test function is
not unity, the third term in eqn. (2.3) also begins to contribute. The electric field that is to be
used in the third integral of eqn. (2.3) can be obtained via one-dimensional Riemann problems
that use the magnetic field on either side as inputs. (While the normal component of the magnetic
field will not have a jump; the transverse component(s) will have a jump. This ensures that the
Riemann solver can introduce dissipation as needed.) Notice too that having a perfect Yee-type
update for the mean magnetic field is sufficient to ensure that the magnetic field remains

divergence-free for all time.

It is easiest to appreciate eqn. (2.3) via some simple examples. In order to provide a point
of reference to the reader, we catalogue the explicit update equations for the magnetic field

components on a two-dimensional mesh. Let us say that a two-dimensional zone has an extent

[-Ax/2,Ax/2]x[-Ay/2,Ay/2]. Within the right face of this zone, let the x-component of the



magnetic field have variation given by (i.e., we are explicitly providing the formulation of

RKDG or PNPM schemes that are up to third order accurate):-

2
B (y,t)= B} (t)+ B: (z)(ALyj+B;, @)([Aly} _%J (2.4)
In the above equation, the modes of the x-component of the magnetic field are endowed with
time variation, just as in the traditional DG formulation. Also please note that the x-component is
denoted with a superscript “x” because the subscripts are used to denote the modes. This is a very
convenient notational simplification that is maintained throughout this paper. Using test
functions that are identical to the trial (or basis) functions in eqns. (2.3) and (2.4), we obtain the

update equations

dB:(1) 1, .. .

#+A—y(15 (y=Ay/2)-E*(y=-Ay/2))=0 (2.5a)
1dB;(1) 1, . . 1.

ET+E(E (v=ty/2)+E (yz_Ay/z))_A_y<E (v))=0 (2:30)
1 dB,(t) 1 .. . 2 /[y ),

180 di +6Ay(E (y=tp/2)-E (y:_Ay/z))_A_y«A_ij (y)>:() (229

Eqn. (2.3) is crucially important for deriving the above equations. Here E*(y=Ay/2) and

E*(y=—Ay/2) are electric field components that are obtained at the endpoints of the right face.
They are obtained by the application of a multidimensional Riemann solver. Several
concordances with traditional DG are readily visible from eqn. (2.5). For example, we see that
the factors 1/12, 1/180 and 1/2800 are analogous to a mass matrix. Because we have a Cartesian
mesh with a mutually orthogonal set of trial/basis functions, our mass matrix is diagonal. Also
notice that the terms within angled brackets, i.e. terms with < > , represent line integrals within a
face; these terms with an angled bracket are to be obtained with a suitably high order quadrature

along each face of the mesh. In this work, we use the well-known one-dimension Gauss-

Legendre quadrature to carry out the facial integrals; though see Stroud [52] for the two-



dimensional integrals that are needed in three-dimensional formulations. One dimensional

Riemann problems in the right face being considered will furnish the E* ( y) component of the

electric field that is to be used in the angled brackets. These one-dimensional Riemann problems
are solved at each of the quadrature points in the face. Recall, that when the induction equation is
coupled to the rest of the MHD system, the Riemann solvers will anyway have to be invoked in
the faces just for updating the conserved variables. Consequently, a full-fledged RKDG or
PNPM scheme will suffer from no loss in efficiency due to the invocation of the one-

dimensional Riemann solvers in the faces of the mesh.

For the sake of completeness, let us also quickly write the y-component of the magnetic

field in the top face of the zone being considered as
Ax) 12

B (x.1)=B] (1)+B) (x)[ﬂng (t){(iT 1 ] (2.6)

As in eqn. (2.4), the modes in eqn. (2.6) have been endowed with time variation. Again using

several test functions in eqn. (2.3) gives the update equations for the modes in eqn. (2.6). We get

dBy(t) 1 ,_. -
dt( )——(E (x=Ax/2)-E (x=-Ax/2))=0 (2.72)
1 dB}(t | . 1.
E#—z—(E (x=Ax/2)+E* (x=—Ax/2))+—(E* (x)) =0 (2.7b)
1 dB, () 1 , . : 2 :
L dt( )_6 (E*(x=Ax/2)-E (x:—Ax/2))+—<( X jE (x)>=0 2.7¢)

Eqns. (2.5) and (2.7) show us that the temporal update has been turned into a system of ODEs in
each of the faces of the mesh. Consequently, it is appropriate to use strong stability-preserving
Runge-Kutta timestepping schemes for the temporal evolution of the PDE. Eqns. (2.5a) and
(2.7a) taken together also ensure that the mean magnetic field components within the faces of the
mesh preserve the divergence-free property at a discrete level. This too is very analogous to the
traditional RKDG schemes for conservation laws where the conservation is ensured by the

lowest modes in the DG expansion.
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I1I) Divergence-Free Reconstruction

This topic has already been described quite extensively in the literature by Balsara [5],
[6], [7], Xu et al. [49] and Balsara and Dumbser [20]. Therefore, we only present sufficient
information here for the second order case in two-dimensions. Some mathematical details of the
second order accurate case have been catalogued in Appendix A. The third order accurate case is
relegated to Appendix B. We describe the second order case here so that we may set the stage for
the von Neumann stability analysis that follows in Section V. For a more thorough discussion,

the reader is invited to look up the previously-cited references and the Appendices of this paper.

Fig. 1 shows how the divergence-free reconstruction is carried out in the shaded zone.
The profiles of the facial magnetic field components are also shown. Fig. la shows piecewise
constant magnetic field components in the faces; i.e., the first order case. Fig. 1b shows
piecewise linear magnetic field components in the faces; i.e., the second order accurate case. The
task of the divergence-free reconstruction is to reconstruct the magnetic field in a pointwise
divergence-free fashion in the interior of the shaded zone. The reconstruction should be such that
the magnetic field in the shaded region matches the magnetic field components in the bounding

faces of this zone exactly.

We assume that Fig. 1 pertains to a reference square with extent

[-1/2,1/2]x[-1/2,1/2]. Let the mean magnetic field components in the right and left faces of
Fig. 1 be denoted by B;™ respectively. Similarly, let the mean magnetic field components in the

top and bottom faces of Fig. 1 be denoted by B;” respectively. (Any rectangular element can be

remapped to a reference square by suitable linear rescaling of the coordinates and the magnetic
field components.) The field components are not independent since they are related by a discrete
divergence-free condition. On the reference element, the discrete divergence-free condition is

given by
(By' =B, )+(B) -B))=0 (3.1)

As a result, we see that the constant profiles in the faces of a zone in Fig. 1a only carry three
independent pieces of information. Fig. 1a, which pertains to first order of accuracy, is only for

informational purposes. The schemes of interest have second and third order of accuracy.
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Likewise, the linear profiles in the faces of the zone in Fig. 1b only carry seven (not eight)
independent pieces of information. (I.e., each face has a mean value and a slope, but the mean

values are related via eqn. (3.1).) The magnetic field components in the right and left faces of

Fig. 1b will also have piecewise linear slopes in the y-direction given by Bﬁft respectively.

Likewise, the magnetic field components in the top and bottom faces of Fig. 1b will also have
piecewise linear slopes in the x-direction given by B)* respectively. Therefore, at the right and

left faces of the reference element, the divergence-free reconstruction in the interior will have to

match the two linear profiles for the x-component of the magnetic field given by
B*(y)=B," +By (3.2)

Similarly, at the top and bottom faces of the reference element, the divergence-free
reconstruction in the interior will have to match the two linear profiles for the y-component of

the magnetic field given by
B (x)=B)* + B x (3.3)

We now turn our attention to the divergence-free reconstruction of the magnetic field in the

interior of the zone shown in Fig. 1b.

We want the reconstructed magnetic field in the interior of the zone to be pointwise
divergence-free everywhere within the zone. This includes the boundary of the zone. We
therefore want the x-component of the magnetic field to match eqn. (3.2) at the right and left
boundaries of the reference element. Furthermore, we want the y-component of the magnetic
field to match eqn. (3.3) at the top and bottom boundaries of the reference element. If the
polynomials used for the reconstruction are restricted to have linear variation, there are not
enough degrees of freedom to match the seven independent pieces of boundary information. We,

therefore, look for magnetic field profiles of the form

B (x,y) = a, +a,x +a,y+ a, (x2—1/12) ta,xy
(3.4)
B'(x,y) = b, + b,x + by + b, xy + b (y-1/12)
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Notice that each of the two above equations have two additional terms on the right hand side that
go beyond simple linear variation. Maintaining a pointwise divergence-free condition anywhere

within the zone then imposes three additional constraints on the coefficients in eqn. (3.4). The

constraints that emerge from asserting 0,B*(x,y)+0,B"(x,y) =0 are:

2a,+0,=0; a,+2b,=0; a +b =0 (3.5)

xx Xy xy X y

With these additional constraints, we see that the coefficients in eqn. (3.4) only have seven
degrees of freedom which match exactly with the seven independent pieces of information
represented by the linear profiles of the magnetic field components in the boundaries of the zone,
see eqns. (3.2) and (3.3). Appendix A presents more information on exactly how the seven
degrees of freedom for second order accurate reconstruction can be matched with the seven
independent pieces of information represented by the linear profiles of the magnetic field

components in the boundaries of the zone.
Appendix B describes the divergence-free reconstruction of magnetic fields at third order.
IV) Multidimensional Riemann Solvers for the Induction Equation

Fig. 2 shows the four states RU (right-up), LU (left-up), LD (left-down) and RD (right-
down) that come together at a vertex of a two-dimensional Cartesian mesh. These four states
contribute to the multidimensional Riemann problem at that vertex. (Such states are only shown

for a few vertices in the figure. Each vertex will, of course, have different values for these four

states.) The magnetic field (B;U,B}{U) in the RU state is obtained by applying the divergence-
free reconstruction from the previous section to the zone that lies to the right-upper side of the

vertex in question. The magnetic field (BEU,BL}'U) in the LU state is obtained similarly from the

zone that lies to the left-upper side of the vertex in question. The magnetic field (BE‘D, B;, ) in the
LD state is obtained analogously from the left-down side of the vertex in question. The magnetic
field (BI’;D,B}:D) in the RD state is also obtained similarly from the right-down side of the vertex

in question. Please realize that the above four sentences describe magnetic fields that come from
the four different zones that come together at the vertex. The multidimensional Riemann solver

then gives us the z-component of the electric field at that vertex. Eqn. (1.1) can also be written in
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flux form. When that is done, the z-component of the electric field is given by the first
component of the y-flux or the negative of the second component of the x-flux. These fluxes can

be obtained from eqns. (12), (13) and (14) of Balsara [16].

