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Abstract 

 Just as the quality of a one-dimensional approximate Riemann solver is improved by the 
inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also 
similarly improved. Such multidimensional Riemann problems arise when multiple states come 
together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann 
problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state 
with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists 
of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation 
laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-
structure for use on structured meshes is the goal of this work. The multidimensional MuSIC 
Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic 
conservation law. 

 The multidimensional Riemann solver is made to be consistent with constraints that emerge 
naturally from the Galerkin projection of the self-similar states within the wave model. When the 
full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete 
Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the 
multidimensional wave model. The work also presents, for the very first time, an important 
analysis of the dissipation characteristics of multidimensional Riemann solvers. The present 
Riemann solver results in the most efficient implementation of a multidimensional Riemann solver 
with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help 
with well-balancing. Implementation-related details are presented in pointwise fashion for the one-
dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver. 

 Several stringent test problems drawn from hydrodynamics, MHD and relativistic MHD 
are presented to show that the method works very well on structured meshes. Our results 
demonstrate the versatility of our method. The reader is also invited to watch a video introduction 
to multidimensional Riemann solvers on http://www.nd.edu/~dbalsara/Numerical-PDE-Course. 
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I) Introduction 

 One-dimensional Riemann solvers are routinely used in the numerical solution of 
hyperbolic systems of conservation laws. The one-dimensional Riemann problem is a self-similar 
solution that results from a discontinuity between two constant states. In their numerical study of 
the multidimensional Riemann problem, Schulz-Rinne, Collins & Glaz [61] initialized four states 
around the center of a two-dimensional Cartesian mesh. While one-dimensional Riemann 
problems arise between each pair of states, those authors showed that the one-dimensional 
Riemann problems interact amongst themselves to form a self-similarly evolving strongly-
interacting state. This strongly-interacting state arises at the point where the four states come 
together. The study of the multidimensional Riemann problem is, therefore, the study of the 
strongly-interacting state. This strongly-interacting state emerges by propagating into the one-
dimensional Riemann problems along its boundary. Consequently, the strongly interacting state, 
as well as the one-dimensional Riemann problems that form its boundary, evolve in a self-similar 
fashion. We refer to this boundary as the boundary of the multidimensional wave model because 
it contains the strongly-interacting state. The wave models in all the multidimensional Riemann 
solvers incorporate this concept of self-similarity. Schulz-Rinne, Collins & Glaz [61] only 
presented a computational study of the multidimensional Riemann problem. However, Abgrall [1], 
[2] was the first to formulate multidimensional Riemann solvers that were usable. The self-
similarly evolving strongly-interacting state is an inevitable consequence of having a 
multidimensional wave model that propagates into the one-dimensional Riemann problems. 
Seizing on this insight, Balsara [15] presented a self-similar formulation of the multidimensional 
Riemann problem. Incorporating the physics of the strongly-interacting state has shown to be very 
advantageous in second order calculations (Balsara [4]) and higher order accurate calculations 
(Balsara [15]). This is the true motivation for our study of the multidimensional Riemann solver 
reported here. 

 Following Abgrall [1], [2], further advances were also reported (Fey [40], [41], Gilquin, 
Laurens & Rosier [44], Brio, Zakharian & Webb [26]). However, these early formulations were 
cumbersome and did not see much use. Multidimensional Riemann solvers that are very efficient 
have also been designed and we focus on a certain class of multidimensional Riemann solvers here 
(Wendroff [70], Balsara [3], [4], [15], [18], Balsara, Dumbser & Abgrall [14], Vides, Nkonga & 
Audit[70], Balsara & Dumbser [16], Balsara et al. [19]). A video introduction to multidimensional 
Riemann solvers is available on the following website: http://www.nd.edu/~dbalsara/Numerical-
PDE-Course . Such Riemann solvers are applied at the vertices of a two-dimensional or three-
dimensional mesh. Many states come together at a vertex from different directions, making it 
possible to communicate the multidimensionality of the flow to the multidimensional Riemann 
solver. At the vertex, the job of the multidimensional Riemann solver is to approximate the self-
similar multidimensional structure that emanates from the vertex.  

 By this point in time, there has been substantial progress in one-dimensional and 
multidimensional Riemann solvers. In this paragraph we list the one-dimensional Riemann solvers 

http://www.nd.edu/%7Edbalsara/Numerical-PDE-Course
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and juxtapose them with their multidimensional counterparts. Such a juxtaposition can be very 
useful in building perspective. Several excellent one-dimensional Riemann solvers have been 
designed. There are exact Riemann solvers from Godunov [45],[46] and van Leer [68] and two-
shock approximations thereof (Colella [32], Colella & Woodward [33]). See also the work of 
Chorin [30]. The linearized Riemann solver by Roe [59] has also proved useful. The 
multidimensional Riemann solver by Abgrall [1], [2] can be viewed as Roe-type Riemann solver 
that has been extended to multiple dimensions. One-dimensional HLL Riemann solvers (Harten, 
Lax & van Leer [48]) have now been extended to two-dimensions (Balsara [3], [4]) and three-
dimensions (Balsara [18]). The papers by Balsara offer simple closed form expressions for the 
multidimensional HLL fluxes that are easy to implement. One-dimensional HLLC Riemann 
solvers (Toro, Spruce and Speares [65] [66], [67], Chakraborty & Toro [29] and Batten et al. [24]) 
seek to restore the physics of the contact discontinuity. Multidimensional extensions of the HLLC 
Riemann solver to structured and unstructured meshes have also become available in recent papers 
(Balsara [4], Balsara, Dumbser & Abgrall [14]). While HLLC Riemann solvers seek to restore an 
isolated contact discontinuity in the HLL Riemann solver, it is always interesting to ask if there 
are other ways to introduce an intermediate wave into the HLL Riemann solver? The one-
dimensional HLLE/HLLEM Riemann solver (Einfeldt [38], Einfeldt et al. [39]) tried to do that by 
introducing a linear profile in the Riemann fan. However, it could only restore the contact 
discontinuity for fluid dynamical problems. Dumbser & Balsara [37] generalized the number and 
kind of intermediate waves that can be resolved. Using the self-similar formulation of Balsara [15], 
they were able to introduce multiple intermediate waves into the HLL Riemann solver, thus giving 
rise to the HLLI Riemann solver. Here “I” stands for intermediate waves and acknowledges the 
fact that the HLLI Riemann solver can accommodate any intermediate wave as long as its 
eigenstructure is known. The result is a one-dimensional HLLI Riemann solver that benefits from 
all the good properties of the one-dimensional HLL Riemann solver and simultaneously functions 
as a Riemann solver that retains sub-structure. When all the intermediate waves are included, the 
one-dimensional HLLI Riemann solver of Dumbser & Balsara [37] becomes a complete Riemann 
solver. It is also a fully capable replacement for costlier Riemann solvers by Osher and Solomon 
[58] and Dumbser and Toro [36]. It is, therefore, very attractive to present a two-dimensional 
analogue of the HLLI Riemann solver for hyperbolic conservation laws and that is indeed the first 
goal of this paper. Such a multidimensional Riemann solver can be made complete in a 
multidimensional sense if all the intermediate waves in all directions are included. This is a very 
attractive property and we explore it further in this paper. 

 Self-similarity has not been used much in the design of one-dimensional Riemann solvers; 
the only real exception being the HLLI Riemann solver of Dumbser & Balsara [37]. However, it 
is crucially important in the development of multidimensional Riemann solvers (Balsara [15], 
Balsara & Dumbser [16]). This has prompted the name of MuSIC Riemann solvers, where MuSIC 
stands for “Multidimensional, Self-similar, strongly-Interacting, Consistent”. Such Riemann 
solvers are multidimensional; they draw on the self-similarity of the problem; they focus on the 
strongly-interacting state that results when multiple one-dimensional Riemann solvers interact; 
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and the design relies on establishing consistency with the conservation law. MuSIC Riemann 
solvers that rely on a Petrov-Galerkin projection to obtain the self-similar variation in the strongly 
interacting state have been presented (Balsara [15], Balsara & Dumbser [16]). An alternative 
projection method consists of satisfying the one-dimensional shock jumps at the boundary of the 
multidimensional wave model. Vides, Nkonga & Audit[70] and Balsara et al. [19] developed a 
multidimensional Riemann solver without and with sub-structure respectively that uses least 
squares minimization methods. A study of the dissipation characteristics of MuSIC Riemann 
solvers has never been presented. The second goal of this paper is to present a thorough study of 
the dissipation characteristics of the MuSIC Riemann solvers. We first present an analysis of the 
dissipation characteristics of the one-dimensional HLLI Riemann solver. We then show that when 
the one-dimensional HLLI Riemann solver is used as a building block for the MuSIC Riemann 
solver, its dissipation characteristics mirror those of the HLLI Riemann solver for flows that are 
mesh-aligned. 

 It is also worth recalling that the one-dimensional HLLI Riemann solver of Dumbser & 
Balsara [37] is a universal Riemann solver; i.e. it is applicable to any hyperbolic conservation law. 
It would be very desirable to have a multidimensional Riemann solver that is also applicable to 
any conservation law. The third goal of this paper is to show that when the one-dimensional HLLI 
Riemann solver is used as a building block for the MuSIC Riemann solver we indeed get a 
universal multidimensional Riemann solver that works for any hyperbolic conservation law. This 
generality implies that multidimensional Riemann solvers with sub-structure can be built and 
incorporated into any code for any hyperbolic conservation law. Moreover, the same coding 
strategy can be used for all hyperbolic conservation laws. 

 Magnetohydrodynamics (MHD) is an interesting example of a hyperbolic system with a 
more complex wave foliation. One-dimensional linearized Riemann solvers for numerical MHD 
have been designed (Roe & Balsara [60], Cargo and Gallice [27], Balsara [5]). HLLC Riemann 
solvers, capable of capturing mesh-aligned contact discontinuities, have been presented by Gurski 
[47] and Li [53]. Miyoshi and Kusano [56] drew on Gurski’s work to design an HLLD Riemann 
solver for MHD. It is, therefore, interesting to show that MHD can also be accommodated within 
our formulation. MHD is a system with an involution constraint, where the divergence of the 
magnetic field is always zero. Balsara & Spicer [6] showed that this is assured within the context 
of a higher order Godunov scheme by using the upwinded fluxes at the edges of the mesh to update 
the magnetic fields that are collocated at the faces of a mesh. Gardiner & Stone [42], [43] have 
claimed that the dissipation in those upwinded fluxes needs to be doubled all the time in order to 
stabilize the method. A substantial body of work now exists to show that the suggestion of Gardiner 
& Stone is completely unnecessary when multidimensional Riemann solvers are used to provide a 
properly upwinded electric field at the edges of the mesh (Balsara [4], Vides, Nkonga & Audit[69], 
Balsara & Dumbser [17]). Indiscriminate doubling of the dissipation, as per Gardiner & Stone’s 
suggestion, can indeed lead to excessive dissipation of the magnetic field in the direction that is 
transverse to the upwind direction. The present paper reinforces that finding. 
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  As with classical MHD, progress has also been made in relativistic MHD (RMHD). 
Balsara [22] and Komissarov [52] have designed Roe-type Riemann solvers for RMHD. HLLC 
and HLLD type Riemann solvers for RMHD have also been designed by Mignone & Bodo [54], 
Honkkila & Janhunen [49], Mignone, Ugliano and Bodo [55] and Kim & Balsara [51]. Balsara 
and Kim [20] have also shown the value of multidimensional Riemann solvers for RMHD 
calculations. The present paper reinforces the utility of MuSIC Riemann solvers for accurate 
RMHD simulations. 

