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Abstract

Just as the quality of a one-dimensional approximate Riemann solver is improved by the
inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also
similarly improved. Such multidimensional Riemann problems arise when multiple states come
together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann
problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state
with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists
of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation
laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-
structure for use on structured meshes is the goal of this work. The multidimensional MuSIC
Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic
conservation law.

The multidimensional Riemann solver is made to be consistent with constraints that emerge
naturally from the Galerkin projection of the self-similar states within the wave model. When the
full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete
Riemann solver in a multidimensional sense. L.e., all the intermediate waves are represented in the
multidimensional wave model. The work also presents, for the very first time, an important
analysis of the dissipation characteristics of multidimensional Riemann solvers. The present
Riemann solver results in the most efficient implementation of a multidimensional Riemann solver
with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help
with well-balancing. Implementation-related details are presented in pointwise fashion for the one-
dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

Several stringent test problems drawn from hydrodynamics, MHD and relativistic MHD
are presented to show that the method works very well on structured meshes. Our results
demonstrate the versatility of our method. The reader is also invited to watch a video introduction
to multidimensional Riemann solvers on http://www.nd.edu/~dbalsara/Numerical-PDE-Course.
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I) Introduction

One-dimensional Riemann solvers are routinely used in the numerical solution of
hyperbolic systems of conservation laws. The one-dimensional Riemann problem is a self-similar
solution that results from a discontinuity between two constant states. In their numerical study of
the multidimensional Riemann problem, Schulz-Rinne, Collins & Glaz [61] initialized four states
around the center of a two-dimensional Cartesian mesh. While one-dimensional Riemann
problems arise between each pair of states, those authors showed that the one-dimensional
Riemann problems interact amongst themselves to form a self-similarly evolving strongly-
interacting state. This strongly-interacting state arises at the point where the four states come
together. The study of the multidimensional Riemann problem is, therefore, the study of the
strongly-interacting state. This strongly-interacting state emerges by propagating into the one-
dimensional Riemann problems along its boundary. Consequently, the strongly interacting state,
as well as the one-dimensional Riemann problems that form its boundary, evolve in a self-similar
fashion. We refer to this boundary as the boundary of the multidimensional wave model because
it contains the strongly-interacting state. The wave models in all the multidimensional Riemann
solvers incorporate this concept of self-similarity. Schulz-Rinne, Collins & Glaz [61] only
presented a computational study of the multidimensional Riemann problem. However, Abgrall [1],
[2] was the first to formulate multidimensional Riemann solvers that were usable. The self-
similarly evolving strongly-interacting state is an inevitable consequence of having a
multidimensional wave model that propagates into the one-dimensional Riemann problems.
Seizing on this insight, Balsara [15] presented a self-similar formulation of the multidimensional
Riemann problem. Incorporating the physics of the strongly-interacting state has shown to be very
advantageous in second order calculations (Balsara [4]) and higher order accurate calculations
(Balsara [15]). This is the true motivation for our study of the multidimensional Riemann solver
reported here.

Following Abgrall [1], [2], further advances were also reported (Fey [40], [41], Gilquin,
Laurens & Rosier [44], Brio, Zakharian & Webb [26]). However, these early formulations were
cumbersome and did not see much use. Multidimensional Riemann solvers that are very efficient
have also been designed and we focus on a certain class of multidimensional Riemann solvers here
(Wendroff [70], Balsara [3], [4], [15], [18], Balsara, Dumbser & Abgrall [14], Vides, Nkonga &
Audit[70], Balsara & Dumbser [16], Balsara et al. [19]). A video introduction to multidimensional
Riemann solvers is available on the following website: http://www.nd.edu/~dbalsara/Numerical-
PDE-Course . Such Riemann solvers are applied at the vertices of a two-dimensional or three-
dimensional mesh. Many states come together at a vertex from different directions, making it
possible to communicate the multidimensionality of the flow to the multidimensional Riemann
solver. At the vertex, the job of the multidimensional Riemann solver is to approximate the self-

similar multidimensional structure that emanates from the vertex.

By this point in time, there has been substantial progress in one-dimensional and
multidimensional Riemann solvers. In this paragraph we list the one-dimensional Riemann solvers
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and juxtapose them with their multidimensional counterparts. Such a juxtaposition can be very
useful in building perspective. Several excellent one-dimensional Riemann solvers have been
designed. There are exact Riemann solvers from Godunov [45],[46] and van Leer [68] and two-
shock approximations thereof (Colella [32], Colella & Woodward [33]). See also the work of
Chorin [30]. The linearized Riemann solver by Roe [59] has also proved useful. The
multidimensional Riemann solver by Abgrall [1], [2] can be viewed as Roe-type Riemann solver
that has been extended to multiple dimensions. One-dimensional HLL Riemann solvers (Harten,
Lax & van Leer [48]) have now been extended to two-dimensions (Balsara [3], [4]) and three-
dimensions (Balsara [18]). The papers by Balsara offer simple closed form expressions for the
multidimensional HLL fluxes that are easy to implement. One-dimensional HLLC Riemann
solvers (Toro, Spruce and Speares [65] [66], [67], Chakraborty & Toro [29] and Batten ef al. [24])
seek to restore the physics of the contact discontinuity. Multidimensional extensions of the HLLC
Riemann solver to structured and unstructured meshes have also become available in recent papers
(Balsara [4], Balsara, Dumbser & Abgrall [14]). While HLLC Riemann solvers seek to restore an
isolated contact discontinuity in the HLL Riemann solver, it is always interesting to ask if there
are other ways to introduce an intermediate wave into the HLL Riemann solver? The one-
dimensional HLLE/HLLEM Riemann solver (Einfeldt [38], Einfeldt ez al. [39]) tried to do that by
introducing a linear profile in the Riemann fan. However, it could only restore the contact
discontinuity for fluid dynamical problems. Dumbser & Balsara [37] generalized the number and
kind of intermediate waves that can be resolved. Using the self-similar formulation of Balsara [15],
they were able to introduce multiple intermediate waves into the HLL Riemann solver, thus giving
rise to the HLLI Riemann solver. Here “I” stands for intermediate waves and acknowledges the
fact that the HLLI Riemann solver can accommodate any intermediate wave as long as its
eigenstructure is known. The result is a one-dimensional HLLI Riemann solver that benefits from
all the good properties of the one-dimensional HLL Riemann solver and simultaneously functions
as a Riemann solver that retains sub-structure. When all the intermediate waves are included, the
one-dimensional HLLI Riemann solver of Dumbser & Balsara [37] becomes a complete Riemann
solver. It is also a fully capable replacement for costlier Riemann solvers by Osher and Solomon
[58] and Dumbser and Toro [36]. It is, therefore, very attractive to present a two-dimensional
analogue of the HLLI Riemann solver for hyperbolic conservation laws and that is indeed the first
goal of this paper. Such a multidimensional Riemann solver can be made complete in a
multidimensional sense if all the intermediate waves in all directions are included. This is a very
attractive property and we explore it further in this paper.

Self-similarity has not been used much in the design of one-dimensional Riemann solvers;
the only real exception being the HLLI Riemann solver of Dumbser & Balsara [37]. However, it
is crucially important in the development of multidimensional Riemann solvers (Balsara [15],
Balsara & Dumbser [16]). This has prompted the name of MuSIC Riemann solvers, where MuSIC
stands for “Multidimensional, Self-similar, strongly-Interacting, Consistent”. Such Riemann
solvers are multidimensional; they draw on the self-similarity of the problem; they focus on the
strongly-interacting state that results when multiple one-dimensional Riemann solvers interact;
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and the design relies on establishing consistency with the conservation law. MuSIC Riemann
solvers that rely on a Petrov-Galerkin projection to obtain the self-similar variation in the strongly
interacting state have been presented (Balsara [15], Balsara & Dumbser [16]). An alternative
projection method consists of satisfying the one-dimensional shock jumps at the boundary of the
multidimensional wave model. Vides, Nkonga & Audit[70] and Balsara et al. [19] developed a
multidimensional Riemann solver without and with sub-structure respectively that uses least
squares minimization methods. A study of the dissipation characteristics of MuSIC Riemann
solvers has never been presented. The second goal of this paper is to present a thorough study of
the dissipation characteristics of the MuSIC Riemann solvers. We first present an analysis of the
dissipation characteristics of the one-dimensional HLLI Riemann solver. We then show that when
the one-dimensional HLLI Riemann solver is used as a building block for the MuSIC Riemann
solver, its dissipation characteristics mirror those of the HLLI Riemann solver for flows that are
mesh-aligned.

It is also worth recalling that the one-dimensional HLLI Riemann solver of Dumbser &
Balsara [37] is a universal Riemann solver; i.e. it is applicable to any hyperbolic conservation law.
It would be very desirable to have a multidimensional Riemann solver that is also applicable to
any conservation law. The third goal of this paper is to show that when the one-dimensional HLLI
Riemann solver is used as a building block for the MuSIC Riemann solver we indeed get a
universal multidimensional Riemann solver that works for any hyperbolic conservation law. This
generality implies that multidimensional Riemann solvers with sub-structure can be built and
incorporated into any code for any hyperbolic conservation law. Moreover, the same coding
strategy can be used for all hyperbolic conservation laws.

Magnetohydrodynamics (MHD) is an interesting example of a hyperbolic system with a
more complex wave foliation. One-dimensional linearized Riemann solvers for numerical MHD
have been designed (Roe & Balsara [60], Cargo and Gallice [27], Balsara [5]). HLLC Riemann
solvers, capable of capturing mesh-aligned contact discontinuities, have been presented by Gurski
[47] and Li [53]. Miyoshi and Kusano [56] drew on Gurski’s work to design an HLLD Riemann
solver for MHD. 1t is, therefore, interesting to show that MHD can also be accommodated within
our formulation. MHD is a system with an involution constraint, where the divergence of the
magnetic field is always zero. Balsara & Spicer [6] showed that this is assured within the context
of a higher order Godunov scheme by using the upwinded fluxes at the edges of the mesh to update
the magnetic fields that are collocated at the faces of a mesh. Gardiner & Stone [42], [43] have
claimed that the dissipation in those upwinded fluxes needs to be doubled all the time in order to
stabilize the method. A substantial body of work now exists to show that the suggestion of Gardiner
& Stone is completely unnecessary when multidimensional Riemann solvers are used to provide a
properly upwinded electric field at the edges of the mesh (Balsara [4], Vides, Nkonga & Audit[69],
Balsara & Dumbser [17]). Indiscriminate doubling of the dissipation, as per Gardiner & Stone’s
suggestion, can indeed lead to excessive dissipation of the magnetic field in the direction that is
transverse to the upwind direction. The present paper reinforces that finding.



As with classical MHD, progress has also been made in relativistic MHD (RMHD).
Balsara [22] and Komissarov [52] have designed Roe-type Riemann solvers for RMHD. HLLC
and HLLD type Riemann solvers for RMHD have also been designed by Mignone & Bodo [54],
Honkkila & Janhunen [49], Mignone, Ugliano and Bodo [55] and Kim & Balsara [51]. Balsara
and Kim [20] have also shown the value of multidimensional Riemann solvers for RMHD
calculations. The present paper reinforces the utility of MuSIC Riemann solvers for accurate
RMHD simulations.

