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Abstract 

While classic finite-difference time-domain (FDTD) solutions of Maxwell’s equations have served 

the computational electrodynamics (CED) community very well, formulations based on Godunov 

methodology have begun to show advantages.  We argue that the formulations presented so far are 

such that FDTD schemes and Godunov-based schemes each have their own unique advantages.  

However, there is currently not a single formulation that systematically integrates the strengths of 

both these major strains of development.  While an early glimpse of such a formulation was offered 

in Balsara et al. [16], that paper focused on electrodynamics in plasma.  Here, we present a 

synthesis that integrates the strengths of both FDTD and Godunov-based schemes into a robust 

single formulation for CED in material media. 

 Three advances make this synthesis possible.  First, from the FDTD method, we retain (but 

somewhat modify) a spatial staggering strategy for the primal variables.  This provides a beneficial 

constraint preservation for the electric displacement and magnetic induction vector fields via 

reconstruction methods that were initially developed in some of the first author’s papers for 

numerical magnetohydrodynamics (MHD).  Second, from the Godunov method, we retain the idea 

of upwinding, except that this idea, too, has to be significantly modified to use the multi-

dimensionally upwinded Riemann solvers developed by the first author.  Third, we draw upon 
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recent advances in arbitrary derivatives in space and time (ADER) time-stepping by the first author 

and his colleagues.  We use the ADER predictor step to endow our method with sub-cell resolving 

capabilities so that the method can be stiffly stable and resolve significant sub-cell variation in the 

material properties within a zone. 

 Overall, in this paper, we report a new scheme for numerically solving Maxwell’s 

equations in material media, with special attention paid to a second-order-accurate formulation.  

Several numerical examples are presented to show that the proposed technique works.  Because of 

its sub-cell resolving ability, the new method retains second-order accuracy even when material 

permeability and permittivity vary by an order-of-magnitude over just one or two zones.  

Furthermore, because the new method is also unconditionally stable in the presence of stiff source 

terms (i.e., in problems involving giant conductivity variations), it can handle several orders-of-

magnitude variation in material conductivity over just one or two zones without any reduction of 

the time-step. Consequently, the CFL depends only on the propagation speed of light in the 

medium being studied. 

 

I) Introduction 

The numerical solution of Maxwell’s equations plays an extremely important role in many 

problems in science and engineering.  The finite-difference time-domain (FDTD) method (Yee 

[57], Taflove [47], Taflove and Hagness [48], [50], Taflove, Oskooi and Johnson [49]) has been a 

primary technique for this class of computational electrodynamics (CED) applications for more 

than a quarter century.  Indeed, the FDTD method has many desirable features, including a direct 

interpretation of the two curl-type equations given by Faraday’s Law and the generalized Ampere’s 

Law, and a natural satisfaction of the constraint equations given by Gauss’s Laws for electric and 

magnetic charge.  This is achieved by a spatial staggering of the electric field and magnetic field 

components.  On a simple Cartesian mesh, every electric field vector component is surrounded by 

four circulating magnetic field vector components, and every magnetic field vector component is 

surrounded by four circulating electric field vector components.  This compactly staggered 

arrangement of primal variables is the source of the FDTD method’s strength and versatility. This 

staggering of divergence-free magnetic field variables has proven so popular that many MHD 
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schemes also use a Yee-type arrangement of the field variables (Brecht et al. [22], Evans and 

Hawley [30], DeVore [25], Dai and Woodward [24], Ryu et al. [41], Balsara and Spicer [1]). 

 However, Maxwell’s equations constitute a hyperbolic system, and powerful general 

techniques have been developed in the last three-and-a-half decades for the high-accuracy 

treatment of hyperbolic systems.  Such methods go under the rubric of higher-order Godunov 

techniques that use a zone-centered formulation.  Formulations that treat Maxwell’s equations with 

zone-centered variables have been tried (Munz et al. [38], Ismagilov [34], Barbas and Velarde 

[19], Elkina and Ruhl [29]; and references therein).   

 Unfortunately, to date, the literature indicates some inability to reconcile the different 

collocations used in FDTD versus those used in higher-order Godunov methods.   This has been 

an impediment to progress.  As a result, FDTD methods have been unable to benefit from advances 

in higher-order Godunov methodology, and likewise higher-order Godunov methods have been 

unable to deliver on some of the valuable constraint-preserving properties of FDTD. 