 Section II describes a one-dimensional HLLI Riemann solver for conservation laws that is 
indeed novel and has some rather nice properties. Section III provides details associated with the 
construction of the multidimensional Riemann problem on Cartesian meshes. Section IV shows 
that schemes that use the multidimensional Riemann solver meet their design accuracy. Section V 
shows the results of several stringent test problems drawn from Euler, MHD and relativistic MHD 
flow. Section VI presents conclusions. 

II) Quick Derivation of the One-Dimensional HLLI Riemann Solver 

 In any multidimensional Riemann problem, the strongly-interacting state propagates into a 
sequence of one-dimensional Riemann problems that lie on its boundary. One dimensional 
Riemann solvers are, therefore, used as building blocks for the multidimensional Riemann 
problem. Because we wish to show that the dissipation characteristics of the MuSIC Riemann 
solver strongly mirror those of the one-dimensional HLLI Riemann solver, we first present a quick 
derivation of the one-dimensional HLLI Riemann solver in Sub-section II.a and study its 
dissipation characteristics in Sub-section II.b. This study is somewhat different from the one 
presented in Dumbser & Balsara [37] because the prior work did not use one of the Galerkin 
constraints that results from the imposition of self-similarity. A compare-and-contrast is presented 
in Sub-section II.c. Sub-section II.d presents implementation-related details. In Section III we 
present a multidimensional Riemann solver in two-dimensions that is a close analogue of the one-
dimensional HLLI Riemann solver presented here when Cartesian meshes are used.  

II.a) Galerkin Formulation in Similarity Variables 

 In this section we consider an N-component hyperbolic conservation law, 
0t x∂ ∂ + ∂ ∂ =U F , which is restricted to one dimension. For this conservation law, consider the 

Riemann fan between two states, LU  to the left and RU to the right. The Riemann problem evolves 
self-similarly with bounding speeds, LS  to the left and RS  to the right. Consider similarity variable 

x tξ =  and use it to define shifted and rescaled similarity variables as 

( ) ( )   with  2     ;    c
c R L R LS S S Sξ ξξ ξ ξ

ξ
 −

≡ ≡ + ∆ ≡ − ∆ 



      (2.1) 

Since the solution evolves self-similarly within the Riemann fan, the solution within the Riemann 
fan can be written in terms of similarity variables. Because of self-similarity, ( )ξU  and ( )ξF  
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are functions of only one similarity variable ξ . The tilde on the top of ( )ξU  is intended to signify 

a self-similarly evolving solution. The same is true for ( )ξF . Written in these shifted similarity 
variables, the conservation law becomes 

( ) ( ) ( )
( )

 1 0cξ ξ ξ ξ ξ
ξ

ξ ξ

 ∂ − + ∆  + =
∆ ∂

F U
U

 

        (2.2) 

Eqn. (2.2) is then the governing equation written in terms of the similarity variable. We expand 
our state and flux as 

( ) ξξ ξ= +U U U            (2.3) 

and 

( ) ( )       with     ξξ ξ ∂
= + =

∂
F UF F A U A

U
         (2.4) 

Please note that we have evaluated the characteristic matrix A  by using the mean state U  ; but 
there is some flexibility in the evaluation of the characteristic matrix. For example, it can be 
evaluated using Roe-averages or arithmetic averages, as was done in Dumbser and Balsara [37]. 
Please also note that ξ ξ≠ ∆ ∆U U  where ( )R L∆ ≡ −U U U . Realize that ξ∆ ∆U  is indeed an 
estimate of the full gradient and, therefore, includes contributions from the extremal waves that 
make up the Riemann fan. In a numerical Riemann problem, we only want to pick out contributions 
from waves that are internal to the Riemann fan. We will soon show that ξU  will be obtained by 
a projection of ∆U  onto the subset of waves that are interior to the Riemann fan. Multiplying the 
conservation law from eqn. (2.2) with the test function ( )φ ξ  gives 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )

 1 1     0
c

c

φ ξ ξ ξ ξ ξ ξ φ ξ
ξ ξ ξ ξ ξ φ ξ ξ

ξ ξ ξ ξ

 ∂ − + ∆ ∂   − − + ∆ + = ∆ ∂ ∆ ∂

F U
F U U

 

    

            (2.5) 

Now we are ready to make Galerkin projections with different test functions. 

 Using ( ) 1φ ξ =  and integrating over [ ]1/ 2,1/ 2ξ ∈ −  gives the usual HLL state 

( ) ( )1 1
HLL R R R L L LS S

ξ ξ
= = − − + −

∆ ∆
U U F U F U        (2.6) 

In practice, one always evaluates HLLU at the start of the calculation because it plays an important 
role in the rest of the calculation. This could include the construction of the characteristic matrix 
A . Realize, therefore, that HLLU  from the equation above will always be a positivity-preserving 

state. Using ( )φ ξ ξ=  and making a Galerkin projection gives 
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( ) ( )1 1 1 1     
6 2 2 6

c
HLL R R R L L L HLLS Sξ ξ

ξ ξ
ξ ξ ξ ξ

∆
− = − − − − − ⇔ = +

∆ ∆ ∆ ∆
U F U F U F U F F U   (2.7) 

Here HLLF  is the classical HLL flux. With 0ξ =U  we indeed retrieve the HLL flux from the above 

equation, which is a good thing. But the above equation also shows that the choice of ξU  and F  
are indeed related. If we set one, we have to reset the other. In other words, endowing sub-structure 
to the Riemann problem by setting 0ξ ≠U  will, in general, cause a shift in the mean flux F  so 

that it becomes different from HLLF . 

 Let { }: 1,...,ir i N=  and { }: 1,...,il i N=  be the full set of eigenvectors with eigenvalues 

{ }: 1,...,i i Nλ = . In other words, the previous sentence just catalogues the eigenvectors and 

eigenvalues of the characteristic matrix A  which we have documented above. Let intI  be the set 
of intermediate waves that we want to represent in the Riemann fan. (We could, of course, choose 

intI N=  in which case all the waves in the hyperbolic system are considered. Consequently, the 
Riemann solver becomes a complete Riemann solver.) The best characteristic projection we can 
do gives us 

( ) ( ) ( )
int

2   2   i i R L i R L
i I

l rξ δ
∈

= ⋅ − = −  ∑U U U R δ L U U       (2.8) 

Here R  is a matrix of right eigenvectors with dimension ( )int#N I×  and contains only the right 
eigenvectors being considered; L  is a corresponding matrix of left eigenvectors with dimension 
( )int# I N× and δ  is a diagonal matrix of dimension ( ) ( )int int# #I I× . Here “ ( )int# I ” denotes the 

number of elements in the set “ intI ”. We will specify the diagonal elements of δ  shortly and we 
will see that each diagonal term iδ  in the diagonal matrix δ  depend on the structure of the wave 
model as well as the wave speed iλ . Therefore, in order to be consistent with the Galerkin 
projection, we should substitute the value of ξU  from eqn. (2.8) in eqn. (2.7) to get the flux F . 
Also please notice that when the state is endowed with sub-structure F , which is obtained from 
eqn. (2.7), is not the classical HLL flux. The final numerical flux at the zone boundary, i.e. at 

0ξ = , is given by 

( )  c
numerical c ξ

ξξ ξ ξ
ξ

= = − ∆ = −
∆

F F F A U         (2.9a) 

or 

( ) ( )
int int

= 2  2  
6

c c
numerical i i R L i i HLL i i R L i i

i I i I
l r l rξ

ξ ξξδ λ δ λ
ξ ξ∈ ∈

    ∆   − ⋅ − = + + − ⋅ −          ∆ ∆       
∑ ∑F F U U F U U U  

            (2.9b) 
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or 

( ) ( ) ( )21= 2 2   
2 3

c
numerical HLL R L

ξξ
ξ

 ∆
− − + − ∆ 

F F R δ Λ δ L U U      (2.9c) 

To clarify further, F in eqn. (2.9b) is not the HLL flux. The square bracket term in eqn. (2.9c) 
clearly shows that the final numerical flux is made up of an HLL flux plus an anti-diffusive 
contribution from the HLLI Riemann solver. Notice that the final numerical flux in eqn. (2.9c) 
only requires us to know the intermediate eigenvectors and eigenvalues that we want to represent 
in our wave model. Therefore, the original advantage of the HLLI Riemann solver is preserved. 
What is new here is the incorporation of the Galerkin constraint stemming from eqn. (2.7).  

 Let us now obtain iδ  by paying careful attention to the numerical viscosity of the proposed 
HLLI Riemann solver. Using expressions from Appendix B of Dumbser & Balsara [37] we write 
the last line of eqn. (2.9) as 

( )

( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1
2

21           2 2   
2 3

numerical R L

R L R L R LR L
R L

R L R L R L

S S S S S SS S
S S S S S S

= +

 + − +
− − − + − − − − 

F F F

R Λ I δ Λ δ L U U
 

            (2.10) 

The second term in the above equation helps us to identify the viscosity of our Riemann solver. 
The square bracket in the above equation gives us the eigenvalues of the viscosity matrix and we 
want these to be bounded by the eigenvalues of the Roe-matrix viscosity (at the lower end) and 
the eigenvalues of the HLL viscosity (at the upper end). Using the dissipation properties of the 
underlying HLL Riemann solver we get the condition for iδ  as follows 

( ) ( )

( ) ( )

( )

2

2

2

                                        when 3 0

min ,                          otherwise      
3

3 where  =

i R L i R L

i
R i L i R L

i

R L i R L

R L
i

R L

S S S S

S S S S
S S S S

S S
S S

φ λ

δ λ λ φ
λ

φ

− +

  − − + ≤ 
  =  + −      − − +  

−
−

   (2.11) 

This condition ensures that our dissipation minimally matches or exceeds the dissipation of the 
Roe matrix for the sake of stability. Here ( )min ,0i iλ λ− ≡  and ( )max ,0i iλ λ+ ≡ . In fact, the choice 

of iφ  in eqn. (2.11) is not mandated by mathematics but rather by our desire to capture stationary 
linearly degenerate waves, like contact discontinuities, exactly on the mesh. In other words, when 

( ) ( )2 3 0R L i R LS S S Sλ − − + ≤   we have the option to set iφ  to a value that may even be greater 

than half. To capture stationary contact discontinuities exactly, we set iφ  in such a way that the 
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dissipation terms in the square bracket in eqn. (2.10) tend to zero as 0iλ →  . Notice too that iφ  is 
always positive for the sub-sonic case so that the gradient that is provided in eqn. (2.8) is always 
physical. In the subsonic case, i.e. when 0L RS S< < , the maximum positive value that can be 
assumed by iφ  is 3 4  which occurs when R LS S= − . Entropy is naturally enforced in this Riemann 
solver because the Riemann fan automatically provides a linear variation in the sub-structure.  

 Notice that when “ intI ” is a complete set of intermediate waves, i.e. when intI N= , the 
one-dimensional HLLI Riemann solver is indeed complete. Positivity is also very easily addressed 
in the context of this formulation. Notice that eqns. (2.8) and (2.11), along with the eigenstructure 
of the intermediate waves, fully specify ξU . One has only to ensure that ( )ξU  with our present 

choice of sub-structure remains positive for [ ]1/ 2,1/ 2ξ ∈ −  . In practice, this positivity-
enforcement is best done by checking for positivity at the ends of the interval; i.e., for the states 

2HLL ξ+U U  and 2HLL ξ−U U  . If positivity is not met, one is free to reduce ξU . In the limit of 
0ξ =U , the present Riemann solver reduces exactly to an HLL Riemann solver thereby 

guaranteeing positivity; see eqn. (2.9c). 