For the simple problem associated with the induction equation it is not possible to endow
any sub-structure to the multidimensional Riemann solver. As a result, the multidimensional
Riemann solver can be obtained either by using the one-dimensional Lax-Friedrichs (LF)
Riemann solver as a building block or by using the one-dimensional HLL Riemann solver as a
building block. Both building blocks have their merits. They result in different multidimensional
wave models with slightly different, though comparable, dissipation characteristics. We discuss
each of these in the next two paragraphs along with the electric fields that they give rise to.
Please note that even though the multidimensional Riemann solver uses four one-dimensional
Riemann solvers, it is not a repeated application of one-dimensional Riemann solvers. The
resolved state and fluxes coming from a multidimensional Riemann solver can be very different

from the one-dimensional fluxes.

The one-dimensional LF Riemann solver has extremal speeds in the x-direction that are

bounded by —|v,| to |v,| . In the y-direction, the extremal speeds are bounded by

As a result, the multidimensional Riemann solver that uses the one-dimensional LF Riemann

solver as a building block will have a multidimensional wave model that has an extent of

(=PI,

incoming states, eqns. (12), (13) and (14) of Balsara [16] will yield the multidimensionally

v Vy|:|. For this multidimensional wave model, and for a given set of

X

\%

o’ T x

M

upwinded fluxes. With a little rearrangement, the resulting electric field can be written as a
centered part and a dissipation part. From the multidimensional LF Riemann solver we get the z-

component of the electric field at a vertex as
=V, (B + By + By + By ) [4= v, (Biy + By + Bl + Biy )[4
| |( +B* /2 +B" /2) ( +B§D)/2— +BV /2)

The first line in the above equation shows the centered electric field. The second line shows the

4.1)

dissipation terms. In order to bring out the multidimensional nature of the above equation, let us
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compare eqn. (4.1) to the canonical form of the one-dimensional LF flux for conservation laws.
It is easy to see that the y-directional jump in the mean x-component of the magnetic field
contributes to the dissipation term. Likewise, the x-directional jump in the mean y-component of
the magnetic field also contributes to the dissipation term. Notice that eqn. (4.1) has a rather nice
form where the dissipation can be truly multidimensional. For higher order schemes, the size of
these jumps becomes smaller, resulting in reduced dissipation. The multidimensional HLL
Riemann solver is described in detail in Appendix C. Eqns. (4.1) and (C.1) have been specialized
for the induction equation with a constant velocity. When the velocity has piecewise variation
within a zone, please use eqns. (12), (13) and (14) of Balsara [16] to obtain the multidimensional
state and fluxes from the multidimensional Riemann solver. (The inclusion of substructure in
those equations can be ignored.) Please also see Section VI of that same paper for
implementation-related details. Eqns. (2) to (7) of Balsara [14] describe how the extremal speeds
are derived for a multidimensional HLL Riemann solver on structured meshes. Please see the
paragraph after eqn. (17) of Balsara [14] to understand how resetting the extremal speeds yields
the multidimensional LLF Riemann solver. Eqn. (35) of Balsara [14] then describes how the z-

component of the electric field is obtained from the multidimensional fluxes.

The multidimensional version of the LF Riemann solver, as well as the multidimensional
version of the HLL Riemann solver, both have excellent multidimensional dissipation
characteristics. This is made most apparent at first order accuracy. (I.e., when used without the
higher order reconstruction, our multidimensional Riemann solver-based method becomes a first
order accurate method that is amenable to the ensuing analytical treatment.) At first order, the
divergence-free reconstruction is trivial. Also at first order, the electric field in eqn. (4.1) can be
written explicitly by using the mesh function for the magnetic field components. We use the

indexing of the mesh in Fig. 2 to write the electric field explicitly as

V,V Vx

Elpinn =V, (Bl);2,1 + B, )/2 — Vs (Bl}:m + By, )/2 - T(Bl);z,l — By, ) + T(Bl}:ln — By ) (4.2)

The dissipation from the multidimensional LF Riemann solver is made even more apparent in the
above equation. The first two terms show the centered electric field while the next two terms

show the dissipation. In this very simple limit, eqn. (4.2) is just the CTU scheme by Colella [33].
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An equation that is analogous to eqn. (4.2) can be written for £, , , . Using eqn. (2.5a), we

X

can now write an update equation for B}, . This is the magnetic field that is collocated in the

right face of the (0,0) zone. After a little massaging of the resulting equation, and with the help

of the discrete divergence condition, we get

BljZl BljZ 1) Z_;( 11/2+Bgl/2 /2 1 1/2 Bg:—l/Z)/z)

B, _ (
dt 2Ay

(4.3)

+ 2\2)( (Bér/z,o —2B),,+B,, ) + %(Bf;z,l —2B),,+ B, _, )

The first two terms on the right hand side of eqn. (4.3) clearly show the central form of the
original PDE associated with the induction equation. The last two terms on the right hand side of
eqn. (4.3) show the mesh-dependent parabolic dissipation associated with the multidimensional
LF Riemann solver. Because of the presence of these parabolic terms, the multidimensional
Riemann solver always plays a stabilizing role in the induction equation. The multidimensional
HLL Riemann solver will of course show smaller levels of dissipation than the multidimensional
LF Riemann solver, but it can also be reduced to a form that is entirely analogous to eqn. (4.3).
These results do show substantial dissipation at first order, but at higher orders this large

dissipation will be mostly mitigated by the higher quality reconstruction.

We also point out that the simple expressions in eqns. (4.1) and (C.1) are only a
consequence of our very simple model problem, i.e. the induction equation. When the full MHD
system is used, the structure of the multidimensional Riemann solver will be more complex.
However, the essential insight that the multidimensional Riemann solver provides appropriate

stabilization in multiple dimensions carries over.
V) von Neumann Stability Analysis of RKDG Schemes for the Induction Equation

Please realize that the induction equation is fundamentally multidimensional, so any
meaningful von Neumann stability analysis should at least be two dimensional. Periodic
boundary conditions are assumed for all the von Neumann stability work reported in this paper.
In this section we show how such a stability analysis is carried out. In the next section we will

present results from the von Neumann stability analysis of the induction equation. The von
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Neumann stability analysis at first order can be carried out analytically which is why Sub-section
V.1 is devoted to that task. At higher orders, i.e. for RKDG schemes with P >1, one has to use a
computer algebra system to carry out the von Neumann stability analysis at each different order.
For this reason, Sub-section V.2 shows how such a stability analysis is carried out for P=I
RKDG schemes. Once the general principle is understood, it can be extended to even higher

orders.

The two-dimensional von Neumann stability analysis that we present here is restricted to

a constant velocity vector v=v ¥+v J and a uniform mesh with zone sizes Ax and Ay in the

x- and y-directions. We also restrict our focus to a linear RKDG scheme, i.e. one that does not
incorporate limiters. Von Neumann stability analysis forces us to restrict our focus to linear
RKDG schemes and previous work on the RKDG schemes for scalar advection (Zhang and Shu

[52], Liu et al. [41]) was also similarly restricted.
V.1) von Neumann Stability Analysis of the First Order (i.e., P=0) RKDG Scheme

The first order RKDG scheme (P=0) corresponds to a standard finite volume scheme,
where only averaged quantities are updated. For the present scheme, these would only be the
facially averaged magnetic field components. At first order the problem can be solved
analytically. It consists of realizing that the second term on the right hand side of eqn. (4.3) can
be rewritten exclusively in terms of the x-components of the magnetic field if the discrete

divergence free condition from eqn. (3.1) is used. In other words, realize that we can write

(Boy,m —Boy,—l/z) = _(Bl)jz,o —Bfuz,o)AJ’/ Ax and analogous expressions in the other zones. Thus
eqn. (4.3) becomes
de v X X v ¥ *

120 y_( B )— = (B3/2,0 _B—1/2,0)

dt - 2Ay 121 1'/2,71 E
(5.1)

X y

V X X X V X X X
+ Ax (Bz/z,o - 2Bl/2,0 + B—I/Z,O ) + E(Bl/u - 2Bl/z,o + 31/2,71 )

Observe now that eqn. (5.1) is still a multidimensional equation for the time evolution of By, .

However, it is an advection diffusion equation that is written entirely in terms of the x-

component of the magnetic field. The diffusion terms are of course dependent on the mesh size
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and tend to zero as the mesh becomes finer and finer. In practice, the amount of diffusion
imparted by our Riemann solver-based scheme also depends on whether the magnetic field has a
smooth variation on the computational mesh or whether it has local discontinuities. It is,
however, very instructive to show that the use of the multidimensional Riemann solver gives us
an update that can be written as a centered update plus a diffusive part, which is always
stabilizing in a fully multidimensional sense. An analogous equation can be written for the time-

evolution of the y-component of the magnetic field and is given by

dB’ v M B
—;;/2 = _‘2 fx (Bly,l/z _B—yl,l/z ) - 9 yy (Boy’w B Oy’_m)
A (5.2)

X

+ VAx (Bljjl/Z - 2Boy,l/z + Bfl,l/Z ) + %(Boy,m - 2Boy,l/z + Boy,—vz )

This simplification only obtains at first order when the discrete divergence condition holds. At

higher orders, we do not get any analogous simplification.

