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Abstract 

 In this paper we focus on the numerical solution of the induction equation using Runge-

Kutta Discontinuous Galerkin (RKDG) -like schemes that are globally divergence-free. The 

induction equation plays a role in numerical MHD and other systems like it. It ensures that the 

magnetic field evolves in a divergence-free fashion; and that same property is shared by the 

numerical schemes presented here. The algorithms presented here are based on a novel DG-like 

method as it applies to the magnetic field components in the faces of a mesh. (I.e., this is not a 

conventional DG algorithm for conservation laws.) The other two novel building blocks of the 

method include divergence-free reconstruction of the magnetic field and multidimensional 

Riemann solvers; both of which have been developed in recent years by the first author. 

 Since the method is linear, a von Neumann stability analysis is carried out in two-

dimensions to understand its stability properties. The von Neumann stability analysis that we 

develop in this paper relies on transcribing from a modal to a nodal DG formulation in order to 

develop discrete evolutionary equations for the nodal values. These are then coupled to a suitable 

Runge-Kutta timestepping strategy so that one can analyze the stability of the entire scheme 

which is suitably high order in space and time.  

 We show that our scheme permits CFL numbers that are comparable to those of 

traditional RKDG schemes. We also analyze the wave propagation characteristics of the method 
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and show that with increasing order of accuracy the wave propagation becomes more isotropic 

and free of dissipation for a larger range of long wavelength modes. This makes a strong case for 

investing in higher order methods. We also use the von Neumann stability analysis to show that 

the divergence-free reconstruction and multidimensional Riemann solvers are essential 

algorithmic ingredients of a globally divergence-free RKDG-like scheme. 

 Numerical accuracy analyses of the RKDG-like schemes are presented and compared 

with the accuracy of PNPM schemes. It is found that PNPM retrieve much of the accuracy of the 

RKDG-like schemes while permitting a larger CFL number. 
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I) Introduction 

 Several important problems in science and engineering rely on the MHD system of 

equations. This class of PDEs can indeed be written in a conservation law form. As a result, 

methods that have been developed for the treatment of hyperbolic conservation laws are indeed 

applicable to them. For MHD, the electric field can be written as = − ×E v B  and it governs the 

divergence-free evolution of the magnetic field. In two dimensions, ˆ ˆx yB x B y= +B  is the 

magnetic field and ˆ ˆv vx yx y= +v  is the velocity. The update of the magnetic field takes place 

according to the induction equation: 

( ) 0
t

∂
−∇× × =

∂
B v B            (1.1) 

In this paper we develop a von Neumann stability analysis for RKDG schemes that are used to 

solve eqn. (1.1). Because such an analysis would be very difficult in three dimensions, most of 

this paper describes a two-dimensional situation. Because magnetic monopoles have not been 

detected in nature, the magnetic field starts off divergence-free; i.e., 0∇⋅ =B . The above 

induction equation then ensures that the magnetic field remains divergence-free for all time. It is 

highly desirable to satisfy this divergence-free constraint in a numerical code because it provides 

maximum consistency with the physics ([51], [23], [24]). It is easy to see that the divergence of a 

vector field is a topological constraint that is an integral part of the PDE system. Numerical 

methods that preserve, in a discrete sense, the symmetries and constraints that are true for the 

continuum PDE are referred to as mimetic schemes. A mimetic scheme for the induction 

equation should keep the divergence of the vector field zero on the computational mesh, because 

the PDE itself has this property. Mimetic schemes for the induction equation, therefore, follow a 

Yee-style collocation of variables with the magnetic field components collocated at face centers 

and the electric field components at edge centers of a mesh. For that reason, please note that we 

are not presenting a conventional Discontinuous Galerkin (DG) scheme for a conservation law 

that is defined on the elements of the mesh. Instead, we are describing a DG-like method for the 

induction equation that applies to magnetic field components that are defined on the faces of the 

elements of the mesh. (For the sake of nomenclatural clarity in the rest of the paper, we will 
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distinguish between the magnetic field, which is a two or three component vector, and the 

component of the magnetic field, which is a scalar that is collocated at the faces of the mesh.) 

 Higher order Godunov methods have been developed for constraining the evolution of 

the magnetic field ([1], [2], [8], [9], [11], [12], [36], [36], [44], [4], [42], [37], [40], [70], [47], 

[26]). While early methods were based on one dimensional Riemann solver technology, it had 

been well-recognized that multidimensional Riemann solvers were needed for obtaining the 

electric field. Such multidimensional Riemann solvers have now been developed (Balsara [13], 

[14], [17], [19], Balsara, Dumbser & Abgrall [15] and Balsara & Dumbser [17], Vides et al. [48], 

Balsara et al. [21], [22]), opening the door to a more methodical analysis of eqn. (1.1) ([5], [6], 

[7], [20], [49]). MHD schemes that are positivity preserving have also been developed ([3], [18], 

[25]).  

 Discontinuous Galerkin (DG) schemes have seen much further development in the last 

two decades ([43], [27], [29], [28], [30], [10]). Coupled with strong stability preserving Runge-

Kutta semi-discrete time-stepping schemes ( [90], [91], [45], [46], [38], [39]) they take the 

acronym of RKDG schemes. Because of their simple structure, desirable stability properties, and 

the potentially high accuracy that they offer, RKDG schemes for fluid dynamics type problems 

have enjoyed considerable recent popularity. It is desirable to extend these ideas to divergence-

free MHD and its analogous systems.  

 Thus the first goal of this paper is to design RKDG-like schemes for the induction 

equation that are based on the two building blocks – globally divergence free reconstruction and 

multidimensional Riemann solvers. DG schemes that are locally divergence-free within each 

element have been attempted by Cockburn et al. [32] and Li and Shu [42]. Such locally 

divergence-free schemes are divergence-free within each element, but they produce a jump in the 

normal component of the magnetic field at element boundaries. Globally divergence-free central 

DG schemes that operate on a pair of staggered meshes have been presented by Li et al. [40]. 

The present DG-like formulation differs from those early attempts in two respects. First, it is 

globally divergence-free at all points of mesh; this includes the interior of an element as well as 

its boundary. Second, it obtains the electric field at the edges through a direct application of a 

multidimensional Riemann solver. The second goal of this paper is to analyze the stability of the 

RKDG-like schemes for the induction equation using von Neumann stability analysis. In doing 



5 
 

that, we follow the path set down by Zhang and Shu [52] and Liu et al. [41] who analyzed the 

stability of conventional RKDG schemes for scalar advection in one dimension. Because such 

analyses are intrinsically very difficult, we restrict attention to the two dimensional case. In two 

dimensions, the induction equation has a structure that is quite different from an advection 

equation. Yang and Li [50] have also analyzed the induction equation. However, their method is 

not based on the multidimensional Riemann solver approach used here. Instead, their work relies 

on an overlapping mesh approach. Furthermore, their analysis is restricted to first order schemes.  

 As the order of accuracy of an RKDG scheme is increased, the permissible CFL 

decreases. PNPM schemes (Dumbser et al. [35]) are one way of overcoming this problem. 

(PNPM schemes evolve an Nth order spatial polynomial, while spatially reconstructing higher 

order terms up to Mth order.) The third goal (which is a much smaller goal) of this paper is to 

show that PNPM schemes for the induction equation retrieve much of the accuracy of the 

RKDG-like schemes while permitting a larger CFL number. 

 The plan of the paper is as follows. Section II presents the DG-like formulation for the 

induction equation. Section III briefly describes the divergence-free reconstruction in a fashion 

that is suited for later use in the von Neumann stability analysis. Section IV develops 

multidimensional Riemann solvers for the induction equation and explicitly discusses their 

dissipation characteristics. Such a discussion enables us to show that the multidimensional 

Riemann solvers are always stabilizing. Section V shows how the von Neumann stability 

analysis is carried out by using first order (i.e., P=0) and second order (i.e., P=1) DG schemes 

with various orders of Runge-Kutta timestepping as a detailed example. Once the second order 

case is understood, the extension of the von Neumann stability analysis to even higher orders is 

quite easily done with the help of a computer algebra system. Section VI presents the results of 

the von Neumann stability analysis for the RKDG-like scheme for the induction equation. 

Section VII provides results from accuracy analysis of the resulting linear RKDG-like schemes 

and compares them to PNPM schemes for the induction equation. Section VIII presents some 

conclusions. 

II) DG Formulation for the Induction Equation 
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 It is very important to begin by pointing out that the method presented here is not a 

conventional DG scheme for conservation laws. However, it shares many philosophical features 

with a conventional DG scheme, which is why we call it a DG-like scheme. A compare and 

contrast between a conventional DG scheme for conservation laws and the DG-like scheme for 

the induction equation (that is presented in this paper) would be most useful. The compare and 

contrast is presented in pointwise fashion below: 

1) DG schemes for conservation laws are based on projecting the solution within an element onto 

a set of trial functions that are defined within the same element. The coefficients of those trial 

functions form the primal variables of the DG scheme. The DG-like scheme for the induction 

equation that is presented here uses the components of the magnetic field, and their higher 

moments, that live within the faces of each element as the primal variables. The corresponding 

trial functions are also defined within the faces of each element.  

2) In a conventional DG scheme for conservation laws a vector identity associated with the 

divergence is applied to the product of a test function and the flux. By contrast, in the present 

DG-like scheme for the induction equation we apply a vector identity associated with the curl to 

the product of the test function and the facial magnetic field component.  

3) Consequently, in a conventional DG scheme for conservation laws, the update equations for 

the zone-centered flow variables and their higher moments depends on the fluxes at the zone 

boundaries as well as a volumetric integration term. In the present DG-like scheme for the 

induction equation, the update equations for the face-centered magnetic field components, as 

well as their higher order moments, depends on the electric fields at the vertices of the mesh and 

a further facial area-integrated term. 

4) For a conventional DG scheme for conservation laws, the fluxes at the zone boundaries are 

obtained by using a weak form solution of the one-dimensional Riemann problems at the zone 

boundaries.  In the present DG-like scheme for the induction equation, the electric fields at the 

vertices of the mesh are obtained by using a weak form solution of the multidimensional 

Riemann problems at the vertices of the mesh. 

We see that there are very close analogies between a conventional DG scheme for a conservation 

law and the DG-like schemes that we have developed for the induction equation. For that reason, 
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we adopt a short form and refer to the DG-like schemes as DG schemes in the ensuing 

discussion. 

 Recall that DG schemes for conservation laws derive from the well-known vector identity 

( )  φ φ φ∇ ⋅ = ∇ ⋅ + ⋅∇F F F   

where F  takes on the role of a flux and φ  is a test function. Use of Gauss’ theorem then yields a 

weak form update for the PDE, where the flux terms at the boundary of a zone are replaced with 

fluxes that are obtained from a Riemann solver. Clearly, the curl operator in eqn. (1.1) suggests 

the use of Stokes’ theorem. This time, since each magnetic field component resides in a face of 

the mesh, we wish to use Stokes theorem within a face. To that end, we assert the well-known 

vector identity 

( ) ( )  φ φ φ∇× = ∇ × + ∇×E E E          (2.1) 

within each face of the mesh. In this paper, and for the sake of simplicity, we use a two-

dimensional Cartesian mesh with zones of size x∆  and y∆  in the x- and y-directions. Let n̂  be 

a unit normal to a face nA  . The governing equation is taken to be 

0
t

∂
+∇× =

∂
B E            (2.2) 

In order to obtain the most general interpretation of eqn. (2.2), we think of applying this equation 

to a two-dimensional face of a three-dimensional mesh; please see Fig. 1 from Balsara [6]. We 

wish to project the governing eqn. (2.2) into a space of test functions. However, we need to 

devise a projection strategy that is applied to the faces of the mesh, this is done as follows. Our 

test functions are chosen to be identical to our trial functions. First we multiply the governing 

equation by the test function φ . Next, we restrict our attention to the face nA  by taking a dot 

product with the unit normal n̂  to that face. We then integrate over that face to get 

( ) ( ) ( )ˆ ˆ  0
n n n

n n
A A A

dA d dA
t

φ φ φ
∂

 ∂
⋅ + ⋅ − ⋅ ∇ × =     ∂  

∫ ∫ ∫n B E n E


      (2.3) 
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The boundary of the face under consideration is denoted by nA∂ .The infinitesimal vector d


  in 

the middle term of eqn. (2.3) runs along nA∂  and denotes the length of the element. The 

existence of a unit normal, n̂ , lends a right-handed directionality to d


 . Eqn. (2.3) gives us the 

desired Galerkin projection strategy; but please realize that it applied to a curl-type equation in 

the faces of the mesh. Notice that the second term in eqn. (2.3) is interpreted in a weak form 

using a multidimensional Riemann solver and is analogous to the flux term in a traditional DG 

method for conservation laws. The third term in eqn. (2.3) is analogous to the volume term in a 

traditional DG method for conservation laws. 