 Also notice that when RS  << LS  or when LS  << RS  , we have 0iδ →  so that 

numerical HLL→F F  . Now recall the very nice design feature of the HLL Riemann solver which says 
that the subsonic flux retrieves the supersonic fluxes when the Riemann fan is opened up ever so 
slightly so as to always force it to be minimally subsonic. From the property stated at the beginning 
of this paragraph we see that our HLLI Riemann solver also retains that very nice design feature. 

II.b) Dissipation Properties of the present HLLI Riemann solver 

 Recall that the Roe-type Riemann solver provides the theoretical minimum dissipation that 
any Riemann solver should provide to a scheme in order to ensure stability of the numerical 
method. However, the Roe-type Riemann solver has problems with positivity enforcement, while 
the HLLI Riemann solver discussed in this Section is free of this problem. The entropy fix is also 
naturally built into the HLLI Riemann solver. It is, therefore, worth asking the question, “How 
much excess dissipation is produced by the present HLLI Riemann solver compared to the Roe-
type Riemann solver?”. We answer that question in this paragraph and the next one. To normalize 
the search space, we can always require 1R LS S− =  . We also require 0L RS S≤ ≤ , i.e. we focus 
on the subsonic case. We assume that there is only one intermediate wave with wave speed iλ  
such that L i RS Sλ≤ ≤ . (Since the dissipation is independently determined for each wave family, 
the number of wave families that we use does not affect our present analysis.) For such a wave, 
we can use eqn. (2.11) to evaluate iδ . The square bracket in eqn. (2.10) then gives us the 
dissipation matrix. The diagonal term in the dissipation matrix for the intermediate wave being 
considered should be greater than or equal to iλ  because this is the theoretically minimum amount 
of dissipation required by the Roe-type Riemann solver. For various subsonic choices of LS  and 

RS , and with the normalizing restriction 1R LS S− = , we can indeed step through all possible 
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values of iλ . We can then plot the dissipation produced by the present HLLI-style Riemann solver 

versus iλ  . We can also plot iλ , the dissipation from the Roe-type Riemann solver, versus iλ . 
Such an exercise is undertaken in the next paragraph and it enables us to get an interesting 
perspective on the dissipation characteristics of the present HLLI Riemann solver vis a vis the 
Roe-type Riemann solver. 

The previous paragraph outlined a strategy for quantifying the dissipation properties of the 
HLLI Riemann solver and comparing it to the Roe-type Riemann solver. The results of this 
exercise are shown in Fig. 1. The dashed lines in Fig. 1 show the dissipation from our HLLI 
Riemann solver whereas the solid lines show the dissipation from the Roe-type Riemann solver. 
Fig. 1a shows us the dissipation from the HLLI Riemann solver and also the theoretically minimum 
dissipation, iλ , on the vertical axis as a function of wave speed, iλ , on the horizontal axis when 

0.9LS = −  and 0.1RS = . We see from Fig. 1a that our HLLI-style Riemann solver always produces 
dissipation that is within 23.2% of the Roe-type Riemann solver. (Please also note that the 
analogous plot for 0.1LS = −  and 0.9RS =  would look identical to Fig. 1a after it is flipped about 
the vertical axis given by 0iλ = . This trend extends to all the other panels in Fig. 1.) Fig. 1b shows 
similar information when 0.7LS = −  and 0.3RS = . From Fig. 1b we see that the dissipation of the 
HLLI-style Riemann solver coincides with the dissipation of the Roe-type Riemann solver when 

0.7LS = −  and 0.3RS = . Fig. 1c shows similar information when 0.5LS = −  and 0.5RS = ; again 
showing us that the two Riemann solvers produce identical dissipation. Fig. 1d shows similar 
information when 0.2LS = −  and 0.8RS = ; again showing us that our HLLI Riemann solver 
always produces dissipation that is within 17.6% of the Roe-type Riemann solver. Fig. 1e shows 
analogous information when 0.01LS = −  and 0.99RS = ; we see that the dissipation of the two 
Riemann solvers is almost identical. Based on such an analysis, we conclude that our present HLLI 
Riemann solver always produces dissipation that is within ten to twenty percent of the Roe-type 
Riemann solver under all circumstances. In many of the situations shown in Fig. 1, the two 
Riemann solvers have identical dissipation. This is a very interesting demonstration in light of the 
versatility, robustness and favorable positivity properties of our HLLI Riemann solver and the lack 
thereof for the Roe-type Riemann solver. For all the panels in Fig. 1 we see that our HLLI Riemann 
solver has zero dissipation when 0iλ =  which shows that it can also capture stationary linearly 
degenerate waves exactly. Consequently, we see that it offers all the good attributes of the Roe-
type Riemann solver while avoiding all its pitfalls. Fig. 1 of this paper can also be compared to 
Fig. 3.1 of Castro-Díaz and Fernández-Nieto [28] if one wants to analyze the dissipation properties 
of the HLLI Riemann solver through the perspective of polynomial viscosity methods (PVM). 

II.c) Comparison with the HLLI-type Riemann solver of Dumbser and Balsara [37] 

 In this section we have designed an HLLI-type Riemann solver based on endowing sub-
structure to the HLL Riemann solver. The one-dimensional HLLI Riemann solver described here 
is very useful because it extends more naturally to multidimensions. In Dumbser and Balsara [37] 
a slightly different HLLI-type Riemann solver had been presented. The difference is primarily in 
the fact that the Galerkin projection in eqn. (2.7) is not used in the design of the Riemann solver 
in Dumbser & Balsara [37]. As a result, eqns. (2.9) and (2.11) are also substantially different. It is 
interesting to compare and contrast the two variants of HLLI Riemann solvers. To that end, it is 



11 
 

valuable to write the explicit expressions for ( )ξU   and ( )ξF   for the present HLLI Riemann 

solver for any value of the similarity variable x tξ =  . The formulae in this paragraph are valid as 

long as ξ  lies in the range L RS Sξ< < , i.e. within the Riemann fan. Using iδ  from eqn. (2.11), 
we get 

( ) ( )

( ) ( ) ( )

int

int int

2  

2  2  
6

c
HLL i i R L i

i I

c
HLL i i R L i i i R L i i

i I i I

l r

l r l r

ξ ξξ δ
ξ

ξ ξξξ δ δ λ
ξ

∈

∈ ∈

  −  = + ⋅ −     ∆     
    −∆    = + ⋅ − + ⋅ −          ∆       

∑

∑ ∑

U U U U

F F U U U U









  (2.12) 

The two curly brackets in the above two equations only need to be evaluated once. Appendix A 
provides the corresponding formulation of this Riemann solver for moving meshes, i.e., ALE-type 
meshes. Notice that the Galerkin formulation from eqn. (2.7) dictates that the inclusion of sub-
structure should cause a change in the mean flux in eqn. (2.12). It is also helpful to be able to 
compare and contrast this Riemann solver with the HLLI Riemann solver from Dumbser and 
Balsara [37]. That Riemann solver does not use the first moment of the conservation law, i.e. eqn. 
(2.7), because it is meant to be generally applicable to hyperbolic systems in conservation and non-
conservative forms. As a result, the definition of iδ  changes to 

1 i i
i

L RS S
λ λδ

− +

= − −            (2.13) 

For the Riemann solver from Dumbser and Balsara [37] we then have 

( ) ( )

( ) ( )

int

int

2

2  

2  
2 

c
HLL i i R L i

i I

R L
HLL i i R L i

i I

l r

S S l r

ξ ξξ δ
ξ

ξξ δ
ξ

∈

∈

  −  = + ⋅ −     ∆     
  −  = + ⋅ −     ∆     

∑

∑

U U U U

F F U U









      (2.14) 

Only one curly bracket needs to be evaluated in the above equation, therefore, the HLLI Riemann 
solver from Dumbser and Balsara [37] has slightly lower computational complexity. However, 
both flavors of HLLI Riemann solvers require the evaluation of the intermediate eigenvectors. This 
eigenvector evaluation often constitutes the bulk of the additional computational cost that is added 
on top of the cost of the HLL Riemann solver. For that reason, both flavors of HLLI Riemann 
solver have almost the same overall computational complexity. Notice that iδ  can assume larger 
values in eqn. (2.13) compared to eqn. (2.11). However, the mean HLL flux in eqn. (2.14) is left 
unchanged by the inclusion of sub-structure in the Riemann fan. The flux in eqn. (2.14) is based 
on considering fluctuations. Comparing the fluxes in eqns. (2.12) and (2.14) we see that the flux 
in the former equation varies linearly with ξ  whereas the flux in the latter equation varies 
quadratically with ξ . This is a consequence of the different philosophies that were used in deriving 
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the two variants of the HLLI Riemann solver. In practice, both work equally well. Both can 
preserve stationary intermediate waves on a mesh without additional dissipation. 

II.d) Implementation-Related Details for one-dimensional HLLI Riemann solver:- 

 The present HLLI Riemann solver can be easily retrofitted to any HLL Riemann solver 
and usually provides a very palpable improvement in the simulation quality. The steps in the 
implementation of this one-dimensional HLLI Riemann solver are as follows: 

1) Obtain HLLU  from eqn. (2.6). (If the density in HLLU  is substantially lower than the minimum 
density in the states LU  and RU we do not provide linear sub-structure. Similarly, if the density 
in HLLU  is substantially greater than the maximum density in the states LU  and RU we also do not 
provide linear sub-structure. Similar considerations are made for the pressure. I.e., this is just a 
reasonable and physical criterion for deciding whether it is justified to include sub-structure in the 
Riemann solver.) 

2) Using HLLU , obtain the eigensystem given by { }int:i i Iλ ∈ , { }int:ir i I∈  and { }int:il i I∈ . Note 
that only the intermediate waves of interest are needed; and these waves are usually easier to 
evaluate than the entire eigenstructure. 

3) Using  iδ  from eqn. (2.11), now obtain ξU  from eqn. (2.8).  

4) Check  2HLL ξ+U U  and 2HLL ξ−U U  for positivity. Reduce ξU  as needed to enforce 
positivity. 

5) Using HLLU  and ξU  in eqn. (2.7), obtain F  from eqn. (2.7). 

6) Now obtain the numerical flux numericalF  from eqn. (2.9a) or (2.9b). Alternatively, we can build 

HLLF  in the usual way and use it to build the numerical flux numericalF  using eqns. (2.9b) or (2.9c). 

7) The supersonic cases are obvious. 

 In this section we have provided details for the one-dimensional HLLI Riemann solver on 
a fixed mesh. But we also realize that some people might want to apply this Riemann solver to an 
arbitrary Lagrangian-Eulerian (ALE) mesh. Appendix A gives the formulation of the present one-
dimensional HLLI Riemann solver on a moving mesh. 

III) MuSIC Riemann Solver that is closest to an HLLI Formulation – Focus on Cartesian 
Meshes 

 Sub-section III.a presents the formulation of the MuSIC Riemann solver, including a 
description of the inclusion of sub-structure. Section III.b presents implementation-related details. 

III.a) Formulation of the MuSIC Riemann Solver 
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 Consider the N-component hyperbolic conservation law in two-dimensions, given by 
0t x y∂ ∂ + ∂ ∂ + ∂ ∂ =U F G . It can give rise to one-dimensional Riemann problems, but it can also 

give rise to a multidimensional Riemann problem. The multidimensional Riemann problem is most 
easily understood on a Cartesian mesh, and we focus on that in this paper because it is possible to 
get exact answers for the multidimensional Riemann solver in Cartesian geometry. We will defer 
the inclusion of sub-structure in the multidimensional Riemann solver on unstructured meshes for 
a subsequent paper. As shown schematically in Fig. 2 a multidimensional Riemann problem arises 
when four states RUU  , LUU  , LDU  and  RDU  come together at a zone vertex; the vertex is shown 
as a gray dot in that figure. The four pairs of mutually contiguous states set up four one-
dimensional Riemann problems. However, the one-dimensional Riemann problems interact in a 
strongly-interacting state, as shown in Fig. 2a of Balsara [15]. The strongly interacting state is 
bounded by a multidimensional wave model. In fig. 2a the thick solid line denotes the boundary 
of the multidimensional wave model; the interior of the wave model is shaded. The four initial 
states that come together at a vertex “O” of the mesh are also shown. The thin solid lines in Fig. 
2a show the extremal speeds of the one-dimensional Riemann problems in the boundary of the 
multidimensional wave model. The dashed lines in Fig. 2a show the coordinate axes, measured as 
speeds. The bounding speeds of the multidimensional wave model are also shown. On such a mesh, 
the extent of the multidimensional wave model, [ ] [ ], ,L R D US S S S×  , is approximated beforehand. 