Section II describes a one-dimensional HLLI Riemann solver for conservation laws that is
indeed novel and has some rather nice properties. Section III provides details associated with the
construction of the multidimensional Riemann problem on Cartesian meshes. Section IV shows
that schemes that use the multidimensional Riemann solver meet their design accuracy. Section V
shows the results of several stringent test problems drawn from Euler, MHD and relativistic MHD
flow. Section VI presents conclusions.

II) Quick Derivation of the One-Dimensional HLLI Riemann Solver

In any multidimensional Riemann problem, the strongly-interacting state propagates into a
sequence of one-dimensional Riemann problems that lie on its boundary. One dimensional
Riemann solvers are, therefore, used as building blocks for the multidimensional Riemann
problem. Because we wish to show that the dissipation characteristics of the MuSIC Riemann
solver strongly mirror those of the one-dimensional HLLI Riemann solver, we first present a quick
derivation of the one-dimensional HLLI Riemann solver in Sub-section Il.a and study its
dissipation characteristics in Sub-section IL.b. This study is somewhat different from the one
presented in Dumbser & Balsara [37] because the prior work did not use one of the Galerkin
constraints that results from the imposition of self-similarity. A compare-and-contrast is presented
in Sub-section Il.c. Sub-section II.d presents implementation-related details. In Section III we
present a multidimensional Riemann solver in two-dimensions that is a close analogue of the one-
dimensional HLLI Riemann solver presented here when Cartesian meshes are used.

I1.a) Galerkin Formulation in Similarity Variables

In this section we consider an N-component hyperbolic conservation law,
oU/ot +0F/ox = 0, which is restricted to one dimension. For this conservation law, consider the
Riemann fan between two states, U, to the left and U, to the right. The Riemann problem evolves
self-similarly with bounding speeds, S, to the left and S, to the right. Consider similarity variable

E= x/t and use it to define shifted and rescaled similarity variables as

Since the solution evolves self-similarly within the Riemann fan, the solution within the Riemann
fan can be written in terms of similarity variables. Because of self-similarity, ﬁ(§ ) and F (é‘ )



are functions of only one similarity variable &. The tilde on the top of U (5 ) is intended to signify

a self-similarly evolving solution. The same is true for F (é‘ ) . Written in these shifted similarity

variables, the conservation law becomes

A%a[ﬁ(é)—(aa; £A8)0 (5)]+ﬁ( £eg 02

Eqn. (2.2) is then the governing equation written in terms of the similarity variable. We expand
our state and flux as

U(&)=U+U.¢ (2.3)
and
F(&)=F+AU¢  with A= ag%ﬁ) (2.4)

Please note that we have evaluated the characteristic matrix A by using the mean state U ; but
there is some flexibility in the evaluation of the characteristic matrix. For example, it can be
evaluated using Roe-averages or arithmetic averages, as was done in Dumbser and Balsara [37].

Please also note that U, # AU/AS where AU=(U,-U,). Realize that AU/A¢ is indeed an

estimate of the full gradient and, therefore, includes contributions from the extremal waves that
make up the Riemann fan. In a numerical Riemann problem, we only want to pick out contributions

from waves that are internal to the Riemann fan. We will soon show that U, will be obtained by

a projection of AU onto the subset of waves that are interior to the Riemann fan. Multiplying the
conservation law from eqn. (2.2) with the test function ¢(§ ) gives

| PO F(E)-(£+EA8)U() ]} 4 .  ag(8) .
e oy " 2 PO (6+a0)U(9) |7 = + #(£)T($)=0
(2.5)
Now we are ready to make Galerkin projections with different test functions.
Using ¢(§ ) =1 and integrating over & € [—1 12,1/ 2] gives the usual HLL state
— = 1 1
=U,, ——E(FR —SRUR)+A—§(FL -5,U,) (2.6)

In practice, one always evaluates U . at the start of the calculation because it plays an important
role in the rest of the calculation. This could include the construction of the characteristic matrix
A . Realize, therefore, that U ., from the equation above will always be a positivity-preserving

state. Using ¢(§ ) = ¢ and making a Galerkin projection gives
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Here F,,, is the classical HLL flux. With U ; =0 we indeed retrieve the HLL flux from the above

equation, which is a good thing. But the above equation also shows that the choice of U, and F
are indeed related. If we set one, we have to reset the other. In other words, endowing sub-structure
to the Riemann problem by setting U, # 0 will, in general, cause a shift in the mean flux F so

that it becomes different from F,,,, .

Let {r,. = 1,...,N} and {l[. Q= 1,...,N} be the full set of eigenvectors with eigenvalues
{/Il. i=L.,N } In other words, the previous sentence just catalogues the eigenvectors and

eigenvalues of the characteristic matrix A which we have documented above. Let I, be the set

nt

of intermediate waves that we want to represent in the Riemann fan. (We could, of course, choose
L., =N in which case all the waves in the hyperbolic system are considered. Consequently, the

Riemann solver becomes a complete Riemann solver.) The best characteristic projection we can
do gives us

U.=>[251-(U,-U,)]=R (28) L (U,-U,) (2.8)

i€l

Here R is a matrix of right eigenvectors with dimension N x (#[ . ) and contains only the right

int
eigenvectors being considered; L is a corresponding matrix of left eigenvectors with dimension
(#Iim)xN and & is a diagonal matrix of dimension (#1,, )x(#1,, ). Here “(#Iim)” denotes the
number of elements in the set “/, . We will specify the diagonal elements of & shortly and we
will see that each diagonal term O, in the diagonal matrix & depend on the structure of the wave
model as well as the wave speed A.. Therefore, in order to be consistent with the Galerkin
projection, we should substitute the value of U, from eqn. (2.8) in eqn. (2.7) to get the flux F.

Also please notice that when the state is endowed with sub-structure F, which is obtained from
eqn. (2.7), is not the classical HLL flux. The final numerical flux at the zone boundary, i.e. at

5 =0, is given by

s =F(E=£,/08)=F - R, 292
or
- é:c _ A(: gc
F,erica=F = AE {;‘m [251 l; '(UR -U, )] /Iiri} =K, +?U§ +(_ Af}{l;m [251 l; '(UR -U, )] A,
(2.9b)

|
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F

numerical

F, —LRr|-22 0 5)4 2 _
F,, 2R{ 3 (2 8)+A§A(2 6)}L(UR U,) (2.9¢)

To clarify further, Fin eqn. (2.9b) is not the HLL flux. The square bracket term in eqn. (2.9¢c)
clearly shows that the final numerical flux is made up of an HLL flux plus an anti-diffusive
contribution from the HLLI Riemann solver. Notice that the final numerical flux in eqn. (2.9¢)
only requires us to know the intermediate eigenvectors and eigenvalues that we want to represent
in our wave model. Therefore, the original advantage of the HLLI Riemann solver is preserved.
What is new here is the incorporation of the Galerkin constraint stemming from eqn. (2.7).

Let us now obtain O, by paying careful attention to the numerical viscosity of the proposed

HLLI Riemann solver. Using expressions from Appendix B of Dumbser & Balsara [37] we write
the last line of eqn. (2.9) as

1
Fnumerical :E(FR +FL)
L g|(SexS) (254, I—(SR_SL)(Z6)+—(SR+SL)A(26) L (U,-U,)
2| (8:-5,)" (S¢-5,) 3 (S.-S,)

(2.10)

The second term in the above equation helps us to identify the viscosity of our Riemann solver.
The square bracket in the above equation gives us the eigenvalues of the viscosity matrix and we
want these to be bounded by the eigenvalues of the Roe-matrix viscosity (at the lower end) and
the eigenvalues of the HLL viscosity (at the upper end). Using the dissipation properties of the

underlying HLL Riemann solver we get the condition for O, as follows

4 when [(SR —-S,) 3= 4(S, +SL)J <0
5 = s
min S jSL/ii SeS, .0 otherwise @.11)
[(5e=5,) 3=A4(5:+5,)] '
where ¢, Z—LSLZ
(SR _SL)

This condition ensures that our dissipation minimally matches or exceeds the dissipation of the
Roe matrix for the sake of stability. Here 47 =min(4,,0) and 4" =max(4,0). In fact, the choice

of @ in eqn. (2.11) is not mandated by mathematics but rather by our desire to capture stationary
linearly degenerate waves, like contact discontinuities, exactly on the mesh. In other words, when

[(SR =S, )2 /3 - (SR +S, )J <0 we have the option to set ¢, to a value that may even be greater

than half. To capture stationary contact discontinuities exactly, we set ¢ in such a way that the
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dissipation terms in the square bracket in eqn. (2.10) tend to zero as 4, = 0 . Notice too that @, is
always positive for the sub-sonic case so that the gradient that is provided in eqn. (2.8) is always
physical. In the subsonic case, i.e. when S, <0< S,, the maximum positive value that can be
assumed by ¢, is 3/4 which occurs when S, =—S, . Entropy is naturally enforced in this Riemann
solver because the Riemann fan automatically provides a linear variation in the sub-structure.

Notice that when “/,,” is a complete set of intermediate waves, i.e. when [, =N, the

one-dimensional HLLI Riemann solver is indeed complete. Positivity is also very easily addressed
in the context of this formulation. Notice that eqns. (2.8) and (2.11), along with the eigenstructure

of the intermediate waves, fully specify U, . One has only to ensure that INJ(é ) with our present
choice of sub-structure remains positive for &€ [—1 /2,1/ 2] . In practice, this positivity-
enforcement is best done by checking for positivity at the ends of the interval; i.e., for the states
U, +U./2 and Uy, —U, /2 .If positivity is not met, one is free to reduce U, . In the limit of
U, =0, the present Riemann solver reduces exactly to an HLL Riemann solver thereby

guaranteeing positivity; see eqn. (2.9¢).

Also notice that when |S,| << |S,| or when |5,| << |S,

, we have 0, >0 so that

F,, i = Fu, - Now recall the very nice design feature of the HLL Riemann solver which says

that the subsonic flux retrieves the supersonic fluxes when the Riemann fan is opened up ever so
slightly so as to always force it to be minimally subsonic. From the property stated at the beginning
of this paragraph we see that our HLLI Riemann solver also retains that very nice design feature.

I1.b) Dissipation Properties of the present HLLI Riemann solver

Recall that the Roe-type Riemann solver provides the theoretical minimum dissipation that
any Riemann solver should provide to a scheme in order to ensure stability of the numerical
method. However, the Roe-type Riemann solver has problems with positivity enforcement, while
the HLLI Riemann solver discussed in this Section is free of this problem. The entropy fix is also
naturally built into the HLLI Riemann solver. It is, therefore, worth asking the question, “How
much excess dissipation is produced by the present HLLI Riemann solver compared to the Roe-
type Riemann solver?”. We answer that question in this paragraph and the next one. To normalize
the search space, we can always require S, —S, =1 . We also require §, <0<S,, i.e. we focus

on the subsonic case. We assume that there is only one intermediate wave with wave speed 4.
such that §, <A <S,. (Since the dissipation is independently determined for each wave family,

the number of wave families that we use does not affect our present analysis.) For such a wave,
we can use eqn. (2.11) to evaluate &,. The square bracket in eqn. (2.10) then gives us the

dissipation matrix. The diagonal term in the dissipation matrix for the intermediate wave being
considered should be greater than or equal to |il.| because this is the theoretically minimum amount

of dissipation required by the Roe-type Riemann solver. For various subsonic choices of §, and

S, , and with the normalizing restriction S, —S, =1, we can indeed step through all possible

R>®



values of 4. We can then plot the dissipation produced by the present HLLI-style Riemann solver

versus A . We can also plot |/li , the dissipation from the Roe-type Riemann solver, versus /..