Endowing the x-component of the magnetic field with Fourier dependence, we can use
eqn. (5.1) to obtain the amplification factor of the scheme after one first order accurate timestep.
Requiring the amplification factor of the scheme to be bounded by unity, we get the CFL

condition:-

v At
+
Ax

A yAt
Ay

<1 (5.3)

Please realize that at first order the discrete divergence-free condition relates the Fourier
coefficients of the x-component of the magnetic field to the Fourier coefficients of the y-
component of the magnetic field. As a result, no separate Fourier analysis is needed for the y-

component of the magnetic field.
V.2) von Neumann Stability Analysis of the Second Order (i.e., P=1) RKDG Scheme

Expressed in terms of moments, each face of the mesh will have a mean magnetic field
component and its slope along the face when the P=1 RKDG discretization is used. Thus each
face carries two pieces of information, which can equivalently be mapped to two nodal values for

the magnetic field component that resides in that face. Please see Fig. 2 which shows the nodal
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points as well as the magnetic field components associated with those nodes for the zone (0,0).
The nodal locations are chosen to be the Gauss-Legendre quadrature points. (Other quadrature

points were tried but did not seem to make a difference in the stability analysis.) Thus the right
face for the zone (0,0) has two nodal values B, and B, for the x-component of the magnetic
field. The left face of the same zone has two nodal values B, and B;, for the x-component of
the magnetic field. Our von Neumann analysis is carried out in terms of Fourier modes. The

i(kex+i, y)

modes have spatial dependence of the form e with wave numbers k_and k, on a

uniform mesh with zones of size Ax and Ay . Because we use periodic boundary conditions, the

nodal values in the right and left faces of the zone (0,0) are related by the phase shifts

x _ px —ikAx . X _ px _—ikAx
B, =Be ; B,=Be (5.4)

The top face of the zone (0,0) has two nodal values B}, and B, for the y-component of the

magnetic field. The bottom face of the same zone has nodal values B}, and B, for the y-

component of the magnetic field. Again, the nodal values are related by the phase shifts

y _ py kA A y _ py ~ikAy
B, =Ble ; B,=Ble (5.5)

We incorporate eqns. (5.4) and (5.5) in the discrete divergence-free condition. The discrete

divergence-free condition applied to zone (0,0) then enables us to write

’ ’ Ay l_efikXAx ; .
Bn2 = _Bnl _E—(Bnl +B112) (56)

1 _ e—ik‘l.Ay

We easily see that, with the discrete divergence-free condition incorporated from eqn. (3.1), and
also with the phase shifts from eqns. (5.4) and (5.5), we have obtained a significant
simplification in eqn. (5.6). For the sake of clarity, let us amplify the previous sentence a little

further. The x-component of the magnetic field in the right face of zone (0,0) is given by

Bino = (B,f, + B, ) / 2 . Because of condition (5.4), the x-component of the magnetic field in the

left face is then given by Bj_,,, = (B;‘] + B, )e*"""‘M / 2 . Use of eqn. (5.5) shows us that a similar

consideration applies to the y-components of the magnetic fields in upper and lower faces of
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zone (0,0). The discrete divergence-free condition in eqn. (3.1) then gives us eqn. (5.6). The

independent nodal values within zone (0,0) are simply B

nl

B’,and B) . The nodal value B}, is

not independent because it is related to B, , B),and B

nl

via eqn. (5.6). All of the other magnetic

field components at all of the nodes shown in Fig. 2 can be related to B, , B;,and B}, with

nl
phase shifts that are analogous to eqns. (5.4) and (5.5). The discussion in this paragraph,

therefore, provides the stage setting for the von Neumann stability analysis.

Observe something interesting about Fig. 2. The nodes shown in Fig. 2 are indeed the
only nodes that will contribute to the time-update of the magnetic fields that reside in the faces of
the zone (0,0). Thus Fig. 2 shows us the full stencil of zones that contribute to zone (0,0).
However, the unfilled nodes in Fig. 2 finally drop out of the final von Neumann stability analysis
as will be discussed in the end of this Sub-section. In each of those nine zones, we can relate the
nodal values of the magnetic field components to their modal values. Assuming Gauss-Legendre

quadrature, this can be explicitly done for the right face of zone (0,0) as
Biino=(Bi+BL)/2 ¢ Blno=(BL-Bi)3 (57)

In the above equation, By, , is the mean x-component of the magnetic field in the (1/2,0) face

shown in Fig. 2 and B}, ,, is the linear variation (i.e., y-directional slope) for the same magnetic

field component in the same face. Similarly, for the upper face of zone (0,0) we have
By = (Bnyl +B,, )/2 ) Bl = (Bnyz - B, )\/g (5.8)

In the above equation, Bj,, is the mean y-component of the magnetic field in the (0,1/2) face
shown in Fig. 2 and B, is the linear variation (i.e., x-directional slope) for the same magnetic

field component in the same face. With these mean values and slopes specified, we can make the
divergence-free reconstruction from Section III in each of the nine zones shown in Fig. 2. The
reconstruction depends only linearly on the facial values and their slopes. Using the Fourier

dependence from equations like eqn. (5.4) and (5.5), the divergence-free reconstruction in each

of the nine zones of Fig. 2 can be expressed exclusively in terms of B}, , B,and B}, . This is
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where we have to rely on the strong capabilities of modern computer algebra systems. We used

the Mathematica and Macsyma computer algebra systems.

A glance at the update equations (2.5) and (2.7) shows that we will need the electric
fields at the vertices and also the electric fields at the nodal points within each face. Let us first
focus on the electric fields at the vertices. Specifically, let us focus on the vertex of the zone

(0,0) that lies North-East of the zone center in Fig. 2. Divergence-free reconstruction within the

(1,1) zone can be used to find (B,’;U,BgU ) An analogous process in the (0,1) zone can be used to

find (BzU,BZ’U) . Similarly, the (0,0) zone can be used to find (BZD,B{D). In the same way, (1,0)

X

zone can be used to find (BRD,B,ﬁD). These are the four states that can be input into the

multidimensional Riemann solver to get the z-component of the electric field; see eqns. (4.1) or

(C.1). Also recall that all these four states described above can be expressed exclusively in terms

of B’

nl >

B’,and B, using a computer algebra system. As a result, the z-components of the
electric field at all of the vertices of the zone (0,0) shown in Fig. 2 can be expressed exclusively
in terms of B), , B),and B}, . Modern computer algebra systems are powerful enough to handle

this mathematics precisely.

We now switch focus to obtaining the z-component of the electric field within each zone
boundary for the zone (0,0) in Fig. 2. These electric fields are needed for the angled brackets in
eqns. (2.5b) and (2.7b). To get the electric fields at the two nodes in the right face of the (0,0)
zone, we solve the x-directional Riemann problem at those two nodes. The left state at either of
those two nodes is obtained from the divergence-free reconstruction in zone (0,0). The right state
at either of those two nodes is obtained from the divergence-free reconstruction in zone (1,0).
Notice that while the x-component of the magnetic field will be continuous across that right face,
the y-component of the magnetic field can indeed have a jump in it. That jump is crucial for
introducing dissipation that stabilizes the scheme. (Let us consider the simple example for the

one-dimensional LLF Riemann solver which is applied in the x-direction. Let the left state have

magnetic field vector B;x+ B; y and let the right state have magnetic field vector B,x+ B;) .

. * A * A . . 1 A A
The resolved magnetic field vector B* x+ B” j at the zone boundary is JustE(Bf + B;)x +B)y
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if v. >0 and %(BLK +B1§))%+B,{ y if v_<0 . The corresponding z-component of the electric

field at the zone boundary is given by v yBx* —v_B”".) The electric fields at the other nodal points

within the zone (0,0) are obtained similarly. They can all be expressed exclusively in terms of

x
Bnl 4

B’,and B) . Again, modern computer algebra systems are powerful enough to handle this

mathematics precisely.

Once the z-component of the electric field is obtained at the vertices of the mesh as well
as the facial nodal points, we are ready to evaluate the time rates of change shown in eqns.
(2.5a), (2.5b), (2.7a) and (2.7b). If we focus on the right face and the upper face of zone (0,0) in
Fig. 2, we can obtain the time rates of update for the magnetic field components that are

collocated to the nodes within those two faces. Operationally, this is done as follows. Eqn. (2.5a)

gives us dBg, , , / dt. Eqn. (2.5b) gives us dB;,, /dt . Differentiating eqn. (5.7) with respect to

time then allows us to obtain

dB,f] :ng;m,o_ 1 dB;C;I/Z,O dB,j,cz :dB&1/2,0+ 1 dB;;l/Z,O
dt dt 23 dt dt dt 23 dt

(5.9)

Eqn. (2.7a) gives us dBy,,, /dt. Eqn. (2.7b) gives us dB),,, /a’z . Eqn. (5.8) then allows us to

obtain
dB,ﬁ dB(iO,l/2 1 dB;;O,l/2 . dB;z ng;O,]/z 1 dB;;O,l/z
= - : -~ + (5.10)
dt dt 23 dt dt dt 23 dt

Now please realize that within the context of a von Neumann stability analysis that is based on

Fourier modes, the right hand sides of eqns. (5.9) and (5.10) are exclusively dependent on the
three nodal values B}, , B),and B} . Let us, therefore, pick the two equations in eqn. (5.9) and

the first equation in eqn. (5.10). The time rates of update can be formally written as
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B ,
% = AIIB::I + AIZB;:Z + A13B;1
t
de x x y
7”2 = Az,Bn1 + AzzB,;2 + ABB,;1 (5.11)

dB,,

= A31B;1 + A3zB;f2 + A33Bnyl

The nine coefficients on the right hand side of eqn. (5.11) form a 3x3 matrix, which we call

“A”. Those coefficients only depend on the velocity components v, and v, the zone sizes Ax
and Ay and the wave numbers k,  and k,. Appendix D explicitly catalogues the nine

coefficients on the right hand side of eqn. (5.11). It will enable interested readers to cross-check
their implementations in their computer algebra systems versus ours. Also note that eqn. (5.11),
along with the extra information from Appendix D, can be used as a semi-discrete von Neumann
(mode) analysis of the spatial operator independent of the time discretization in a so-called
method-of-lines approach. The spectrum of this discrete spatial operator might be useful in its
own right, and any follow-on researchers would then be able to apply their chosen time

discretization method to eqn. (5.11).