See Balsara [3] and [4] for advice on how to pick out the extent of the multidimensional wave 
model on a Cartesian mesh. The strongly-interacting state is bounded by the multidimensional 
wave model and evolves self-similarly, just like the one-dimensional Riemann problems at its 
boundary.  

 We want to predict the self-similar evolution of the multidimensional, strongly-interacting 
state, U . The tilde on the top of U  is intended to signify a self-similarly evolving solution. Let 
us, therefore, pick similarity variables in two-dimensions and express the strongly-interacting state 
in terms of those two variables. The similarity variables are 

   ;   =x y
t t

ξ ψ=             (3.1) 

Notice that ( ),ξ ψ   correspond most naturally to ( ),x y . We make a scaled and shifted coordinate 

transformation in the similarity variables with 

( ) ( ) ( ) ( )2     ;        ;    2     ;    

    ;    

c R L R L c U D U D

c c

S S S S S S S Sξ ξ ψ ψ

ξ ξ ψ ψξ ψ
ξ ψ

≡ + ∆ ≡ − ≡ + ∆ ≡ −

 −  − 
≡ ≡   ∆ ∆  





  (3.2) 
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Observe that ξ  and ψ  are still self-similar variables with the main difference that they now range 

over [ ] [ ]1/ 2,1/ 2 1/ 2,1/ 2− × − . This makes it easier to achieve concordance with the one-

dimensional case described in the previous sub-section. With the change of variables in eqn. (3.2), 
the N-component conservation law in two-dimensions becomes 

( ) ( ) ( ) ( ) ( ) ( )
( )

,  ,,  ,1 1 2 , 0cc ξ ψ ψ ψ ψ ξ ψξ ψ ξ ξ ξ ξ ψ
ξ ψ

ξ ξ ψ ψ

   ∂ − + ∆∂ − + ∆   + + =
∆ ∂ ∆ ∂

G UF U
U

  

  

            (3.3) 

Here the strongly-interacting state ( ),ξ ψ=U U   is a function of the two similarity variables. The 

same is true for the fluxes ( ),ξ ψF  and ( ),ξ ψG . 

 We can now expand the strongly-interacting state in the similarity variables as 

( ), ξ ψξ ψ ξ ψ= + +U U U U           (3.4) 

Because ( ) ( ), 0,0ξ ψ =  corresponds to the centroid of our wave model, U  is indeed the mean 

value associated with our wave model. The x-flux is written in similarity variables as 

( ) ( ) ( ),         with     ξ ψξ ψ ξ ψ ∂
= + + =

∂
F UF F A U U A

U
       (3.5) 

It may also prove convenient to integrate eqn. (3.5) in the ψ -direction to write the numerical x-
flux as 

( )
1/2

1/2

,  c
numerical c d ξ

ξξ ξ ξ ψ ψ
ξ−

 
= = − ∆ = −  ∆ 

∫F F F A U       (3.6) 

The y-flux is written in similarity variables as 

( ) ( ) ( ),        with      =ξ ψξ ψ ξ ψ ∂
= + +

∂
G UG G B U U B

U
       (3.7) 

It also proves convenient to integrate eqn. (3.7) in the ξ -direction to write the numerical y-flux as 

( )
1/2

1/2

,  c
numerical c d ψ

ψξ ψ ψ ψ ξ
ψ−

 
= = − ∆ = −  ∆ 

∫G G G B U       (3.8) 

For eqns. (3.6) and (3.8) recall that the time axis corresponds to ( ) ( ), 0,0ξ ψ =

  (or alternatively, 

( ) ( ), ,c cξ ψ ξ ξ ψ ψ= − ∆ − ∆  ). We want to make sure that eqns. (3.6) and (3.8) meet two 
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important goals. First, for problems with strong discontinuities in arbitrary directions the 
expressions for numericalF  and numericalG  generate sufficient entropy to stabilize the problem. When 

strong discontinuities are present, the substructure, represented by ξU  and ψU  is irrelevant and 

can be zeroed out. This can be accomplished with the help of a sensor function that detects the 
presence of a strong discontinuity. We therefore require numericalF  and numericalG  to reduce to the 

multidimensional HLL values from Balsara [4] when 0ξ ψ= =U U  . Second, when the flow is 
mesh-aligned, we want the expressions to become analogous to the one-dimensional forms from 
Section II. In other words, when the flow is aligned with the x-axis, we want the expression from 
eqn. (3.6) to have dissipation characteristics that are similar to the one-dimensional HLLI Riemann 
solver from Section II. As in Section II, this will enable us to put bounds on the slope ξU  . A 

similar consideration for flow that is aligned with the y-axis will enable us to put bounds on the 
slope ψU  . 

 By multiplying eqn. (3.3) by a test function ( ),φ ξ ψ , we can make it more ready for the 

Galerkin projection in similarity variables. Consequently, we get 

( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ) ( ) ( )

,  ,  1 1   

, ,1 1       2 , 0

cc

c c

φ ξ ψ ψ ψ ψφ ξ ψ ξ ξ ξ

ξ ξ ψ ψ
φ ξ ψ φ ξ ψ

ξ ξ ξ ψ ψ ψ φ ξ ψ
ξ ξ ψ ψ

   ∂ − + ∆∂ − + ∆   +
∆ ∂ ∆ ∂

∂ ∂
  − − + ∆ − − + ∆ + =   ∆ ∂ ∆ ∂

G UF U

F U G U U

  

   

  

            (3.9) 

The test functions are chosen from the same set of functions as the trial functions in eqn. (3.4). 
From eqn. (3.4) it is easy to see that our trial functions are ( ), 1φ ξ ψ = , ( ),φ ξ ψ ξ=  and 

( ),φ ξ ψ ψ= . 

 Using the test function ( ), 1φ ξ ψ =   and integrating over the entire wave model gives 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1/2 1/2

1/2 1/2
1/2 1/2

1/2 1/2

1 11/ 2, 1/ 2, 1/ 2, 1/ 2,
1
2 1 1,1/ 2 ,1/ 2 , 1/ 2 , 1/ 2

R L

U D

S d S d

S d S d

ψ ψ ψ ψ ψ ψ
ξ ξ

ξ ξ ξ ξ ξ ξ
ψ ψ

− −

− −

 
− − − − − ∆ ∆ = −  

 + − − − − −
∆ ∆  

∫ ∫

∫ ∫

F U F U
U

G U G U
 

            (3.10) 

In practice, one always obtains U  (the mean value of the strongly interacting state) as early as 
possible in the calculation, because its value plays an important role in subsequent equations. This 
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value of U  is used in eqn. (3.4) for the mean value and also in eqns. (3.5) and (3.7) to construct 
the characteristic matrices. It is also easy to show that when the flow is aligned with the x-axis we 

have D US S= − , ( ) ( ),1/ 2 , 1/ 2ξ ξ= −G G  and ( ) ( )
1/2 1/2

1/2 1/2

,1/ 2 , 1/ 2 HLLd dξ ξ ξ ξ
− −

= − =∫ ∫U U U  . The 

upshot is that for mesh-aligned flow, HLL=U U . In other words, when the flow is mesh-aligned, 
the mean value of the strongly-interacting state in the multidimensional Riemann solver matches 
with the corresponding state from the one-dimensional HLL Riemann solver, see eqn. (2.6). 
Having obtained U with the help of zeroth moments, let us now consider the first moments of the 
governing equation. For the first moment in the x-direction we use the test function ( ),φ ξ ψ ξ=  

and integrate over the entire wave model to get 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1/2 1/2

1/2 1/2
1/2 1/2

1/2 1/2

1 11/ 2, 1/ 2, 1/ 2, 1/ 2,
2 2

1 1,1/ 2 ,1/ 2 , 1/ 2 , 1/ 2

    
4

R L

c

U D

S d S d

S d S d

ξ

ψ ψ ψ ψ ψ ψ
ξ ξ

ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ

ψ ψ

ξ

− −

− −

 
− + − − − ∆ ∆ = + ∆  

 + − − − − −
∆ ∆  

∆
+

∫ ∫

∫ ∫

F U F U
F U

G U G U

U

 

            (3.11) 

For the first moment in the y-direction we use the test function ( ),φ ξ ψ ψ=  and integrate over the 

entire wave model to get 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1/2 1/2

1/2 1/2
1/2 1/2

1/2 1/2

1 11/ 2, 1/ 2, 1/ 2, 1/ 2,
+

1 1,1/ 2 ,1/ 2 , 1/ 2 , 1/ 2
2 2

     
4

R L

c

U D

S d S d

S d S d

ψ

ψ ψ ψ ψ ψ ψ ψ ψ
ξ ξ

ψ ψ
ξ ξ ξ ξ ξ ξ

ψ ψ

ψ

− −

− −

 
− − − − − ∆ ∆ = ∆  

 + − + − − −
∆ ∆  

∆
+

∫ ∫

∫ ∫

F U F U
G U

G U G U

U

            (3.12) 

This completes our description of the moments that are taken over the entire wave model, 
[ ] [ ]1/ 2,1/ 2 1/ 2,1/ 2− × − . The above three equations were already derived in Balsara [15]. They 

are, however, used very differently in this paper to derive a MuSIC Riemann solver that is a close 
analogue of the one-dimensional HLLI Riemann solver. In principle, any one-dimensional 
Riemann solver can be used as a building block for the multidimensional Riemann solver, as shown 
in Balsara [15]. However, to make the connection with the HLLI Riemann solver as tight as 
possible, we want the present multidimensional Riemann solver to be based on the same 
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philosophy that was used for the one-dimensional HLLI Riemann solver in the limit where the 
flow is mesh-aligned. 