 The motivation for using higher-order Godunov methodology is quite compelling (Munz 

et al. [38]).  Adaptive mesh refinement (AMR) becomes easy with such methods because they 

retain a single control volume rather than the linked pair of control volumes used in FDTD 

schemes.  They also offer good phase accuracy and, especially at higher orders, the dissipation is 

well controlled and restricted to waves that have wavelength comparable to the mesh size.  (Such 

small-scale waves are often the consequence of spurious reflection at mesh refinement boundaries, 

and Elkina and Ruhl [29] show that such spurious waves are properly controlled by higher-order 

Godunov schemes.)  In the context of CED, such techniques are broadly termed finite-volume 

time-domain (FVTD) methods.  There is another strain of allied work using discontinuous 

Galerkin schemes (Hesthaven and Warburton [32]).  These are termed discontinuous-Galerkin 

time-domain (DGTD) methods in the context of CED.  DGTD methods are attractive because of 

their ability to handle complex geometry.  Importantly, neither the current generation of DGTD 

methods nor the current generation of FVTD methods automatically preserves constraints for the 

electric displacement and magnetic induction vector fields. 

 The goal of this paper is to bridge the divide between FDTD and FVTD methods for CED 

with a new synthesis.  Such a synthesis was initially explored in Balsara et al. [16].  However, that 
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paper focused on CED in plasma.  In this paper, we take the synthesis much further by considering 

material media.  It should also be pointed out that Balsara & Kappeli [18] have recently proposed 

discontinuous Galerkin methods for magnetohydrodynamics (MHD) that are constraint-

preserving.  As a result, the methods presented here can also be viewed as laying the groundwork 

for an analogous synthesis between FDTD and DGTD methods in CED. 

 The methods that we report here are certainly higher-order Godunov in spirit.  We use all 

the same philosophies of higher-order non-oscillatory reconstruction and upwinding via Riemann 

solvers that have made the higher-order Godunov schemes so popular.  But, in addition, we employ 

a spatial staggering of the field variables that is borrowed – with modifications – from the Yee 

mesh used in FDTD.  Three special advances arise from this synthesis, as follows.   

First, we use a special form of constraint-preserving reconstruction.  Some aspects of this 

reconstruction have been developed in the literature for MHD simulations (Balsara [2], [3], [4], 

Balsara and Dumbser [12], Xu et al. [58], Balsara et al. [16]), but importing these ideas to CED is 

genuinely novel.  

Second, we draw on recently developed multidimensional Riemann solver technology 

(Balsara [7], [8], [11], [14], Balsara, Dumbser and Abgrall [10], Balsara and Dumbser [13], Balsara 

et al. [15]).  This enables us to get the correct multidimensionally upwinded update of Maxwell’s 

equations on a Yee-adapted mesh.  

 Third, we implement a fundamental advance in time-stepping.  A CED code must 

accurately account for substantial variations in material properties (permittivity, permeability, and 

conductivity) that occur within only one or two zones, including abrupt changes at material 

interfaces and conductor surfaces.  To robustly model these variations, we incorporate a novel 

Arbitrary DERivatives in space and time (ADER) scheme for stiff source terms.  This scheme acts 

on nodal points within a zone.  Because the values of the material properties and their gradients 

are allowed to vary substantially at each of the nodal points within a zone, we can incorporate sub-

cell variations in these properties into our time-stepping strategy.  The source terms associated 

with the current are also treated stiffly, permitting an A-stable, sub-cell-resolving time-update 

strategy.  This advance has many potential uses for adaptive mesh refinement-based treatment of 

CED, especially because the trend in such simulations is to simulate geometrically complex 
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material structures on Cartesian meshes with local refinement at the boundaries of these structures 

(Zakharian et al. [59], Elkina and Ruhl [29]). 

 In this paper (the first of a planned series), we apply our proposed synthesis to implement 

second-order schemes for CED in material media.  This focus allows us to pay special attention to 

the hyperbolic nature of the problem and study the eigensystem in great detail.  We present the 

constraint-preserving reconstruction in its simplest form at the second order of accuracy.  The 

ADER scheme is likewise simplified, but it is also tailored to meet the unique design goals of 

CED.  The multidimensional Riemann solver for CED is discussed in depth.  In a subsequent 

paper, we will show how these ideas extend to higher orders of accuracy.  The eigensystem does 

not get modified at higher orders, nor does the Riemann solver.  Therefore, in the sequel paper, we 

will focus on the design of constraint-preserving reconstruction at higher orders.  In the sequel 

paper, we will also focus on ADER schemes at higher order that are tailored to meet the design 

goals of CED at higher order.  