 As with traditional DG methods, observe that when the test function is taken to be 1φ =  

we retrieve the traditional Yee-type update equation for the mean magnetic field within face nA . 

The third term in eqn. (2.3) then becomes zero and we see that the mean magnetic field within a 

face is updated by the electric field that resides in the edges of that face. This electric field is 

obtained by using multidimensional Riemann solvers. For a three-dimensional problem, 

quadrature points can be chosen along each edge so that the middle term is evaluated with 

suitable accuracy by invoking multidimensional Riemann problems at each of those quadrature 

points. In two dimensions, the edge integral reduces to a single evaluation of the electric field at 

the vertices of the mesh for each sub-step in the Runge-Kutta method. When the test function is 

not unity, the third term in eqn. (2.3) also begins to contribute. The electric field that is to be 

used in the third integral of eqn. (2.3) can be obtained via one-dimensional Riemann problems 

that use the magnetic field on either side as inputs. (While the normal component of the magnetic 

field will not have a jump; the transverse component(s) will have a jump. This ensures that the 

Riemann solver can introduce dissipation as needed.) Notice too that having a perfect Yee-type 

update for the mean magnetic field is sufficient to ensure that the magnetic field remains 

divergence-free for all time.  

 It is easiest to appreciate eqn. (2.3) via some simple examples. In order to provide a point 

of reference to the reader, we catalogue the explicit update equations for the magnetic field 

components on a two-dimensional mesh. Let us say that a two-dimensional zone has an extent 

[ ] [ ]/ 2, / 2 / 2, / 2x x y y−∆ ∆ × −∆ ∆ . Within the right face of this zone, let the x-component of the 
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magnetic field have variation given by (i.e., we are explicitly providing the formulation of 

RKDG or PNPM schemes that are up to third order accurate):- 

( ) ( ) ( ) ( )
2

0
1,

12
x x x x

y yy
y yB y t B t B t B t
y y

    
 = + + −    ∆ ∆    

      (2.4) 

In the above equation, the modes of the x-component of the magnetic field are endowed with 

time variation, just as in the traditional DG formulation. Also please note that the x-component is 

denoted with a superscript “x” because the subscripts are used to denote the modes. This is a very 

convenient notational simplification that is maintained throughout this paper. Using test 

functions that are identical to the trial (or basis) functions in eqns. (2.3) and (2.4), we obtain the 

update equations 

( ) ( ) ( )( )0 1 / 2 / 2 0
x

z zdB t
E y y E y y

dt y
+ = ∆ − = −∆ =
∆

      (2.5a) 

( ) ( ) ( )( ) ( )1 1 1/ 2 / 2 0
12 2

x
y z z zdB t

E y y E y y E y
dt y y

+ = ∆ + = −∆ − =
∆ ∆

    (2.5b) 

( ) ( ) ( )( ) ( )1 1 2/ 2 / 2 0
180 6

x
yy z z zdB t yE y y E y y E y
dt y y y

 
+ = ∆ − = −∆ − = ∆ ∆ ∆ 

   (2.5c) 

Eqn. (2.3) is crucially important for deriving the above equations. Here ( )/ 2zE y y= ∆  and 

( )/ 2zE y y= −∆  are electric field components that are obtained at the endpoints of the right face. 

They are obtained by the application of a multidimensional Riemann solver. Several 

concordances with traditional DG are readily visible from eqn. (2.5). For example, we see that 

the factors 1 12 , 1 180  and 1 2800  are analogous to a mass matrix. Because we have a Cartesian 

mesh with a mutually orthogonal set of trial/basis functions, our mass matrix is diagonal. Also 

notice that the terms within angled brackets, i.e. terms with  , represent line integrals within a 

face; these terms with an angled bracket are to be obtained with a suitably high order quadrature 

along each face of the mesh. In this work, we use the well-known one-dimension Gauss-

Legendre quadrature to carry out the facial integrals; though see Stroud [52] for the two-
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dimensional integrals that are needed in three-dimensional formulations. One dimensional 

Riemann problems in the right face being considered will furnish the ( )zE y  component of the 

electric field that is to be used in the angled brackets. These one-dimensional Riemann problems 

are solved at each of the quadrature points in the face. Recall, that when the induction equation is 

coupled to the rest of the MHD system, the Riemann solvers will anyway have to be invoked in 

the faces just for updating the conserved variables. Consequently, a full-fledged RKDG or 

PNPM scheme will suffer from no loss in efficiency due to the invocation of the one-

dimensional Riemann solvers in the faces of the mesh. 

 For the sake of completeness, let us also quickly write the y-component of the magnetic 

field in the top face of the zone being considered as 

( ) ( ) ( ) ( )
2

0
1,

12
y y y y

x xx
x xB x t B t B t B t
x x

    = + + −     ∆ ∆    
      (2.6) 

As in eqn. (2.4), the modes in eqn. (2.6) have been endowed with time variation. Again using 

several test functions in eqn. (2.3) gives the update equations for the modes in eqn. (2.6). We get 

( ) ( ) ( )( )0 1 / 2 / 2 0
y

z zdB t
E x x E x x

dt x
− = ∆ − = −∆ =
∆

       (2.7a) 

( ) ( ) ( )( ) ( )1 1 1/ 2 / 2 0
12 2

y
x z z zdB t

E x x E x x E x
dt x x

− = ∆ + = −∆ + =
∆ ∆

    (2.7b) 

( ) ( ) ( )( ) ( )1 1 2/ 2 / 2 0
180 6

y
xx z z zdB t xE x x E x x E x
dt x x x

 − = ∆ − = −∆ + = ∆ ∆ ∆ 
   (2.7c) 

Eqns. (2.5) and (2.7) show us that the temporal update has been turned into a system of ODEs in 

each of the faces of the mesh. Consequently, it is appropriate to use strong stability-preserving 

Runge-Kutta timestepping schemes for the temporal evolution of the PDE. Eqns. (2.5a) and 

(2.7a) taken together also ensure that the mean magnetic field components within the faces of the 

mesh preserve the divergence-free property at a discrete level. This too is very analogous to the 

traditional RKDG schemes for conservation laws where the conservation is ensured by the 

lowest modes in the DG expansion. 
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III) Divergence-Free Reconstruction 

 This topic has already been described quite extensively in the literature by Balsara [5], 

[6], [7], Xu et al. [49] and Balsara and Dumbser [20]. Therefore, we only present sufficient 

information here for the second order case in two-dimensions. Some mathematical details of the 

second order accurate case have been catalogued in Appendix A. The third order accurate case is 

relegated to Appendix B. We describe the second order case here so that we may set the stage for 

the von Neumann stability analysis that follows in Section V. For a more thorough discussion, 

the reader is invited to look up the previously-cited references and the Appendices of this paper. 

 Fig. 1 shows how the divergence-free reconstruction is carried out in the shaded zone. 

The profiles of the facial magnetic field components are also shown. Fig. 1a shows piecewise 

constant magnetic field components in the faces; i.e., the first order case. Fig. 1b shows 

piecewise linear magnetic field components in the faces; i.e., the second order accurate case. The 

task of the divergence-free reconstruction is to reconstruct the magnetic field in a pointwise 

divergence-free fashion in the interior of the shaded zone. The reconstruction should be such that 

the magnetic field in the shaded region matches the magnetic field components in the bounding 

faces of this zone exactly.  

 We assume that Fig. 1 pertains to a reference square with extent 

[ ] [ ]1/ 2,1/ 2 1/ 2,1/ 2− × − . Let the mean magnetic field components in the right and left faces of 

Fig. 1 be denoted by 0
xB ±  respectively. Similarly, let the mean magnetic field components in the 

top and bottom faces of Fig. 1 be denoted by 0
yB ±  respectively. (Any rectangular element can be 

remapped to a reference square by suitable linear rescaling of the coordinates and the magnetic 

field components.) The field components are not independent since they are related by a discrete 

divergence-free condition. On the reference element, the discrete divergence-free condition is 

given by 

( ) ( )0 0 0 0 0x x y yB B B B+ − + −− + − =          (3.1) 

As a result, we see that the constant profiles in the faces of a zone in Fig. 1a only carry three 

independent pieces of information. Fig. 1a, which pertains to first order of accuracy, is only for 

informational purposes. The schemes of interest have second and third order of accuracy. 
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Likewise, the linear profiles in the faces of the zone in Fig. 1b only carry seven (not eight) 

independent pieces of information. (I.e., each face has a mean value and a slope, but the mean 

values are related via eqn. (3.1).) The magnetic field components in the right and left faces of 

Fig. 1b will also have piecewise linear slopes in the y-direction given by x
yB ±  respectively. 

Likewise, the magnetic field components in the top and bottom faces of Fig. 1b will also have 

piecewise linear slopes in the x-direction given by y
xB ±  respectively. Therefore, at the right and 

left faces of the reference element, the divergence-free reconstruction in the interior will have to 

match the two linear profiles for the x-component of the magnetic field given by 

( ) 0
x x x

yB y B B y± ± ±= +            (3.2) 

Similarly, at the top and bottom faces of the reference element, the divergence-free 

reconstruction in the interior will have to match the two linear profiles for the y-component of 

the magnetic field given by 

( ) 0
y y y

xB x B B x± ± ±= +            (3.3) 

We now turn our attention to the divergence-free reconstruction of the magnetic field in the 

interior of the zone shown in Fig. 1b. 

 We want the reconstructed magnetic field in the interior of the zone to be pointwise 

divergence-free everywhere within the zone. This includes the boundary of the zone. We 

therefore want the x-component of the magnetic field to match eqn. (3.2) at the right and left 

boundaries of the reference element. Furthermore, we want the y-component of the magnetic 

field to match eqn. (3.3) at the top and bottom boundaries of the reference element. If the 

polynomials used for the reconstruction are restricted to have linear variation, there are not 

enough degrees of freedom to match the seven independent pieces of boundary information. We, 

therefore, look for magnetic field profiles of the form 

( )
( )

2
0

2
0

( , )          1/12      

( , )               1/12

x
x y xx xy

y
x y xy yy

B x y a a x a y a x a x y

B x y b b x b y b x y b y

= + + + − +

= + + + + −
     (3.4) 
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Notice that each of the two above equations have two additional terms on the right hand side that 

go beyond simple linear variation. Maintaining a pointwise divergence-free condition anywhere 

within the zone then imposes three additional constraints on the coefficients in eqn. (3.4). The 

constraints that emerge from asserting ( , ) ( , ) 0x y
x yB x y B x y∂ + ∂ =  are: 

2     0   ;       2   0   ;         0xx xy xy yy x ya b a b a b+ = + = + =       (3.5) 

With these additional constraints, we see that the coefficients in eqn. (3.4) only have seven 

degrees of freedom which match exactly with the seven independent pieces of information 

represented by the linear profiles of the magnetic field components in the boundaries of the zone, 

see eqns. (3.2) and (3.3). Appendix A presents more information on exactly how the seven 

degrees of freedom for second order accurate reconstruction can be matched with the seven 

independent pieces of information represented by the linear profiles of the magnetic field 

components in the boundaries of the zone. 

 Appendix B describes the divergence-free reconstruction of magnetic fields at third order.  