 Let us first establish a notational similarity between the multidimensional eigenstructure in 
this section and the one-dimensional eigenstructure from the previous section. We would like to 
obtain the best possible representation of the linear profile within the strongly interacting region. 
Let ( )ξ∆ U  and ( )ψ∆ U  denote undivided differences. Let us denote the linear profile in multiple 

dimensions as follows: 

( ) ( ) ( ),unprojected ξ ψξ ψ ξ ψ= + ∆ + ∆U U U U         (3.13) 

 

Typically, we wish to identify these undivided differences from the multidimensional wave model 
by looking at the solutions from the one-dimensional Riemann problems in the boundary of the 
multidimensional wave model. Thus we can write 

( ) ( ) ( )
1/2 1/2

1/2 1/2

1/ 2, 1/ 2,d dξ ψ ψ ψ ψ
− −

∆ = − −∫ ∫U U U        (3.14) 

and 

( ) ( ) ( )
1/2 1/2

1/2 1/2

,1/ 2 , 1/ 2d dψ ξ ξ ξ ξ
− −

∆ = − −∫ ∫U U U        (3.15) 

As in Section II, ( )ξ∆ U  and ( )ψ∆ U  can be thought of as the unprojected slopes. They are related 

to ξU  and ψU  respectively by appropriate projections that can be made with the left and right 

eigenvectors. The weights that are assigned to those projections are designed to bring out certain 
favorable properties in the multidimensional Riemann solver. To that end, we identify the interior 
waves in both directions for the state U . Let { }int:x

i i Iλ ∈ , { }int:x
ir i I∈  and { }int:x

il i I∈ be the 

eigenvalues and right- and left-eigenvectors in the x-direction associated with the state U . 
Likewise, let  { }int:y

i i Iλ ∈ , { }int:y
ir i I∈  and { }int:y

il i I∈ be the eigenvalues and right- and left-

eigenvectors in the y-direction associated with the state U . We assume that the eigenstates are so 
ordered that the same set intI  labels the intermediate waves in either direction; this is usually 

possible for most hyperbolic systems. (For example, in MHD we could use the set intI  to label a 
left-going Alfven wave, an entropy wave in the x-direction and a right-going Alfven wave. We 
can use the same set to label a downward-going Alfven wave, an entropy wave in the y-direction 
and an upward-going Alfven wave.) It is worth pointing out that since the x- and y-directional 
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eigenvectors are built from the same state U , waves of a given wave family that are moving in 
any arbitrary direction can be projected in the linear space of the two sets of eigenvectors. We can 
now relate ξU  to ( )ξ∆ U  in a fashion that is closely analogous to eqn. (2.8) as follows 

( ) ( ) ( )
int

2    2   x x x x x x
i i i

i I
l rξ ξ ξδ

∈

 = ⋅ ∆ = ∆ ∑U U R δ L U       (3.16) 

We can also relate ψU  to ( )ψ∆ U  as 

( ) ( ) ( )
int

2    2   y y y y y y
i i i

i I
l rψ ψ ψδ

∈

 = ⋅ ∆ = ∆ ∑U U R δ L U       (3.17) 

Notice that we have evaluated the eigenstructure in both the x- and y-directions. As a result, xR  
and yR  are matrices of right eigenvectors with dimension ( )int#N I×  in the x- and y-directions; 
and please note that the two matrices are not the same. Similar considerations hold for matrices of 
left eigenvectors, xL  and yL , with dimension ( )int# I N× . The diagonal matrices with dimension 

( ) ( )int int# #I I× that contain the eigenvalues in the x- and y-directions are denoted by xΛ  and yΛ  

respectively. The elements of the two diagonal matrices xδ  and yδ  with dimension 
( ) ( )int int# #I I×  have also to be independently specified. Please also note that x

iδ  and y
iδ  are the 

factors by which we change the eigenvector projection in eqns. (3.16) and (3.17). These factors 
can be greater than unity or they can even become less than unity. The amount of additional weight 
imparted by these factors is designed to ensure that the multidimensional Riemann solver retains 
favorable properties, as discussed in an ensuing paragraph. 

 We now ask the important question, which fluxes and states should we use in the integrals 
in eqns. (3.10), (3.11) and (3.12)? Our first instinct would be to use the linear profiles from eqn. 
(2.12). In fact, it can be shown that with that linear profile, and the definition for iδ  given in eqn. 
(2.11), the x-flux in eqn. (3.6) will indeed reduce to the x-flux from the one-dimensional HLLI 
Riemann solver when the flow is aligned with the x-axis. While this is proved in Appendix B, the 
proof steers us false! The fallacy is not in the math in Appendix B; in fact the mathematics is 
correct. The source of the fallacy is this:- If the logic of that mathematics is followed, it will lead 
us to a multidimensional Riemann solver that has some very poor entropy generation properties, 
especially in the vicinity of strong shocks! The source of the fallacy resides in the fact that we 
wanted the profiles ( ),1/ 2ξU  and ( ), 1/ 2ξ −U  to match the linear profiles from eqn. (2.12). 

However, realize that the one-dimensional HLLI Riemann solver produces overly steepened linear 
profiles. Such an over-steepened linear profile will produce lower than desired entropy in the 
transverse fluxes. In other words, the Lagrangian fluxes ( ) ( ),1/ 2 ,1/ 2USξ ξ−G U  and 
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( ) ( ), 1/ 2 , 1/ 2DSξ ξ− − −G U  will produce less entropy than desired. When strong non-linearities 

are present in the flow, the resulting multidimensional Riemann solver will be unstable. 

 Having gained that insight, we draw upon our first goal. The goal is that for problems with 
strong discontinuities the expressions for numericalF  and numericalG  generate sufficient entropy to 

stabilize the problem. In the limit of strong discontinuities, the substructure, represented by ξU  

and ψU  is irrelevant and can even be suppressed with the help of a switch that detects the presence 

of strong shocks. We therefore require numericalF  and numericalG  to reduce to the multidimensional 

HLL values from Balsara [4] when 0ξ ψ= =U U  . To some extent, the fluxes and states that we 

put into the integrals in eqns. (3.10), (3.11) and (3.12) are a matter of choice. We choose to use the 
piecewise-constant fluxes and states that come from the one-dimensional HLL Riemann solver. 
With that choice, numericalF  and numericalG  will indeed reduce to the multidimensional HLL values 

from Balsara [4] when 0ξ ψ= =U U  . 

 We now draw upon our second goal. When the flow is mesh-aligned, we want the 
expressions to reduce to their one-dimensional forms from Section II. In other words, when the 
flow is aligned with the x-axis, we want the expression from eqn. (3.6) to have dissipation 
characteristics that are similar to the one-dimensional HLLI Riemann solver from Section II. As 
in Section II, this will enable us to put bounds on the slope ξU  . For x-directional flow, we have 

RU RD R= =U U U  and LU LD L= =U U U . Eqn. (3.11) then give us 

( ) ( )1
2 4 4c HLL R R R L L L HLLS S ξ ξ

ξ ξξ ∆ ∆
= + − + − + = +  F U F U F U U F U     (3.18) 

Compare eqn. (3.18) to eqn. (2.7) to notice that the two equations differ in detail. Consequently, 
putting eqn. (3.18) into eqn. (3.6) and simplifying gives us 

( )

( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1
2

21           2 2   
2 2

numerical R L

R L R L R Lx x x x x xR L
R L

R L R L R L

S S S S S SS S
S S S S S S

= +

 + − +
− − − + − − − − 

F F F

R Λ I δ Λ δ L U U
 

            (3.19) 

Again, comparing eqn. (3.19) to eqn. (2.10) shows that the two equations differ in detail. As we 
did with eqn. (2.10), we demand that the dissipation from eqn. (3.19) matches or exceeds the Roe-
matrix viscosity. This is achieved when 
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An analogous exercise for the y-flux, which is not repeated here for the sake of brevity, gives us 

( ) ( )

( ) ( )

( )

2

2

2
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min ,                          otherwise      
2
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   (3.21) 

With x
iδ  and y

iδ  fully specified by the above equations, we realize that eqns. (3.14) and (3.16) 

give us ξU  . Likewise, eqns. (3.15) and (3.17) give us ψU  . The integrals over the side panels of 

the multidimensional wave model in eqns. (3.10), (3.11) and (3.12) are fully specified by the one-
dimensional HLL Riemann solvers in those side panels. From eqns. (3.10), (3.11) and (3.12), U  , 
F  and G  are also fully specified. Eqns. (3.6) and (3.8) can, therefore, be used to obtain the 
numerical fluxes from the multidimensional Riemann solver. Also notice that we have already 
evaluated all or part of the eigenstructure so that we make the simplification 

      and      x x x y y y= =A R Λ L B R Λ L         (3.22) 

I.e., the characteristic matrices are built from the sub-portion of the eigenstructure that has been 
evaluated. 

 The one-dimensional HLLI Riemann solver from Section II also preserves stationary 
contact discontinuities that are mesh-aligned. Consequently, the multidimensional Riemann solver 
described in this Section will do the same. As a result, the multidimensional Riemann solver 
described in this Section will inherit all the good well-balancing properties that were described for 
the one-dimensional HLLI Riemann solver in Section II.  

 A further observation is warranted. Recall that the two-dimensional HLLC Riemann solver 
from Balsara [4] reduces to the one-dimensional HLLC Riemann solver for mesh-aligned flows 
on a two-dimensional Cartesian mesh. But this reduction becomes exact only if the one-
dimensional Riemann solvers on the boundary of the multidimensional wave model are indeed 



21 
 

HLLC. If another type of one-dimensional Riemann solver is used, the result may still be pretty 
good. However, the reduction in the one-dimensional limit is not provably exact. A similar 
situation prevails for the discussion in this Section. The multidimensional MuSIC Riemann solver 
becomes closely analogous to the one-dimensional HLLI Riemann solver described in Section II 
for mesh-aligned flows on a two-dimensional Cartesian mesh. However, for this reduction to 
become philosophically consistent, the one-dimensional Riemann solvers on the boundary of the 
multidimensional wave model should indeed be based on the one-dimensional HLL Riemann 
solver.  

 Notice that when “ intI ” is a complete set of intermediate waves, the MuSIC Riemann solver 
is indeed complete in a multidimensional sense. In other words, it retains all the intermediate waves 
that can exist in the multidimensional wave model. Positivity can also be ensured by requiring that 

( ),ξ ψU  is positive for all ( ) [ ] [ ], 1/ 2,1/ 2 1/ 2,1/ 2ξ ψ ∈ − × − . In practice, the positivity is enforced 

at the vertices of our multidimensional wave model. If the initial profile in eqn. (3.13) indicates a 
loss of positivity at any of the vertices of the multidimensional wave model, we should feel free to 
reduce ξ∆ U  and ψ∆ U  in that equation. Appendix C of Balsara [15] provides a computer-

implementable strategy for reducing the variation in the mean state. The reduction of ξ∆ U  and 

ψ∆ U  will naturally result in a reduction in  ξU  and ψU  via eqns. (3.16) and (3.17). In the limit 

of 0ξ ψ= =U U  the present Riemann solver reduces exactly to an HLL Riemann solver, 
guaranteeing positivity. Also please note that when the variation in the flow is not one-dimensional 
and mesh-aligned, the fluxes F  and G  in eqns. (3.6) and (3.8) will indeed have multidimensional 
contributions. This is true even in the limit where 0ξ ψ= =U U . I.e., the MuSIC Riemann solver 

described here is genuinely multidimensional even when sub-structure is absent. 

 It is also worth pointing out that in this narrative we have described the simplest 
multidimensional Riemann solver with sub-structure. In other words, one-dimensional HLL 
Riemann solvers provide the boundary information for the multidimensional wave model. There 
also exist one-dimensional HLLC (Toro, Spruce and Speares [65], Gurski [47], Li [53]) and HLLD 
(Miyoshi and Kusano [56]) Riemann solvers which provide multiple states. The transverse fluxes 
across each of those states can be evaluated. This permits us to provide a more refined linear profile 
using a least squares minimization procedure (Vides et al. [69], Balsara et al. [19]). Such a least 
squares procedure would consist of minimizing the linear profile from eqn. (3.13) along the 
boundary of the wave model. This is done by minimizing 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1/2 1/2
2 2

1/2 1/2
1/2 1/2

2 2

1/2 1/2

1/ 2, 1/ 2, 1/ 2, 1/ 2,
1
2

,1/ 2 ,1/ 2 , 1/ 2 , 1/ 2

unprojected unprojected

unprojected unprojected

d d

d d

ψ ψ ψ ψ ψ ψ

ξ ξ ξ ξ ξ ξ

− −

− −

 
− + − − − 

 
 
 + − + − − −
  

∫ ∫

∫ ∫

U U U U

U U U U

 

 

 (3.23) 
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When a one-dimensional HLL Riemann solver is used, eqns. (3.14) and (3.15) provide the better 
strategy because they ensure that for mesh-aligned flow profiles we retrieve the one-dimensional 
Riemann solver. But it is useful to note that the above equation works well too when a more refined 
one-dimensional Riemann solver is used. Experience has shown that the major gain comes from 
having some reasonable sub-structure in the multidimensional Riemann solver. Introducing a more 
refined sub-structure using eqn. (3.23) does not provide that much incremental benefit. 