 This paper is the first time that a confluence of new techniques have been brought together 

for CED in such a way that all the advantages of FDTD are preserved within the context of 

Godunov schemes. The application of higher order Godunov methodology to CED provides 

multiple advantages:- 1) The method retains accuracy even when there are order of magnitude 

variations in dielectric properties. 2) The method suffers no degradation in CFL even when there 

are large variations in conductivity. 3) The method can accommodate to situations where the 

material properties depend on the electric and magnetic fields. In a sequel paper, we show that 

these three advantages extend seamlessly to higher orders of accuracy. 4) The method uses only 

one control volume and can take well to adaptive mesh refinement, as we will show in another 

subsequent paper. There are other areas where seemingly linear problems are being solved, like 

aeroacoustics and linear elasticity. In such areas too, higher order Godunov schemes have shown 

themselves to be beneficial, and we hope that this sequence of papers illustrates the benefits for 

CED. 

 Section II of this paper documents the equations of CED, and studies the eigensystem for 

Maxwell’s equations in material media with general permittivity and permeability tensors. Section 

III briefly describes constraint-preserving reconstruction for CED at second order. Section IV 

presents a very special ADER scheme that is well-suited to the needs of CED at second order.  
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Section V documents the multidimensional Riemann solver for CED.  Section VI presents a 

pointwise synopsis of the numerical method at second order.  Section VII presents illustrative 

results, and Section VIII provides the conclusions. 

II) Equations of CED in Material Media and an Analysis of the Eigenstructure 

 Sub-section II.1 explains the equation structure of the equations of CED. Sub-section II.2 

analyzes the eigenstructure of the resulting hyperbolic system in the simple, but very useful, case 

where the permittivity and permeability tensors are diagonal. Sub-section II.3 extends the same 

analysis to permittivity and permeability tensors that have off-diagonal terms. Sub-section II.4 

quickly analyzes the computational tasks that are needed for the numerical solution of the system 

of equations in Sub-section II.1. This provides a roadmap for the later sections. We, therefore, 

advise the first-time reader to read Sub-section II.4 even if s/he should feel like skipping Sub-

sections II.2 and II.3. 

II.1) The Equations of CED 

 The equations of CED can be written as two evolutionary curl-type equations for the 

magnetic induction and the electric displacement. The first of these is Faraday’s law given by 

t
∂

+∇× = −
∂
B E M            (2.1) 

where B  is the magnetic induction (or magnetic flux density), E  is the electric field and M  is 

the magnetic current density. For CED, it is best to take the magnetic current density to be non-

zero. The reason for this choice is that the magnetic current density may need to be non-zero in 

order to impose boundary conditions; even though physically-speaking it is always zero in any 

material because of the absence of magnetic monopoles. The second evolutionary equation for the 

electric displacement is the extended Ampere’s law given by 

t
∂

−∇× = −
∂
D H J            (2.2) 
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where D  is the electric displacement (or electric flux density), H  is the magnetic field vector and 

J  is the electric current density. The magnetic induction and the electric displacement also satisfy 

the following two non-evolutionary constraint equations given by 

Mρ∇⋅ =B             (2.3) 

and 

Eρ∇⋅ =D             (2.4) 

where Mρ  and Eρ  are the magnetic and electric charge densities. In any physical medium  

0Mρ = ;  however, the imposition of PML boundary conditions (Berenger [20], [21], Katz, Thiel 

and Taflove [36], Taflove and Hagness [48]) might require the use of non-zero magnetic current 

densities. 

 With the above equations, it is easy to show the following continuity equations for the 

electric charge 

0E

t
ρ∂

+∇⋅ =
∂

J            (2.5) 

and the magnetic charge 

0M

t
ρ∂

+∇⋅ =
∂

M            (2.6) 

In material media, the electric displacement vector is also related to the electric field vector via a 

constitutive relation given by  

 =D ε E             (2.7) 

where, in general, ε  is a symmetric 3×3 permittivity tensor that depends on material properties. 

Likewise, in material media, the magnetic induction vector is related to the magnetic field vector 

by 

 =  B μ H             (2.8) 
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As before, μ  is a symmetric 3×3 magnetic permeability tensor that depends on material properties. 

We allow the permittivity and magnetic permeability tensors to have a general form. However, the 

analytical eigenstructure of the hyperbolic system is most easily found by making the simplifying 

assumption { }, ,xx yy zzdiag ε ε ε=ε  and { }, ,xx yy zzdiag µ µ µ=μ  . We will also need the inverses of 

the permittivity and permeability tensors. These 3 3×  inverse matrices will also be symmetric and 

we denote them as 1−≡ε ε   and 1−≡μ μ  . The current density is related to the electric field via  

 σ=J E             (2.9) 

where σ  is the conductivity. Similarly, the magnetic current density is related to the magnetic 

field via 

*  σ=M H             (2.10) 

where *σ  is the equivalent magnetic loss, which is again zero in physical media, but may be non-

zero when imposing boundary conditions in CED. 