Such an exercise is undertaken in the next paragraph and it enables us to get an interesting
perspective on the dissipation characteristics of the present HLLI Riemann solver vis a vis the
Roe-type Riemann solver.

The previous paragraph outlined a strategy for quantifying the dissipation properties of the
HLLI Riemann solver and comparing it to the Roe-type Riemann solver. The results of this
exercise are shown in Fig. 1. The dashed lines in Fig. 1 show the dissipation from our HLLI
Riemann solver whereas the solid lines show the dissipation from the Roe-type Riemann solver.
Fig. 1a shows us the dissipation from the HLLI Riemann solver and also the theoretically minimum

//i’i
S, =-0.9 and S, =0.1. We see from Fig. 1a that our HLLI-style Riemann solver always produces

dissipation, , on the vertical axis as a function of wave speed, A, on the horizontal axis when

dissipation that is within 23.2% of the Roe-type Riemann solver. (Please also note that the
analogous plot for S, =—0.1 and S, =0.9 would look identical to Fig. 1a after it is flipped about

the vertical axis given by A, = 0. This trend extends to all the other panels in Fig. 1.) Fig. 1b shows
similar information when S, =—0.7 and S, =0.3. From Fig. 1b we see that the dissipation of the

HLLI-style Riemann solver coincides with the dissipation of the Roe-type Riemann solver when
S, =-0.7 and S, =0.3. Fig. 1c shows similar information when S, =-0.5 and §, =0.5; again

showing us that the two Riemann solvers produce identical dissipation. Fig. 1d shows similar
information when S, =-0.2 and §, =0.8; again showing us that our HLLI Riemann solver

always produces dissipation that is within 17.6% of the Roe-type Riemann solver. Fig. 1e shows
analogous information when S, =-0.01 and S, =0.99; we see that the dissipation of the two

Riemann solvers is almost identical. Based on such an analysis, we conclude that our present HLLI
Riemann solver always produces dissipation that is within ten to twenty percent of the Roe-type
Riemann solver under all circumstances. In many of the situations shown in Fig. 1, the two
Riemann solvers have identical dissipation. This is a very interesting demonstration in light of the
versatility, robustness and favorable positivity properties of our HLLI Riemann solver and the lack
thereof for the Roe-type Riemann solver. For all the panels in Fig. 1 we see that our HLLI Riemann
solver has zero dissipation when A, =0 which shows that it can also capture stationary linearly

degenerate waves exactly. Consequently, we see that it offers all the good attributes of the Roe-
type Riemann solver while avoiding all its pitfalls. Fig. 1 of this paper can also be compared to
Fig. 3.1 of Castro-Diaz and Ferndndez-Nieto [28] if one wants to analyze the dissipation properties
of the HLLI Riemann solver through the perspective of polynomial viscosity methods (PVM).

II.c) Comparison with the HLLI-type Riemann solver of Dumbser and Balsara [37]

In this section we have designed an HLLI-type Riemann solver based on endowing sub-
structure to the HLL Riemann solver. The one-dimensional HLLI Riemann solver described here
is very useful because it extends more naturally to multidimensions. In Dumbser and Balsara [37]
a slightly different HLLI-type Riemann solver had been presented. The difference is primarily in
the fact that the Galerkin projection in eqn. (2.7) is not used in the design of the Riemann solver
in Dumbser & Balsara [37]. As a result, eqns. (2.9) and (2.11) are also substantially different. It is
interesting to compare and contrast the two variants of HLLI Riemann solvers. To that end, it is
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valuable to write the explicit expressions for ﬁ(f ) and F(é ) for the present HLLI Riemann

solver for any value of the similarity variable f = x/t . The formulae in this paragraph are valid as

long as gg lies in the range §, < 62 < §,, i.e. within the Riemann fan. Using ¢, from eqn. (2.11),
we get

0(8)- O 2 20000

lE[im

F(&)=F,, +%{Z[2@ z,.-(UR—UL)]r,}{%J{Z[z@ li-(UR—UL)]ll.ri}

(2.12)

i€l i€y

The two curly brackets in the above two equations only need to be evaluated once. Appendix A
provides the corresponding formulation of this Riemann solver for moving meshes, i.e., ALE-type
meshes. Notice that the Galerkin formulation from eqn. (2.7) dictates that the inclusion of sub-
structure should cause a change in the mean flux in eqn. (2.12). It is also helpful to be able to
compare and contrast this Riemann solver with the HLLI Riemann solver from Dumbser and
Balsara [37]. That Riemann solver does not use the first moment of the conservation law, i.e. eqn.
(2.7), because it is meant to be generally applicable to hyperbolic systems in conservation and non-
conservative forms. As a result, the definition of &, changes to

s=1-24 %4 (2.13)

For the Riemann solver from Dumbser and Balsara [37] we then have

0(6)- OS2 B 120 0.0, -0

lE[im

F(&)=F,, {522—_2‘2&]{2[2@ 1-(U, —UL)];;}

iely,

(2.14)

Only one curly bracket needs to be evaluated in the above equation, therefore, the HLLI Riemann
solver from Dumbser and Balsara [37] has slightly lower computational complexity. However,
both flavors of HLLI Riemann solvers require the evaluation of the intermediate eigenvectors. This
eigenvector evaluation often constitutes the bulk of the additional computational cost that is added
on top of the cost of the HLL Riemann solver. For that reason, both flavors of HLLI Riemann
solver have almost the same overall computational complexity. Notice that J, can assume larger

values in eqn. (2.13) compared to eqn. (2.11). However, the mean HLL flux in eqn. (2.14) is left
unchanged by the inclusion of sub-structure in the Riemann fan. The flux in eqn. (2.14) is based
on considering fluctuations. Comparing the fluxes in eqns. (2.12) and (2.14) we see that the flux

in the former equation varies linearly with gg whereas the flux in the latter equation varies

quadratically with gg . This is a consequence of the different philosophies that were used in deriving
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the two variants of the HLLI Riemann solver. In practice, both work equally well. Both can
preserve stationary intermediate waves on a mesh without additional dissipation.

I1.d) Implementation-Related Details for one-dimensional HLLI Riemann solver:-

The present HLLI Riemann solver can be easily retrofitted to any HLL Riemann solver
and usually provides a very palpable improvement in the simulation quality. The steps in the
implementation of this one-dimensional HLLI Riemann solver are as follows:

1) Obtain U,,, from eqn. (2.6). (If the density in U,,, is substantially lower than the minimum
density in the states U, and U, we do not provide linear sub-structure. Similarly, if the density

in U,,, is substantially greater than the maximum density in the states U, and U, we also do not
provide linear sub-structure. Similar considerations are made for the pressure. L.e., this is just a

reasonable and physical criterion for deciding whether it is justified to include sub-structure in the
Riemann solver.)

b, {riel,} and {/:iel

nt i nt

} . Note

that only the intermediate waves of interest are needed; and these waves are usually easier to
evaluate than the entire eigenstructure.

2) Using U,,, , obtain the eigensystem given by {/1, el

1 nt

3) Using O, from eqn. (2.11), now obtain U, from eqn. (2.8).

4) Check Uy, +U,/2 and U, —U,./2 for positivity. Reduce U, as needed to enforce
positivity.

5) Using I_JHLL and U, in eqn. (2.7), obtain F from eqn. (2.7).

6) Now obtain the numerical flux F,

numerical

from eqn. (2.9a) or (2.9b). Alternatively, we can build

F,,, in the usual way and use it to build the numerical flux F, .., using eqns. (2.9b) or (2.9¢).

7) The supersonic cases are obvious.

In this section we have provided details for the one-dimensional HLLI Riemann solver on
a fixed mesh. But we also realize that some people might want to apply this Riemann solver to an
arbitrary Lagrangian-Eulerian (ALE) mesh. Appendix A gives the formulation of the present one-
dimensional HLLI Riemann solver on a moving mesh.

III) MuSIC Riemann Solver that is closest to an HLLI Formulation — Focus on Cartesian
Meshes

Sub-section Ill.a presents the formulation of the MuSIC Riemann solver, including a
description of the inclusion of sub-structure. Section III.b presents implementation-related details.

I11.a) Formulation of the MuSIC Riemann Solver

12



Consider the N-component hyperbolic conservation law in two-dimensions, given by
oU/ot + 0F/dx +0G/dy = 0. It can give rise to one-dimensional Riemann problems, but it can also

give rise to a multidimensional Riemann problem. The multidimensional Riemann problem is most
easily understood on a Cartesian mesh, and we focus on that in this paper because it is possible to
get exact answers for the multidimensional Riemann solver in Cartesian geometry. We will defer
the inclusion of sub-structure in the multidimensional Riemann solver on unstructured meshes for
a subsequent paper. As shown schematically in Fig. 2 a multidimensional Riemann problem arises

when four states U,,, , U,, , U,, and U,, come together at a zone vertex; the vertex is shown

as a gray dot in that figure. The four pairs of mutually contiguous states set up four one-
dimensional Riemann problems. However, the one-dimensional Riemann problems interact in a
strongly-interacting state, as shown in Fig. 2a of Balsara [15]. The strongly interacting state is
bounded by a multidimensional wave model. In fig. 2a the thick solid line denotes the boundary
of the multidimensional wave model; the interior of the wave model is shaded. The four initial
states that come together at a vertex “O” of the mesh are also shown. The thin solid lines in Fig.
2a show the extremal speeds of the one-dimensional Riemann problems in the boundary of the
multidimensional wave model. The dashed lines in Fig. 2a show the coordinate axes, measured as
speeds. The bounding speeds of the multidimensional wave model are also shown. On such a mesh,

the extent of the multidimensional wave model, [S 195 ] X [S b SU] , is approximated beforehand.

See Balsara [3] and [4] for advice on how to pick out the extent of the multidimensional wave
model on a Cartesian mesh. The strongly-interacting state is bounded by the multidimensional
wave model and evolves self-similarly, just like the one-dimensional Riemann problems at its
boundary.

We want to predict the self-similar evolution of the multidimensional, strongly-interacting
state, U . The tilde on the top of U is intended to signify a self-similarly evolving solution. Let
us, therefore, pick similarity variables in two-dimensions and express the strongly-interacting state
in terms of those two variables. The similarity variables are

5% . = 3.1)

N|‘<

Notice that (gg ,W) correspond most naturally to (x, y). We make a scaled and shifted coordinate

transformation in the similarity variables with

E=(Se+8,)/2 5 AE=(S-S,) 5 w.=(S,+5,)/2 5 Ap=(S,-S,)

_[(é=¢&) . _(v-w. (3.2)
g_( Afj ’ V/_( Ay j
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Observe that & and y are still self-similar variables with the main difference that they now range
over [—1/2,1/ 2]><[—1/ 2,1/2]. This makes it easier to achieve concordance with the one-

dimensional case described in the previous sub-section. With the change of variables in eqn. (3.2),
the N-component conservation law in two-dimensions becomes

Lﬁ[ﬁ(falﬂ)—(fﬁiAf)ﬁ(f,l//)lr 1 O[G(Ew)-(v. +v Ay)U(Ew)]
Ag g Ay oy

+20(&,p)=0

(3.3)

Here the strongly-interacting state U=C (5,1//) is a function of the two similarity variables. The

same is true for the fluxes F(&,y) and é(f,l//)

We can now expand the strongly-interacting state in the similarity variables as
U(&y)=U+UL+U,p (3.4)

Because (&,y)=(0,0) corresponds to the centroid of our wave model, U is indeed the mean
value associated with our wave model. The x-flux is written in similarity variables as

F(&y)=F+A (UL+Uy)  with K:%I_?)