III.b) Implementation-Related Details for MuSIC Riemann Solver on Cartesian Meshes:- 

 Before the multidimensional Riemann problem is evaluated, it is assumed that a one-
dimensional HLL Riemann solver has been applied immediately outside the boundary of the 
multidimensional wave model. This is inexpensive and easy to do. The steps in the implementation 
of the MuSIC Riemann solver with multidimensional sub-structure on structured meshes are as 
follows: 

1) Construct the multidimensional wave model. See Balsara [3], [4] for the construction of the 
multidimensional wave model for Cartesian meshes. 

2) Examine the multidimensional wave model for the existence of a supersonic solution. The 
supersonic state and its corresponding numerical fluxes are obtained exactly as described in Fig. 5 
from Balsara [15]. Please also see the text associated with Fig. 5 of Balsara [15]. If a supersonic 
case is discovered, the subsequent steps, all of which pertain to the subsonic case, are not carried 
out. 

3) Obtain U  from eqn. (3.10). The integrals on the right hand side of eqn. (3.10) are performed 
on the solution vectors and transverse fluxes that are obtained from the one-dimensional HLL 
Riemann solvers that abut the multidimensional wave model.  

4) If the density in U  is substantially lower than the minimum density in the states RUU , LUU , 

LDU  and RDU we do not provide linear sub-structure. Similarly, if the density in U  is substantially 

greater than the maximum density in the states RUU , LUU , LDU  and RDU we also do not provide 
linear sub-structure. Similar considerations are made for the pressure. I.e., this is just a reasonable 
and physical criterion for deciding whether it is justified to include sub-structure in the Riemann 
solver. If the decision is made to exclude sub-structure, the eigenvector evaluation and projection 
in the ensuing few steps is not needed. 

5) Using U , obtain the eigenstructure { }int:x
i i Iλ ∈ , { }int:x

ir i I∈  and { }int:x
il i I∈ in the x-

direction as well as the eigenstructure { }int:y
i i Iλ ∈ , { }int:y

ir i I∈  and { }int:y
il i I∈ in the y-

direction. Note that only the intermediate waves of interest are needed; and these waves are usually 
easier to evaluate than the entire eigenstructure. 
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6) Obtain ξ∆ U  and ψ∆ U  from eqns. (3.14) and (3.15). Please notice that these “undivided 

differences” should not be confused with ξU  and ψU , which will be evaluated in the next two 

steps.  

7) In practice, it is also advisable to apply the multidimensional limiter from Appendix C of Balsara 
[15] to the linear profile in eqn. (3.13). Consequently, ξ∆ U  and ψ∆ U undergo multidimensional 

limiting. 

8) Evaluate x
iδ  and y

iδ  from eqns. (3.20) and (3.21). Then obtain ξU  and ψU  from eqns. (3.16) 

and (3.17).  

9) Using U  , ξU  and ψU  in eqns. (3.11) and (3.12), obtain F   and G  . The integrals on the right 

hand side of eqns. (3.11) and (3.12) are performed by using the solution vectors and transverse 
fluxes from the one-dimensional HLL Riemann solvers that abut the multidimensional wave 
model. 

10) Now obtain the numerical fluxes numericalF  and numericalG   from eqns. (3.6) and (3.8). 

IV) Accuracy Analysis 

 It is desirable to demonstrate that our MuSIC Riemann solver, when coupled with high 
order spatial reconstruction and temporal evolution, produces suitably high order accuracy. To 
achieve high spatial accuracy we use WENO reconstruction (Jiang and Shu [50], Balsara and Shu 
[7], Dumbser and Käser [34], Balsara et al. [11], Balsara [12], Balsara, Garain and Shu [21]) for 
the spatial reconstruction of conserved variables. The spatial reconstruction of divergence-free 
magnetic fields uses an extension of the WENO reconstruction strategy (Balsara [8], [9], [10], 
[12], Balsara and Dumbser [17]). We also use a high order one-step ADER (Arbitrary DERivatives 
in space and time) time-evolution (Titarev & Toro [62], [63] and Toro & Titarev [64], Dumbser et 
al. [35], Balsara et al. [11], Balsara et al. [13], Balsara and Kim [20]). Specifically, the ADER 
time-stepping that we use in this work on structured meshes is closest in style to Balsara et al. [11] 
and Balsara et al. [13]. 

 For the present accuracy analysis, the multidimensional Riemann solver used one-
dimensional HLL Riemann solvers in the side panels. A linear variation of the variables, along 
with the limiting from eqns (3.20) and (3.21), was retained in the strongly interacting state. The 
use of eqns (3.20) and (3.21) contributes significantly to the stability of the multidimensional 
Riemann solver with sub-structure while simultaneously enabling the accurate treatment of slowly 
moving discontinuities. The multidimensional Riemann solver was integrated into the code using 
a simplified Simpson rule so that fourth order fluxes were evaluated at the zone faces. The 
RIEMANN code is three-dimensional so a weight of 1/6 was assigned to each of the four 
multidimensional Riemann solvers at the edge-centers associated with each face. A fifth one-
dimensional Riemann solve was done at the zone center using the one-dimensional Riemann solver 
described in Section II, and it was assigned a weight of 1/3. See eqn. (25) of Balsara [3] for further 
detail. Time-averaged states from the ADER predictor step were used as inputs to the Riemann 
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solvers. The implicit assumption in such an approach is that spatial and temporal accuracy can 
commute.  

 A CFL number of 0.8 was used for all second and third order hydrodynamical simulations 
in this section. Up to third order it seems acceptable to assume that the spatial and temporal 
accuracy can indeed commute so that the advantages of a large timestep are retained. At fourth 
order, this assumption clearly breaks down, limiting the CFL to 0.4 if the order property is to be 
preserved. A recently completed von Neumann stability analysis for the numerical solution of the 
induction equation is now available, Balsara and Käppeli [23]. It shows that finite volume schemes 
for the induction equation are only stable up to a CFL of 0.666. As a result, all second and third 
order MHD and RMHD simulations in this paper used a CFL of 0.65. All fourth order MHD and 
RMHD simulations in this paper used a CFL of 0.4. For the sake of completeness, we also mention 
that in Balsara, Dumbser & Abgrall [14] a Gaussian quadrature in time was used along with an 
ADER-WENO formulation. With that choice, it was shown that larger CFL numbers can be 
retained at all orders. Because that choice requires extra programming, we made a simpler choice 
in this paper. It must be appreciated that if the plan in this paragraph is implemented efficiently, 
each multidimensional Riemann solver contributes to the formation of four facial fluxes. 
Furthermore, the number of calls to the Riemann solvers does not increase with increasing order 
of accuracy, which would be the case if a Runge-Kutta timestepping were to be used. For MHD 
calculations, the Riemann solver acts at the edges of the mesh, therefore, the edge-aligned 
component of the electric field is directly available at each edge of the mesh. 

 In this section we demonstrate the accuracy of our methods by using hydrodynamical and 
MHD vortex flows. Analogous work for relativistic hydrodynamics and relativistic 
magnetohydrodynamics has also been done. In Balsara and Kim [20] we have presented relativistic 
analogues of the hydrodynamical and MHD vortices that are analyzed here. In that paper we also 
show that those relativistic vortex problems can be used to demonstrate the higher order accuracy 
of relativistic hydrodynamics and RMHD codes. 

IV.a) Accuracy Analysis for Hydrodynamical Vortex Problem 

 This hydrodynamical vortex problem was presented in Jiang and Shu [50]. In this problem, 
an isentropic vortex propagates at 45° to the grid lines in a domain with periodic boundaries  given 
by [-5, 5] x [-5, 5]. Since the vortex stably preserves its form, it returns to its original location. 
Since the problem is well-known in the literature, we do not describe it in detail here. The velocity 
and temperature fluctuations for the circular vortex have an exponential fall-off with radius, which 
ensures that the fluctuations are quite close to zero at the domain boundaries. However, for the 
fourth order scheme the domain is increased to [-10, 10] x [-10, 10] due to the fact that the nonzero 
values of the exponential function at the boundaries are picked up by the fourth order scheme on 
the smaller domain. The stopping time was set to 10 time units for the second and third order 
schemes and to 20 time units for the fourth order scheme because of the bigger domain. The 
stopping time was chosen so that the vortex has completed one periodic passage through the 
computational domain. We report on the accuracy of the vortex after it has completed one orbit in 
the computational domain. Table I shows the accuracies in the L1 and L∞ norms for the density 
variable for second, third and fourth order schemes at the stated stopping times. All three ADER-
WENO methods with the MuSIC Riemann solver permit the use of a large CFL number. They all 
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meet the expected order of accuracy even for a small number of zones, showing that they have 
uniform convergence properties. 

TABLE I shows the accuracy analysis for the hydrodynamical vortex problem as measured 
in the density variable. 

Method # of zones 1L   Error 1L   Order L∞   Error L∞   Order 
ADER-WENO 
2nd Order, 
CFL 0.8 

     

 64x64 7.5493E-4  1.3944E-2  
 128x128 1.5086E-4 2.32 2.9161E-3 2.26 
 256x256 3.1994E-5 2.24 5.9727E-4 2.29 
 512x512 7.4763E-6 2.10 1.2859E-4 2.12 
ADER-WENO 
3rd Order, 
CFL 0.8 

     

 64x64 5.4996E-4  9.5739E-3  
 128x128 8.0649E-5 2.77 1.3067E-3 2.87 
 256x256 1.0361E-6 2.96 1.7063E-4 2.94 
 512x512 1.3157E-6 2.98 2.1673E-5 2.97 
ADER-WENO 
4th Order, 
CFL 0.4 

     

 64x64 4.7883E-4  3.2613E-2  
 128x128 2.5250E-5 4.25 1.6253E-3 4.33 
 256x256 1.0724E-6 4.56 7.9549E-5 4.35 
 512x512 7.9390E-8 3.76 4.2003E-6 4.24 

 

 

IV.b) Accuracy Analysis for MHD Vortex Problem 

 The magnetized isodensity vortex problem described in Balsara [9] consists of a 
magnetized vortex moving across a domain given by [-5, 5] x [-5, 5] at an angle of 45° for a time 
of 10 units. As before, for the fourth order scheme the domain is increased to [-10, 10] x [-10, 10] 
and the simulation time is increased to 20 units. Periodic boundaries are used for the domain. Since 
the problem is well-known in the literature, we do not describe it in detail here. We report on the 
accuracy of the x-component of the magnetic field of the vortex after it has completed one orbit in 
the computational domain. Table II shows the accuracies in the L1 and L∞ norms for the x-magnetic 
field variable for second, third and fourth order schemes at the stated stopping times. All three 
ADER-WENO methods with the MuSIC Riemann solver permit the use of a large CFL number. 
They all meet the expected order of accuracy even for a small number of zones, showing that they 
have uniform convergence properties. 



26 
 

TABLE II shows the accuracy analysis for the MHD vortex problem as measured in the x-
component of the magnetic field. 