 The CED equations can be written in a flux form, which we formally write as  

t x y z∂ + ∂ + ∂ + ∂ =U F G K S          (2.11) 

Here U  is the vector of conserved variables, F  , G  and K  are flux vectors in the x-, y- and z-

directions, and S  is the vector of source terms. In general, the source terms can be stiff in a high- 

conductivity medium, so the numerical method has to accommodate for stiff source terms. We 

wish to directly impose the constraints (2.3) and (2.4) on the same finite volume because this opens 

the door to the use of powerful methods from higher-order Godunov schemes, and it also helps out 

with adaptive mesh refinement. As a result, we take our magnetic induction and electric 

displacement vectors as the primal variables. The normal components of these two vector fields 

are indeed our primal variables and are defined at the faces of the control volume, as shown in Fig. 

1. Notice, that this too will lead to a pair of Yee-type curl equations as long as the electric and 

magnetic fields can be specified in some multidimensionally upwinded sense at the edges of the 

mesh. We will describe how this is done in a subsequent section. Let us now explicitly specify the 

vector of conserved variables U , the fluxes F  , G  and K , and the source term S  below 
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 
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  
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D

D D D

D D D

* B B B

* B B B

* B B B

z

xy x yy y yz z

xz x yz y zz z

xx x xy y xz z

xy x yy y yz z

xz x yz y zz z

σ ε ε ε

σ ε ε ε

σ µ µ µ

σ µ µ µ

σ µ µ µ

 
 
 − + +
 
 − + +
 
 − + +
 
 − + +
 
 − + + 

  

  

  

  

  

  (2.12) 

It is important to write the fluxes in the above format explicitly because that is the form in which 

they will contribute to the characteristic analysis in the next two sub-sections. The characteristic 

analysis of wave speeds plays a central role in the design of higher-order Godunov schemes. 

Similarly, the explicit form of the source terms is needed because we will show in a later section 

how the source terms are implicitly evolved in time within each zone. This will be done in a fashion 

where the source terms stay coupled to the space-time evolution of the vector of conserved 

variables; so that the stiffness in the source terms is respected. 

II.2) Eigenstructure for Diagonal Permittivity and Permeability Matrices 

 When the permittivity and permeability matrices are diagonal, which is the usual case in 

CED, we can write out the eigenvalues and eigenvectors of the characteristic matrices explicitly. 

To keep this sub-section short, the corresponding eigenvectors have been catalogued in Appendix 

A. Please note that the diagonal permittivity and permeability matrices do not need to have the 

same value for all their diagonal terms. We will need the eigenvalues for wave propagation in the 

x- and y-directions in order to design the multidimensional Riemann solver that yields the z-

components of the electric and magnetic fields at the z-edges of the mesh; see Fig. 1. For that 

reason, in this sub-section we provide the eigenvalues in both the x- and y-directions. 
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 The characteristic matrix ∂ ∂F U  enables the propagation of x-directional waves with the 

following diagonal matrix of eigenvalues 

( ), , 0, 0, ,x
yy zz zz yy zz yy yy zzdiag ε µ ε µ ε µ ε µ= − −Λ             (2.13) 

The corresponding eigenvectors of eqn. (2.13) are catalogued in Appendix A.  

 The characteristic matrix ∂ ∂G U  enables the propagation of y-directional waves with the 

following diagonal matrix of eigenvalues 

( ), , 0, 0, ,y
xx zz zz xx zz xx xx zzdiag ε µ ε µ ε µ ε µ= − −Λ             (2.14) 

The corresponding eigenvectors of eqn. (2.14) are catalogued in Appendix A.  

 Please note that we may have situations where zz yy yy zzε µ ε µ>    ; as a result, we cannot 

guarantee that the eigenvalues in eqn. (2.13) form an ordered set. But that is immaterial in practical 

computation because we can indeed guarantee that the eigenvectors in Appendix A provide a 

complete set of orthonormal eigenvectors. Similarly, we may have situations where 

 zz xx xx zzε µ ε µ>    ;  as a result, we cannot guarantee that the eigenvalues in eqn. (2.14) form an 

ordered set. As before, this is immaterial in practical computation. 