Taken by itself, eqn. (5.11) provides a continuous in time but second order discrete in
space von Neumann stability analysis of the induction equation. However, it can be coupled to a
suitable RK2 scheme to obtain the amplification matrix of an RKDG scheme that is second order
in space and second order in time. Use of a suitable RK3 scheme provides the amplification
matrix of an RKDG scheme that is second order in space and third order in time. This process
can be continued to get a sequence of RKDG schemes that are second order in space and at least
second order accurate in time. The stability properties of such schemes will be analyzed in detail

in the next section.

It is also useful to make a special note about the stencil depicted in Fig. 2. Only the filled
nodal points truly contribute to the update of the nodal points that lie on the faces of the (0,0)
zone. There are some further unfilled nodal points shown in zones (1,1), (-1,1), (-1,-1) and (1,-1).
They can be used to simplify the divergence-free calculation procedure, but they eventually drop
out of the von Neumann stability calculation. Thus the entire von Neumann stability analysis

only relies on the nodal points that reside on the faces of zones (0,0), (1,0), (-1,0), (0, 1) and (0,-
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1). In that sense, the von Neumann stability analysis described here truly pertains to a RKDG

scheme with the smallest stencil possible.

While the present section has only studied the P=1 RKDG schemes, the process can be
extended to RKDG schemes with P>1. For P >3 we found that the computer algebra system
itself couldn’t perform the simplifications that were needed to keep the solution procedure
tractable. In other words, DG discretizations that are up to third order accurate in space have
been analyzed in this paper and we report on them in the next section. For P >3 the divergence-
free reconstruction is not uniquely defined by the normal component of the magnetic field.
However, least squares minimization, as described in Balsara [7] or Balsara and Dumbser [20], is
sufficient to yield uniquely defined magnetic fields. This least squares minimization is equivalent
to minimizing the magnetic energy, or equivalently, minimizing the variation in the magnetic

field. The resulting schemes preserve the desired order of accuracy.
VI) Results from the von Neumann Stability Analysis of RKDG Schemes

A von Neumann stability analysis, especially one that is done for a full scheme in two-
dimensions, can give us a wealth of information. The most important information corresponds to
the stability limit of the Runge-Kutta timestepping strategy; i.e. the largest possible CFL number
of the scheme. This is displayed in Sub-section VI.a for RKDG schemes for the induction
equation at first, second and third orders of accuracy. We can also use von Neumann stability to
study the isotropic propagation of wave modes in all directions on a computational mesh. This is
presented in Sub-section VI.b. Once a stable algorithm has been documented, we can also use
von Neumann stability analysis to evaluate the stability of various variants upon the basic
algorithm. In other words, we ask:- Even if it is possible to obtain simpler divergence-free
RKDG schemes for the induction equation, are they all stable? This question is addressed in Sub-

section VI.c.
Vl.a) Stable CFL Numbers for Divergence-free RKDG Schemes for the Induction Equation

Fig 3 shows the domain of stability for the first order (P=0) DG scheme with forward
Euler timestepping. The x- and y-axes of the plot show the CFL number in the x- and y-

directions. In other words, the axes display the x- and y-directional Courant numbers given by
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C,=|v,|At/Ax and C = |V},|At / Ay . For our purposes, the multidimensional CFL number that

is used all through this paper is defined by ,/C? + Cy2 . The CFL number is just the radius of the

largest circle (in the Euclidean norm) remaining within the stability region in the ensuing Figs. 3,

4 and 5. For the stability analysis presented in this paper, the mesh is Cartesian with Ax =Ay . (In

practice, the ratio Ay/Ax can always be absorbed in the definition of the x- and y-directional
CFL numbers.) The color in Fig. 3 shows the maximum amplitude of the amplification factor
over all wave modes. The white lines identify the boundary of the domain of stability; i.e., where
the amplification factor reaches unity. Within the domain of stability, the amplification factor is
less than or equal to unity for all possible wave modes that can propagate on the mesh. Notice

that the domain of stability exactly matches the prediction from eqn. (5.3).

Operationally, Fig. 3 was obtained from a computer code that divided the domain shown
in the plot into little cells, or pixels. Each such cell corresponds to an x-directional and a y-
directional CFL number. (Thus the choice of a specific x-directional and y-directional CFL
number is tantamount to choosing an x-directional and a y-directional velocity.) For each such

cell we evaluated the amplification factor for wave modes

(kxAx,kyAy)E[—72'/2,72’/2]X[—7Z'/2,7Z’/2]. In practice, the full range of CFL numbers are

discretized by 4012 cells and the full range of wave modes is also discretized by 4012 cells. In
general the amplification factor is a complex number. The maximum absolute value from that
scan was then colorized and plotted out for each pixel/cell. The result is shown in Fig. 3 which
gives us a very clear visual understanding of the stability of the scheme. Unless stated otherwise,

all figures in this section correspond to the use of a LF flux in one and two-dimensions.

Fig. 4 shows the domain of stability for the second order (P=1) DG scheme with several
different timestepping strategies. Figs. 4a and 4b show the result of using the second and third
order SSP schemes from Shu and Osher [90]. Fig. 4c shows the result of using the RK(5,4)
scheme from Spiteri and Ruuth [46] which is also documented in Gottlieb [38]. RK(5,4) is a
five-stage, fourth-order accurate in time SSP Runge-Kutta scheme with some very enhanced
stability properties, which is why we chose it for our default fourth order accurate in time Runge-
Kutta scheme. The white curves identify the boundary of the domain of stability. Please recall

that the matrix “A” from eqn. (5.11) is a 3x3 matrix. The resulting scheme, with a Runge-
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Kutta timestepping, will also produce a 3x3 matrix whose complex eigenvalues can then be
evaluated by a computer program. For von Neumann stability analysis, we are interested in the
eigenvalue with the largest amplitude. This largest amplitude was colorized and displayed in Fig.
4. Comparing Figs. 4a and 4b we clearly see that the three-stage scheme permits a better CFL
number. Focusing on Fig. 4c we can also see that the RK(5,4) scheme shows its worth by
permitting a much larger domain of stability. It is important to realize that this stability analysis
is truly two-dimensional and the boundaries of the stability domain indeed show the effect of
mesh imprinting. We will have more to say about the important topic of mesh imprinting in the
next Sub-section. We also mention that when forward Euler timestepping is used, the P=1 DG
scheme is unstable; a result that is unsurprising given the findings of Cockburn and Shu [31],

Zhang and Shu [52] and Liu et al. [41]. Please also see Table 2.2 from Cockburn and Shu [31].

Fig. 5 shows the domain of stability for the third order (P=2) DG scheme with several
different Runge-Kutta timestepping strategies. Fig. 5a shows the result of using the third order
SSP scheme from Shu and Osher [90]. Fig. 5b shows the result of using the RK(5,4) scheme.
Again we see that the RK(5,4) scheme offers much-improved stability properties. We also
mention that with first or second order Runge-Kutta timestepping the P=2 DG scheme is

unstable at fixed CFL number, which also reflects the results from Cockburn and Shu [31].

The plots shown in Figs. 3 to 5 enable us to make a table that is suitable for practical use.
Recall that the CFL number is just the radius of the largest circle (in the Euclidean
norm) remaining within the stability region in Figs. 3, 4 and 5. Table I shows the maximal CFL
number for DG schemes with various orders of spatial accuracy that are used in conjunction with
Runge-Kutta schemes with various orders of temporal accuracy. A dash in Table I indicates that
the scheme is unstable. Observe that the limiting CFL in Table I is very compatible with the
limiting CFLs for DG schemes from Cockburn and Shu [31]. Please see Table 2.2 from
Cockburn and Shu [31]. Recall that the limiting CFL analysis of Cockburn and Shu [31] is
strictly one-dimensional. When the flow becomes mesh-aligned, it is not possible to have a CFL
that is better than the one-dimensional one. I.e. while the induction equation is truly
multidimensional, it is indeed the one-dimensional effects that set the CFL. This suggests that a
full-fledged RKDG scheme for divergence-free MHD will have CFL numbers that are

competitive with its Euler counterparts. This bodes well for the construction of divergence-free
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RKDG schemes for MHD. Also notice that the classical RK4 scheme has a limiting CFL number
that is substantially lower than the SSP-RK(5,4) timestepping scheme. This is consistent with

expectations because SSP-RK(5,4) incorporates an extra stage and has been designed to have a

large CFL.

All the previously-mentioned results in this Sub-section were for electric fields that are
evaluated using an LF Riemann solver in one- and two-dimensions. The electric field from the
multidimensional LF Riemann solver is explicitly catalogued in eqn. (4.2). An analogous
equation can be written for the multidimensional HLL Riemann solver; see eqn. (C.1). Also

recall that our analysis for the multidimensional HLL Riemann solver will be done with

c,=1.2|v,| and c, =12 |Vy

; 1.e., with “magnetosonic” signal speeds that are 20% larger than

the velocity. There is no need to repeat the details here because the overall finding is indeed the
expected one — the effective CFL number (evaluated w.r.t. velocities) is reduced by 20%. This
makes sense because the overall timestep in a code goes down as the maximum signal speed is
increased. If we were to plot figures for the multidimensional HLL Riemann solver that are
analogous to Figs. 3, 4 and 5, the resulting figures would indeed look entirely similar to the

original figures with a 20% scale reduction. For that reason, we do not repeat such figures in this

paper.