Method # of zones 1L   Error 1L   Order L∞   Error L∞   Order 
ADER-WENO 
2nd Order, 
CFL 0.8 

     

 64x64 3.1447E-3  2.5112E-2  
 128x128 7.8041E-4 2.01 6.0608E-3 2.05 
 256x256 1.9452E-4 2.00 1.5432E-3 1.97 
 512x512 4.8703E-5 2.00 3.8818E-4 1.99 
ADER-WENO 
3rd Order, 
CFL 0.8 

     

 64x64 5.2781E-4  1.0549E-2  
 128x128 6.3890E-5 3.05 1.6369E-3 2.69 
 256x256 7.8487E-6 3.03 2.7012E-4 2.60 
 512x512 1.0024E-6 2.97 5.0893E-5 2.41 
ADER-WENO 
4th Order, 
CFL 0.4 

     

 64x64 4.5538E-4  3.0456E-2  
 128x128 2.3059E-5 4.30 1.4159E-3 4.43 
 256x256 1.3014E-6 4.15 6.2495E-5 4.50 
 512x512 7.5300E-8 4.11 3.6479E-6 4.10 

 

V) Test Problems 

 A broad range of test problems is presented here. The problems span many different PDE 
systems showing that the 2D MuSIC Riemann solver, along with the 1D HLLI Riemann solver, 
works very well. We first show a few results involving Euler flow. Then we show results from 
classical MHD. Subsequently, we show results involving RMHD flows. 

 

V.a) Euler Flow: Forward Facing Step 

 This problem was first presented in Woodward and Colella [71] and Colella and Woodward 
[33]. It is so well-known in the computational hydrodynamics community that we do not describe 
its set-up here. The problem was run on a 960×320 zone mesh spanning the domain [ ] [ ]0,3 0,1×  
to a final time of 4.0. A fourth order ADER-WENO scheme with the MuSIC Riemann solver was 
used. Fig. 3 shows the density variable from the forward facing step problem at a time of 4.0. The 
problem consists of a Mach 3 wind tunnel with a forward-facing step. As the bow shock reflects 
off the step and then the top wall of the wind tunnel, it establishes a triple-point structure. A vortex 
sheet emanates from the triple point. The vortex sheet that emanates from this triple-point structure 
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shows an interesting roll-up due to Kelvin-Helmholtz instability. We see that our simulation has 
captured the roll-up of the vortex sheet very well. 

 

V.b) Euler Flow: Double Mach Reflection 

 This problem was first presented in Woodward and Colella [71] and Colella and Woodward 
[33]. It is also well-known in the computational hydrodynamics community, with the result that 
we do not describe its set-up here. The problem consists of a strong Mach 10 shock that is initially 
incident on a reflecting wedge that makes an angle of 60o with the plane of the shock. The problem 
was run on a 1920×480 zone mesh spanning the domain [ ] [ ]0,4 0,1×  to a final time of 0.2. A 
fourth order ADER-WENO scheme with the MuSIC Riemann solver was used. Fig. 4a shows the 
density variable from the double Mach reflection problem at a time of 0.2. Fig. 4b shows a zoom-
in of the roll-up of the Mach stem. We see that we obtain a very well-resolved roll-up of the Mach 
stem. 

 

V.c) Classical MHD Flow: Rotor Problem 

 This well-known MHD problem was first documented in Balsara & Spicer [6] and also 
Balsara [9]. It consists of a central, uniformly rotating vortex in a non-rotating ambient medium. 
An initially uniform magnetic field threads through both regions. The details are described in the 
above-mentioned references. The problem initially has a uniform magnetic field threading the 
computational domain [ ] [ ]0.5,0.5 0.5,0.5− × − . Within a radius of 0.1 units, we initialize a dense 
rotating fluid, which forms the rotor. The motion of the rotor initiates outwar-propagating waves. 
The problem was run on a 1000×1000 zone mesh to a final time of 0.29. A fourth order ADER-
WENO scheme with the MuSIC Riemann solver was used. Fig. 5 shows the results from the MHD 
Rotor test problem. Figs. 5a, 5b, 5c and 5d show the density, pressure, magnitude of the fluid 
velocity and the magnitude of the magnetic field at the final time. All the requisite MHD flow 
features are captured nicely in our simulations. 

 

V.d) Classical MHD Flow: 3D Blast Problem 

 The present test problem is a 3D variant of the well-known 2D MHD blast wave problem 
that was first documented in Balsara & Spicer [6]. The plasma β  measures the ratio of the thermal 
pressure to the magnetic pressure. As the plasma’s β  becomes smaller, this problem becomes 
increasingly stringent. The problem consists of a 1.4γ =  gas with unit density and a pressure of 
0.1 initialized on a 2573 zone mesh spanning the unit cube. Initially we have 
B B B 150 3x y z= = =  . The pressure is initially reset to a value of 1000 inside a central region 

with a radius of 0.1. The plasma’s β  is initially given by 1.117×10-4 . A CFL number of 0.4 was 
used. The problem is run up to a time of 0.0075, by which time a strong magnetosonic blast wave 
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propagates through the domain. The problem was run with a third order ADER-WENO scheme 
with the MuSIC Riemann solver applied at the edges of the mesh. Fig. 6 shows the variables from 
the 3D blast problem in the z = 0 mid-plane of the computational domain. Fig. 6a shows the plot 
of the density for the mid-plane in the z-direction. Fig. 6b shows the same for the pressure in the 
same plane. Figs. 6c and 6d show the magnitude of the velocity and the magnitude of the magnetic 
field, again in the same plane. We see that the densities and pressures are positive as expected. 

 

V.e) Classical MHD Flow : Decay of Finite Amplitude Torsional Alfven Waves 

 Turbulence studies play an increasingly important role in several fields, like astrophysics 
or space physics. (The Orzag Tang [57] problem is a first step in the development of turbulence.) 
The ability to propagate finite amplitude Alfven waves over large distances and long times on a 
computational mesh is crucial for carrying out simulations of MHD turbulence. If the Alfven 
waves are damped strongly because of inherent numerical dissipation in a code, the code will fail 
to capture the resulting turbulence. This is because MHD turbulence is mainly sustained by Alfven 
waves. The Alfven wave decay test problem, first presented by Balsara [9], examines the numerical 
dissipation of torsional Alfven waves in two dimensions. In this test problem torsional Alfven 
waves propagate at an angle of 9.462o to the y-axis through a domain given by [-3, 3] x [-3, 3] . 
The domain was set up with 120 x 120 zones and has periodic boundary conditions. We do not 
present further details of the set-up, because the problem is already well-described in the above-
mentioned paper. The simulation was stopped at 129 time units by which time the Alfven waves 
had crossed the domain several times. Depending on the dissipation properties of the scheme, the 
amplitude of the torsional Alfven wave will, of course, decay. A more dissipative method will 
cause greater dissipation of the Alfven wave; a less dissipative method will reduce that dissipation. 

 It is often said that the quality of the Riemann solver is not very important, especially when 
high order schemes are used. But practitioners have not quantified the precise order of accuracy of 
the scheme at which the quality of the Riemann solver becomes immaterial. We set out to quantify 
this order of accuracy for MHD simulations. To that end, we simulated the torsional Alfven wave 
decay problem with second, third and fourth order schemes with the 1D HLLI Riemann solver 
along with the 2D MuSIC Riemann solver with sub-structure. Used in this fashion, both the 1D 
and 2D Riemann solvers are complete; i.e. they fully represent all the waves that arise in the MHD 
system. We then simulated the same problem again with the same second, third and fourth order 
schemes. However, this time we used a 1D HLL Riemann solver along with the 2D MuSIC 
Riemann solver without any sub-structure. In other words, in our second set of simulations both 
Riemann solvers did not resolve any intermediate waves.  

 Figs. 7a and 7b show the evolution of the maximum z-velocity and maximum z-component 
of the magnetic field in the torsional Alfven wave as a function of time. For the simulations shown 
in Figs. 7a and 7b we used the 1D HLLI Riemann solver along with the 2D MuSIC Riemann solver 
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with sub-structure. Figs. 7c and 7d show the same information as Figs. 7a and 7b, the only 
difference being that we used the 1D HLL Riemann solver along with the 2D MuSIC Riemann 
solver without sub-structure. Comparing the two sets of figures, we see that the inferior Riemann 
solvers produce a six-times larger decay in the amplitude of the Alfven wave at second order. At 
third order, the inferior Riemann solvers produce a three-times larger decay in the amplitude of 
the Alfven wave. Notice that the second order scheme with superior Riemann solvers is less 
dissipative than the third order scheme with inferior Riemann solvers! At fourth order, the 
difference between the inferior Riemann solvers and the exact Riemann solvers is almost 
negligible. We, therefore, conclude that second and third order schemes are greatly benefited by 
the quality of the Riemann solver. It is only at fourth and higher orders of accuracy that the 
difference between a superior and an inferior Riemann solver begins to become quite small! 
However, please note that a fourth order scheme has computational complexity that is substantially 
higher than a second or third order scheme. The Riemann solver with substructure has a 
computational complexity that is only marginally higher than a Riemann solver without 
substructure. As a result, it is very advantageous to improve the quality of all schemes at all orders. 

 

V.f) RMHD Flow: Relativistic Orzag Tang Problem 

 The Orzag Tang test problem (Orzag and Tang [57]) is designed to illustrate the transition 
to turbulence for MHD flows. The RMHD variant of that test problem has been proposed by 
Beckwith and Stone [25]. We do not repeat the set-up here. The problem was set up on a unit 
square with 1000×1000 zones and run to a final time of 0.8. The problem was run with a fourth 
order ADER-WENO scheme with the MuSIC Riemann solver applied at the edges of the mesh. 
Figs. 8a, 8b, 8c and 8d show the density, pressure, magnitude of the velocity and magnitude of the 
magnetic field at the final time for the relativistic Orzag Tang problem. All the requisite MHD 
flow features are captured nicely in our simulations. 

 

V.g) RMHD Flow: Decay of Finite Amplitude Torsional Alfven Waves 

 In Section V.e we studied the decay of torsional Alfven waves in classical MHD and 
showed that the importance of a high-quality Riemann solver is only diminished at fourth and 
higher orders. It is interesting to speculate whether such a result also applies to other hyperbolic 
systems. In Balsara and Kim [20] we constructed a relativistic analogue of the torsional Alfven 
wave decay problem from Balsara [9]. We do not repeat the details of the set-up here. 

 Figs. 9a and 9b show the evolution of the maximum z-velocity and maximum z-component 
of the magnetic field in the relativistic torsional Alfven wave as a function of time. For the 
simulations shown in Figs. 9a and 9b we used the 1D HLLI Riemann solver along with the 2D 
MuSIC Riemann solver with sub-structure. Figs. 9c and 9d show the same information as Figs. 9a 
and 9b, the only difference being that we used the 1D HLL Riemann solver along with the 2D 
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MuSIC Riemann solver without sub-structure. Comparing the two sets of figures, we see that the 
inferior Riemann solvers again show substantially larger dissipation at second and third orders. It 
is only at fourth order that we find a much-reduced difference between a Riemann solver with sub-
structure and a Riemann solver that does not resolve any intermediate waves. As before, notice 
that the second order scheme with superior Riemann solvers is less dissipative than the third order 
scheme with inferior Riemann solvers! We, therefore, conclude that a Riemann solver that resolves 
intermediate waves is very important for reducing dissipation in second and third order schemes. 
At fourth and higher orders, that importance is diminished. As mentioned in Sub-section V.e, the 
incremental costs of including sub-structure in a Riemann solver are only slight, making it 
advantageous to improve the quality of all schemes at all orders. 

 

V.h) Euler Flow : Preserving an Isolated Contact Discontinuity in Multidimensions 

 In Balsara and Dumbser [16] we showed that the multidimensional Riemann solver can 
preserve isolated contact discontinuities on an unstructured mesh. In that demonstration, the mesh 
lines of the unstructured mesh were aligned with the stationary contact discontinuity. In the test 
problem presented here, we set up a two dimensional isolated contact discontinuity that is not 
aligned with the Cartesian mesh. We wish to show that the contact discontinuity is, nevertheless, 
crisply preserved over a few thousand timesteps. 