II.3) Eigenstructure for Permittivity and Permeability Matrices with Non- Diagonal Terms 

 In some instances, especially when dealing with the interface between two materials with 

different dielectric properties, it is very useful to be able to treat the situation where the permittivity 

and permeability tensors have non-diagonal terms (Farjadpour et al. [31], Oskooi et al. [39], 

Taflove, Oskooi, and Johnson [49]). This is usually needed at dielectric interfaces. In order to 

design a multidimensional Riemann solver for such situations, it is very useful to be able to 

evaluate the eigenstructure when the permittivity and permeability tensors have non-diagonal 

terms. In this sub-section, we present all the details for obtaining the eigenstructure for non-

diagonal permittivity and permeability tensors. The eigenvalues that we catalogue are such that 

they will smoothly retrieve eqns. (2.13) and (2.14) in the limit where these tensors become diagonal 

tensors.  
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 It is important to realize that when the tensors for the material properties are non-diagonal, 

the eigenvalues will be disjoint. Thus each of the eigenvectors that we pick will be orthogonal to 

the other eigenvectors. In practice, it is always profitable to check whether the permittivity and 

permeability tensors are diagonal. If they are diagonal, please use the easy-to-evaluate expressions 

from the previous sub-section and Appendix A. If they are not diagonal, then and then only do we 

recommend using the expressions from this sub-section and Appendix B. In fact, the eigenvectors 

(though not the eigenvalues) can attain an indeterminate (zero divided by zero) form if one makes 

a naïve use of the formulae in this section when the permittivity and permeability become diagonal 

tensors. The structure of the eigenvectors has no impact on practical computations in the algorithm 

presented here. 

 Now, the characteristic matrix ∂ ∂F U  enables the propagation of x-directional waves with 

the following diagonal matrix of eigenvalues 

( ) ( )( )
( )

2

2 , 2 , 0, 0, 2 , 2

    2

     4

     sgn

x x x x x x x x x x x x x

x
yy zz zz yy yz yz

x
yy zz zz yy yy yz yz yy zz yz yz zz

x
yy zz zz yy

diag

with

and

and

τ χ κ τ χ κ τ χ κ τ χ κ

τ ε µ ε µ ε µ

κ ε µ ε µ ε µ ε µ ε µ ε µ

χ ε µ ε µ

 = − + − − − + 
 
= + −

= − + − −

= −

Λ

    

          

  

 

            (2.15) 

The eigenvalues in eqn. (2.15) are so designed that we smoothly retrieve the limit in eqn. (2.13) 

when the permittivity and permeability become diagonal tensors. The corresponding eigenvectors 

of eqn. (2.15) are catalogued in Appendix B.  

The characteristic matrix ∂ ∂G U  enables the propagation of y-directional waves with the 

following diagonal matrix of eigenvalues 

( ) ( )( )
( )

2

2 , 2 , 0, 0, 2 , 2

    2

     4

     sgn

y y y y y y y y y y y y y

y
xx zz zz xx xz xz

y
xx zz zz xx xx xz xz xx zz xz xz zz

y
xx zz zz xx

diag

with

and

and

τ χ κ τ χ κ τ χ κ τ χ κ

τ ε µ ε µ ε µ

κ ε µ ε µ ε µ ε µ ε µ ε µ

χ ε µ ε µ

 = − + − − − + 
 
= + −

= − + − −

= −

Λ

    

          

  

            (2.16) 
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The eigenvalues in eqn. (2.16) are so designed that we smoothly retrieve the limit in eqn. (2.14) 

when the permittivity and permeability become diagonal tensors. The corresponding eigenvectors 

of eqn. (2.16) are catalogued in Appendix B, which will be made available to the reader via the 

web-based supplemental parts of this paper. 

II.4) Computational Tasks Needed for Constraint-Preserving Godunov Schemes for CED 

 Let us take Fig. 1 as our starting point. The facially-collocated normal components of the 

electric displacement and the magnetic induction constitute the primal variables of our scheme. 

These are shown by the thick red arrow and the thick blue arrow respectively in each of the faces 

of the cuboidal element shown in Fig. 1. In a finite-volume sense, these primal variables are 

actually taken to be facial averages of the normal components of the electric displacement and the 

magnetic induction. The overall task consists of finding the edge-collocated components of the 

magnetic field vector and the electric field vector shown in Fig. 1. These are shown with the thinner 

red arrow and the thinner blue arrow respectively next to the edges of the zone shown in Fig. 1. In 

a finite-volume sense, these are actually averages in one space dimension (taken to be the length 

of the element’s edge) and the time dimension (evaluated over the timestep). In the spirit of a 

Godunov scheme, these edge-collocated variables have to be properly upwinded. Recall though 

that for a conservation law, the upwinding of the facial fluxes can be one-dimensional; and in a 

Godunov scheme this is accomplished with a one-dimensional Riemann solver. However, eqns. 