Table I shows the limiting CFL number for a large number of possible RKDG schemes.
The table shows spatial order of accuracy of DG schemes in the horizontal direction and
temporal order of accuracy of the Runge-Kutta timestepping in the vertical direction. The
CFL number is just the radius of the largest circle remaining within the stability region in

figures 3, 4 and 5.

P=0 P=1 P=2

RK1 0.7071 — —
SSP-RK2 0.7071 0.3161 —
SSP-RK3 0.8883 0.3904 0.2069
RK4 (classical) | 0.9846 0.4404 0.2318
SSP-RK(5,4) 1.5490 0.6366 0.3400
RKS (classical) | 1.1372 0.5079 0.2676
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VI1.b) Analyzing the Isotropic Propagation of Wave Modes for RKDG Schemes

We wish to study the wave propagation characteristics of RKDG schemes for the
induction equation. Any scheme will permit the longest wave length (smallest wave number)
modes to propagate with minimal damping. A better scheme should permit more modes to
propagate with minimal damping. While the accuracy of a scheme is related to the accuracy of
the amplification factor at small wave numbers, it is desirable to have an amplification factor that
is close to unity for a larger range of small wave numbers. Ideally, we would like to see a
situation where higher order schemes permit a larger range of long wave length (small wave
number) modes to propagate nearly undamped in all possible directions on a two-dimensional
computational mesh. Given the von Neumann stability analysis that we have constructed, this is
easy to demonstrate. Operationally, we choose a direction for the velocity vector. (The
magnitude of the velocity vector is set by the choice of CFL number. The directions of the
velocity vector will be specified in the next paragraph when the figures are discussed.) For that

direction of the velocity, we can obtain the full range of amplification factors for wave numbers

in the range (kxAx,kyAy)e[—;z/2,7z/2]><[—7r/2,7r/2]. This aforementioned range of wave
numbers allows us to examine all the wave modes that have all possible orientations on the

mesh. A scatterplot is then made of the amplification factor as a function of Ax,/k’ +k}2, . Each

choice of k5+ky2 picks out several pairs of wave modes (kx,ky) that have all possible

orientations with respect to the mesh. Since RKDG schemes are operated close to their

maximum CFL number, we choose a CFL that is 80% of the maximal CFL number from Table I.

Figs. 6a, 6b, 6¢c and 6d show the result of such a wave propagation study when the
velocity vector makes angles of 0°, 15°, 30 © and 45 ° to the mesh for the second order (P=1)
DG scheme with SSP-RK2. Figs. 7a, 7b, 7c and 7d show the result of such a wave propagation
study when the velocity vector makes angles of 0°, 15°, 30 © and 45 ° to the mesh for the third
order (P=2) DG scheme with SSP-RK3. (Please recall that in our model problem the velocity
vector sets the direction of the advection of the magnetic fields but the wave numbers determine

the orientation of the waves with respect to the mesh. The wave numbers also determine the ratio
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of the wavelength of the waves with respect to the mesh size.) We expect the reader to
intercompare Figs. 6 and 7; consequently, the amplification factors for these two figures have the
same vertical scale. We see that as the accuracy of the RKDG scheme increases, its ability to
isotropically propagate wave modes is also increased. For example, the smallest amplification
factors for the second order scheme in Figs. 6a, 6b, 6¢ and 6d lie between 0.6 to 0.8. Also notice
that several short wavelength modes in Fig. 6 have amplification factors that are in that range. By
contrast, all of the wave modes for the third order scheme in Figs. 7a, 7b, 7c¢ and 7d have
amplification factors that are larger than 0.8. Also notice that many of the long wavelength

modes in Fig. 7 have amplification factors that are indeed quite close to unity.

In all instances we see that wave modes which are close to the Nyquist limit of the mesh
are indeed damped; i.e, they have amplification factors that are less than unity. This is essential if
the numerical method is to remain stable. (The Nyquist limit on a mesh corresponds to waves

with a wavelength of just two mesh zones.)

VI.c) Is it Possible to have Simpler Divergence-free RKDG Schemes for the Induction

Equation?

As one can see from Section III, the divergence-free reconstruction entails a few more
terms that are required to make the method globally divergence-free. It is, therefore, natural to
ask, “Is it possible to have simpler divergence-free RKDG schemes for the induction equation?”.
In this Sub-section we focus on the two most natural simplifications that one might seek out and
show that in each instance the simplification results in a linearly unstable divergence-free RKDG
scheme. The two natural “simplifications” consist of:- a) simplifying the divergence-free
reconstruction and b) the use of centered fluxes instead of upwinded fluxes wherever possible.

We show below that either of the simplifications result in unstable schemes.

The first and most natural instinct is to try and simplify the reconstruction. For example,
it is very natural to imagine the following second order, piecewise linear reconstruction of the

magnetic field which is not globally divergence-free:
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B'(x,y) =a, +a,x +a,y
with a,=(B;"+B;")/2; a,=B;"~B, ; a,=(B," +B,") /2 6
B'(x,y) = b, + b, x + b,y

with b, =(B)"+B}")/2 s b, =(B)"+B)")/2: b, =B~ B}

Here By , B* , B," and B.* are defined exactly as in eqns. (3.2) and (3.3); consequently, the

syncopated reconstruction in eqn. (6.1) is fully specified. While this reconstruction will be

locally divergence-free within the zone of interest because it satisfies a, +b, =0 , it will indeed

produce jumps in the longitudinal component of the magnetic field at each boundary. Thus it is
not globally divergence-free. The most natural resolution is to take the arithmetic average of the
longitudinal magnetic field at each zone boundary. For the P=1 DG scheme described in this
paragraph, we carried out a von Neumann stability analysis and found it unstable. Indeed, it was
unstable with SSP-RK2, SSP-RK3 and SSP-RK(5,4), showing that it was unequivocally
unstable. To bolster this finding, we constructed a P=2 DG scheme for the induction equation

that was again not globally divergence-free and we found it to be unstable.

An examination of eqns. (2.5b) and (2.7b) suggests a second simplification to the P=1
DG scheme for the induction equation. We recognize of course that the electric fields at the
vertices of the mesh should be obtained from the two-dimensional Riemann solver. However, it
is natural to ask, “Can we simplify the evaluation of the angled brackets in those two equations?
I.e., can we use a centered flux instead of an upwinded LF or HLL flux in the angled brackets of
those two equations?” The answer from von Neumann stability analysis is an unequivocal
negative! As before, we also experimented with making similar simplifications for the P=2 DG

scheme for the induction equation and that too turned out to be unstable.

Based on these attempted simplifications we claim that the DG scheme described in
Sections II, III and IV represents an absolute minimum set of algorithms that should be used in a

divergence-free DG formulation of the induction equation.
VII) Accuracy analysis for RKDG and PNPM Schemes for the Induction Equation

In this section, we present numerical accuracy analyses of the RKDG schemes designed

here. The third order RKDG scheme can also be thought of as a P2P2 scheme. It is, therefore,
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interesting to also analyze the numerical accuracy of POP2 and P1P2 schemes and compare them
with the P2P2 scheme. The POP2 scheme is just a third order WENO scheme where the first and
second moments within each face were reconstructed. The P1P2 scheme evolves the first
moment while reconstructing the second moment in WENO fashion; i.e. the P1P2 scheme is
basically a third order HWENO scheme. The POP2 scheme has the advantage that it can be run
with a CFL number that is comparable to that of a P=0 DG scheme. The P1P2 scheme can be run
with a CFL number that is comparable to that of a P=1 DG scheme. For that reason, the POP2

and P1P2 schemes offer a substantial timestep advantage over the third order RKDG scheme.
VII.1) Plane Wave Test Problem

This plane wave test problem is run on a uniform Cartesian mesh spanning
[-0.5,0.5]x[~0.5,0.5] with periodic boundary conditions. We use v, =v, =1 . The magnetic

field is set up by using a vector potential approach. The vector potential, as well as its time-

evolution, are given by
A(x, ¥, t) =z cos(kxx +h,y—v k- Vykyl)

For the present test problem, we use k, =k, =27z . The x- and y-components of the magnetic

field are then given by
B - 0A, . B —— 0A,
SOy ’ ox

Because the solution is analytical, the accuracy of the error in the computed solution can be

evaluated at any time. The accuracy is evaluated at a unit time.

Table II and III show the accuracy analyses for the P=1 and P=2 RKDG schemes. Both
schemes meet their design accuracies in L1 and L. norms. We see that the P=2 RKDG is
definitely superior to the P=1 RKDG scheme. The tables also show the total magnetic energy on
the mesh as a fraction of the initial magnetic energy. We see that when there are about sixteen
zones per wavelength, at least 96% of the total magnetic energy is retained by the simulation. On
the finer meshes, the P=2 DG scheme is almost two orders of magnitude more accurate than the

P=1 DG scheme. This shows the great value of higher order accurate DG schemes.
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In Tables IV and V we show the accuracy analysis for the POP2 and P1P2 schemes. The
POP2 scheme is basically a centered, third order WENO scheme. The P1P2 scheme can also be
referred to as an HWENO scheme. We see that the POP2 scheme shows some obvious
deficiencies relative to the P=2 DG scheme. The POP2 scheme is not as accurate as the P=2 DG
scheme at all mesh resolutions, though it does meet its design accuracy. The POP2 scheme also
does not retain as much of the magnetic energy by the end of the simulation. The POP2 scheme
reconstructs all the moments of the magnetic field at every timestep and, consequently, accuracy
as well as the retention of the magnetic energy are inferior. Turning now to the P1P2 scheme, we
see that its accuracy is entirely comparable to the P=2 DG scheme. Furthermore, it retains the
magnetic energy on the mesh very nicely. Thus the P1P2 scheme is almost comparable to the
P=2 DG scheme in all respects; however the P1P2 scheme permits us to take substantially larger
timesteps. This suggests that retaining the lower moments is crucial to improving accuracy; but
the higher moments may not be as important at retaining accuracy. The larger permissible
timestep of the P1P2 scheme is one of its most attractive features. Dumbser et al. [35] have come
to the same conclusion for scalar advection with PNPM schemes and our finding for the

induction equation supplements, and yet extends, that finding.