 The problem consists of a 81 81×  zone uniform Cartesian mesh covering the domain 
[ ] [ ]1,1 1,1− × −  . The pressure is initialized to unity, the fluid velocity is initialized to zero and the 
polytropic index of the gas is 1.4. At the center of the domain we initialize a circular region with 
a radius of 0.5 having a fluid density of unity within it. The ambient fluid has a density of 0.1. A 
taper is applied to the density so that the actual density profile as a function of radius is given by 

( ) ( )( )0.55 0.45 tanh 0.5r rρ δ= − −  . Here the taper width is given by 2xδ = ∆  , where x∆  is 
the mesh size. The problem is run to a final time of 10 units, which corresponds to a few thousand 
timesteps. Ideally, we would like to see the density profile crisply preserved on the computational 
mesh.  

 Fig. 10 shows the final density for the two-dimensional contact discontinuity test problem. 
Figs. 10a, 10b and 10c are contour plots of the density when second, third and fourth order finite 
volume ADER-WENO schemes are used. Figs. 10d, 10e and 10f plot out the one-dimensional 
density in the middle of the mesh for the same three schemes. The initial condition is shown by a 
solid line, while the dots in Figs. 10d, 10e and 10f show the density at the final time. The second, 
third and fourth order schemes used CFL values of 0.6, 0.8 and 0.4 respectively. We see that the 
second order code smears the contact discontinuity just a little. That smearing is much reduced by 
the third order scheme; whereas the fourth order scheme tracks the initial contact discontinuity 
exactly. We see, therefore, that even on a modestly resolved mesh the multidimensional Riemann 
solver does a good job of preserving the isolated, stationary, two-dimensional contact 
discontinuity. We should also point out that the density contrast in this problem is quite substantial 
and piecewise linear reconstruction, while non-oscillatory along the lines of the mesh, can indeed 
produce negative densities at mesh vertices. To safeguard against that, positivity preserving 
reconstruction should be used (Balsara [12]). 
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VI) Conclusions 

 In this paper we have shown the importance of introducing sub-structure in one- and multi-
dimensional Riemann solvers. When all the one-dimensional waves are represented in a one-
dimensional Riemann solver, the Riemann solver is said to be complete. In an analogous fashion 
we say that when all the sub-structure from all the waves that can propagate in multi-dimensions 
is correctly represented in a multi-dimensional Riemann solver, then it too is said to be complete. 
In this paper, we present MuSIC Riemann solvers that can retain sub-structure from all the waves 
that propagate in all directions of a multi-dimensional hyperbolic system.  

 This paper represents the first time that the dissipation properties of multi-dimensional 
Riemann solvers has been studied in detail. All implementation-related details are presented in 
pointwise fashion to facilitate easy implementation. 

 Several stringent test problems drawn from Euler flow, non-relativistic MHD flow and 
RMHD flow are presented. The importance of retaining sub-structure in the Riemann solvers is 
conclusively demonstrated, especially at second and third orders. It is also shown that for fourth 
and higher orders, the importance of a Riemann solver that retains sub-structure is diminished. 
Consequently, for fourth and higher order Godunov schemes it might be possible to use less 
expensive Riemann solvers (ones which do not retain sub-structure) without experiencing a 
significant degradation in simulation quality. However, the computational complexity of a 
Riemann solver with substructure is only marginally higher than a Riemann solver without 
substructure. As a result, it is very advantageous to improve the quality of all schemes at all orders. 

 Helpful educational videos and codes that can facilitate the reader’s understanding of 
multidimensional Riemann solvers and their use in higher order schemes are available on 
http://www.nd.edu/~dbalsara/Numerical-PDE-Course. 
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Appendix A 

 Here we provide the formulation of the one-dimensional HLLI Riemann solver for an 
arbitrary ALE mesh. It is very desirable that intermediate waves moving with the same speed as 
the mesh should be treated on the moving mesh with no dissipation and in this Appendix we 
provide details of such an HLLI Riemann solver.  

 Let the zone boundary at which this Riemann solver is applied have a mesh motion given 
by vm . Here LS  and RS  still denote the speeds of the extremal left-going and right-going wave 

as they would have been evaluated on a fixed mesh. We have vL m RS S≤ ≤  . Realize that the 
mesh motion does not change the left and right eigenvectors. However, the corresponding set of 
eigenvalues that are evaluated relative to the moving mesh becomes { }v : 1,...,i m i Nλ − =  . The 

analogue of the numerical flux from eqn. (2.9c) for a moving mesh is given by 

( ) ( )( ) ( )21= 2 v 2   
2 3

m m c
numerical HLL m R L

ξξ
ξ

 ∆
− − + − − ∆ 

F F R δ Λ I δ L U U   

where the superscripts “m” denote a moving mesh. Here vm
HLL HLL m HLL= −F F U  is indeed the 

Lagrangian HLL flux evaluated on a moving mesh. The HLL state and flux HLLU  and HLLF  are 
defined simply relative to a stationary frame of reference in the usual way as 

( )
( )

( )
( )

     and    R R L L R L R L L R R L R L
HLL HLL

R L R L

S S S S S S
S S S S

− − − − + −
= =

− −
U U F F F F U U

U F   

Please also compare our present formula for the HLLI numerical flux to the one in eqn. (2.9c) to 
see that it has undergone only a slight change with ( )vm→ −Λ Λ I  . 

 The only further thing that needs to be specified is the diagonal matrix δ . For making a 
practical computer implementation, it is useful to define three auxiliary variables vR R mS S≡ −  , 

vL L mS S≡ −  and vi i mλ λ≡ −  . These three terms, with the tilde on top, can then be used in our 

regular HLLI Riemann solver to evaluate the weights iδ  . We, therefore, have 
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( ) ( )

( ) ( )

2

2

                                        when 3 0

min ,                          otherwise      
3

where  
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Notice that the above formula does depend quite strongly on the speed of the mesh, vm . This 
completes our description of the one-dimensional HLLI Riemann solver for ALE meshes. 

Appendix B 

 In this Appendix we prove that the multidimensional Riemann solver from Section III 
reduces exactly to the one-dimensional Riemann solver in Section II on a two-dimensional 
Cartesian mesh where all the variations in the input state are restricted to the x-direction. This 
happens when RU RD R= =U U U  and LU LD L= =U U U . In that limit we show that eqn. (3.6) from 
Section III reduces exactly to eqn. (2.9a) from Section II. The proof consists of two parts. The first 
part consists of showing that the constant part, i.e. F  , in the two above-mentioned equations 
becomes identical. The second part consists of showing that the ξ -dependent part also becomes 

identical when x
iδ  is defined analogously to eqn.  (2.11). The first part is harder to prove and we 

do that next. 

 In the one-dimensional limit, we have D US S= −  and 0ψ =U . We also have 

( ) ( ),1/ 2 , 1/ 2ξ ξ= −G G  and ( ) ( ),1/ 2 , 1/ 2ξ ξ= −U U  . In that limit, eqn. (3.11) for the constant 

part of the x-flux, F , reduces as follows:- 

( ) ( ) ( ) ( ) ( )
1/2

1/2

1 1   ,1/ 2
2 4 2 2

R L
R R R L L l U D

S S
S S S S dξ

ξ ξ ξ ξ ξ
ψ −

+ ∆ ∆
= + + − + − − −

∆ ∫F U U F U F U U   

In the one-dimensional limit, we also get 

( )
1/2

1/2

1 ,1/ 2
12

d ξξ ξ ξ
−

=∫ U U   

Consequently, we get 

( ) ( ) ( )1 1  
2 2 2 6 6

R L
R R R L L l HLL

S S
S S ξ ξ

ξ ξ+ ∆ ∆
= + − + − + = +F U F U F U U F U   
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The previous equation exactly matches eqn. (2.7), showing that the constant parts are identical. 
Now compare eqn. (3.5) to eqn. (2.4). We see that in the limit where 0ψ =U , the two expressions 

for the x-flux are identical. We, therefore, see that there is a one-to-one correspondence between 
the constant part of the x-flux as well as the ξ -dependent part of the x-flux. The two expressions 

for the x-flux can be made equivalent when x
iδ  is defined analogously to eqn.  (2.11) in the one-

dimensional limit. We have, therefore, proved that the multidimensional Riemann solver reduces 
exactly to the one-dimensional Riemann solver on a Cartesian mesh when the flow has become 
mesh-aligned and one-dimensional. However, as argued in Section III, this proof steers us false. 

 

Figure Captions 

Fig. 1 compares the dissipation from the HLLI Riemann solver (dashed lines) to the least possible 
dissipation, as exemplified by the Roe-type Riemann solver (solid lines). Fig. 1a shows the 
dissipation from the HLLI Riemann solver and also the theoretically minimum dissipation as a 
function of the wave speed when SL = -0.9 and SR = 0.1. The dissipation from the HLLI Riemann 
solver is only 23.2% larger than the Roe Riemann solver. Fig. 1b shows similar information when 
SL = -0.7 and SR = 0.3.  Fig. 1c shows similar information when SL = -0.5 and SR = 0.5. In Figs. 
1b and 1c the dissipation properties coincide for both Riemann solvers. Fig. 1d shows analogous 
information when SL = -0.2 and SR = 0.8; indicating a difference of 17.6% in the dissipation. Fig. 
1e shows the situation when SL = -0.01 and SR = 0.99; indicating practically no difference in the 
dissipation. 

Fig. 2 shows the multidimensional wave model for a Cartesian mesh. Here the thick solid line 
denotes the boundary of the multidimensional wave model; the interior of the wave model is 
shaded. The four initial states that come together at a vertex “O” of the mesh are also shown. The 
thin solid lines in Fig. 2 show the extremal speeds of the one-dimensional Riemann problems in 
the boundary of the multidimensional wave model. The dashed lines in Fig. 2 show the coordinate 
axes, measured as speeds. The bounding speeds of the multidimensional wave model are also 
shown. The black dot with (ξc,ψc) is the centroid of the wave model. 

Fig. 3 shows the density variable from the forward facing step problem at a time of 4.0. 

Fig. 4a shows the density variable from the double Mach reflection problem at a time of 0.2. Fig. 
4b shows a zoom-in of the roll-up of the Mach stem. 

Fig. 5 shows the results from the MHD Rotor test problem. Figs. 5a, 5b, 5c and 5d show the 
density, pressure, magnitude of the fluid velocity and magnitude of the magnetic field at the final 
time.  

Fig. 6 shows the variables from the 3D blast problem in the z = 0 mid-plane of the computational 
domain. Fig. 6a shows the plot of the density for the mid-plane in the z-direction. Fig. 6b shows 
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the same for the pressure in the same plane. Figs. 6c and 6d show the magnitude of the velocity 
and the magnitude of the magnetic field, again in the same plane.  

Figs. 7a and 7b show the evolution of the maximum z-velocity and maximum z-component of the 
magnetic field in the torsional Alfven wave as a function of time. For the simulations shown in 
Figs. 7a and 7b we used the 1D HLLI Riemann solver along with the 2D MuSIC Riemann solver 
with sub-structure. Figs. 7c and 7d show the same information as Figs. 7a and 7b, the only 
difference being that we used the 1D HLL Riemann solver along with the 2D MuSIC Riemann 
solver without sub-structure.  

Figs. 8a, 8b, 8c and 8d show the density, pressure, magnitude of the velocity and magnitude of the 
magnetic field at the final time for the relativistic Orzag Tang problem. 

Figs. 9a and 9b show the evolution of the maximum z-velocity and maximum z-component of the 
magnetic field in the relativistic torsional Alfven wave as a function of time. For the simulations 
shown in Figs. 9a and 9b we used the 1D HLLI Riemann solver along with the 2D MuSIC Riemann 
solver with sub-structure. Figs. 9c and 9d show the same information as Figs. 9a and 9b, the only 
difference being that we used the 1D HLL Riemann solver along with the 2D MuSIC Riemann 
solver without sub-structure.  
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