IV) Multidimensional Riemann Solvers for the Induction Equation 

 Fig. 2 shows the four states RU (right-up), LU (left-up), LD (left-down) and RD (right-

down) that come together at a vertex of a two-dimensional Cartesian mesh. These four states 

contribute to the multidimensional Riemann problem at that vertex. (Such states are only shown 

for a few vertices in the figure. Each vertex will, of course, have different values for these four 

states.) The magnetic field ( ),x y
RU RUB B  in the RU state is obtained by applying the divergence-

free reconstruction from the previous section to the zone that lies to the right-upper side of the 

vertex in question. The magnetic field ( ),x y
LU LUB B  in the LU state is obtained similarly from the 

zone that lies to the left-upper side of the vertex in question. The magnetic field ( ),x y
LD LDB B in the 

LD state is obtained analogously from the left-down side of the vertex in question. The magnetic 

field ( ),x y
RD RDB B in the RD state is also obtained similarly from the right-down side of the vertex 

in question. Please realize that the above four sentences describe magnetic fields that come from 

the four different zones that come together at the vertex. The multidimensional Riemann solver 

then gives us the z-component of the electric field at that vertex. Eqn. (1.1) can also be written in 
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flux form. When that is done, the z-component of the electric field is given by the first 

component of the y-flux or the negative of the second component of the x-flux. These fluxes can 

be obtained from eqns. (12), (13) and (14) of Balsara [16].  

 For the simple problem associated with the induction equation it is not possible to endow 

any sub-structure to the multidimensional Riemann solver. As a result, the multidimensional 

Riemann solver can be obtained either by using the one-dimensional Lax-Friedrichs (LF) 

Riemann solver as a building block or by using the one-dimensional HLL Riemann solver as a 

building block. Both building blocks have their merits. They result in different multidimensional 

wave models with slightly different, though comparable, dissipation characteristics. We discuss 

each of these in the next two paragraphs along with the electric fields that they give rise to. 

Please note that even though the multidimensional Riemann solver uses four one-dimensional 

Riemann solvers, it is not a repeated application of one-dimensional Riemann solvers. The 

resolved state and fluxes coming from a multidimensional Riemann solver can be very different 

from the one-dimensional fluxes. 

 The one-dimensional LF Riemann solver has extremal speeds in the x-direction that are 

bounded by vx−  to vx  . In the y-direction, the extremal speeds are bounded by v y−  to v y  . 

As a result, the multidimensional Riemann solver that uses the one-dimensional LF Riemann 

solver as a building block will have a multidimensional wave model that has an extent of 

v , v v , vx x y y − × −    . For this multidimensional wave model, and for a given set of 

incoming states, eqns. (12), (13) and (14) of Balsara [16] will yield the multidimensionally 

upwinded fluxes. With a little rearrangement, the resulting electric field can be written as a 

centered part and a dissipation part. From the multidimensional LF Riemann solver we get the z-

component of the electric field at a vertex as 

( ) ( )

( ) ( )( ) ( ) ( )( )

v 4 v 4

v v
      2 2 2 2

2 2

z x x x x y y y y
LF y RU LU LD RD x RU LU LD RD

y xx x x x y y y y
RU LU RD LD RU RD LU LD

E B B B B B B B B

B B B B B B B B

= + + + − + + +

− + − + + + − +
  (4.1) 

The first line in the above equation shows the centered electric field. The second line shows the 

dissipation terms. In order to bring out the multidimensional nature of the above equation, let us 
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compare eqn. (4.1) to the canonical form of the one-dimensional LF flux for conservation laws. 

It is easy to see that the y-directional jump in the mean x-component of the magnetic field 

contributes to the dissipation term. Likewise, the x-directional jump in the mean y-component of 

the magnetic field also contributes to the dissipation term. Notice that eqn. (4.1) has a rather nice 

form where the dissipation can be truly multidimensional. For higher order schemes, the size of 

these jumps becomes smaller, resulting in reduced dissipation. The multidimensional HLL 

Riemann solver is described in detail in Appendix C. Eqns. (4.1) and (C.1) have been specialized 

for the induction equation with a constant velocity. When the velocity has piecewise variation 

within a zone, please use eqns. (12), (13) and (14) of Balsara [16] to obtain the multidimensional 

state and fluxes from the multidimensional Riemann solver. (The inclusion of substructure in 

those equations can be ignored.) Please also see Section VI of that same paper for 

implementation-related details. Eqns. (2) to (7) of Balsara [14] describe how the extremal speeds 

are derived for a multidimensional HLL Riemann solver on structured meshes. Please see the 

paragraph after eqn. (17) of Balsara [14] to understand how resetting the extremal speeds yields 

the multidimensional LLF Riemann solver. Eqn. (35) of Balsara [14] then describes how the z-

component of the electric field is obtained from the multidimensional fluxes. 

 The multidimensional version of the LF Riemann solver, as well as the multidimensional 

version of the HLL Riemann solver, both have excellent multidimensional dissipation 

characteristics. This is made most apparent at first order accuracy. (I.e., when used without the 

higher order reconstruction, our multidimensional Riemann solver-based method becomes a first 

order accurate method that is amenable to the ensuing analytical treatment.) At first order, the 

divergence-free reconstruction is trivial. Also at first order, the electric field in eqn. (4.1) can be 

written explicitly by using the mesh function for the magnetic field components. We use the 

indexing of the mesh in Fig. 2 to write the electric field explicitly as 

( ) ( ) ( ) ( );1/2,1/2 1/2,1 1/2,0 1,1/2 0,1/2 1/2,1 1/2,0 1,1/2 0,1/2

v v
v 2 v 2

2 2
y xz x x y y x x y y

LF y xE B B B B B B B B= + − + − − + −  (4.2) 

The dissipation from the multidimensional LF Riemann solver is made even more apparent in the 

above equation. The first two terms show the centered electric field while the next two terms 

show the dissipation. In this very simple limit, eqn. (4.2) is just the CTU scheme by Colella [33]. 
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An equation that is analogous to eqn. (4.2) can be written for ;1/2, 1/2
z
LFE −  . Using eqn. (2.5a), we 

can now write an update equation for 1/2,0
xB . This is the magnetic field that is collocated in the 

right face of the (0,0) zone. After a little massaging of the resulting equation, and with the help 

of the discrete divergence condition, we get 

( ) ( ) ( )( )

( ) ( )

1/2,0
1/2,1 1/2, 1 1,1/2 0,1/2 1, 1/2 0, 1/2

3/2,0 1/2,0 1/2,0 1/2,1 1/2,0 1/2, 1

v v 2 2
2

vv
             2 2

2 2

x
y x x y y y yx

yx x x x x x x

dB
B B B B B B

dt y y

B B B B B B
x y

− − −

− −

= − − + + − +
∆ ∆

+ − + + − +
∆ ∆

    (4.3) 

The first two terms on the right hand side of eqn. (4.3) clearly show the central form of the 

original PDE associated with the induction equation. The last two terms on the right hand side of 

eqn. (4.3) show the mesh-dependent parabolic dissipation associated with the multidimensional 

LF Riemann solver. Because of the presence of these parabolic terms, the multidimensional 

Riemann solver always plays a stabilizing role in the induction equation. The multidimensional 

HLL Riemann solver will of course show smaller levels of dissipation than the multidimensional 

LF Riemann solver, but it can also be reduced to a form that is entirely analogous to eqn. (4.3). 

These results do show substantial dissipation at first order, but at higher orders this large 

dissipation will be mostly mitigated by the higher quality reconstruction.  

 We also point out that the simple expressions in eqns. (4.1) and (C.1) are only a 

consequence of our very simple model problem, i.e. the induction equation. When the full MHD 

system is used, the structure of the multidimensional Riemann solver will be more complex. 

However, the essential insight that the multidimensional Riemann solver provides appropriate 

stabilization in multiple dimensions carries over. 

V) von Neumann Stability Analysis of RKDG Schemes for the Induction Equation 

 Please realize that the induction equation is fundamentally multidimensional, so any 

meaningful von Neumann stability analysis should at least be two dimensional. Periodic 

boundary conditions are assumed for all the von Neumann stability work reported in this paper. 

In this section we show how such a stability analysis is carried out. In the next section we will 

present results from the von Neumann stability analysis of the induction equation. The von 
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Neumann stability analysis at first order can be carried out analytically which is why Sub-section 

V.1 is devoted to that task. At higher orders, i.e. for RKDG schemes with P 1≥ , one has to use a 

computer algebra system to carry out the von Neumann stability analysis at each different order. 

For this reason, Sub-section V.2 shows how such a stability analysis is carried out for P=1 

RKDG schemes. Once the general principle is understood, it can be extended to even higher 

orders. 

 The two-dimensional von Neumann stability analysis that we present here is restricted to 

a constant velocity vector ˆ ˆv vx yx y= +v  and a uniform mesh with zone sizes x∆  and y∆  in the 

x- and y-directions. We also restrict our focus to a linear RKDG scheme, i.e. one that does not 

incorporate limiters. Von Neumann stability analysis forces us to restrict our focus to linear 

RKDG schemes and previous work on the RKDG schemes for scalar advection (Zhang and Shu 

[52], Liu et al. [41]) was also similarly restricted. 

V.1) von Neumann Stability Analysis of the First Order (i.e., P=0) RKDG Scheme 

 The first order RKDG scheme (P=0) corresponds to a standard finite volume scheme, 

where only averaged quantities are updated. For the present scheme, these would only be the 

facially averaged magnetic field components. At first order the problem can be solved 

analytically. It consists of realizing that the second term on the right hand side of eqn. (4.3) can 

be rewritten exclusively in terms of the x-components of the magnetic field if the discrete 

divergence free condition from eqn. (3.1) is used. In other words, realize that we can write 

( ) ( )0,1/2 0, 1/2 1/2,0 1/2,0
y y x xB B B B y x− −− = − − ∆ ∆  and analogous expressions in the other zones. Thus 

eqn. (4.3) becomes 

( ) ( )

( ) ( )

1/2,0
1/2,1 1/2, 1 3/2,0 1/2,0

3/2,0 1/2,0 1/2,0 1/2,1 1/2,0 1/2, 1

v v
2 2

vv
             2 2

2 2

x
y x x x xx

yx x x x x x x

dB
B B B B

dt y x

B B B B B B
x y

− −

− −

= − − − −
∆ ∆

+ − + + − +
∆ ∆

    (5.1) 

Observe now that eqn. (5.1) is still a multidimensional equation for the time evolution of 1/2,0
xB . 

However, it is an advection diffusion equation that is written entirely in terms of the x-

component of the magnetic field. The diffusion terms are of course dependent on the mesh size 
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and tend to zero as the mesh becomes finer and finer. In practice, the amount of diffusion 

imparted by our Riemann solver-based scheme also depends on whether the magnetic field has a 

smooth variation on the computational mesh or whether it has local discontinuities. It is, 

however, very instructive to show that the use of the multidimensional Riemann solver gives us 

an update that can be written as a centered update plus a diffusive part, which is always 

stabilizing in a fully multidimensional sense. An analogous equation can be written for the time-

evolution of the y-component of the magnetic field and is given by 

( ) ( )

( ) ( )

0,1/2
1,1/2 1,1/2 0,3/2 0, 1/2

1,1/2 0,1/2 1,1/2 0,3/2 0,1/2 0, 1/2

vv
2 2

vv
             2 2

2 2

y
yy y y yx

yx y y y y y y

dB
B B B B

dt x y

B B B B B B
x y

− −

− −

= − − − −
∆ ∆

+ − + + − +
∆ ∆

    (5.2) 

This simplification only obtains at first order when the discrete divergence condition holds. At 

higher orders, we do not get any analogous simplification. 

 Endowing the x-component of the magnetic field with Fourier dependence, we can use 

eqn. (5.1) to obtain the amplification factor of the scheme after one first order accurate timestep. 