(3.5)
It may also prove convenient to integrate eqn. (3.5) in the y -direction to write the numerical x-

flux as

Fnumerical = J. F(§ = _gc/Ag’V/)dl// = F_(Aé:_cng Ué (36)

The y-flux is written in similarity variables as

G(&y)=G+B (U.£+U,y)  with Eza(;%ﬁ) (3.7)

It also proves convenient to integrate eqn. (3.7) in the & -direction to write the numerical y-flux as
1/2

~ — l//c —
Gnumerical = _1|:2G(§’l// = _lr//c/Alr//)d§ = G _(EJB Uy/ (38)

For eqns. (3.6) and (3.8) recall that the time axis corresponds to (f ,gz?) =(0,0) (or alternatively,
(&w)=(-& /AE,—y, /Ay) ). We want to make sure that eqns. (3.6) and (3.8) meet two
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important goals. First, for problems with strong discontinuities in arbitrary directions the

expressions for F , and G

numerica,

generate sufficient entropy to stabilize the problem. When

numerical

strong discontinuities are present, the substructure, represented by U, and U, is irrelevant and

can be zeroed out. This can be accomplished with the help of a sensor function that detects the

presence of a strong discontinuity. We therefore require F and G to reduce to the

numerical numerical

multidimensional HLL values from Balsara [4] when U, =U, =0 . Second, when the flow is

mesh-aligned, we want the expressions to become analogous to the one-dimensional forms from
Section II. In other words, when the flow is aligned with the x-axis, we want the expression from
eqn. (3.6) to have dissipation characteristics that are similar to the one-dimensional HLLI Riemann

solver from Section II. As in Section II, this will enable us to put bounds on the slope U, . A

similar consideration for flow that is aligned with the y-axis will enable us to put bounds on the
slope U,

By multiplying eqn. (3.3) by a test function ¢(§,l/l ), we can make it more ready for the

Galerkin projection in similarity variables. Consequently, we get

| ofp(Ew)[F-(&+¢ad)U]| L o{g(&.w)[ G- (v +w Ap) U]

Aé: g Ay oy
1 0p(Sy) 1 s - 0p(E,w) -
- P e 0 U] - T G(ory an) U 4 2 0(6) U

(3.9)

The test functions are chosen from the same set of functions as the trial functions in eqn. (3.4).

From eqn. (3.4) it is easy to see that our trial functions are ¢(§,l//)=l, ¢(§,y/)=§ and
$(&w)=

Using the test function ¢(§,l// ) =1 and integrating over the entire wave model gives

B 1/2 1/2
1

— [(F(1/2,p)-S,U(1/2,y)) y/——j (-1/2,p)-S,U(-1/2,y))dy
I—J__l A -1/2 71/2
o 2 12 1
+— [ (G(&1/2)-8,U(&,1/2))dé-— [ (G(£,-1/2)-8,U(&,-1/2))d¢
AL Ay 3,

(3.10)

In practice, one always obtains U (the mean value of the strongly interacting state) as early as
possible in the calculation, because its value plays an important role in subsequent equations. This
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value of U is used in eqn. (3.4) for the mean value and also in eqns. (3.5) and (3.7) to construct

the characteristic matrices. It is also easy to show that when the flow is aligned with the x-axis we
1/2 1/2

have S, ==S,,, G(£,1/2)=G(&,-1/2) and [ U(&,1/2)dé= [ U(&,-1/2)dé=T,, . The

-1/2 -1/2
upshot is that for mesh-aligned flow, U=U,,, . In other words, when the flow is mesh-aligned,

the mean value of the strongly-interacting state in the multidimensional Riemann solver matches
with the corresponding state from the one-dimensional HLL Riemann solver, see eqn. (2.6).

Having obtained U with the help of zeroth moments, let us now consider the first moments of the
governing equation. For the first moment in the x-direction we use the test function ¢(§ W ) =¢

and integrate over the entire wave model to get

1/2 1/2

_— j (1/2,)-S,U(1/2, V/))dwﬁ j (-1/2,p)-S,U(-1/2,y))dy
F=€ﬁ+Af “52
jg (£,1/2)-S U(gl/z))dg—AL [ &(G(&-1/2)-5,U(&-1/2))d¢
+AT§U§

(3.11)

For the first moment in the y-direction we use the test function ¢(§ , l//) =y and integrate over the

entire wave model to get

1/2 1/2

—j F(1/2,y) SRu(1/2,y/))dl//—L j v (F(-1/2,p)-S,U(-1/2,y))dy
C=y,U+ay| - " i
=V. 4 1" R
+—— [ (G(£,1/2)=S,U(&,1/2))dE+ G(&,-1/2)-S,U(&E,-1/2))dé
ay | (G128, 0E12)dz 5 ] (6(6-112)-5,0(6.-1/2))
+§T"//UW

(3.12)

This completes our description of the moments that are taken over the entire wave model,
[—1 /2,1/ 2]>< [—1 12,1/ 2]. The above three equations were already derived in Balsara [15]. They

are, however, used very differently in this paper to derive a MuSIC Riemann solver that is a close
analogue of the one-dimensional HLLI Riemann solver. In principle, any one-dimensional
Riemann solver can be used as a building block for the multidimensional Riemann solver, as shown
in Balsara [15]. However, to make the connection with the HLLI Riemann solver as tight as
possible, we want the present multidimensional Riemann solver to be based on the same
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philosophy that was used for the one-dimensional HLLI Riemann solver in the limit where the
flow is mesh-aligned.

Let us first establish a notational similarity between the multidimensional eigenstructure in
this section and the one-dimensional eigenstructure from the previous section. We would like to
obtain the best possible representation of the linear profile within the strongly interacting region.

Let (A fU) and (AWU) denote undivided differences. Let us denote the linear profile in multiple

dimensions as follows:

U, (E:97) = U+(AU)E+(A,U)y (3.13)

Typically, we wish to identify these undivided differences from the multidimensional wave model
by looking at the solutions from the one-dimensional Riemann problems in the boundary of the
multidimensional wave model. Thus we can write

(A.U)= ”f U(1/2,y)dy - l/f U(-1/2,y)dy (3.14)
and
(A,U)= Uf U(&,1/2)dé- Uf U(&,-1/2)dé (3.15)

As in Section II, (A gU) and (AWU) can be thought of as the unprojected slopes. They are related

to U, and U, respectively by appropriate projections that can be made with the left and right

eigenvectors. The weights that are assigned to those projections are designed to bring out certain
favorable properties in the multidimensional Riemann solver. To that end, we identify the interior

waves in both directions for the state U. Let {/11Y el }, {i;." e Iim} and {ll." el }be the

int nt
eigenvalues and right- and left-eigenvectors in the x-direction associated with the state U .
Likewise, let {/LZ:V el }, {riy :ielim} and {ll.y el

nt nt

}be the eigenvalues and right- and left-

eigenvectors in the y-direction associated with the state U . We assume that the eigenstates are so

ordered that the same set /.

nt

labels the intermediate waves in either direction; this is usually
possible for most hyperbolic systems. (For example, in MHD we could use the set 7 to label a

left-going Alfven wave, an entropy wave in the x-direction and a right-going Alfven wave. We
can use the same set to label a downward-going Alfven wave, an entropy wave in the y-direction
and an upward-going Alfven wave.) It is worth pointing out that since the x- and y-directional
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eigenvectors are built from the same state U, waves of a given wave family that are moving in
any arbitrary direction can be projected in the linear space of the two sets of eigenvectors. We can

now relate U, to (A thU) in a fashion that is closely analogous to eqn. (2.8) as follows

U, => (2571 (AU)]5 =R (28) L' (A,U) (3.16)

ieliy

4

We can also relate UW to (AWU) as

U, => (28" '+ (AU)]x =R (28") L' (A,U) (3.17)

ieli,

Notice that we have evaluated the eigenstructure in both the x- and y-directions. As a result, R*

and R’ are matrices of right eigenvectors with dimension N x (# I

int

) in the x- and y-directions;
and please note that the two matrices are not the same. Similar considerations hold for matrices of

left eigenvectors, L and L”, with dimension (#7,, )x N . The diagonal matrices with dimension

(#1, )% (#1,

nt

) that contain the eigenvalues in the x- and y-directions are denoted by A* and A”

respectively. The elements of the two diagonal matrices 8" and o with dimension
(#1,

o )X (#1,,) have also to be independently specified. Please also note that 5, and &, are the
factors by which we change the eigenvector projection in eqns. (3.16) and (3.17). These factors
can be greater than unity or they can even become less than unity. The amount of additional weight
imparted by these factors is designed to ensure that the multidimensional Riemann solver retains

favorable properties, as discussed in an ensuing paragraph.

We now ask the important question, which fluxes and states should we use in the integrals
in eqns. (3.10), (3.11) and (3.12)? Our first instinct would be to use the linear profiles from eqn.
(2.12). In fact, it can be shown that with that linear profile, and the definition for J, given in eqn.

(2.11), the x-flux in eqn. (3.6) will indeed reduce to the x-flux from the one-dimensional HLLI
Riemann solver when the flow is aligned with the x-axis. While this is proved in Appendix B, the
proof steers us false! The fallacy is not in the math in Appendix B; in fact the mathematics is
correct. The source of the fallacy is this:- If the logic of that mathematics is followed, it will lead
us to a multidimensional Riemann solver that has some very poor entropy generation properties,
especially in the vicinity of strong shocks! The source of the fallacy resides in the fact that we

wanted the profiles U(é‘,l/ 2) and U(§,—1/ 2) to match the linear profiles from eqn. (2.12).

However, realize that the one-dimensional HLLI Riemann solver produces overly steepened linear
profiles. Such an over-steepened linear profile will produce lower than desired entropy in the

transverse fluxes. In other words, the Lagrangian fluxes G(§,1/2)—SUU(§,1/2) and
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G (f, -1/ 2) -S DU(Rf, -1/ 2) will produce less entropy than desired. When strong non-linearities

are present in the flow, the resulting multidimensional Riemann solver will be unstable.

Having gained that insight, we draw upon our first goal. The goal is that for problems with
strong discontinuities the expressions for ¥, . and G,k .., generate sufficient entropy to

stabilize the problem. In the limit of strong discontinuities, the substructure, represented by U,

and U, is irrelevant and can even be suppressed with the help of a switch that detects the presence

of strong shocks. We therefore require F and G to reduce to the multidimensional

numerical numerical

HLL values from Balsara [4] when U, =U, =0 . To some extent, the fluxes and states that we

put into the integrals in eqns. (3.10), (3.11) and (3.12) are a matter of choice. We choose to use the
piecewise-constant fluxes and states that come from the one-dimensional HLL Riemann solver.
With that choice, F , and G

numerica

from Balsara [4] when U, =U, =0 .