(2.1) and (2.2) call for curl-type updates. Consequently, these edge-collocated variables (which 

reside in the edges of the mesh) should be upwinded by a method that can smoothly accommodate 

upwinding in both the directions that are transverse to the edge in question. In other words, we 

need at least a two-dimensional Riemann solver.  If these space-time averaged components of the 

magnetic field vector and the electric field vector are available at the edges of the mesh, a single 

step update for the entire set of CED equations, consistent with eqns. (2.1) and (2.2) can be written 

as 

( )

1
; 1/2, , ; 1/2, , ; 1/2, ,

; 1/2, 1/2, ; 1/2, 1/2, ; 1/2, , 1/2 ; 1/2, , 1/2

D = D J

         H H H H

n n
x i j k x i j k x i j k

z i j k z i j k y i j k y i j k

t
t z z y y

y z

+
+ + +

+ + + − + − + +

− ∆

∆
+ ∆ −∆ + ∆ −∆
∆ ∆

  (2.17a) 
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( )

1
; , 1/2, ; , 1/2, ; , 1/2,

; , 1/2, 1/2 ; , 1/2, 1/2 ; 1/2, 1/2, ; 1/2, 1/2,

D = D J

         H H H H

n n
y i j k y i j k y i j k

x i j k x i j k z i j k z i j k

t
t x x z z

x z

+
− − −

− + − − − − + −

− ∆

∆
+ ∆ −∆ + ∆ −∆
∆ ∆

  (2.17b) 

( )

1
; , , 1/2 ; , , 1/2 ; , , 1/2

; , 1/2, 1/2 ; , 1/2, 1/2 ; 1/2, , 1/2 ; 1/2, , 1/2

D = D J

         H H H H

n n
z i j k z i j k z i j k

x i j k x i j k y i j k y i j k

t
t x x y y

x y

+
+ + +

− + + + + + − +

− ∆

∆
+ ∆ −∆ + ∆ −∆
∆ ∆

  (2.17c) 

and 

( )

1
; 1/2, , ; 1/2, , ; 1/2, ,

; 1/2, 1/2, ; 1/2, 1/2, ; 1/2, , 1/2 ; 1/2, , 1/2

B = B M

        E E E E

n n
x i j k x i j k x i j k

z i j k z i j k y i j k y i j k

t
t z z y y

y z

+
+ + +

+ + + − + − + +

− ∆

∆
− ∆ −∆ + ∆ −∆
∆ ∆

   (2.18a) 

( )

1
; , 1/2, ; , 1/2, ; , 1/2,

; , 1/2, 1/2 ; , 1/2, 1/2 ; 1/2, 1/2, ; 1/2, 1/2,

B = B M

        E E E E

n n
y i j k y i j k y i j k

x i j k x i j k z i j k z i j k

t
t x x z z

x z

+
− − −

− + − − − − + −

− ∆

∆
− ∆ −∆ + ∆ −∆
∆ ∆

   (2.18b) 

( )

1
; , , 1/2 ; , , 1/2 ; , , 1/2

; , 1/2, 1/2 ; , 1/2, 1/2 ; 1/2, , 1/2 ; 1/2, , 1/2

B = B M

        E E E E

n n
z i j k z i j k z i j k

x i j k x i j k y i j k y i j k

t
t x x y y

x y

+
+ + +

− + + + + + − +

− ∆

∆
− ∆ −∆ + ∆ −∆
∆ ∆

   (2.18c) 

We also have to pay attention, of course, to the source terms for the electric current density and 

the magnetic current density on the right hand sides of eqns. (2.1) and (2.2). In certain instances, 

when the conduction becomes substantial, these source terms can become stiff.  

 With this preview, we are now ready to decompose the computational tasks. Since the 

primal variables are facially-averaged normal components of the electric displacement and 

magnetic induction, we need to endow these components with sub-structure. In doing so, we follow 

the philosophy of van Leer [55], [56]. Thus, by locating ourselves at a face and using the adjacent 

faces that are von Neumann neighbors of that face, we can carry out a second-order or higher-

order total variation diminishing (TVD) or weighted essentially non-oscillatory (WENO) 

reconstruction within that face. For instance, at second order of accuracy, the x-component of the 

magnetic induction will have linear sub-structure in the y- and z-directions. This gives us linear 

sub-structure within each face. However, from eqn. (2.11) realize that if we want to make a space-
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time extension of a partial differential equation (PDE), we necessarily need all its derivatives 

within a control volume. The vector fields in question – i.e. the electric displacement and the 

magnetic induction – satisfy constraint equations; please see eqns. (2.3) and (2.4). Thus, the 

volumetric reconstruction of these vector fields within the control volume shown in Fig. 1 should 

be made consistent with the constraint equations. It should also be made consistent with the linear 

(or higher order) profiles that we have endowed to the components within each face. A 

mathematically tight way of carrying out the constraint-preserving reconstruction that respects all 

the physics is presented in Section III. 