Table II Accuracy analysis (Plane Wave test) of P=1 DG scheme with SSP-RK2
timestepping and CFL = 0.300295. The total magnetic energy on the mesh as a fraction of

the initial magnetic energy is also shown.

L Error Li Accuracy | Lo Error L. Accuracy | Total

Magnetic
Energy

8x8 9.972E-01 2.169E+00 0.758328061

16x16 1.721E-01 2.535 4.027E-01 2.429 0.962654963

32%32 3.310E-02 2.378 7.641E-02 2.398 0.995110883

64x64 7.372E-03 2.167 1.913E-02 1.998 0.999382357

128x%128 1.760E-03 2.067 5.293E-03 1.854 0.999922570

256x%256 4.321E-04 2.026 1.387E-03 1.932 0.999990312
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512x512 1.072E-04 2.011 3.546E-04 1.967 0.999998789

Table III Accuracy analysis (Plane Wave test) of P=2 DG scheme with SSP-RK3
timestepping and CFL = 0.196555. The total magnetic energy on the mesh as a fraction of

the initial magnetic energy is also shown.

L Error Li Accuracy | L Error Lo Accuracy | Total
Magnetic
Energy
8x8 7.609E-01 1.503E+00 0.798233687
16x16 1.062E-01 2.841 2.098E-01 2.841 0.969491429
32%32 1.355E-02 2.970 2.684E-02 2.966 0.996044391
64x64 1.698E-03 2.997 3.369E-03 2.994 0.999501860
128x128 2.123E-04 3.000 4.213E-04 2.999 0.999937630
256%256 2.652E-05 3.001 5.265E-05 3.000 0.999992201
512x512 3.315E-06 3.000 6.582E-06 3.000 0.999999025

Table IV Accuracy analysis (Plane Wave test) of POP2 scheme with SSP-RK3 timestepping
and CFL = 0.671745. The total magnetic energy on the mesh as a fraction of the initial

magnetic energy is also shown.

L; Error L1 Accuracy | Lo Error L. Accuracy | Total

Magnetic
Energy

8x8 1.642E+00 3.305E+00 0.592387535

16x16 2.362E-01 2.797 4.628E-01 2.836 0.933337820

32x32 2.966E-02 2.993 5.781E-02 3.001 0.991374277

64x64 3.690E-03 3.007 7.127E-03 3.020 0.998917626

128x128 4.599E-04 3.004 8.832E-04 3.013 0.999864685

256256 5.741E-05 3.002 1.099E-04 3.006 0.999983082
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512x512 7.172E-06 3.001 1.371E-05 3.003 0.999997885

Table V Accuracy analysis (Plane Wave test) of P1P2 scheme with SSP-RK3 timestepping
and CFL = 0.300295. The total magnetic energy on the mesh as a fraction of the initial

magnetic energy is also shown.

L Error Li Accuracy | L Error Lo Accuracy | Total
Magnetic
Energy
8x8 7.504E-01 1.586E+00 0.796984212
16x16 1.073E-01 2.806 2.181E-01 2.862 0.969180584
32%32 1.383E-02 2.955 2.783E-02 2.970 0.995979229
64x64 1.741E-03 2.990 3.469E-03 3.004 0.999492593
128x128 2.179E-04 2.998 4.314E-04 3.008 0.999936436
256%256 2.725E-05 3.000 5.373E-05 3.005 0.999992050
512x512 3.406E-06 3.000 6.703E-06 3.003 0.999999006

VII.2) Magnetized Vortex Test Problem

We wish to showcase the capabilities of the divergence-free scheme for the induction
equation without using any limiters. Unfortunately, most MHD problems will have strong non-
linearities which will cause the limiter to be invoked at least some times. We, therefore, pick a
test problem which retains the linearity of the induction equation while being as close as possible
to a real MHD test problem. The problem we choose consists of using just the magnetic field part
of the magnetized vortex test problem that was discussed in Section VI of Balsara [6]. The

magnetic field in that problem is extremely smooth and it does not invoke limiters.

The problem is set up on a periodic two-dimensional domain given by [-5,5]X[-5,5]. The

velocity of the flow is taken to be (VX,V y) = (1,1) . Since we only solve the induction equation,

there are no density and pressure variables in this test problem. The vortex is initialized at the

center of the computational domain with a magnetic field given by
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(B,.B,) =" —yx)

The corresponding magnetic vector potential is given by

The problem is run to a time of 10 units, by which point the vortex has propagated along the
diagonal of the computational domain and come back to its original location. The errors in the L;
and L. norms are measured at this final time. We also document the amount of magnetic energy
that is retained on the mesh at this final time. It is a good measure of the scheme’s ability to

preserve magnetic energy.

It is beneficial to show the results in tabulated form as well as in figures. Table VI shows
the results for the magnetic vortex test problem for a P=1 DG scheme. We see that it meets its
design accuracy. Realize however, that much of the variation in the magnetic field is restricted to
a unit radius, which corresponds to one-fifth of the computational domain. We see that for this
test problem, we have to go to rather large meshes, with 64x64 zones, before 95% or more of
the magnetic energy is preserved. Table VII shows the results for the magnetic vortex test
problem for a P=2 DG scheme. While it meets its design accuracy, we can also see that it
preserves 95% or more of the magnetic energy on a mesh with 32x32 zones. Now consider the
results from Table VIII which pertains to a POP2 scheme; i.e. this is just a second order WENO
scheme. While it also meets its design accuracy, the WENO scheme only preserves 95% or more
of its original magnetic energy on a 64x64 mesh. Now consider the P1P2 scheme shown in
Table IX. The P1P2 scheme can be run with a CFL which is much larger than the P=2 DG
scheme. Even so, its accuracy is entirely comparable to that of the P=2 DG scheme. Furthermore,
it can preserve 95% or more of the magnetic energy on a 32x32 zone mesh, just like the P=2

DG scheme.

Fig. 8 shows all the data from Tables VI to IX in a single set of plots. Figs. 8a and 8b
show the L; and L. errors as a function of mesh size measured along one of the edges of the
mesh. We see that there is a quality gap between the POP1 scheme and the P1P1 scheme (which
is indeed the P=1 DG scheme). Likewise, we see a quality gap between the POP2 scheme
(WENO scheme) and the P2P2 scheme (which is indeed the P=2 DG scheme). However, the
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P1P2 and P2P2 schemes produce results in Figs. 8a and 8b are virtually indistinguishable! Fig.
8c shows the magnetic energy that is preserved on the mesh at the final time in the simulation as
a function of mesh size. Again, we see that the P1P2 and P2P2 schemes’ results in Figs. 8c are
virtually indistinguishable. This gives us a very good insight, and the very useful suggestion, that
PNPM schemes with low (but non-zero) values of “N” might be useful schemes in constraint-

preserving computational electrodynamics and computational MHD.

Table VI Accuracy analysis (Magnetic Vortex test) of P=1 DG scheme with SSP-RK2
timestepping and CFL = 0.300295. The total magnetic energy on the mesh as a fraction of

the initial magnetic energy is also shown.

L; Error L Lo Error Lo Total
Accuracy Accuracy Magnetic
Energy
8x8 1.136E+01 1.558E+00 0.315708777
16x16 4.349E+00 | 1.386 7.604E-01 1.035 0.315708777
32x32 8.884E-01 | 2.292 2.123E-01 1.841 0.315708777
64x64 1.498E-01 | 2.568 3.977E-02 2416 0.991039970
128x128 2.934E-02 | 2.353 7.454E-03 2416 0.991039970
256%256 6.704E-03 | 2.130 7.454E-03 2.273 0.991039970
512x512 1.639E-03 | 2.033 3.489E-04 2.144 0.999981950

Table VII Accuracy analysis (Magnetic Vortex test) of P=2 DG scheme with SSP-RK3
timestepping and CFL = 0.196555. The total magnetic energy on the mesh as a fraction of

the initial magnetic energy is also shown.

L Error L Lo Error Lo Total
Accuracy Accuracy Magnetic
Energy
8x8 9.938E+00 1.162E+00 0.519655482
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16x16 3.292E+00 | 1.594 4.590E-01 1.339 0.822776045
32x32 5.865E-01 | 2.489 9.850E-02 2.220 0.965903039
64x64 7.968E-02 | 2.880 1.446E-02 2.768 0.995301999
128%128 1.013E-02 |2.976 1.864E-03 2.956 0.999402788
256256 1.276E-03 | 2.989 2.342E-04 2.992 0.999925126
512x512 1.629E-04 | 2.969 6.350E-05 1.883 0.999990635

Table VIII Accuracy analysis (Magnetic Vortex test) of POP2 scheme with SSP-RK3
timestepping and CFL = 0.671745. The total magnetic energy on the mesh as a fraction of

the initial magnetic energy is also shown.