Requiring the amplification factor of the scheme to be bounded by unity, we get the CFL 

condition:- 

vv 1yx tt
x y

∆∆
+ ≤

∆ ∆
           (5.3) 

Please realize that at first order the discrete divergence-free condition relates the Fourier 

coefficients of the x-component of the magnetic field to the Fourier coefficients of the y-

component of the magnetic field. As a result, no separate Fourier analysis is needed for the y-

component of the magnetic field. 

V.2) von Neumann Stability Analysis of the Second Order (i.e., P=1) RKDG Scheme 

 Expressed in terms of moments, each face of the mesh will have a mean magnetic field 

component and its slope along the face when the P=1 RKDG discretization is used. Thus each 

face carries two pieces of information, which can equivalently be mapped to two nodal values for 

the magnetic field component that resides in that face. Please see Fig. 2 which shows the nodal 
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points as well as the magnetic field components associated with those nodes for the zone (0,0). 

The nodal locations are chosen to be the Gauss-Legendre quadrature points. (Other quadrature 

points were tried but did not seem to make a difference in the stability analysis.) Thus the right 

face for the zone (0,0) has two nodal values 1
x
nB  and 2

x
nB  for the x-component of the magnetic 

field. The left face of the same zone has two nodal values 3
x
nB  and 4

x
nB  for the x-component of 

the magnetic field. Our von Neumann analysis is carried out in terms of Fourier modes. The 

modes have spatial dependence of the form ( )x yi k x k ye +   with wave numbers xk  and yk  on a 

uniform mesh with zones of size x∆  and y∆ . Because we use periodic boundary conditions, the 

nodal values in the right and left faces of the zone (0,0) are related by the phase shifts 

3 1 4 2    ;      x xik x ik xx x x x
n n n nB B e B B e− ∆ − ∆= =          (5.4) 

The top face of the zone (0,0) has two nodal values 1
y
nB  and 2

y
nB  for the y-component of the 

magnetic field. The bottom face of the same zone has nodal values 3
y
nB  and 4

y
nB  for the y-

component of the magnetic field. Again, the nodal values are related by the phase shifts 

3 1 4 2    ;      y yik y ik yy y y y
n n n nB B e B B e− ∆ − ∆= =          (5.5) 

We incorporate eqns. (5.4) and (5.5) in the discrete divergence-free condition. The discrete 

divergence-free condition applied to zone (0,0)  then enables us to write 

( )2 1 1 2
1
1

x

y

ik x
y y x x
n n n nik y

y eB B B B
x e

− ∆

− ∆

∆ −
= − − +

∆ −
         (5.6) 

We easily see that, with the discrete divergence-free condition incorporated from eqn. (3.1), and 

also with the phase shifts from eqns. (5.4) and (5.5), we have obtained a significant 

simplification in eqn. (5.6). For the sake of clarity, let us amplify the previous sentence a little 

further. The x-component of the magnetic field in the right face of zone (0,0) is given by 

( )0;1/2,0 1 2 2x x x
n nB B B= +  . Because of condition (5.4), the x-component of the magnetic field in the 

left face is then given by ( )0; 1/2,0 1 2 2xik xx x x
n nB B B e− ∆

− = +  . Use of eqn. (5.5) shows us that a similar 

consideration applies to the y-components of the magnetic fields in upper and lower faces of 
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zone (0,0). The discrete divergence-free condition in eqn. (3.1) then gives us eqn. (5.6). The 

independent nodal values within zone (0,0) are simply 1
x
nB  , 2

x
nB and 1

y
nB . The nodal value 2

y
nB  is 

not independent because it is related to 1
x
nB  , 2

x
nB and 1

y
nB  via eqn. (5.6). All of the other magnetic 

field components at all of the nodes shown in Fig. 2 can be related to 1
x
nB  , 2

x
nB and 1

y
nB  with 

phase shifts that are analogous to eqns. (5.4) and (5.5). The discussion in this paragraph, 

therefore, provides the stage setting for the von Neumann stability analysis.  

 Observe something interesting about Fig. 2. The nodes shown in Fig. 2 are indeed the 

only nodes that will contribute to the time-update of the magnetic fields that reside in the faces of 

the zone (0,0). Thus Fig. 2 shows us the full stencil of zones that contribute to zone (0,0). 

However, the unfilled nodes in Fig. 2 finally drop out of the final von Neumann stability analysis 

as will be discussed in the end of this Sub-section. In each of those nine zones, we can relate the 

nodal values of the magnetic field components to their modal values. Assuming Gauss-Legendre 

quadrature, this can be explicitly done for the right face of zone (0,0) as 

( ) ( )0;1/2,0 1 2 ;1/2,0 2 12       ;        3x x x x x x
n n y n nB B B B B B= + = −       (5.7) 

In the above equation, 0;1/2,0
xB  is the mean x-component of the magnetic field in the (1/2,0) face 

shown in Fig. 2 and ;1/2,0
x
yB  is the linear variation (i.e., y-directional slope) for the same magnetic 

field component in the same face. Similarly, for the upper face of zone (0,0) we have 

( ) ( )0;0,1/2 1 2 ;0,1/2 2 12       ;        3y y y y y y
n n x n nB B B B B B= + = −       (5.8) 

In the above equation, 0;0,1/2
yB  is the mean y-component of the magnetic field in the (0,1/2) face 

shown in Fig. 2 and ;0,1/2
y
xB  is the linear variation (i.e., x-directional slope) for the same magnetic 

field component in the same face. With these mean values and slopes specified, we can make the 

divergence-free reconstruction from Section III in each of the nine zones shown in Fig. 2. The 

reconstruction depends only linearly on the facial values and their slopes.  Using the Fourier 

dependence from equations like eqn. (5.4) and (5.5), the divergence-free reconstruction in each 

of the nine zones of Fig. 2 can be expressed exclusively in terms of 1
x
nB  , 2

x
nB and 1

y
nB . This is 
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where we have to rely on the strong capabilities of modern computer algebra systems. We used 

the Mathematica and Macsyma computer algebra systems. 

 A glance at the update equations (2.5) and (2.7) shows that we will need the electric 

fields at the vertices and also the electric fields at the nodal points within each face. Let us first 

focus on the electric fields at the vertices. Specifically, let us focus on the vertex of the zone 

(0,0) that lies North-East of the zone center in Fig. 2. Divergence-free reconstruction within the 

(1,1) zone can be used to find ( ),x y
RU RUB B . An analogous process in the (0,1) zone can be used to 

find ( ),x y
LU LUB B . Similarly, the (0,0) zone can be used to find ( ),x y

LD LDB B . In the same way, (1,0) 

zone can be used to find ( ),x y
RD RDB B . These are the four states that can be input into the 

multidimensional Riemann solver to get the z-component of the electric field; see eqns. (4.1) or 

(C.1). Also recall that all these four states described above can be expressed exclusively in terms 

of 1
x
nB  , 2

x
nB and 1

y
nB  using a computer algebra system. As a result, the z-components of the 

electric field at all of the vertices of the zone (0,0) shown in Fig. 2 can be expressed exclusively 

in terms of 1
x
nB  , 2

x
nB and 1

y
nB . Modern computer algebra systems are powerful enough to handle 

this mathematics precisely. 

 We now switch focus to obtaining the z-component of the electric field within each zone 

boundary for the zone (0,0) in Fig. 2. These electric fields are needed for the angled brackets in 

eqns. (2.5b) and (2.7b). To get the electric fields at the two nodes in the right face of the (0,0) 

zone, we solve the x-directional Riemann problem at those two nodes. The left state at either of 

those two nodes is obtained from the divergence-free reconstruction in zone (0,0). The right state 

at either of those two nodes is obtained from the divergence-free reconstruction in zone (1,0). 

Notice that while the x-component of the magnetic field will be continuous across that right face, 

the y-component of the magnetic field can indeed have a jump in it. That jump is crucial for 

introducing dissipation that stabilizes the scheme. (Let us consider the simple example for the 

one-dimensional LLF Riemann solver which is applied in the x-direction. Let the left state have 

magnetic field vector ˆ ˆx y
L LB x B y+  and let the right state have magnetic field vector ˆ ˆx y

R RB x B y+  . 

The resolved magnetic field vector * *ˆ ˆx yB x B y+   at the zone boundary is just ( )1 ˆ ˆ
2

x x y
L R LB B x B y+ +  
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if v 0x ≥  and ( )1 ˆ ˆ
2

x x y
L R RB B x B y+ +   if v 0x <  . The corresponding z-component of the electric 

field at the zone boundary is given by * *v vx y
y xB B− .) The electric fields at the other nodal points 

within the zone (0,0) are obtained similarly. They can all be expressed exclusively in terms of 

1
x
nB  , 2

x
nB and 1

y
nB . Again, modern computer algebra systems are powerful enough to handle this 

mathematics precisely. 

 Once the z-component of the electric field is obtained at the vertices of the mesh as well 

as the facial nodal points, we are ready to evaluate the time rates of change shown in eqns. 

(2.5a), (2.5b), (2.7a) and (2.7b). If we focus on the right face and the upper face of zone (0,0) in 

Fig. 2, we can obtain the time rates of update for the magnetic field components that are 

collocated to the nodes within those two faces. Operationally, this is done as follows. Eqn. (2.5a) 

gives us 0;1/2,0
xdB dt . Eqn. (2.5b) gives us ;1/2,0

x
ydB dt  . Differentiating eqn. (5.7) with respect to 

time then allows us to obtain 

;1/2,0 ;1/2,00;1/2,0 0;1/2,01 21 1      ;        
2 3 2 3

x xx xx x
y yn ndB dBdB dBdB dB

dt dt dt dt dt dt
= − = +     (5.9) 

Eqn. (2.7a) gives us 0;0,1/2
ydB dt . Eqn. (2.7b) gives us ;0,1/2

y
xdB dt  . Eqn. (5.8) then allows us to 

obtain 

0;0,1/2 ;0,1/2 0;0,1/2 ;0,1/21 21 1     ;       
2 3 2 3

y y y yy y
x xn ndB dB dB dBdB dB

dt dt dt dt dt dt
= − = +     (5.10) 

Now please realize that within the context of a von Neumann stability analysis that is based on 

Fourier modes, the right hand sides of eqns. (5.9) and (5.10) are exclusively dependent on the 

three nodal values  1
x
nB  , 2

x
nB and 1

y
nB . Let us, therefore, pick the two equations in eqn. (5.9) and 

the first equation in eqn. (5.10). The time rates of update can be formally written as 
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1
11 1 12 2 13 1

2
21 1 22 2 23 1

1
31 1 32 2 33 1

x
x x yn
n n n

x
x x yn
n n n

y
x x yn
n n n

dB A B A B A B
dt

dB A B A B A B
dt

dB A B A B A B
dt

= + +

= + +

= + +

         (5.11) 

The nine coefficients on the right hand side of eqn. (5.11) form a 3 3×  matrix, which we call 

“A”. Those coefficients only depend on the velocity components vx  and v y  , the zone sizes x∆  

and y∆  and the wave numbers xk  and yk . Appendix D explicitly catalogues the nine 

coefficients on the right hand side of eqn. (5.11). It will enable interested readers to cross-check 

their implementations in their computer algebra systems versus ours. Also note that eqn. (5.11), 

along with the extra information from Appendix D, can be used as a semi-discrete von Neumann 

(mode) analysis of the spatial operator independent of the time discretization in a so-called 

method-of-lines approach. The spectrum of this discrete spatial operator might be useful in its 

own right, and any follow-on researchers would then be able to apply their chosen time 

discretization method to eqn. (5.11). 

 Taken by itself, eqn. (5.11) provides a continuous in time but second order discrete in 

space von Neumann stability analysis of the induction equation. However, it can be coupled to a 

suitable RK2 scheme to obtain the amplification matrix of an RKDG scheme that is second order 

in space and second order in time. Use of a suitable RK3 scheme provides the amplification 

matrix of an RKDG scheme that is second order in space and third order in time. This process 

can be continued to get a sequence of RKDG schemes that are second order in space and at least 

second order accurate in time. The stability properties of such schemes will be analyzed in detail 

in the next section. 