 Once the reconstruction from the previous paragraph is done, we will have the spatial 

variation of the electric displacement vector field and the magnetic induction vector field at all 

locations within all the control volumes (elements) that make up the mesh. It is still not possible 

to obtain the one-step update that we seek in eqns. (2.16) and (2.18). To obtain such a one-step 

update, we need time-centered and time-averaged magnetic fields and electric fields. As a result, 

we need an approach that time-evolves the PDE system in-the-small within each zone. A general 

approach for doing this is given by the ADER scheme. However, notice that we would like to have 

two further special requirements in CED. First, the permittivity and permeability tensors can have 

substantial variation at dielectric interfaces (Farjadpour et al. [31], Oskooi et al. [39], Taflove, 

Oskooi, and Johnson [49]). Indeed, that variation can be specified within each zone and from eqn. 

(2.12) we see that the fluxes should account for such variation. Second, the source terms can be 

stiff and can also have substantial variation within a zone; see eqns. (2.9) and (2.10). This can 

happen when the conduction is high or when we are dealing with a perfectly matched layer (PML) 

boundary condition (Berenger [20], [21], Katz, Thiel and Taflove [36], Taflove and Hagness [48]). 

The source terms can also become stiff when a CED calculation is coupled to another calculation, 

like a multi-level atom lasing calculation (Chang and Taflove [23]). Thus, the in-the-small update 

method should account for stiffness that can be spatially varying. For all of these reasons, we 

design a special type of ADER scheme at second order in Section IV. This ADER scheme is 

referred to as the ADER predictor step since it predicts an in-the-small evolution for the PDE 

within each zone/element. The higher-order extension of this ADER scheme will be presented in 

a sequel paper. 
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 With the ADER step applied, as described in the previous paragraph, we will have an in-

the-small space-time evolution of the entire PDE system within each zone/element that makes up 

the mesh. True to the spirit of a higher-order Godunov scheme, the neighboring elements need to 

interact in a multidimensionally upwinded sense. This is accomplished at each edge of the mesh 

with the multidimensional Riemann solver described in Section V. The multidimensional Riemann 

solver gives us the properly upwinded components of the magnetic field and the electric field 

within each edge. Because of our use of the ADER predictor step, these components of the 

magnetic field and the electric field within each edge will also be properly space-averaged and 

time-averaged. These are exactly the components that we need in the update eqns. (2.16) and 

(2.18). This step where the Riemann solver is applied is also called the corrector step, because it 

gives us the edge-centered terms that are needed for the final update. 

 The ADER scheme also gives, as a bonus, a space-time evolution of the source terms within 

each zone. Since these source terms have been time-evolved in a fashion that accounts for any 

possible stiffness, we can also obtain the facially and temporally averaged source terms in eqns. 

(2.16) and (2.18). The time-averaging is done over each timestep. These can be obtained within 

each face by averaging from the zones that abut the face. This gives us the requisite source terms 

within each face.  

 The previous two paragraphs have shown us that all the variables that are needed for the 

update in eqns. (2.16) and (2.18) are in hand. The update can, therefore, be carried out. For the 

scheme described in this paper, it yields a second-order-accurate update in space and time. 

However, the entire procedure can be extended to higher orders, as we will show in a sequel paper. 

III) Constraint-Preserving Reconstruction with Second Order Accuracy for CED 

 Many of the ideas described here were originally developed in Balsara [2], [3], [4] and 

Balsara and Dumbser [12] and Xu et al. [58]. These ideas were initially developed within the 

context of divergence-free MHD schemes; but they change quite a bit when applied to CED. Notice 

from eqn. (2.4) that the displacement vector is not divergence-free. The primal variables of our 

scheme are facially-averaged normal components of the electric displacement and magnetic 

induction. Given the congruence between eqns. (2.3) and (2.4), we find it more advantageous to 

develop a constraint-preserving high-order strategy for reconstructing the displacement vector at 
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all locations within the zone shown in Fig. 1. This is needed for the ADER scheme in Section IV 

which looks at the entire PDE in eqns. (2.11) and (2.12) as a whole and tries to evolve the initial 

data in-the-small as a function of time. It is also needed because we need to give our best 

reconstructed and predicted values for the electric displacement and magnetic induction as inputs 

to the multidimensional Riemann solver described in Section V. 