, will indeed reduce to the multidimensional HLL values

numerica

We now draw upon our second goal. When the flow is mesh-aligned, we want the
expressions to reduce to their one-dimensional forms from Section II. In other words, when the
flow is aligned with the x-axis, we want the expression from eqn. (3.6) to have dissipation
characteristics that are similar to the one-dimensional HLLI Riemann solver from Section II. As

in Section II, this will enable us to put bounds on the slope U, . For x-directional flow, we have
U;,=U;,=U; and U,, =U,, =U, . Eqn. (3.11) then give us

1 A - A
F=¢(U,, +E[(FR ~S,U,)+(F, —SLUL)]+T§U§ =F,, +T§U‘f (3.18)

Compare eqn. (3.18) to eqn. (2.7) to notice that the two equations differ in detail. Consequently,
putting eqn. (3.18) into eqn. (3.6) and simplifying gives us

numerical ~

1
B = (Fu + )

el e ey won

(3.19)

Again, comparing eqn. (3.19) to eqn. (2.10) shows that the two equations differ in detail. As we
did with eqn. (2.10), we demand that the dissipation from eqn. (3.19) matches or exceeds the Roe-
matrix viscosity. This is achieved when
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& when [(SR —=5,) 2= 25 (S, +SL)} <0

é‘ix = x— X+
min SRﬂi :_ SL/li SRSL . ¢ix OtherWiSG (3 20)
[(80-5,) /2= 25 (S,+5,)] '
where ¢ = —LSLQ
(SR =S, )

An analogous exercise for the y-flux, which is not repeated here for the sake of brevity, gives us

@ when [(SU -8, ) 2= 2 (S, +SD)] <0
o = S, A" +8 2 —S, S
M s a8, e 5] e (321)
U D 7 U D
where ¢ __ 255
i (SU —SD )2

With 6 and 6] fully specified by the above equations, we realize that eqns. (3.14) and (3.16)
giveus U, . Likewise, eqns. (3.15) and (3.17) give us U, . The integrals over the side panels of

the multidimensional wave model in eqns. (3.10), (3.11) and (3.12) are fully specified by the one-
dimensional HLL Riemann solvers in those side panels. From eqns. (3.10), (3.11) and (3.12), U ,
F and G are also fully specified. Eqns. (3.6) and (3.8) can, therefore, be used to obtain the
numerical fluxes from the multidimensional Riemann solver. Also notice that we have already
evaluated all or part of the eigenstructure so that we make the simplification

A=R'A'L" and B=R’A’L’ (3.22)
L.e., the characteristic matrices are built from the sub-portion of the eigenstructure that has been
evaluated.

The one-dimensional HLLI Riemann solver from Section II also preserves stationary
contact discontinuities that are mesh-aligned. Consequently, the multidimensional Riemann solver
described in this Section will do the same. As a result, the multidimensional Riemann solver
described in this Section will inherit all the good well-balancing properties that were described for
the one-dimensional HLLI Riemann solver in Section II.

A further observation is warranted. Recall that the two-dimensional HLLC Riemann solver
from Balsara [4] reduces to the one-dimensional HLLC Riemann solver for mesh-aligned flows
on a two-dimensional Cartesian mesh. But this reduction becomes exact only if the one-
dimensional Riemann solvers on the boundary of the multidimensional wave model are indeed
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HLLC. If another type of one-dimensional Riemann solver is used, the result may still be pretty
good. However, the reduction in the one-dimensional limit is not provably exact. A similar
situation prevails for the discussion in this Section. The multidimensional MuSIC Riemann solver
becomes closely analogous to the one-dimensional HLLI Riemann solver described in Section II
for mesh-aligned flows on a two-dimensional Cartesian mesh. However, for this reduction to
become philosophically consistent, the one-dimensional Riemann solvers on the boundary of the
multidimensional wave model should indeed be based on the one-dimensional HLL Riemann
solver.

Notice that when “ I, is a complete set of intermediate waves, the MuSIC Riemann solver

nt
is indeed complete in a multidimensional sense. In other words, it retains all the intermediate waves
that can exist in the multidimensional wave model. Positivity can also be ensured by requiring that

U(&,y) ispositive forall (&,y) e[-1/2,1/2]x[~1/2,1/2]. In practice, the positivity is enforced
at the vertices of our multidimensional wave model. If the initial profile in eqn. (3.13) indicates a
loss of positivity at any of the vertices of the multidimensional wave model, we should feel free to
reduce AU and A U in that equation. Appendix C of Balsara [15] provides a computer-

implementable strategy for reducing the variation in the mean state. The reduction of A, U and
A, U will naturally result in a reduction in U, and U, via eqns. (3.16) and (3.17). In the limit

of U,=U, =0 the present Riemann solver reduces exactly to an HLL Riemann solver,
guaranteeing positivity. Also please note that when the variation in the flow is not one-dimensional

and mesh-aligned, the fluxes F and G in eqns. (3.6) and (3.8) will indeed have multidimensional
contributions. This is true even in the limit where U = va =0. Le., the MuSIC Riemann solver

described here is genuinely multidimensional even when sub-structure is absent.

It is also worth pointing out that in this narrative we have described the simplest
multidimensional Riemann solver with sub-structure. In other words, one-dimensional HLL
Riemann solvers provide the boundary information for the multidimensional wave model. There
also exist one-dimensional HLLC (Toro, Spruce and Speares [65], Gurski [47], Li[53]) and HLLD
(Miyoshi and Kusano [56]) Riemann solvers which provide multiple states. The transverse fluxes
across each of those states can be evaluated. This permits us to provide a more refined linear profile
using a least squares minimization procedure (Vides et al. [69], Balsara et al. [19]). Such a least
squares procedure would consist of minimizing the linear profile from eqn. (3.13) along the
boundary of the wave model. This is done by minimizing

12 1/2
[ (a1 229) =01/ 290)) dyr + [ (0, (<17 20) = U(=1/2,97)) dyr
l -1/2 —-1/2 3 23)
2 2 5 2 5 (
[ (Ve (£172)=U(E1/2)) @&+ [ (U,peea (6:-1/2)=U(£,-1/2)) dé
L -1/2 -1/2 i
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When a one-dimensional HLL Riemann solver is used, eqns. (3.14) and (3.15) provide the better
strategy because they ensure that for mesh-aligned flow profiles we retrieve the one-dimensional
Riemann solver. But it is useful to note that the above equation works well too when a more refined
one-dimensional Riemann solver is used. Experience has shown that the major gain comes from
having some reasonable sub-structure in the multidimensional Riemann solver. Introducing a more
refined sub-structure using eqn. (3.23) does not provide that much incremental benefit.

I1I.b) Implementation-Related Details for MuSIC Riemann Solver on Cartesian Meshes:-

Before the multidimensional Riemann problem is evaluated, it is assumed that a one-
dimensional HLL Riemann solver has been applied immediately outside the boundary of the
multidimensional wave model. This is inexpensive and easy to do. The steps in the implementation
of the MuSIC Riemann solver with multidimensional sub-structure on structured meshes are as
follows:

1) Construct the multidimensional wave model. See Balsara [3], [4] for the construction of the
multidimensional wave model for Cartesian meshes.

2) Examine the multidimensional wave model for the existence of a supersonic solution. The
supersonic state and its corresponding numerical fluxes are obtained exactly as described in Fig. 5
from Balsara [15]. Please also see the text associated with Fig. 5 of Balsara [15]. If a supersonic
case is discovered, the subsequent steps, all of which pertain to the subsonic case, are not carried
out.

3) Obtain U from eqn. (3.10). The integrals on the right hand side of eqn. (3.10) are performed
on the solution vectors and transverse fluxes that are obtained from the one-dimensional HLL
Riemann solvers that abut the multidimensional wave model.

4) If the density in U is substantially lower than the minimum density in the states U, , U,
U,, and U,, we do not provide linear sub-structure. Similarly, if the density in U is substantially

greater than the maximum density in the states U,,, U,,,, U,, and U, we also do not provide

linear sub-structure. Similar considerations are made for the pressure. L.e., this is just a reasonable
and physical criterion for deciding whether it is justified to include sub-structure in the Riemann
solver. If the decision is made to exclude sub-structure, the eigenvector evaluation and projection
in the ensuing few steps is not needed.

5) Using U, obtain the eigenstructure {/15‘ el } , {rf e Iim} and {Ii" e Iim} in the x-

i nt

direction as well as the eigenstructure {/L.y i e[im} , {riy i e]im} and {liy i e]im}in the y-

direction. Note that only the intermediate waves of interest are needed; and these waves are usually
easier to evaluate than the entire eigenstructure.
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6) Obtain AU and A U from eqns. (3.14) and (3.15). Please notice that these “undivided

differences” should not be confused with U, and U, which will be evaluated in the next two

steps.

7) In practice, it is also advisable to apply the multidimensional limiter from Appendix C of Balsara
[15] to the linear profile in eqn. (3.13). Consequently, A,U and A U undergo multidimensional

limiting.
8) Evaluate o, and ¢, from eqns. (3.20) and (3.21). Then obtain U, and U,, from eqns. (3.16)
and (3.17).

9) Using U , U ¢ and U, ineqns. (3.11) and (3.12), obtain F and G . The integrals on the right

hand side of eqns. (3.11) and (3.12) are performed by using the solution vectors and transverse
fluxes from the one-dimensional HLL Riemann solvers that abut the multidimensional wave
model.

10) Now obtain the numerical fluxes F

numerica

, and G from eqns. (3.6) and (3.8).

numerical

IV) Accuracy Analysis

It is desirable to demonstrate that our MuSIC Riemann solver, when coupled with high
order spatial reconstruction and temporal evolution, produces suitably high order accuracy. To
achieve high spatial accuracy we use WENO reconstruction (Jiang and Shu [50], Balsara and Shu
[7], Dumbser and Késer [34], Balsara et al. [11], Balsara [12], Balsara, Garain and Shu [21]) for
the spatial reconstruction of conserved variables. The spatial reconstruction of divergence-free
magnetic fields uses an extension of the WENO reconstruction strategy (Balsara [8], [9], [10],
[12], Balsara and Dumbser [17]). We also use a high order one-step ADER (Arbitrary DERivatives
in space and time) time-evolution (Titarev & Toro [62], [63] and Toro & Titarev [64], Dumbser et
al. [35], Balsara et al. [11], Balsara et al. [13], Balsara and Kim [20]). Specifically, the ADER
time-stepping that we use in this work on structured meshes is closest in style to Balsara et al. [11]
and Balsara et al. [13].