 It is also useful to make a special note about the stencil depicted in Fig. 2. Only the filled 

nodal points truly contribute to the update of the nodal points that lie on the faces of the (0,0) 

zone. There are some further unfilled nodal points shown in zones (1,1), (-1,1), (-1,-1) and (1,-1). 

They can be used to simplify the divergence-free calculation procedure, but they eventually drop 

out of the von Neumann stability calculation. Thus the entire von Neumann stability analysis 

only relies on the nodal points that reside on the faces of zones (0,0), (1,0), (-1,0), (0, 1) and (0,-
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1). In that sense, the von Neumann stability analysis described here truly pertains to a RKDG 

scheme with the smallest stencil possible. 

 While the present section has only studied the P=1 RKDG schemes, the process can be 

extended to RKDG schemes with P 1≥ . For P 3≥  we found that the computer algebra system 

itself couldn’t perform the simplifications that were needed to keep the solution procedure 

tractable. In other words, DG discretizations that are up to third order accurate in space have 

been analyzed in this paper and we report on them in the next section. For P 3≥  the divergence-

free reconstruction is not uniquely defined by the normal component of the magnetic field. 

However, least squares minimization, as described in Balsara [7] or Balsara and Dumbser [20], is 

sufficient to yield uniquely defined magnetic fields. This least squares minimization is equivalent 

to minimizing the magnetic energy, or equivalently, minimizing the variation in the magnetic 

field. The resulting schemes preserve the desired order of accuracy. 

VI) Results from the von Neumann Stability Analysis of RKDG Schemes 

 A von Neumann stability analysis, especially one that is done for a full scheme in two-

dimensions, can give us a wealth of information. The most important information corresponds to 

the stability limit of the Runge-Kutta timestepping strategy; i.e. the largest possible CFL number 

of the scheme. This is displayed in Sub-section VI.a for RKDG schemes for the induction 

equation at first, second and third orders of accuracy. We can also use von Neumann stability to 

study the isotropic propagation of wave modes in all directions on a computational mesh. This is 

presented in Sub-section VI.b. Once a stable algorithm has been documented, we can also use 

von Neumann stability analysis to evaluate the stability of various variants upon the basic 

algorithm. In other words, we ask:- Even if it is possible to obtain simpler divergence-free 

RKDG schemes for the induction equation, are they all stable? This question is addressed in Sub-

section VI.c. 

VI.a) Stable CFL Numbers for Divergence-free RKDG Schemes for the Induction Equation 

 Fig 3 shows the domain of stability for the first order (P=0) DG scheme with forward 

Euler timestepping. The x- and y-axes of the plot show the CFL number in the x- and y-

directions. In other words, the axes display the x- and y-directional Courant numbers given by 
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vx xC t x≡ ∆ ∆  and vy yC t y≡ ∆ ∆ . For our purposes, the multidimensional CFL number that 

is used all through this paper is defined by 2 2
x yC C+  . The CFL number is just the radius of the 

largest circle (in the Euclidean norm) remaining within the stability region in the ensuing Figs. 3, 

4 and 5. For the stability analysis presented in this paper, the mesh is Cartesian with x y∆ = ∆ . (In 

practice, the ratio y x∆ ∆  can always be absorbed in the definition of the x- and y-directional 

CFL numbers.) The color in Fig. 3 shows the maximum amplitude of the amplification factor 

over all wave modes. The white lines identify the boundary of the domain of stability; i.e., where 

the amplification factor reaches unity. Within the domain of stability, the amplification factor is 

less than or equal to unity for all possible wave modes that can propagate on the mesh. Notice 

that the domain of stability exactly matches the prediction from eqn. (5.3). 

 Operationally, Fig. 3 was obtained from a computer code that divided the domain shown 

in the plot into little cells, or pixels. Each such cell corresponds to an x-directional and a y-

directional CFL number. (Thus the choice of a specific x-directional and y-directional CFL 

number is tantamount to choosing an x-directional and a y-directional velocity.) For each such 

cell we evaluated the amplification factor for wave modes 

( ) [ ] [ ], / 2, / 2 / 2, / 2x yk x k y π π π π∆ ∆ ∈ − × − . In practice, the full range of CFL numbers are 

discretized by 4012 cells and the full range of wave modes is also discretized by 4012 cells. In 

general the amplification factor is a complex number. The maximum absolute value from that 

scan was then colorized and plotted out for each pixel/cell. The result is shown in Fig. 3 which 

gives us a very clear visual understanding of the stability of the scheme. Unless stated otherwise, 

all figures in this section correspond to the use of a LF flux in one and two-dimensions. 

 Fig. 4 shows the domain of stability for the second order (P=1) DG scheme with several 

different timestepping strategies. Figs. 4a and 4b show the result of using the second and third 

order SSP schemes from Shu and Osher [90]. Fig. 4c shows the result of using the RK(5,4) 

scheme from Spiteri and Ruuth [46] which is also documented in Gottlieb [38]. RK(5,4) is a 

five-stage, fourth-order accurate in time SSP Runge-Kutta scheme with some very enhanced 

stability properties, which is why we chose it for our default fourth order accurate in time Runge-

Kutta scheme. The white curves identify the boundary of the domain of stability. Please recall 

that the matrix “ A ” from eqn. (5.11) is a 3 3× matrix.  The resulting scheme, with a Runge-
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Kutta timestepping, will also produce a 3 3×  matrix whose complex eigenvalues can then be 

evaluated by a computer program. For von Neumann stability analysis, we are interested in the 

eigenvalue with the largest amplitude. This largest amplitude was colorized and displayed in Fig. 

4. Comparing Figs. 4a and 4b we clearly see that the three-stage scheme permits a better CFL 

number. Focusing on Fig. 4c we can also see that the RK(5,4) scheme shows its worth by 

permitting a much larger domain of stability. It is important to realize that this stability analysis 

is truly two-dimensional and the boundaries of the stability domain indeed show the effect of 

mesh imprinting. We will have more to say about the important topic of mesh imprinting in the 

next Sub-section. We also mention that when forward Euler timestepping is used, the P=1 DG 

scheme is unstable; a result that is unsurprising given the findings of Cockburn and Shu [31], 

Zhang and Shu [52] and Liu et al. [41]. Please also see Table 2.2 from Cockburn and Shu [31]. 

 Fig. 5 shows the domain of stability for the third order (P=2) DG scheme with several 

different Runge-Kutta timestepping strategies. Fig. 5a shows the result of using the third order 

SSP scheme from Shu and Osher [90]. Fig. 5b shows the result of using the RK(5,4) scheme. 

Again we see that the RK(5,4) scheme offers much-improved stability properties. We also 

mention that with first or second order Runge-Kutta timestepping the P=2 DG scheme is 

unstable at fixed CFL number, which also reflects the results from Cockburn and Shu [31]. 

 The plots shown in Figs. 3 to 5 enable us to make a table that is suitable for practical use. 

Recall that the CFL number is just the radius of the largest circle (in the Euclidean 

norm) remaining within the stability region in Figs. 3, 4 and 5. Table I shows the maximal CFL 

number for DG schemes with various orders of spatial accuracy that are used in conjunction with 

Runge-Kutta schemes with various orders of temporal accuracy. A dash in Table I indicates that 

the scheme is unstable. Observe that the limiting CFL in Table I is very compatible with the 

limiting CFLs for DG schemes from Cockburn and Shu [31]. Please see Table 2.2 from 

Cockburn and Shu [31]. Recall that the limiting CFL analysis of Cockburn and Shu [31] is 

strictly one-dimensional. When the flow becomes mesh-aligned, it is not possible to have a CFL 

that is better than the one-dimensional one. I.e. while the induction equation is truly 

multidimensional, it is indeed the one-dimensional effects that set the CFL. This suggests that a 

full-fledged RKDG scheme for divergence-free MHD will have CFL numbers that are 

competitive with its Euler counterparts. This bodes well for the construction of divergence-free 
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RKDG schemes for MHD. Also notice that the classical RK4 scheme has a limiting CFL number 

that is substantially lower than the SSP-RK(5,4) timestepping scheme. This is consistent with 

expectations because SSP-RK(5,4) incorporates an extra stage and has been designed to have a 

large CFL. 

 All the previously-mentioned results in this Sub-section were for electric fields that are 

evaluated using an LF Riemann solver in one- and two-dimensions. The electric field from the 

multidimensional LF Riemann solver is explicitly catalogued in eqn. (4.2). An analogous 

equation can be written for the multidimensional HLL Riemann solver; see eqn. (C.1). Also 

recall that our analysis for the multidimensional HLL Riemann solver will be done with 

1.2 vx xc =  and 1.2 vy yc = ; i.e., with “magnetosonic” signal speeds that are 20% larger than 

the velocity. There is no need to repeat the details here because the overall finding is indeed the 

expected one – the effective CFL number (evaluated w.r.t. velocities) is reduced by 20%. This 

makes sense because the overall timestep in a code goes down as the maximum signal speed is 

increased. If we were to plot figures for the multidimensional HLL Riemann solver that are 

analogous to Figs. 3, 4 and 5, the resulting figures would indeed look entirely similar to the 

original figures with a 20% scale reduction. For that reason, we do not repeat such figures in this 

paper. 

 Table I shows the limiting CFL number for a large number of possible RKDG schemes. 

The table shows spatial order of accuracy of DG schemes in the horizontal direction and 

temporal order of accuracy of the Runge-Kutta timestepping in the vertical direction. The 

CFL number is just the radius of the largest circle remaining within the stability region in 

figures 3, 4 and 5. 

 P=0 P=1 P=2 

RK1 0.7071 ______ ______ 

SSP-RK2 0.7071 0.3161 ______ 

SSP-RK3 0.8883 0.3904 0.2069 

RK4 (classical) 0.9846 0.4404 0.2318 

SSP-RK(5,4) 1.5490 0.6366 0.3400 

RK5 (classical) 1.1372 0.5079 0.2676 
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VI.b) Analyzing the Isotropic Propagation of Wave Modes for RKDG Schemes 

 We wish to study the wave propagation characteristics of RKDG schemes for the 

induction equation. Any scheme will permit the longest wave length (smallest wave number) 

modes to propagate with minimal damping. A better scheme should permit more modes to 

propagate with minimal damping. While the accuracy of a scheme is related to the accuracy of 

the amplification factor at small wave numbers, it is desirable to have an amplification factor that 

is close to unity for a larger range of small wave numbers. Ideally, we would like to see a 

situation where higher order schemes permit a larger range of long wave length (small wave 

number) modes to propagate nearly undamped in all possible directions on a two-dimensional 

computational mesh. Given the von Neumann stability analysis that we have constructed, this is 

easy to demonstrate. Operationally, we choose a direction for the velocity vector. (The 

magnitude of the velocity vector is set by the choice of CFL number. The directions of the 

velocity vector will be specified in the next paragraph when the figures are discussed.) For that 

direction of the velocity, we can obtain the full range of amplification factors for wave numbers 

in the range ( ) [ ] [ ], / 2, / 2 / 2, / 2x yk x k y π π π π∆ ∆ ∈ − × − . This aforementioned range of wave 

numbers allows us to examine all the wave modes that have all possible orientations on the 

mesh. A scatterplot is then made of the amplification factor as a function of 2 2
x yx k k∆ + . Each 

choice of 2 2
x yk k+  picks out several pairs of wave modes ( ),x yk k  that have all possible 

orientations with respect to the mesh.  Since RKDG schemes are operated close to their 

maximum CFL number, we choose a CFL that is 80% of the maximal CFL number from Table I. 