L; Error L L Error Lo Total
Accuracy Accuracy Magnetic
Energy
8x8 1.320E+01 1.930E+00 0.041739861
16x16 7.906E+00 | 0.739 1.334E+00 | 0.533 0.258680606
32x32 1.915E+00 | 2.045 3.944E-01 1.758 0.820789577
64x64 3.232E-01 |2.567 7.097E-02 2.474 0.973056493
128%128 4.182E-02 | 2.950 9.481E-03 2.904 0.996513907
256x%256 5.256E-03 |2.992 1.196E-03 2.987 0.999562555
512x512 6.695E-04 | 2.973 1.495E-04 3.000 0.999945297

Table IX Accuracy analysis (Magnetic Vortex test) of P1P2 scheme with SSP-RK3
timestepping and CFL = 0.300295. The total magnetic energy on the mesh as a fraction of

the initial magnetic energy is also shown.

L Error L Lo, Error Lo Total
Accuracy Accuracy Magnetic
Energy
8x8 1.018E+01 1.390E+00 0.363160943
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16x16 3.339E+00 | 1.609 5.206E-01 1.417 0.776986515
32%32 5.893E-01 |2.502 9.866E-02 2.400 0.963500507
64x64 8.002E-02 | 2.881 1.392E-02 2.825 0.995203432
128x128 1.022E-02 | 2.970 1.876E-03 2.891 0.999393772
256x%256 1.293E-03 | 2.983 2.368E-04 2.986 0.999924043
512x512 1.675E-04 | 2.948 6.830E-05 1.794 0.999990499
VIII) Conclusions

The induction equation plays an important role in MHD and other systems of equations
like it. Numerical MHD, which requires the constrained evolution of the magnetic field, is a very
prominent example of such a mimetic scheme. We see that it is important to evolve the magnetic
field in the induction equation in a globally divergence-free fashion. This is best done on a
staggered Yee-type mesh. On such a mesh, the magnetic field components are collocated at the
faces of the mesh while the electric field components reside at the edges of the mesh. Finite
volume schemes have already been extended to accommodate such a collocation of variables
(Balsara and Spicer [4], Balsara [6], [7], Balsara and Dumbser [20], Xu et al. [49]). The present
work extends RKDG schemes to accomodate the induction equation. This is done with the help

of two important algorithmic advances.

In our first algorithmic advance, we build on prior work on divergence-free
reconstruction of vector fields (Balsara [5], [6], [7], Balsara and Dumbser [20], Xu et al. [49]) to
extend DG formulations so that they can accommodate a globally divergence-free reconstruction

process. Consequently, at the faces of each mesh, we store the magnetic field components as well
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as its higher moments. A DG formulation is then developed that operates on the faces of the
mesh. The DG update requires the electric fields at the edges of the mesh. For finite volume
schemes for MHD, recent advances in multidimensional Riemann solvers (Balsara [13], [14],
[17], [19], Balsara, Dumbser & Abgrall [15] and Balsara & Dumbser [17], Vides et al. [48],
Balsara et al. [21], [22]) have made it possible to uniquely define the edge-centered electric field
in a multidimensionally upwinded fashion. Our second algorithmic advance consists of
integrating multidimensional Riemann solvers with DG schemes for the induction equation. Just
as the fluxes from a one-dimensional Riemann solver help in resolving the boundary integrals
that arise in a conventional DG scheme, the electric fields from the multidimensional Riemann
solvers help in resolving the edge integrals that arise in the DG scheme for the induction
equation. While the two-dimensional case is discussed here, the method is, however, very

general and also applies to three dimensions or to unstructured meshes.

When the velocity is pre-specified in the induction equation, the DG scheme becomes
linear in the magnetic field variables. This simplification is used to carry out a von Neumann
stability analysis of DG schemes for the induction equation. We stress that the induction
equation is inherently multidimensional, so the stability analysis should also be

multidimensional.

Results from the stability analysis are presented showing that the induction equation
permits CFL numbers that are comparable to traditional RKDG schemes. We also analyze the
wave propagation characteristics of the method and show that with increasing order of accuracy
the wave propagation becomes more isotropic and free of dissipation for a larger range of long
wavelength modes. This makes a strong case for investing in higher order methods. We also use
the von Neumann stability analysis to show that that the divergence-free reconstruction and
multidimensional Riemann solvers are essential algorithmic ingredients of a globally divergence-

free RKDG scheme.

A numerical accuracy analysis of the RKDG schemes is presented up to third order. We
also study the accuracy of comparable PNPM schemes. It is found that the P1P2 scheme offers
accuracy that is entirely comparable to the P=2 DG scheme, while permitting a larger CFL

number.
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Appendix A

We request the reader to focus on Fig. 1a. At second order, matching the linearly varying

part of the x-component of the magnetic field in the right and left x-faces gives
a,=(B+B)/2 ; a,=B-B ; b,=-a,[2 (A.D)

Matching the linearly varying part of the y-component of the magnetic field in the top and

bottom y-faces gives
bx=(B;++Bxy‘)/2 ; bxy=Bxy+—Bxy_ : axx=_bxy/2 (A.2)

Matching the constant part of the x-component of the magnetic field in the right and left x-faces

gives
a,=(B;"+B;")[2-a,/6 i a =B -By (A.3)

Matching the constant part of the y-component of the magnetic field in the top and bottom y-

faces gives
by=(B)"+B)")[2-b,[6 : b =B -B (A.4)

It is easy to show that the constraint a,+b, =0 refers to the divergence-free aspect of the

magnetic field. This completes our description of the divergence-free reconstruction of magnetic

fields at second order.
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Appendix B

Let the mean x-components of the magnetic field in the right and left faces of the
reference square be denoted by B)” respectively; let the corresponding first moments within
those faces be denoted by B;i respectively; let the corresponding second moments in those faces
be denoted by B;yi respectively. The two piecewise parabolic profiles for the x-component of the

magnetic field at the right and left faces of the reference element are given by
B™(y)=B,"+By+B; (y*-1/12) (B.1)

Similarly, let the mean y-components of the magnetic field in the top and bottom faces of the

reference square be denoted by B]* respectively; let the corresponding first moments within
those faces be denoted by B* respectively; let the corresponding second moments in those faces

be denoted by B2* respectively. The two piecewise parabolic profiles for the y-component of the

magnetic field at the top and bottom faces of the reference element are given by

B (x)=B}" +B*x+ B} (¥ ~1/12) (B.2)

The reconstructing polynomials for the magnetic field within the reference element are
given by

B*(x,y) =a, +a,x +a,y+a, x2—1/12)+ a,xy +a, (y2—1/12)
+am(x3—3x/20) +a,, x (y2—1/12)

(B.3)
B'(x,y) = by + bx + b y+b_ (¥ =1/12) + b, xy + b, (¥ -1/12)
+b, (¥ =1/12)y + b, (¥ =3y/20)
Applying the divergence-free constraint at all points within the reference element gives
3a,+b,=0 ; a,+3b,=0; 2a +b, =03 a, +2b, =0 ;
' (B.4)

a, +b,- a ,tb /30

Xxy

Eqgns. (B.3) and (B.4) specify eleven independent coefficients in the interior of the reference
square which should be used to match the eleven independent pieces of information specified at
the boundaries of the reference square via eqns. (B.1) and (B.2)
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Matching the second moments gives

=(By +By)[2 ; a,=By-By ; b.=(BY+BL)2 ; b,=BI-BI ; (B.5)
Aoe = _bxxy /35 b, =-a,/3

Matching the first moments gives

a,=(B+B)[/2 : a,=B-B i b=(BI+B )2 i b,=B-B

b,/2 i b,=-a,/2 x -
Matching the zeroth moments gives
=(By +By)[2-a,/6 i a,=(B -By)+b, /30 :
by=(By" +By)[2=b,[6 by =(B) - By )+a,, /30 ED

Eqns. (B.5), (B.6) and (B.7) should be implemented in computer code in the same sequence that
we have used to document them here. It is easy to see that

a, + b,—(a,,+b,,)[30 =(B B )+(B" -B)") (B.8)

Since the right hand side of the above equation is just the divergence-free condition applied to
the reference square, it is easy to see that it should be zero. Thus, all the constraints in eqn. (B.4)
are satisfied by our third order accurate divergence-free reconstruction.

Appendix C

For the multidimensional HLL Riemann solver, it is possible to do something that closely
mimics the propagation of fast magnetosonic waves in MHD. We assume that we are dealing
with the sub-sonic case. Since fast magnetosonic waves (unlike hydrodynamical sound waves)

can travel at different speeds in the x- and y-directions, we assume that the x-directional wave

propagation is bounded by [v, —c v +c,| where ¢, is some proxy for a fast magnetosonic
speed in the x-direction. Because the flow is assumed sub-sonic, we have ¢, > |v |. Likewise, the
y-directional wave propagation is bounded by [V , =€V, t cy] where ¢, is some proxy for the

fast magnetosonic speed in the y-direction. Again, because the flow is assumed sub-sonic, we

have ¢, > |V y| . We cannot specify ¢, and ¢, any further for the induction equation because there
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isn’t enough physics in the induction equation to motivate a concept of a fast magnetosonic
speed. But we can always assume that the induction equation is part of some larger system that

admits a fast magnetosonic speed. For numerical examples in this paper, we will always take

, which ensures that our one-dimensional Riemann problems are

subsonic. As a result, the multidimensional HLL Riemann solver is also sub-sonic. The

multidimensional wave model of the multidimensional HLL Riemann solver is given by

[v,—c.,v, +c ]x I:Vy —c,, v, + cy] . Once the wave model and the incoming states are specified,

the electric field from the multidimensional HLL Riemann solver can be computed using eqns.