For the present accuracy analysis, the multidimensional Riemann solver used one-
dimensional HLL Riemann solvers in the side panels. A linear variation of the variables, along
with the limiting from eqns (3.20) and (3.21), was retained in the strongly interacting state. The
use of eqns (3.20) and (3.21) contributes significantly to the stability of the multidimensional
Riemann solver with sub-structure while simultaneously enabling the accurate treatment of slowly
moving discontinuities. The multidimensional Riemann solver was integrated into the code using
a simplified Simpson rule so that fourth order fluxes were evaluated at the zone faces. The
RIEMANN code is three-dimensional so a weight of 1/6 was assigned to each of the four
multidimensional Riemann solvers at the edge-centers associated with each face. A fifth one-
dimensional Riemann solve was done at the zone center using the one-dimensional Riemann solver
described in Section II, and it was assigned a weight of 1/3. See eqn. (25) of Balsara [3] for further
detail. Time-averaged states from the ADER predictor step were used as inputs to the Riemann

23



solvers. The implicit assumption in such an approach is that spatial and temporal accuracy can
commute.

A CFL number of 0.8 was used for all second and third order hydrodynamical simulations
in this section. Up to third order it seems acceptable to assume that the spatial and temporal
accuracy can indeed commute so that the advantages of a large timestep are retained. At fourth
order, this assumption clearly breaks down, limiting the CFL to 0.4 if the order property is to be
preserved. A recently completed von Neumann stability analysis for the numerical solution of the
induction equation is now available, Balsara and Képpeli [23]. It shows that finite volume schemes
for the induction equation are only stable up to a CFL of 0.666. As a result, all second and third
order MHD and RMHD simulations in this paper used a CFL of 0.65. All fourth order MHD and
RMHD simulations in this paper used a CFL of 0.4. For the sake of completeness, we also mention
that in Balsara, Dumbser & Abgrall [14] a Gaussian quadrature in time was used along with an
ADER-WENO formulation. With that choice, it was shown that larger CFL numbers can be
retained at all orders. Because that choice requires extra programming, we made a simpler choice
in this paper. It must be appreciated that if the plan in this paragraph is implemented efficiently,
each multidimensional Riemann solver contributes to the formation of four facial fluxes.
Furthermore, the number of calls to the Riemann solvers does not increase with increasing order
of accuracy, which would be the case if a Runge-Kutta timestepping were to be used. For MHD
calculations, the Riemann solver acts at the edges of the mesh, therefore, the edge-aligned
component of the electric field is directly available at each edge of the mesh.

In this section we demonstrate the accuracy of our methods by using hydrodynamical and
MHD vortex flows. Analogous work for relativistic hydrodynamics and relativistic
magnetohydrodynamics has also been done. In Balsara and Kim [20] we have presented relativistic
analogues of the hydrodynamical and MHD vortices that are analyzed here. In that paper we also
show that those relativistic vortex problems can be used to demonstrate the higher order accuracy
of relativistic hydrodynamics and RMHD codes.

IV.a) Accuracy Analysis for Hydrodynamical Vortex Problem

This hydrodynamical vortex problem was presented in Jiang and Shu [50]. In this problem,
an isentropic vortex propagates at 45° to the grid lines in a domain with periodic boundaries given
by [-5, 5] x [-5, 5]. Since the vortex stably preserves its form, it returns to its original location.
Since the problem is well-known in the literature, we do not describe it in detail here. The velocity
and temperature fluctuations for the circular vortex have an exponential fall-off with radius, which
ensures that the fluctuations are quite close to zero at the domain boundaries. However, for the
fourth order scheme the domain is increased to [-10, 10] x [-10, 10] due to the fact that the nonzero
values of the exponential function at the boundaries are picked up by the fourth order scheme on
the smaller domain. The stopping time was set to 10 time units for the second and third order
schemes and to 20 time units for the fourth order scheme because of the bigger domain. The
stopping time was chosen so that the vortex has completed one periodic passage through the
computational domain. We report on the accuracy of the vortex after it has completed one orbit in
the computational domain. Table I shows the accuracies in the L; and L. norms for the density
variable for second, third and fourth order schemes at the stated stopping times. All three ADER-
WENO methods with the MuSIC Riemann solver permit the use of a large CFL number. They all

24



meet the expected order of accuracy even for a small number of zones, showing that they have
uniform convergence properties.

TABLE I shows the accuracy analysis for the hydrodynamical vortex problem as measured
in the density variable.

Method # of zones L, Error L, Order L, Error L, Order
ADER-WENO
2™ Order,
CFL 0.8
64x64 7.5493E-4 1.3944E-2
128x128 1.5086E-4 2.32 2.9161E-3 2.26
256x256 3.1994E-5 2.24 5.9727E-4 2.29
512x512 7.4763E-6 2.10 1.2859E-4 2.12
ADER-WENO
3" Order,
CFL 0.8
64x64 5.4996E-4 9.5739E-3
128x128 8.0649E-5 2.77 1.3067E-3 2.87
256x256 1.0361E-6 2.96 1.7063E-4 2.94
512x512 1.3157E-6 2.98 2.1673E-5 2.97
ADER-WENO
4™ Order,
CFL 0.4
64x64 4.7883E-4 3.2613E-2
128x128 2.5250E-5 4.25 1.6253E-3 4.33
256x256 1.0724E-6 4.56 7.9549E-5 4.35
512x512 7.9390E-8 3.76 4.2003E-6 4.24

IV.b) Accuracy Analysis for MHD Vortex Problem

The magnetized isodensity vortex problem described in Balsara [9] consists of a
magnetized vortex moving across a domain given by [-5, 5] x [-5, 5] at an angle of 45° for a time
of 10 units. As before, for the fourth order scheme the domain is increased to [-10, 10] x [-10, 10]
and the simulation time is increased to 20 units. Periodic boundaries are used for the domain. Since
the problem is well-known in the literature, we do not describe it in detail here. We report on the
accuracy of the x-component of the magnetic field of the vortex after it has completed one orbit in
the computational domain. Table II shows the accuracies in the Li and L. norms for the x-magnetic
field variable for second, third and fourth order schemes at the stated stopping times. All three
ADER-WENO methods with the MuSIC Riemann solver permit the use of a large CFL number.
They all meet the expected order of accuracy even for a small number of zones, showing that they
have uniform convergence properties.
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TABLE II shows the accuracy analysis for the MHD vortex problem as measured in the x-
component of the magnetic field.

Method # of zones L, Error L, Order L, Error L, Order
ADER-WENO
2" Order,
CFL 0.8
64x64 3.1447E-3 2.5112E-2
128x128 7.8041E-4 2.01 6.0608E-3 2.05
256x256 1.9452E-4 2.00 1.5432E-3 1.97
512x512 4.8703E-5 2.00 3.8818E-4 1.99
ADER-WENO
3" Order,
CFL 0.8
64x64 5.2781E-4 1.0549E-2
128x128 6.3890E-5 3.05 1.6369E-3 2.69
256x256 7.8487E-6 3.03 2.7012E-4 2.60
512x512 1.0024E-6 2.97 5.0893E-5 241
ADER-WENO
4" Order,
CFL 04
64x64 4.5538E-4 3.0456E-2
128x128 2.3059E-5 4.30 1.4159E-3 4.43
256x256 1.3014E-6 4.15 6.2495E-5 4.50
512x512 7.5300E-8 4.11 3.6479E-6 4.10
V) Test Problems

A broad range of test problems is presented here. The problems span many different PDE
systems showing that the 2D MuSIC Riemann solver, along with the 1D HLLI Riemann solver,
works very well. We first show a few results involving Euler flow. Then we show results from
classical MHD. Subsequently, we show results involving RMHD flows.

V.a) Euler Flow: Forward Facing Step

This problem was first presented in Woodward and Colella [71] and Colella and Woodward
[33]. It is so well-known in the computational hydrodynamics community that we do not describe
its set-up here. The problem was run on a 960%320 zone mesh spanning the domain [0,3] X [0,1]
to a final time of 4.0. A fourth order ADER-WENO scheme with the MuSIC Riemann solver was
used. Fig. 3 shows the density variable from the forward facing step problem at a time of 4.0. The
problem consists of a Mach 3 wind tunnel with a forward-facing step. As the bow shock reflects
off the step and then the top wall of the wind tunnel, it establishes a triple-point structure. A vortex
sheet emanates from the triple point. The vortex sheet that emanates from this triple-point structure
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shows an interesting roll-up due to Kelvin-Helmholtz instability. We see that our simulation has
captured the roll-up of the vortex sheet very well.

V.b) Euler Flow: Double Mach Reflection

This problem was first presented in Woodward and Colella [71] and Colella and Woodward
[33]. It is also well-known in the computational hydrodynamics community, with the result that
we do not describe its set-up here. The problem consists of a strong Mach 10 shock that is initially
incident on a reflecting wedge that makes an angle of 60° with the plane of the shock. The problem

was run on a 1920x480 zone mesh spanning the domain [O,4]><[0,1] to a final time of 0.2. A

fourth order ADER-WENO scheme with the MuSIC Riemann solver was used. Fig. 4a shows the
density variable from the double Mach reflection problem at a time of 0.2. Fig. 4b shows a zoom-
in of the roll-up of the Mach stem. We see that we obtain a very well-resolved roll-up of the Mach
stem.

V.c) Classical MHD Flow: Rotor Problem

This well-known MHD problem was first documented in Balsara & Spicer [6] and also
Balsara [9]. It consists of a central, uniformly rotating vortex in a non-rotating ambient medium.
An initially uniform magnetic field threads through both regions. The details are described in the
above-mentioned references. The problem initially has a uniform magnetic field threading the

computational domain [—O.S,O.S]x[—O.S,O.S]. Within a radius of 0.1 units, we initialize a dense

rotating fluid, which forms the rotor. The motion of the rotor initiates outwar-propagating waves.
The problem was run on a 1000x1000 zone mesh to a final time of 0.29. A fourth order ADER-
WENO scheme with the MuSIC Riemann solver was used. Fig. 5 shows the results from the MHD
Rotor test problem. Figs. 5a, 5b, 5¢ and 5d show the density, pressure, magnitude of the fluid
velocity and the magnitude of the magnetic field at the final time. All the requisite MHD flow
features are captured nicely in our simulations.

V.d) Classical MHD Flow: 3D Blast Problem

The present test problem is a 3D variant of the well-known 2D MHD blast wave problem
that was first documented in Balsara & Spicer [6]. The plasma £ measures the ratio of the thermal

pressure to the magnetic pressure. As the plasma’s f becomes smaller, this problem becomes
increasingly stringent. The problem consists of a ¥ =1.4 gas with unit density and a pressure of
0.1 initialized on a 257° zone mesh spanning the unit cube. Initially we have
B, =B =B.= 150/ V3 . The pressure is initially reset to a value of 1000 inside a central region
with a radius of 0.1. The plasma’s S is initially given by 1.117x10* . A CFL number of 0.4 was

used. The problem is run up to a time of 0.0075, by which time a strong magnetosonic blast wave
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propagates through the domain. The problem was run with a third order ADER-WENO scheme
with the MuSIC Riemann solver applied at the edges of the mesh. Fig. 6 shows the variables from
the 3D blast problem in the z = 0 mid-plane of the computational domain. Fig. 6a shows the plot
of the density for the mid-plane in the z-direction. Fig. 6b shows the same for the pressure in the
same plane. Figs. 6¢ and 6d show the magnitude of the velocity and the magnitude of the magnetic
field, again in the same plane. We see that the densities and pressures are positive as expected.