 Figs. 6a, 6b, 6c and 6d show the result of such a wave propagation study when the 

velocity vector makes angles of 0o , 15 o , 30 o and 45 o to the mesh for the second order (P=1) 

DG scheme with SSP-RK2. Figs. 7a, 7b, 7c and 7d show the result of such a wave propagation 

study when the velocity vector makes angles of 0o , 15 o , 30 o and 45 o to the mesh for the third 

order (P=2) DG scheme with SSP-RK3. (Please recall that in our model problem the velocity 

vector sets the direction of the advection of the magnetic fields but the wave numbers determine 

the orientation of the waves with respect to the mesh. The wave numbers also determine the ratio 
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of the wavelength of the waves with respect to the mesh size.) We expect the reader to 

intercompare Figs. 6 and 7; consequently, the amplification factors for these two figures have the 

same vertical scale. We see that as the accuracy of the RKDG scheme increases, its ability to 

isotropically propagate wave modes is also increased. For example, the smallest amplification 

factors for the second order scheme in Figs. 6a, 6b, 6c and 6d lie between 0.6 to 0.8. Also notice 

that several short wavelength modes in Fig. 6 have amplification factors that are in that range. By 

contrast, all of the wave modes for the third order scheme in Figs. 7a, 7b, 7c and 7d have 

amplification factors that are larger than 0.8. Also notice that many of the long wavelength 

modes in Fig. 7 have amplification factors that are indeed quite close to unity.  

 In all instances we see that wave modes which are close to the Nyquist limit of the mesh 

are indeed damped; i.e, they have amplification factors that are less than unity. This is essential if 

the numerical method is to remain stable. (The Nyquist limit on a mesh corresponds to waves 

with a wavelength of just two mesh zones.) 

VI.c) Is it Possible to have Simpler Divergence-free RKDG Schemes for the Induction 

Equation? 

 As one can see from Section III, the divergence-free reconstruction entails a few more 

terms that are required to make the method globally divergence-free. It is, therefore, natural to 

ask, “Is it possible to have simpler divergence-free RKDG schemes for the induction equation?”. 

In this Sub-section we focus on the two most natural simplifications that one might seek out and 

show that in each instance the simplification results in a linearly unstable divergence-free RKDG 

scheme. The two natural “simplifications” consist of:- a) simplifying the divergence-free 

reconstruction and b) the use of centered fluxes instead of upwinded fluxes wherever possible. 

We show below that either of the simplifications result in unstable schemes. 

 The first and most natural instinct is to try and simplify the reconstruction. For example, 

it is very natural to imagine the following second order, piecewise linear reconstruction of the 

magnetic field which is not globally divergence-free: 
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   (6.1) 

Here 0
xB ±  , 0

yB ±  , x
yB ±  and y

xB ±  are defined exactly as in eqns. (3.2) and (3.3); consequently, the 

syncopated reconstruction in eqn. (6.1) is fully specified. While this reconstruction will be 

locally divergence-free within the zone of interest because it satisfies 0x ya b+ =  , it will indeed 

produce jumps in the longitudinal component of the magnetic field at each boundary. Thus it is 

not globally divergence-free. The most natural resolution is to take the arithmetic average of the 

longitudinal magnetic field at each zone boundary. For the P=1 DG scheme described in this 

paragraph, we carried out a von Neumann stability analysis and found it unstable. Indeed, it was 

unstable with SSP-RK2, SSP-RK3 and SSP-RK(5,4), showing that it was unequivocally 

unstable. To bolster this finding, we constructed a P=2 DG scheme for the induction equation 

that was again not globally divergence-free and we found it to be unstable.  

 An examination of eqns. (2.5b) and (2.7b) suggests a second simplification to the P=1 

DG scheme for the induction equation. We recognize of course that the electric fields at the 

vertices of the mesh should be obtained from the two-dimensional Riemann solver. However, it 

is natural to ask, “Can we simplify the evaluation of the angled brackets in those two equations? 

I.e., can we use a centered flux instead of an upwinded LF or HLL flux in the angled brackets of 

those two equations?” The answer from von Neumann stability analysis is an unequivocal 

negative! As before, we also experimented with making similar simplifications for the P=2 DG 

scheme for the induction equation and that too turned out to be unstable. 

 Based on these attempted simplifications we claim that the DG scheme described in 

Sections II, III and IV represents an absolute minimum set of algorithms that should be used in a 

divergence-free DG formulation of the induction equation.  

VII) Accuracy analysis for RKDG and PNPM Schemes for the Induction Equation 

 In this section, we present numerical accuracy analyses of the RKDG schemes designed 

here. The third order RKDG scheme can also be thought of as a P2P2 scheme. It is, therefore, 
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interesting to also analyze the numerical accuracy of P0P2 and P1P2 schemes and compare them 

with the P2P2 scheme. The P0P2 scheme is just a third order WENO scheme where the first and 

second moments within each face were reconstructed. The P1P2 scheme evolves the first 

moment while reconstructing the second moment in WENO fashion; i.e. the P1P2 scheme is 

basically a third order HWENO scheme. The P0P2 scheme has the advantage that it can be run 

with a CFL number that is comparable to that of a P=0 DG scheme. The P1P2 scheme can be run 

with a CFL number that is comparable to that of a P=1 DG scheme. For that reason, the P0P2 

and P1P2 schemes offer a substantial timestep advantage over the third order RKDG scheme.  

VII.1) Plane Wave Test Problem 

 This plane wave test problem is run on a uniform Cartesian mesh spanning 

[ ] [ ]0.5,0.5 0.5,0.5− × −  with periodic boundary conditions. We use v v 1x y= =  . The magnetic 

field is set up by using a vector potential approach. The vector potential, as well as its time-

evolution, are given by 

( ) ( ), , cos v vx y x x y yx y t k x k y k t k t= + − −A z   

For the present test problem, we use 2x yk k π= = . The x- and y-components of the magnetic 

field are then given by 

   ;    z z
x y

A AB B
y x

∂ ∂
= = −
∂ ∂

  

Because the solution is analytical, the accuracy of the error in the computed solution can be 

evaluated at any time. The accuracy is evaluated at a unit time. 

 Table II and III show the accuracy analyses for the P=1 and P=2 RKDG schemes. Both 

schemes meet their design accuracies in L1 and L∞ norms. We see that the P=2 RKDG is 

definitely superior to the P=1 RKDG scheme. The tables also show the total magnetic energy on 

the mesh as a fraction of the initial magnetic energy. We see that when there are about sixteen 

zones per wavelength, at least 96% of the total magnetic energy is retained by the simulation. On 

the finer meshes, the P=2 DG scheme is almost two orders of magnitude more accurate than the 

P=1 DG scheme. This shows the great value of higher order accurate DG schemes. 
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 In Tables IV and V we show the accuracy analysis for the P0P2 and P1P2 schemes. The 

P0P2 scheme is basically a centered, third order WENO scheme. The P1P2 scheme can also be 

referred to as an HWENO scheme. We see that the P0P2 scheme shows some obvious 

deficiencies relative to the P=2 DG scheme. The P0P2 scheme is not as accurate as the P=2 DG 

scheme at all mesh resolutions, though it does meet its design accuracy. The P0P2 scheme also 

does not retain as much of the magnetic energy by the end of the simulation. The P0P2 scheme 

reconstructs all the moments of the magnetic field at every timestep and, consequently, accuracy 

as well as the retention of the magnetic energy are inferior. Turning now to the P1P2 scheme, we 

see that its accuracy is entirely comparable to the P=2 DG scheme. Furthermore, it retains the 

magnetic energy on the mesh very nicely. Thus the P1P2 scheme is almost comparable to the 

P=2 DG scheme in all respects; however the P1P2 scheme permits us to take substantially larger 

timesteps. This suggests that retaining the lower moments is crucial to improving accuracy; but 

the higher moments may not be as important at retaining accuracy. The larger permissible 

timestep of the P1P2 scheme is one of its most attractive features. Dumbser et al. [35] have come 

to the same conclusion for scalar advection with PNPM schemes and our finding for the 

induction equation supplements, and yet extends, that finding. 

 

Table II Accuracy analysis (Plane Wave test) of P=1 DG scheme with SSP-RK2 

timestepping and CFL = 0.300295. The total magnetic energy on the mesh as a fraction of 

the initial magnetic energy is also shown. 

 L1 Error L1 Accuracy L∞ Error L∞ Accuracy Total 

Magnetic 

Energy 

8×8 9.972E-01  2.169E+00  0.758328061 

16×16 1.721E-01 2.535 4.027E-01 2.429 0.962654963 

32×32 3.310E-02 2.378 7.641E-02 2.398 0.995110883 

64×64 7.372E-03 2.167 1.913E-02 1.998 0.999382357 

128×128 1.760E-03 2.067 5.293E-03 1.854 0.999922570 

256×256 4.321E-04 2.026 1.387E-03 1.932 0.999990312 
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512×512 1.072E-04 2.011 3.546E-04 1.967 0.999998789 

 

Table III Accuracy analysis (Plane Wave test) of P=2 DG scheme with SSP-RK3 

timestepping and CFL = 0.196555. The total magnetic energy on the mesh as a fraction of 

the initial magnetic energy is also shown. 

 L1 Error L1 Accuracy L∞ Error L∞ Accuracy Total 

Magnetic 

Energy 

8×8 7.609E-01  1.503E+00  0.798233687 

16×16 1.062E-01 2.841 2.098E-01 2.841 0.969491429 

32×32 1.355E-02 2.970 2.684E-02 2.966 0.996044391 

64×64 1.698E-03 2.997 3.369E-03 2.994 0.999501860 

128×128 2.123E-04 3.000 4.213E-04 2.999 0.999937630 

256×256 2.652E-05 3.001 5.265E-05 3.000 0.999992201 

512×512 3.315E-06 3.000 6.582E-06 3.000 0.999999025 

 

Table IV Accuracy analysis (Plane Wave test) of P0P2 scheme with SSP-RK3 timestepping 

and CFL = 0.671745. The total magnetic energy on the mesh as a fraction of the initial 

magnetic energy is also shown. 

 L1 Error L1 Accuracy L∞ Error L∞ Accuracy Total 

Magnetic 

Energy 

8×8 1.642E+00  3.305E+00  0.592387535 

16×16 2.362E-01 2.797 4.628E-01 2.836 0.933337820 

32×32 2.966E-02 2.993 5.781E-02 3.001 0.991374277 

64×64 3.690E-03 3.007 7.127E-03 3.020 0.998917626 

128×128 4.599E-04 3.004 8.832E-04 3.013 0.999864685 

256×256 5.741E-05 3.002 1.099E-04 3.006 0.999983082 
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512×512 7.172E-06 3.001 1.371E-05 3.003 0.999997885 

 

Table V Accuracy analysis (Plane Wave test) of P1P2 scheme with SSP-RK3 timestepping 

and CFL = 0.300295. The total magnetic energy on the mesh as a fraction of the initial 

magnetic energy is also shown. 

 L1 Error L1 Accuracy L∞ Error L∞ Accuracy Total 

Magnetic 

Energy 

8×8 7.504E-01  1.586E+00  0.796984212 

16×16 1.073E-01 2.806 2.181E-01 2.862 0.969180584 

32×32 1.383E-02 2.955 2.783E-02 2.970 0.995979229 

64×64 1.741E-03 2.990 3.469E-03 3.004 0.999492593 

128×128 2.179E-04 2.998 4.314E-04 3.008 0.999936436 

256×256 2.725E-05 3.000 5.373E-05 3.005 0.999992050 

512×512 3.406E-06 3.000 6.703E-06 3.003 0.999999006 

 

VII.2) Magnetized Vortex Test Problem 

 We wish to showcase the capabilities of the divergence-free scheme for the induction 

equation without using any limiters. Unfortunately, most MHD problems will have strong non-

linearities which will cause the limiter to be invoked at least some times. We, therefore, pick a 

test problem which retains the linearity of the induction equation while being as close as possible 

to a real MHD test problem. The problem we choose consists of using just the magnetic field part 

of the magnetized vortex test problem that was discussed in Section VI of Balsara [6]. The 

magnetic field in that problem is extremely smooth and it does not invoke limiters. 