(12), (13) and (14) of Balsara [16]. It is given by
Ejy, =v,(By, + B, + B, + By )/4—vx (B}, + B}, + B, + By )/4
- ( +B" /2 +B" /2) ( +By /2 +B} /2)

Like eqn. (4.1), the first line of the above equation yields the centered electric field. The second

(C.1)

line in the above equation contains the dissipation terms. We see that the dissipation terms from
the multidimensional HLL Riemann solver can be as small as half the dissipation terms from the
multidimensional LF Riemann solver. (In all fairness, the dissipation also depends on the

magnitude of ¢, and c¢,.) This is an expected trend and is also reflected in any cross-comparison

of the one-dimensional HLL and LF Riemann solvers.

Appendix D

Here we provide explicit forms for the coefficients in eqn. (5.11) which pertain to the P=1 DG
scheme. They are:

1 B Ay v, (cos (k,Ax)—1)+(Ax+Ay)|v,|cos(k,Ax) -2 Ax |Vy|(cos(kyAy)+2)

1=

2Ax Ay| (Ax+Ay) v, sin(kXAx)—|vx|(Ax+Ay+i NE) Aysin(kxAx))+2 i Ax v, sin(kyAy)
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NG) (—Ay V,=2Ax v, +Ay v, cos(kxAx))+i (Ax—Ay) v, sin(k,Ax)
1
T2 Ax Ay

+|Vx|(Ax—Ay+(—Ax+Ay)cos(kxAx)—i V3 Ay sin(kxAx))

12

+2 Ax(|vy|+(\/§ v, +2 |Vy|)cos(kyAy)—i (2 v, +x/§|Vy|)Sin(kyAy))

_\/g (1 _ efikyAy )

A, = 5 I:Vx +|v, [+ e (|Vx|—VX )]

_\/5 (—Ay V,+2Ax v, +Ay v, cos(kxAx))+i (Ax—Ay) v, sin(k,Ax) |
A4, = 5 A)lc o +|Vx|(Ax—Ay+(—Ax+Ay)cos(kxAx)—i NE) Ay sin(kxAx))

-2 Axv, (\/gcos(kyAy)+2 i sin(kyAy))+2 Ax |Vy|(1+2cos(kyAy)+i NE) sin(kyAy))
4, = 4,
Ayy = 4

‘_Ax|Vy|+(Ax—Ay)|Vy|cos(kyAy)+\/5(—2 Ay v, +Ax v, —Ax v, cos(kyAy))

Ay, = +Ay(|vy|+2\/§ v, cos(kAx)—4iv, sin(kxAx)+|Vx|(2+4cos(kxAx)—2 i x/gsin(kxAx)))

_—i ((Ax—Ay) v, -3 Ax|vy|)sin(kyAy)
[ i sin(k,Ax/2)]
[ A ei(kXAx/Z—kyAy) (eikyAy _1)}

X
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__Ax|vy|+(Ax—Ay)|vy|cos(kyAy)+\/§(—2 Ay v, —Ax v, +Axv, cos(kyAy))

4, = +Ay(|vy|+2\/§ v, cos(kAx)—4iv, sin(kxAx)+|Vx|(2+4cos(kxAx)—2 i \/gsin(kxAx)))

_—i ((Ax—Ay) v, +/3 Ax |Vy|)sin(kyAy)
[ =i sin(k,Ax/2)]
l: Ay ei(kxAx/Z—kyAy) (eikyAy _I)J

X

1 Vv, -\, cos(kxAx)+|vy|(cos(kyAy)—1)+3 i v, sin(k,Ax)

A, =
33Ax+

(—3 ~ 3cos(kAx)+i /3 sin(kxAx))—iVy sin(kyAy)

V)C

Please note that i =~/~1 in the above equations. Please also note that the square brackets in the
previous several equations are not to be confused with matrices. Different choices of quadrature
points will result in slightly different expressions and the above terms are specific to choosing
two-point Gauss-Legendre quadrature in the faces.

Figure Captions

Fig. 1 shows how the divergence-free reconstruction is carried out in the shaded zone. The
profiles of the facial magnetic field components are also shown. Fig. la shows piecewise
constant magnetic field components in the faces; i.e., the first order case. Fig. 1b shows
piecewise linear magnetic field components in the faces; i.e., the second order case.

Fig. 2 shows the four states RU (right-up), LU (left-up), LD (left-down) and RD (right-down)
that come together at a vertex. These four states contribute to the multidimensional Riemann
problem at that vertex. (Such states are only shown for a few vertices in the figure.) The
multidimensional Riemann problem gives us the z-component of the electric field at that vertex.
The nodal points that contribute to the update of the central zone for the p=1 RKDG scheme are
also shown by dots within each face. Only the filled dots at the nodal points truly contribute to
the update of the nodal points that lie on the faces of the (0,0) zone.

Fig 3 shows the domain of stability for the first order (P=0) DG scheme with forward Euler
timestepping. The x- and y-axes of the plot show the CFL number in the x- and y-directions. The
color shows the amplitude of the amplification factor. The white lines identify the boundary of
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the domain of stability. Within the domain of stability, the amplification factor is less than or
equal to unity for all possible wave modes that can propagate on the mesh. The CFL number is
just the radius of the largest circle (in the Euclidean norm) remaining within the stability region
in Fig. 3.

Fig. 4 shows the domain of stability for the second order (P=1) DG scheme with several
different timestepping strategies. Figs. 4a and 4b show the result of using the second and third
order SSP schemes from Shu and Osher. Fig. 4c shows the result of using the RK(5,4) scheme
from Spiteri and Ruuth. The white curves identify the boundary of the domain of stability. The
CFL number is just the radius of the largest circle (in the Euclidean norm) remaining within the
stability region in Fig. 4.

Fig. 5 shows the domain of stability for the third order (P=2) DG scheme with several different
timestepping strategies. Fig. 5a shows the result of using the third order SSP scheme from Shu
and Osher. Fig. 5b shows the result of using the RK(5,4) scheme. The white curves identify the
boundary of the domain of stability. The CFL number is just the radius of the largest circle (in
the Euclidean norm) remaining within the stability region in Fig. 5.

Figs. 6a, 6b, 6¢c and 6d show the result of such a wave propagation study when the velocity
vector makes angles of 0° , 15°, 30° and 45 ° to the mesh for the second order (P=1) DG
scheme with SSP-RK2. Figs. 6 and 7 use the same vertical scale so that the amplification factors
at different orders can be cross-compared.

Figs. 7a, 7b, 7c and 7d are analogous to Fig. 6 but pertain to the third order (P=2) DG scheme
with SSP-RK3. We see that the higher order scheme shows better wave propagation in all
directions.

Fig. 8 shows all the data from Tables VI to IX in a single set of plots. Figs. 8a and 8b show the
L1 and L« errors as a function of mesh size measured along one of the edges of the mesh. Fig. 8c
shows the magnetic energy that is preserved on the mesh at the final time in the simulation as a
function of mesh size.
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Fig. I shows how the divergence-free reconstruction is carried out in the shaded zone.
The profiles of the facial magnetic field components are also shown. Fig. 1a shows
piecewise constant magnetic field components in the faces, i.e., the first order case.
Fig. 1b shows piecewise linear magnetic field components in the faces, i.e., the
second order case.
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Fig. 2 shows the four states RU (right-up), LU (left-up), LD (left-down) and RD (right-
down) that come together at a vertex. These four states contribute to the
multidimensional Riemann problem at that vertex. (Such states are only shown for a few
vertices in the figure.) The multidimensional Riemann problem gives us the z-
component of the electric field at that vertex. The nodal points that contribute to the
update of the central zone for the p=1 RKDG scheme are also shown by dots within
each face. At each of those nodal points withinthe (0,0) zone we explicitly identify the
magnetic field components that reside at those nodes. Only the filled dots at the nodal

points truly contribute to the update of the nodal points that lie on the faces of the (0,0)
Zone.
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RKDG P=0, Euler

2
Fig 3 shows the domain of stability for the first order (P=0) DG scheme with forward
Euler timestepping. The x- and y-axes of the plot show the CFL number in the x- and y-
directions. The color shows the amplitude of the amplification factor. The white lines
identify the boundary of the domain of stability. Within the domain of stability, the
amplification factor is less than or equal to unity for all possible wave modes that can
propagate on the mesh. The CFL number is just the radius of the largest circle (in the
Euclideannorm) remaining within the stability region in Fig. 3.
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20

Fig. 4 shows the domain of stability for the second order (P=1) DG scheme with
several different timestepping strategies. Figs. 4a and 4b show the result of using the
second and third order SSP schemes from Shu and Osher. Fig. 4c shows the result of
using the RK(5,4) scheme from Spiteriand Ruuth. The white curves identify the
boundary of the domain of stability. The CFL number is just the radius of the largest
circle (in the Euclidean norm) remaining within the stability region in Fig. 4.
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Fig. 5 shows the domain of stability for the third order (P=2) DG schemewith several
different timestepping strategies. Fig. 5a shows the result of using the third order SSP
scheme from Shu and Osher. Fig. 5b shows the result of using the RK(5,4) scheme. The
white curves identify the boundary of the domain of stability. The CFL number is just
the radius of the largest circle (in the Euclidean norm) remaining within the stability
regioninFig. 5.
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Figs. 6a, 6b, 6¢ and 6d show the result of such a wave propagation study when the
velocity vector makes anglesof 0°, 15°, 30° and 45° to the mesh for the second order
(P=1) DG schemewith SSP-RK2. Figs. 6 and 7 use the same vertical scale so that the
amplification factors at different orders can be cross-compared.
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Figs. 7a, 7b, 7c and 7d are analogous to Fig. 6 but pertain to the third order (P=2) DG
schemewith SSP-RK3. We see that the higher order scheme shows better wave
propagation in all directions.
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Fig. 8 shows all the data from Tables VI to IX in a single set of plots. Figs. 8a and 8b
show the L; and L_, errorsas a function of mesh size measured along one of the edges of
the mesh. Fig. 8c shows the magnetic energy that is preserved on the mesh at the final
time in the simulation as a function of mesh size.
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