V.e) Classical MHD Flow : Decay of Finite Amplitude Torsional Alfven Waves

Turbulence studies play an increasingly important role in several fields, like astrophysics
or space physics. (The Orzag Tang [57] problem is a first step in the development of turbulence.)
The ability to propagate finite amplitude Alfven waves over large distances and long times on a
computational mesh is crucial for carrying out simulations of MHD turbulence. If the Alfven
waves are damped strongly because of inherent numerical dissipation in a code, the code will fail
to capture the resulting turbulence. This is because MHD turbulence is mainly sustained by Alfven
waves. The Alfven wave decay test problem, first presented by Balsara [9], examines the numerical
dissipation of torsional Alfven waves in two dimensions. In this test problem torsional Alfven
waves propagate at an angle of 9.462° to the y-axis through a domain given by [-3, 3] x [-3, 3] .
The domain was set up with 120 x 120 zones and has periodic boundary conditions. We do not
present further details of the set-up, because the problem is already well-described in the above-
mentioned paper. The simulation was stopped at 129 time units by which time the Alfven waves
had crossed the domain several times. Depending on the dissipation properties of the scheme, the
amplitude of the torsional Alfven wave will, of course, decay. A more dissipative method will
cause greater dissipation of the Alfven wave; a less dissipative method will reduce that dissipation.

It is often said that the quality of the Riemann solver is not very important, especially when
high order schemes are used. But practitioners have not quantified the precise order of accuracy of
the scheme at which the quality of the Riemann solver becomes immaterial. We set out to quantify
this order of accuracy for MHD simulations. To that end, we simulated the torsional Alfven wave
decay problem with second, third and fourth order schemes with the 1D HLLI Riemann solver
along with the 2D MuSIC Riemann solver with sub-structure. Used in this fashion, both the 1D
and 2D Riemann solvers are complete; i.e. they fully represent all the waves that arise in the MHD
system. We then simulated the same problem again with the same second, third and fourth order
schemes. However, this time we used a 1D HLL Riemann solver along with the 2D MuSIC
Riemann solver without any sub-structure. In other words, in our second set of simulations both
Riemann solvers did not resolve any intermediate waves.

Figs. 7a and 7b show the evolution of the maximum z-velocity and maximum z-component
of the magnetic field in the torsional Alfven wave as a function of time. For the simulations shown
in Figs. 7a and 7b we used the 1D HLLI Riemann solver along with the 2D MuSIC Riemann solver
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with sub-structure. Figs. 7c and 7d show the same information as Figs. 7a and 7b, the only
difference being that we used the 1D HLL Riemann solver along with the 2D MuSIC Riemann
solver without sub-structure. Comparing the two sets of figures, we see that the inferior Riemann
solvers produce a six-times larger decay in the amplitude of the Alfven wave at second order. At
third order, the inferior Riemann solvers produce a three-times larger decay in the amplitude of
the Alfven wave. Notice that the second order scheme with superior Riemann solvers is less
dissipative than the third order scheme with inferior Riemann solvers! At fourth order, the
difference between the inferior Riemann solvers and the exact Riemann solvers is almost
negligible. We, therefore, conclude that second and third order schemes are greatly benefited by
the quality of the Riemann solver. It is only at fourth and higher orders of accuracy that the
difference between a superior and an inferior Riemann solver begins to become quite small!
However, please note that a fourth order scheme has computational complexity that is substantially
higher than a second or third order scheme. The Riemann solver with substructure has a
computational complexity that is only marginally higher than a Riemann solver without
substructure. As a result, it is very advantageous to improve the quality of all schemes at all orders.

V.f) RMHD Flow: Relativistic Orzag Tang Problem

The Orzag Tang test problem (Orzag and Tang [57]) is designed to illustrate the transition
to turbulence for MHD flows. The RMHD variant of that test problem has been proposed by
Beckwith and Stone [25]. We do not repeat the set-up here. The problem was set up on a unit
square with 1000x1000 zones and run to a final time of 0.8. The problem was run with a fourth
order ADER-WENO scheme with the MuSIC Riemann solver applied at the edges of the mesh.
Figs. 8a, 8b, 8c and 8d show the density, pressure, magnitude of the velocity and magnitude of the
magnetic field at the final time for the relativistic Orzag Tang problem. All the requisite MHD
flow features are captured nicely in our simulations.

V.g) RMHD Flow: Decay of Finite Amplitude Torsional Alfven Waves

In Section V.e we studied the decay of torsional Alfven waves in classical MHD and
showed that the importance of a high-quality Riemann solver is only diminished at fourth and
higher orders. It is interesting to speculate whether such a result also applies to other hyperbolic
systems. In Balsara and Kim [20] we constructed a relativistic analogue of the torsional Alfven
wave decay problem from Balsara [9]. We do not repeat the details of the set-up here.

Figs. 9a and 9b show the evolution of the maximum z-velocity and maximum z-component
of the magnetic field in the relativistic torsional Alfven wave as a function of time. For the
simulations shown in Figs. 9a and 9b we used the 1D HLLI Riemann solver along with the 2D
MuSIC Riemann solver with sub-structure. Figs. 9c and 9d show the same information as Figs. 9a
and 9b, the only difference being that we used the 1D HLL Riemann solver along with the 2D
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MuSIC Riemann solver without sub-structure. Comparing the two sets of figures, we see that the
inferior Riemann solvers again show substantially larger dissipation at second and third orders. It
is only at fourth order that we find a much-reduced difference between a Riemann solver with sub-
structure and a Riemann solver that does not resolve any intermediate waves. As before, notice
that the second order scheme with superior Riemann solvers is less dissipative than the third order
scheme with inferior Riemann solvers! We, therefore, conclude that a Riemann solver that resolves
intermediate waves is very important for reducing dissipation in second and third order schemes.
At fourth and higher orders, that importance is diminished. As mentioned in Sub-section V.e, the
incremental costs of including sub-structure in a Riemann solver are only slight, making it
advantageous to improve the quality of all schemes at all orders.

V.h) Euler Flow : Preserving an Isolated Contact Discontinuity in Multidimensions

In Balsara and Dumbser [16] we showed that the multidimensional Riemann solver can
preserve isolated contact discontinuities on an unstructured mesh. In that demonstration, the mesh
lines of the unstructured mesh were aligned with the stationary contact discontinuity. In the test
problem presented here, we set up a two dimensional isolated contact discontinuity that is not
aligned with the Cartesian mesh. We wish to show that the contact discontinuity is, nevertheless,
crisply preserved over a few thousand timesteps.

The problem consists of a 81x81 zone uniform Cartesian mesh covering the domain
[-1,1]x[~1,1] . The pressure is initialized to unity, the fluid velocity is initialized to zero and the

polytropic index of the gas is 1.4. At the center of the domain we initialize a circular region with
a radius of 0.5 having a fluid density of unity within it. The ambient fluid has a density of 0.1. A
taper is applied to the density so that the actual density profile as a function of radius is given by

p(r)=0.55-0.45 tanh((r—O.S)/é') . Here the taper width is given by & = Ax/2 , where Ax is

the mesh size. The problem is run to a final time of 10 units, which corresponds to a few thousand
timesteps. Ideally, we would like to see the density profile crisply preserved on the computational
mesh.

Fig. 10 shows the final density for the two-dimensional contact discontinuity test problem.
Figs. 10a, 10b and 10c are contour plots of the density when second, third and fourth order finite
volume ADER-WENO schemes are used. Figs. 10d, 10e and 10f plot out the one-dimensional
density in the middle of the mesh for the same three schemes. The initial condition is shown by a
solid line, while the dots in Figs. 10d, 10e and 10f show the density at the final time. The second,
third and fourth order schemes used CFL values of 0.6, 0.8 and 0.4 respectively. We see that the
second order code smears the contact discontinuity just a little. That smearing is much reduced by
the third order scheme; whereas the fourth order scheme tracks the initial contact discontinuity
exactly. We see, therefore, that even on a modestly resolved mesh the multidimensional Riemann
solver does a good job of preserving the isolated, stationary, two-dimensional contact
discontinuity. We should also point out that the density contrast in this problem is quite substantial
and piecewise linear reconstruction, while non-oscillatory along the lines of the mesh, can indeed
produce negative densities at mesh vertices. To safeguard against that, positivity preserving
reconstruction should be used (Balsara [12]).

30



VI) Conclusions

In this paper we have shown the importance of introducing sub-structure in one- and multi-
dimensional Riemann solvers. When all the one-dimensional waves are represented in a one-
dimensional Riemann solver, the Riemann solver is said to be complete. In an analogous fashion
we say that when all the sub-structure from all the waves that can propagate in multi-dimensions
is correctly represented in a multi-dimensional Riemann solver, then it too is said to be complete.
In this paper, we present MuSIC Riemann solvers that can retain sub-structure from all the waves
that propagate in all directions of a multi-dimensional hyperbolic system.

This paper represents the first time that the dissipation properties of multi-dimensional
Riemann solvers has been studied in detail. All implementation-related details are presented in
pointwise fashion to facilitate easy implementation.

Several stringent test problems drawn from Euler flow, non-relativistic MHD flow and
RMHD flow are presented. The importance of retaining sub-structure in the Riemann solvers is
conclusively demonstrated, especially at second and third orders. It is also shown that for fourth
and higher orders, the importance of a Riemann solver that retains sub-structure is diminished.
Consequently, for fourth and higher order Godunov schemes it might be possible to use less
expensive Riemann solvers (ones which do not retain sub-structure) without experiencing a
significant degradation in simulation quality. However, the computational complexity of a
Riemann solver with substructure is only marginally higher than a Riemann solver without
substructure. As a result, it is very advantageous to improve the quality of all schemes at all orders.

Helpful educational videos and codes that can facilitate the reader’s understanding of
multidimensional Riemann solvers and their use in higher order schemes are available on
http://www.nd.edu/~dbalsara/Numerical-PDE-Course.
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Appendix A

Here we provide the formulation of the one-dimensional HLLI Riemann solver for an
arbitrary ALE mesh. It is very desirable that intermediate waves moving with the same speed as
the mesh should be treated on the moving mesh with no dissipation and in this Appendix we
provide details of such an HLLI Riemann solver.

Let the zone boundary at which this Riemann solver is applied have a mesh motion given
by v, . Here S, and S, still denote the speeds of the extremal left-going and right-going wave
as they would have been evaluated on a fixed mesh. We have S, <v, <S§, . Realize that the

mesh motion does not change the left and right eigenvectors. However, the corresponding set of
eigenvalues that are evaluated relative to the moving mesh becomes {4, —v, :i=1,...,N} . The

analogue of the numerical flux from eqn. (2.9¢) for a moving mesh is given by
= 1 A 2
| 00 —ER[—Tg(z 3) +A—i;(A -v,I)(2 5)} L (U,-U,)

where the superscripts “m” denote a moving mesh. Here F,;,, =F,,, —v U,,, isindeed the

Lagrangian HLL flux evaluated on a moving mesh. The HLL state and flux U,,, and F,,, are
defined simply relative to a stationary frame of reference in the usual way as
— S5 U,-S,U, —-(F,-F) = SF, -SF,+5,5,(U,-U,)

= d F,, =
HLL ( SR _ SL) an HLL ( SR _ SL)

Please also compare our present formula for the HLLI numerical flux to the one in eqn. (2.9¢) to
see that it has undergone only a slight change with A —(A—-v,I) .