 The problem is set up on a periodic two-dimensional domain given by [-5,5]X[-5,5]. The 

velocity of the flow is taken to be ( ) ( )v , v 1,1x y = . Since we only solve the induction equation, 

there are no density and pressure variables in this test problem. The vortex is initialized at the 

center of the computational domain with a magnetic field given by 
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( ) ( ) ( )
20.5 1 r

x y B  , B  = e  y, x−
−   

The corresponding magnetic vector potential is given by 

( )20.5 1 r
zA  = e −   

The problem is run to a time of 10 units, by which point the vortex has propagated along the 

diagonal of the computational domain and come back to its original location. The errors in the L1 

and L∞ norms are measured at this final time. We also document the amount of magnetic energy 

that is retained on the mesh at this final time. It is a good measure of the scheme’s ability to 

preserve magnetic energy. 

 It is beneficial to show the results in tabulated form as well as in figures. Table VI shows 

the results for the magnetic vortex test problem for a P=1 DG scheme. We see that it meets its 

design accuracy. Realize however, that much of the variation in the magnetic field is restricted to 

a unit radius, which corresponds to one-fifth of the computational domain. We see that for this 

test problem, we have to go to rather large meshes, with 64 64×  zones, before 95% or more of 

the magnetic energy is preserved. Table VII shows the results for the magnetic vortex test 

problem for a P=2 DG scheme. While it meets its design accuracy, we can also see that it 

preserves 95% or more of the magnetic energy on a mesh with 32 32×  zones. Now consider the 

results from Table VIII which pertains to a P0P2 scheme; i.e. this is just a second order WENO 

scheme. While it also meets its design accuracy, the WENO scheme only preserves 95% or more 

of its original magnetic energy on a 64 64×  mesh. Now consider the P1P2 scheme shown in 

Table IX. The P1P2 scheme can be run with a CFL which is much larger than the P=2 DG 

scheme. Even so, its accuracy is entirely comparable to that of the P=2 DG scheme. Furthermore, 

it can preserve 95% or more of the magnetic energy on a 32 32×  zone mesh, just like the P=2 

DG scheme.  

 Fig. 8 shows all the data from Tables VI to IX in a single set of plots. Figs. 8a and 8b 

show the L1 and L∞ errors as a function of mesh size measured along one of the edges of the 

mesh. We see that there is a quality gap between the P0P1 scheme and the P1P1 scheme (which 

is indeed the P=1 DG scheme). Likewise, we see a quality gap between the P0P2 scheme 

(WENO scheme) and the P2P2 scheme (which is indeed the P=2 DG scheme). However, the 
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P1P2 and P2P2 schemes produce results in Figs. 8a and 8b are virtually indistinguishable! Fig. 

8c shows the magnetic energy that is preserved on the mesh at the final time in the simulation as 

a function of mesh size. Again, we see that the P1P2 and P2P2 schemes’ results in Figs. 8c are 

virtually indistinguishable. This gives us a very good insight, and the very useful suggestion, that 

PNPM schemes with low (but non-zero) values of “N” might be useful schemes in constraint-

preserving computational electrodynamics and computational MHD. 

 

Table VI Accuracy analysis (Magnetic Vortex test) of P=1 DG scheme with SSP-RK2 

timestepping and CFL = 0.300295. The total magnetic energy on the mesh as a fraction of 

the initial magnetic energy is also shown. 

 L1 Error L1 

Accuracy 

L∞ Error L∞ 

Accuracy 

Total 

Magnetic 

Energy 

8×8 1.136E+01  1.558E+00  0.315708777 

16×16 4.349E+00 1.386 7.604E-01 1.035 0.315708777 

32×32 8.884E-01 2.292 2.123E-01 1.841 0.315708777 

64×64 1.498E-01 2.568 3.977E-02 2.416 0.991039970 

128×128 2.934E-02 2.353 7.454E-03 2.416 0.991039970 

256×256 6.704E-03 2.130 7.454E-03 2.273 0.991039970 

512×512 1.639E-03 2.033 3.489E-04 2.144 0.999981950 

 

Table VII Accuracy analysis (Magnetic Vortex test) of P=2 DG scheme with SSP-RK3 

timestepping and CFL = 0.196555. The total magnetic energy on the mesh as a fraction of 

the initial magnetic energy is also shown. 

 L1 Error L1 

Accuracy 

L∞ Error L∞ 

Accuracy 

Total 

Magnetic 

Energy 

8×8 9.938E+00  1.162E+00  0.519655482 
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16×16 3.292E+00 1.594 4.590E-01 1.339 0.822776045 

32×32 5.865E-01 2.489 9.850E-02 2.220 0.965903039 

64×64 7.968E-02 2.880 1.446E-02 2.768 0.995301999 

128×128 1.013E-02 2.976 1.864E-03 2.956 0.999402788 

256×256 1.276E-03 2.989 2.342E-04 2.992 0.999925126 

512×512 1.629E-04 2.969 6.350E-05 1.883 0.999990635 

 

Table VIII Accuracy analysis (Magnetic Vortex test) of P0P2 scheme with SSP-RK3 

timestepping and CFL = 0.671745. The total magnetic energy on the mesh as a fraction of 

the initial magnetic energy is also shown. 

 L1 Error L1 

Accuracy 

L∞ Error L∞ 

Accuracy 

Total 

Magnetic 

Energy 

8×8 1.320E+01  1.930E+00  0.041739861 

16×16 7.906E+00 0.739 1.334E+00 0.533 0.258680606 

32×32 1.915E+00 2.045 3.944E-01 1.758 0.820789577 

64×64 3.232E-01 2.567 7.097E-02 2.474 0.973056493 

128×128 4.182E-02 2.950 9.481E-03 2.904 0.996513907 

256×256 5.256E-03 2.992 1.196E-03 2.987 0.999562555 

512×512 6.695E-04 2.973 1.495E-04 3.000 0.999945297 

 

Table IX Accuracy analysis (Magnetic Vortex test) of P1P2 scheme with SSP-RK3 

timestepping and CFL = 0.300295. The total magnetic energy on the mesh as a fraction of 

the initial magnetic energy is also shown. 

 L1 Error L1 

Accuracy 

L∞ Error L∞ 

Accuracy 

Total 

Magnetic 

Energy 

8×8 1.018E+01  1.390E+00  0.363160943 
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16×16 3.339E+00 1.609 5.206E-01 1.417 0.776986515 

32×32 5.893E-01 2.502 9.866E-02 2.400 0.963500507 

64×64 8.002E-02 2.881 1.392E-02 2.825 0.995203432 

128×128 1.022E-02 2.970 1.876E-03 2.891 0.999393772 

256×256 1.293E-03 2.983 2.368E-04 2.986 0.999924043 

512×512 1.675E-04 2.948 6.830E-05 1.794 0.999990499 

 

 

 

 

 

 

VIII) Conclusions 

 The induction equation plays an important role in MHD and other systems of equations 

like it. Numerical MHD, which requires the constrained evolution of the magnetic field, is a very 

prominent example of such a mimetic scheme. We see that it is important to evolve the magnetic 

field in the induction equation in a globally divergence-free fashion. This is best done on a 

staggered Yee-type mesh. On such a mesh, the magnetic field components are collocated at the 

faces of the mesh while the electric field components reside at the edges of the mesh. Finite 

volume schemes have already been extended to accommodate such a collocation of variables 

(Balsara and Spicer [4], Balsara [6], [7], Balsara and Dumbser [20], Xu et al. [49]). The present 

work extends RKDG schemes to accomodate the induction equation. This is done with the help 

of two important algorithmic advances.  

 In our first algorithmic advance, we build on prior work on divergence-free 

reconstruction of vector fields (Balsara [5], [6], [7], Balsara and Dumbser [20], Xu et al. [49]) to 

extend DG formulations so that they can accommodate a globally divergence-free reconstruction 

process. Consequently, at the faces of each mesh, we store the magnetic field components as well 
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as its higher moments. A DG formulation is then developed that operates on the faces of the 

mesh. The DG update requires the electric fields at the edges of the mesh. For finite volume 

schemes for MHD, recent advances in multidimensional Riemann solvers (Balsara [13], [14], 

[17], [19], Balsara, Dumbser & Abgrall [15] and Balsara & Dumbser [17], Vides et al. [48], 

Balsara et al. [21], [22]) have made it possible to uniquely define the edge-centered electric field 

in a multidimensionally upwinded fashion. Our second algorithmic advance consists of 

integrating multidimensional Riemann solvers with DG schemes for the induction equation. Just 

as the fluxes from a one-dimensional Riemann solver help in resolving the boundary integrals 

that arise in a conventional DG scheme, the electric fields from the multidimensional Riemann 

solvers help in resolving the edge integrals that arise in the DG scheme for the induction 

equation. While the two-dimensional case is discussed here, the method is, however, very 

general and also applies to three dimensions or to unstructured meshes. 

 When the velocity is pre-specified in the induction equation, the DG scheme becomes 

linear in the magnetic field variables. This simplification is used to carry out a von Neumann 

stability analysis of DG schemes for the induction equation. We stress that the induction 

equation is inherently multidimensional, so the stability analysis should also be 

multidimensional. 

 Results from the stability analysis are presented showing that the induction equation 

permits CFL numbers that are comparable to traditional RKDG schemes. We also analyze the 

wave propagation characteristics of the method and show that with increasing order of accuracy 

the wave propagation becomes more isotropic and free of dissipation for a larger range of long 

wavelength modes. This makes a strong case for investing in higher order methods. We also use 

the von Neumann stability analysis to show that that the divergence-free reconstruction and 

multidimensional Riemann solvers are essential algorithmic ingredients of a globally divergence-

free RKDG scheme. 

 A numerical accuracy analysis of the RKDG schemes is presented up to third order. We 

also study the accuracy of comparable PNPM schemes. It is found that the P1P2 scheme offers 

accuracy that is entirely comparable to the P=2 DG scheme, while permitting a larger CFL 

number.  
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Appendix A 

 We request the reader to focus on Fig. 1a. At second order, matching the linearly varying 

part of the x-component of the magnetic field in the right and left x-faces gives 

( ) 2      ;           ;      2x x x x
y y y xy y y yy xya B B a B B b a+ − + −= + = − = −      (A.1) 

Matching the linearly varying part of the y-component of the magnetic field in the top and 

bottom y-faces gives 

( ) 2       ;           ;      2y y y y
x x x xy x x xx xyb B B b B B a b+ − + −= + = − = −      (A.2) 

Matching the constant part of the x-component of the magnetic field in the right and left x-faces 

gives 

( )0 0 0 0 02 6       ;       x x x x
xx xa B B a a B B+ − + −= + − = −        (A.3) 

Matching the constant part of the y-component of the magnetic field in the top and bottom y-

faces gives 

( )0 0 0 0 02 6       ;       y y y y
yy yb B B b b B B+ − + −= + − = −        (A.4) 

It is easy to show that the constraint 0x ya b+ =  refers to the divergence-free aspect of the 

magnetic field. This completes our description of the divergence-free reconstruction of magnetic 

fields at second order.  
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Appendix B 

 Let the mean x-components of the magnetic field in the right and left faces of the 

reference square be denoted by 0
xB ±  respectively; let the corresponding first moments within 

those faces be denoted by x
yB ±  respectively; let the corresponding second moments in those faces 

be denoted by x
yyB ±  respectively. The two piecewise parabolic profiles for the x-component of the 

magnetic field at the right and left faces of the reference element are given by 

( ) ( )2
0 1/12x x x x

y yyB y B B y B y± ± ± ±= + + −         (B.1) 

 Similarly, let the mean y-components of the magnetic field in the top and bottom faces of the 
reference square be denoted by 0

yB ±  respectively; let the corresponding first moments within 

those faces be denoted by y
xB ±  respectively; let the corresponding second moments in those faces 

be denoted by y
xxB ±  respectively. The two piecewise parabolic profiles for the y-component of the 

magnetic field at the top and bottom faces of the reference element are given by 

( ) ( )2
0 1/12y y y y

x xxB x B B x B x± ± ± ±= + + −         (B.2) 

 

 The reconstructing polynomials for the magnetic field within the reference element are 
given by 

( ) ( )
( ) ( )

( ) ( )

2 2
0

3 2

2 2
0

2

( , )          1/12       1/12

                + 3 / 20     1/12

( , )         +  1/12        1/12

                + 1/

x
x y xx xy yy

xxx xyy

y
x y xx xy yy

xxy

B x y a a x a y a x a x y a y

a x x a x y

B x y b b x b y b x b x y b y

b x

= + + + − + + −

− + −

= + + − + + −

−( ) ( )312   3 / 20yyyy b y y+ −

   (B.3) 

Applying the divergence-free constraint at all points within the reference element gives 

( )
3 0   ;     3 0   ;     2     0   ;       2   0   ;

  30   0
xxx xxy xyy yyy xx xy xy yy

x y xyy xxy

a b a b a b a b

a b a b

+ = + = + = + =

+ − + =
  (B.4) 

Eqns. (B.3) and (B.4) specify eleven independent coefficients in the interior of the reference 
square which should be used to match the eleven independent pieces of information specified at 
the boundaries of the reference square via eqns. (B.1) and (B.2) 
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 Matching the second moments gives 

( ) ( )2     ;        ;    2     ;       ;

/ 3    ;    / 3

x x x x y y y y
yy yy yy xyy yy yy xx xx xx xxy xx xx

xxx xxy yyy xyy

a B B a B B b B B b B B

a b b a

+ − + − + − + −= + = − = + = −

= − = −
 (B.5) 

Matching the first moments gives 

( ) ( )2     ;       ;    2    ;       ;

2     ;      2

x x x x y y y y
y y y xy y y x x x xy x x

xx xy yy xy

a B B a B B b B B b B B

a b b a

+ − + − + − + −= + = − = + = −

= − = −
  (B.6) 

Matching the zeroth moments gives 

( ) ( )
( ) ( )

0 0 0 0 0

0 0 0 0 0

2 6       ;       30    ;

2 6       ;       30

x x x x
xx x xxy

y y y y
yy y xyy

a B B a a B B b

b B B b b B B a

+ − + −

+ − + −

= + − = − +

= + − = − +
     (B.7) 

Eqns. (B.5), (B.6) and (B.7) should be implemented in computer code in the same sequence that 
we have used to document them here. It is easy to see that 

( ) ( ) ( )0 0 0 0  30  x x y y
x y xyy xxya b a b B B B B+ − + −+ − + = − + −       (B.8) 

Since the right hand side of the above equation is just the divergence-free condition applied to 
the reference square, it is easy to see that it should be zero. Thus, all the constraints in eqn. (B.4) 
are satisfied by our third order accurate divergence-free reconstruction. 

 

Appendix C 

 For the multidimensional HLL Riemann solver, it is possible to do something that closely 

mimics the propagation of fast magnetosonic waves in MHD. We assume that we are dealing 

with the sub-sonic case. Since fast magnetosonic waves (unlike hydrodynamical sound waves) 

can travel at different speeds in the x- and y-directions, we assume that the x-directional wave 

propagation is bounded by [ ]v , vx x x xc c− +  where xc  is some proxy for a fast magnetosonic 

speed in the x-direction. Because the flow is assumed sub-sonic, we have vx xc > . Likewise, the 

y-directional wave propagation is bounded by v , vy y y yc c − +   where yc  is some proxy for the 

fast magnetosonic speed in the y-direction. Again, because the flow is assumed sub-sonic, we 

have vy yc > . We cannot specify xc  and yc  any further for the induction equation because there 
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isn’t enough physics in the induction equation to motivate a concept of a fast magnetosonic 

speed. But we can always assume that the induction equation is part of some larger system that 

admits a fast magnetosonic speed. For numerical examples in this paper, we will always take 

1.2 vx xc =  and 1.2 vy yc =  , which ensures that our one-dimensional Riemann problems are 

subsonic. As a result, the multidimensional HLL Riemann solver is also sub-sonic. The 

multidimensional wave model of the multidimensional HLL Riemann solver is given by 

[ ]v , v v , vx x x x y y y yc c c c − + × − +  . Once the wave model and the incoming states are specified, 

the electric field from the multidimensional HLL Riemann solver can be computed using eqns. 

(12), (13) and (14) of Balsara [16]. It is given by 

( ) ( )

( ) ( )( ) ( ) ( )( )
v 4 v 4

      2 2 2 2
4 4

z x x x x y y y y
HLL y RU LU LD RD x RU LU LD RD

y x x x x y y y yx
RU LU RD LD RU RD LU LD

E B B B B B B B B

c cB B B B B B B B

= + + + − + + +

− + − + + + − +
   (C.1) 

Like eqn. (4.1), the first line of the above equation yields the centered electric field. The second 

line in the above equation contains the dissipation terms. We see that the dissipation terms from 

the multidimensional HLL Riemann solver can be as small as half the dissipation terms from the 

multidimensional LF Riemann solver. (In all fairness, the dissipation also depends on the 

magnitude of xc  and yc .) This is an expected trend and is also reflected in any cross-comparison 

of the one-dimensional HLL and LF Riemann solvers. 

 

Appendix D 

Here we provide explicit forms for the coefficients in eqn. (5.11) which pertain to the P=1 DG 
scheme. They are: 

 

( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )11

3  v cos 1 v cos 2  v cos 21
2    v sin v  3 sin 2   v sin

x x x x y y

x x x x y y

y k x x y k x x k y
A

x y i x y k x x y i y k x i x k y

 ∆ ∆ − + ∆ + ∆ ∆ − ∆ ∆ +
 =
 ∆ ∆ − ∆ + ∆ ∆ − ∆ + ∆ + ∆ ∆ + ∆ ∆  
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( )( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

12

3  v 2  v  v cos   v sin
1 v cos  3  sin

2  
2 v 3 v 2 v cos  2 v 3 v sin

x y x x x x

x x x

y y y y y y y

y x y k x i x y k x

A x y x y k x i y k x
x y

x k y i k y

 −∆ − ∆ + ∆ ∆ + ∆ −∆ ∆ 
 = + ∆ −∆ + −∆ + ∆ ∆ − ∆ ∆ ∆ ∆  
+ ∆ + + ∆ − + ∆  

   

 

( ) ( )13

3 1
v v v v

2 

y

x

ik y

ik x
x x x x

e
A e

y

− ∆

∆
− −

 = + + − ∆
  

 

( )( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

21

3  v 2  v  v cos   v sin
1 v cos  3  sin

2  
2  v 3 cos 2  sin 2  v 1 2cos  3 sin

x y x x x x

x x x

y y y y y y

y x y k x i x y k x

A x y x y k x i y k x
x y

x k y i k y x k y i k y

 −∆ + ∆ + ∆ ∆ + ∆ −∆ ∆
 
 = + ∆ −∆ + −∆ + ∆ ∆ − ∆ ∆ ∆ ∆
 
− ∆ ∆ + ∆ + ∆ + ∆ + ∆  

 

22 11A A=  

 

23 13A A=    

 

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

( )( ) ( )
( )

( ) ( )

31

/22

v v cos 3 2  v  v  v cos

v 2 3 v cos 4  v sin v 2 4cos 2  3 sin

  v 3 v sin

 sin / 2
        

 1x y y

y y y x y y y

y x x x x x x x

y y y

x

i k x k y ik y

x x y k y y x x k y

A y k x i k x k x i k x

i x y x k y

i k x

x e e∆ − ∆ ∆

 −∆ + ∆ −∆ ∆ + − ∆ + ∆ −∆ ∆
 
 = +∆ + ∆ − ∆ + + ∆ − ∆ 
 
− ∆ −∆ − ∆ ∆  

− ∆  ×
∆ − 
  
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( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

( )( ) ( )
( )

( )

32

/22

v v cos 3 2  v  v  v cos

v 2 3 v cos 4  v sin v 2 4cos 2  3 sin

  v 3  v sin

 sin / 2
        

 x y y

y y y x y y y

y x x x x x x x

y y y

x

i k x k y ik y

x x y k y y x x k y

A y k x i k x k x i k x

i x y x k y

i k x

x e e∆ − ∆ ∆

 −∆ + ∆ −∆ ∆ + − ∆ −∆ + ∆ ∆
 
 = +∆ + ∆ − ∆ + + ∆ − ∆ 
 
− ∆ −∆ + ∆ ∆  

− ∆  ×
∆ −( )1 
  

 

( ) ( )( ) ( )

( ) ( )( ) ( )33

3 v 3 v cos v cos 1 3  v sin1

v 3  3cos  3 sin  v sin

x x x y y x x

x x x y y

k x k y i k x
A

x k x i k x i k y

 − ∆ + ∆ − + ∆
 =
 ∆ + − − ∆ + ∆ − ∆  

  

 

Please note that 1i ≡ −  in the above equations. Please also note that the square brackets in the 
previous several equations are not to be confused with matrices. Different choices of quadrature 
points will result in slightly different expressions and the above terms are specific to choosing 
two-point Gauss-Legendre quadrature in the faces. 

   

 

Figure Captions 

Fig. 1 shows how the divergence-free reconstruction is carried out in the shaded zone. The 
profiles of the facial magnetic field components are also shown. Fig. 1a shows piecewise 
constant magnetic field components in the faces; i.e., the first order case. Fig. 1b shows 
piecewise linear magnetic field components in the faces; i.e., the second order case.  

Fig. 2 shows the four states RU (right-up), LU (left-up), LD (left-down) and RD (right-down) 
that come together at a vertex. These four states contribute to the multidimensional Riemann 
problem at that vertex. (Such states are only shown for a few vertices in the figure.) The 
multidimensional Riemann problem gives us the z-component of the electric field at that vertex. 
The nodal points that contribute to the update of the central zone for the p=1 RKDG scheme are 
also shown by dots within each face. Only the filled dots at the nodal points truly contribute to 
the update of the nodal points that lie on the faces of the (0,0) zone.  

Fig 3 shows the domain of stability for the first order (P=0) DG scheme with forward Euler 
timestepping. The x- and y-axes of the plot show the CFL number in the x- and y-directions. The 
color shows the amplitude of the amplification factor. The white lines identify the boundary of 
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the domain of stability. Within the domain of stability, the amplification factor is less than or 
equal to unity for all possible wave modes that can propagate on the mesh. The CFL number is 
just the radius of the largest circle (in the Euclidean norm) remaining within the stability region 
in Fig. 3. 

Fig. 4 shows the domain of stability for the second order (P=1) DG scheme with several 
different timestepping strategies. Figs. 4a and 4b show the result of using the second and third 
order SSP schemes from Shu and Osher. Fig. 4c shows the result of using the RK(5,4) scheme 
from Spiteri and Ruuth. The white curves identify the boundary of the domain of stability. The 
CFL number is just the radius of the largest circle (in the Euclidean norm) remaining within the 
stability region in Fig. 4. 

Fig. 5 shows the domain of stability for the third order (P=2) DG scheme with several different 
timestepping strategies. Fig. 5a shows the result of using the third order SSP scheme from Shu 
and Osher. Fig. 5b shows the result of using the RK(5,4) scheme. The white curves identify the 
boundary of the domain of stability. The CFL number is just the radius of the largest circle (in 
the Euclidean norm) remaining within the stability region in Fig. 5. 

Figs. 6a, 6b, 6c and 6d show the result of such a wave propagation study when the velocity 
vector makes angles of 0o , 15 o , 30 o and 45 o to the mesh for the second order (P=1) DG 
scheme with SSP-RK2. Figs. 6 and 7 use the same vertical scale so that the amplification factors 
at different orders can be cross-compared. 

Figs. 7a, 7b, 7c and 7d are analogous to Fig. 6 but pertain to the third order (P=2) DG scheme 
with SSP-RK3. We see that the higher order scheme shows better wave propagation in all 
directions. 

Fig. 8 shows all the data from Tables VI to IX in a single set of plots. Figs. 8a and 8b show the 
L1 and L∞ errors as a function of mesh size measured along one of the edges of the mesh. Fig. 8c 
shows the magnetic energy that is preserved on the mesh at the final time in the simulation as a 
function of mesh size. 
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