The only further thing that needs to be specified is the diagonal matrix & . For making a

practical computer implementation, it is useful to define three auxiliary variables S, =S, v, ,

S,=S,-v, and A =1 —v, . These three terms, with the tilde on top, can then be used in our

regular HLLI Riemann solver to evaluate the weights o, . We, therefore, have
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4 when [(sk -5.) =4S, +§L)}go
%= §.00 +5,00 -5,
min | — er L i~_ L0 otherwise
[(SR—SL) /3~ ,(SR+SL)}
where ¢ =— ~3§R:§L -
(8:-5.)

Notice that the above formula does depend quite strongly on the speed of the mesh, v, . This

completes our description of the one-dimensional HLLI Riemann solver for ALE meshes.
Appendix B

In this Appendix we prove that the multidimensional Riemann solver from Section III
reduces exactly to the one-dimensional Riemann solver in Section II on a two-dimensional
Cartesian mesh where all the variations in the input state are restricted to the x-direction. This
happens when U,, =U,, =U, and U,, =U,, =U, . In that limit we show that eqn. (3.6) from
Section III reduces exactly to eqn. (2.9a) from Section II. The proof consists of two parts. The first
part consists of showing that the constant part, i.e. F , in the two above-mentioned equations
becomes identical. The second part consists of showing that the & -dependent part also becomes
identical when 6" is defined analogously to eqn. (2.11). The first part is harder to prove and we

do that next.

In the one-dimensional limit, we have §,=-§, and U, =0. We also have
G(g“,l/2) = G(é‘,—l/Z) and U(§,1/2) = U(ﬁ,—1/2) . In that limit, eqn. (3.11) for the constant

part of the x-flux, F, reduces as follows:-

poSatS)g A8y L L _s u)-28s s f
F="t =20+ 4U5+2(FR S, UR)+2(FL S, U,) AV/(SU S,) [ £U(£1/2)dé

-1/2

In the one-dimensional limit, we also get

12
1

[¢ U(§,1/2)d§=EU§

Consequently, we get

— (S;+8,)= 1 1 Ay

A
F:TU+E(FR—SR UR)+E(FL—SL U,)+ . cy

§:FHLL+ 6 ¢
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The previous equation exactly matches eqn. (2.7), showing that the constant parts are identical.
Now compare eqn. (3.5) to eqn. (2.4). We see that in the limit where U, =0, the two expressions

for the x-flux are identical. We, therefore, see that there is a one-to-one correspondence between
the constant part of the x-flux as well as the & -dependent part of the x-flux. The two expressions

for the x-flux can be made equivalent when o, is defined analogously to eqn. (2.11) in the one-

dimensional limit. We have, therefore, proved that the multidimensional Riemann solver reduces
exactly to the one-dimensional Riemann solver on a Cartesian mesh when the flow has become
mesh-aligned and one-dimensional. However, as argued in Section III, this proof steers us false.

Figure Captions

Fig. I compares the dissipation from the HLLI Riemann solver (dashed lines) to the least possible
dissipation, as exemplified by the Roe-type Riemann solver (solid lines). Fig. la shows the
dissipation from the HLLI Riemann solver and also the theoretically minimum dissipation as a
function of the wave speed when S, = -0.9 and Sg = 0.1. The dissipation from the HLLI Riemann
solver is only 23.2% larger than the Roe Riemann solver. Fig. 1b shows similar information when
Sy =-0.7 and Sk = 0.3. Fig. Ic shows similar information when Sp = -0.5 and Sz = 0.5. In Figs.
1b and Ic the dissipation properties coincide for both Riemann solvers. Fig. 1d shows analogous
information when Sy = -0.2 and Sg = 0.8, indicating a difference of 17.6% in the dissipation. Fig.
le shows the situation when Sp = -0.01 and Sk = 0.99; indicating practically no difference in the
dissipation.

Fig. 2 shows the multidimensional wave model for a Cartesian mesh. Here the thick solid line
denotes the boundary of the multidimensional wave model; the interior of the wave model is
shaded. The four initial states that come together at a vertex “O” of the mesh are also shown. The
thin solid lines in Fig. 2 show the extremal speeds of the one-dimensional Riemann problems in
the boundary of the multidimensional wave model. The dashed lines in Fig. 2 show the coordinate
axes, measured as speeds. The bounding speeds of the multidimensional wave model are also
shown. The black dot with (S.,y.) is the centroid of the wave model.

Fig. 3 shows the density variable from the forward facing step problem at a time of 4.0.

Fig. 4a shows the density variable from the double Mach reflection problem at a time of 0.2. Fig.
4b shows a zoom-in of the roll-up of the Mach stem.

Fig. 5 shows the results from the MHD Rotor test problem. Figs. 5a, 5b, 5c and 5d show the
density, pressure, magnitude of the fluid velocity and magnitude of the magnetic field at the final
time.

Fig. 6 shows the variables from the 3D blast problem in the z = () mid-plane of the computational
domain. Fig. 6a shows the plot of the density for the mid-plane in the z-direction. Fig. 6b shows
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the same for the pressure in the same plane. Figs. 6¢ and 6d show the magnitude of the velocity
and the magnitude of the magnetic field, again in the same plane.

Figs. 7a and 7b show the evolution of the maximum z-velocity and maximum z-component of the
magnetic field in the torsional Alfven wave as a function of time. For the simulations shown in
Figs. 7a and 7b we used the 1D HLLI Riemann solver along with the 2D MuSIC Riemann solver
with sub-structure. Figs. 7c and 7d show the same information as Figs. 7a and 7b, the only
difference being that we used the 1D HLL Riemann solver along with the 2D MuSIC Riemann
solver without sub-structure.

Figs. 8a, 8b, 8c and 8d show the density, pressure, magnitude of the velocity and magnitude of the
magnetic field at the final time for the relativistic Orzag Tang problem.

Figs. 9a and 9b show the evolution of the maximum z-velocity and maximum z-component of the
magnetic field in the relativistic torsional Alfven wave as a function of time. For the simulations
shown in Figs. 9a and 9b we used the 1D HLLI Riemann solver along with the 2D MuSIC Riemann
solver with sub-structure. Figs. 9c and 9d show the same information as Figs. 9a and 9b, the only
difference being that we used the 1D HLL Riemann solver along with the 2D MuSIC Riemann
solver without sub-structure.

Comparing HLLEM dissipation 1o ideal dissipation; §, =09, S=0.1 Comparing HLLEM dissipation 1o ideal dissipation; S, =-0.7; S=0.3 Comparing HLLEM dissipation 10 ideal dissipation; $, =-0.5, $,=0.5
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Fig. I compares the dissipation from the HLLI Riemann solver (dashed lines) to the least possible dissipation, as exemplified by
the Roe-tvpe Riemann solver (solid lines). Fig. 1a shows the dissipation from the HLLI Riemann solver and also the theoretically
minimum dissipation as a fimction of the wave speed when S; = -0.9 and Sy = 0.1. The dissipation fiom the HLLI Rienann solver
is only 23.2% larger than the Roe Riemarm solver. Fig. 1b shows similar informationwhen S; = -0.7 and Sy = 0.3. Fig. Ic shows
similar informationwhen S; = -0.5 and Sy = 0.5. In Figs. 1b and Ic the dissipation properties coincide for both Riemann solvers.
Fig. 1d shows analogous informationwhen S; = -0.2 and Sy = 0.8, indicating a difference of 17.6% in the dissipation. Fig. le
shows the situation when S; = -0.01 and Sy = 0.99, indicating practically no difference in the dissipation.
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Fig. 2 shows the multidimensional wave model for a Cartesian mesh. Here the thick solid line denotes the boundary of the
multidimensional wave model; the interior of the wave model is shaded. The four initial states that come together at a vertex “0”
of the mesh are also shown. The thin solid lines in Fig. 2 show the extremal speeds of the one-dimensional Riemann problems in
the boundary of the multidimensional wave model. The dashed lines in Fig. 2 show the coordinate axes, measured as speeds. The
bounding speeds of the multidimensional wave model are also shown. The black dot with (&, ) is the centroid of the wave model.
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Fig. 3 shows the density variable fiom the forward facing step problem at a time of 4.0.
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Fig. 4a shows the density variable from the double Mach reflection problem at a time of 0.2. Fig. 4b shows a zoom-in of the roll-
up of the Mach stem.
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Fig. 5 shows the results fiom the MHD Rotor test problem. Figs. Sa, 5b, 5¢ and 5d show the density, pressure, magnitude of the
Shiidvelocity and magnitude of the magnetic field at the final time.

43



05 04 03 -02-01 0 01 02 03 04 05
x

05 T T T T T T T L
1
04 o G 04 an
160
03 | M, 03 |
140
02 4 02
a - 12 b
) 01 | \ & B ) 01 120
= 0f / 4k = ok 100
L \ 4 o4 | 80
0.1 o 01
02 [ . 02 [ &0
06
03 + -+ 03 | 40
04 | - B 0a 0.4 |- 20
ol 0 0 444 os b v o My
05 04 03 02 01 0 01 02 03 04 05 05 04 03 02 01 © 01 02 03 04 05
X X
05 N R P £ e e
9 o | 155
8 03 |
d) 150
7 02 +
L Ll 145
5 = of
4 01 140
3 02 |-
L 136
2 03
i 0.4 |-
05 TN T T T N N S 120
05 A B T e SN A R 0

-05 04 03 -02-01 0 01 02 03 04 05

X

Fig. 6 shows the variables fiom the 3D blast problem in the = = 0 mid-plane of the computational domain. Fig. 6a shows the plot
of the density for the mid-plane in the z-direction. Fig. 6b shows the same for the pressure in the same plane. Figs. 6¢ and 6d

show the magnitude of the velocity and the magnitude of the magnetic field, again in the same plane.
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Figs. 7a and 7b show the evolution of the maximum z-velocity and maximum z-component of the magnetic field in the torsional
Alfvenwave as a function of time. For the simulations shown in Figs. 7a and 7b we wused the 1D HLLI Riemann solver along with
the 2D MuSIC Riemann solver with sub-structure. Figs. 7c and 7d show the same information as Figs. 7a and 7b, the only
difference being that we used the 1D HLL Riemann solver along with the 2D MuSIC Riemann solver without sub-structure.
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Figs. 8a, 8b, 8¢ and 8d show the density, pressure, magnitude of the velocity and magnitude of the magnetic field at the final time
Jor the relativistic Orzag Tang problem.
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Figs. 9a and 9b show the evolution of the maximum z-velocity and maximum z-component of the magnetic field in the relativistic
torsional Alfven wave as a function of time. For the simulations shown in Figs. 9a and 9b we used the 1D HLLI Riemann solver
along with the 2D MuSIC Riemann solver with sub-structure. Figs. 9¢ and 9d show the same information as Figs. 9a and 9b, the
only difference being that we used the 1D HLL Riemarnn solver along with the 2D MuSIC Riemann solver without sub-structure.
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Fig. 10 shows the final density for the two-dimensional contact discontinuity test problem. Figs. 10a, 10b and 10c are contour
plots of the density when second, third and fourth order finite volume ADER-WENO schemes are used. Figs. 10d, 10e and 10f plot
out the one-dimensional density in the middle of the mesh _for the saine three schemes. The initial condition is shown by a solid
line, while the dots in Figs. 10d, 10e and 10f show the density at the final tine.
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