 With the normal components of the electric displacement specified at each face of the 

mesh, the zone-averaged electric charge density can be obtained for each zone. This is done by the 

application of a divergence operator to the facially-collocated normal components of the electric 

displacement vector. Let 0Dx+  and 0Dx−  be the facially-averaged x-components of the electric 

displacement vector collocated at the top and bottom x-faces of the zone shown in Fig. 1. Similarly, 

let 0D y+  and 0D y−  be the facially-averaged y-components of the electric displacement vector 

collocated at the top and bottom y-faces of the zone shown in Fig. 1. Likewise, let 0Dz+  and 0Dz−  

be the facially-averaged z-components of the electric displacement vector collocated at the top and 

bottom z-faces of the zone shown in Fig. 1. For a cuboidal zone with zone sizes x∆ , y∆  and z∆  

in the three directions, we can evaluate the mean electric charge density within the zone as 

0 0 0 0 0 0
;0

D D D D D Dx x y y z z

E x y z
ρ

+ − + − + −− − −
= + +

∆ ∆ ∆
        (3.1) 

Once this zone-averaged electric charge density is obtained within each zone, we can use standard 

zone-centered TVD or WENO reconstruction methods to reconstruct the charge density to the 

desired order. For basics on WENO reconstruction, please see Jiang and Shu [35], Balsara and Shu 

[5], Dumbser and Käser [26] and Balsara, Garain and Shu [17]. For second order, the reconstructed 

electric charge density is given by 

( ) ;0;0 ;0
;0 ;0, , y Ex E z E

E Ex y z x y z
x y z

ρρ ρ
ρ ρ

∆∆ ∆
= + + +

∆ ∆ ∆
       (3.2) 

The coordinates in this Section are measured relative to the zone-center. The vector field for the 

electric displacement within the zone shown in Fig. 1 will have to be reconstructed so that it is 

consistent, up to the desired order of accuracy, with the constraint equation 
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( ) ( ) ( ) ( );0D , , D , , D , , , ,x y z
x y z Ex y z x y z x y z x y zρ∂ + ∂ + ∂ =       (3.3) 

The above equation is not the only equation that determines the electric displacement vector field, 

as we shall see in the next paragraph. 

 Just as we added sub-structure to the electric charge density in eqn. (3.2), we also wish to 

add sub-structure to the normal component of the electric displacement vector within each face. 

At each face, this can be done in a TVD or WENO sense by looking at the adjacent faces and 

reconstructing the facial component to the desired order of accuracy. At second order, the  

x-component of the electric displacement within the top and bottom x-faces is given by 

( ) ( )0 00 0
0 0

D DD DD , D        ;         D , D
x xx x

y yx x x xz zy z y z y z y z
y z y z

+ −+ −
+ + − −∆ ∆∆ ∆

= + + = + +
∆ ∆ ∆ ∆

  (3.4) 

To take an example, 0Dx
y

+∆  can be obtained by looking at the neighboring x-faces in the y-direction 

and using their stored facial values to obtain a TVD- or WENO-limited undivided difference. 

Similarly, 0Dx
z

+∆  can be obtained by looking at the neighboring x-faces in the z-direction and 

using their stored facial values to obtain a TVD- or WENO-limited undivided difference. In an 

analogous fashion, the y-component of the electric displacement within the top and bottom y-faces 

is given by 

( ) ( )0 0 0 0
0 0

D D D DD , D        ;         D , D
y y y y

y y y yx z x zx z x z x z x z
x z x z

+ + − −
+ + − −∆ ∆ ∆ ∆

= + + = + +
∆ ∆ ∆ ∆

  (3.5) 

Similarly, the z-component of the electric displacement within the top and bottom z-faces is given 

by 

( ) ( )0 00 0
0 0

D DD DD , D        ;         D , D
z zz z

y yz z z zx xx y x y x y x y
x y x y

+ −+ −
+ + − −∆ ∆∆ ∆

= + + = + +
∆ ∆ ∆ ∆

  (3.6) 

The reconstruction that we seek has to take this second order variation within the faces and obtain 

therefrom a second order accurate reconstructed vector field for the electric displacement within 

the volume shown in Fig. 1. 
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 The vector field for the electric displacement that we wish to find within the zone shown 

in Fig. 1 is such that it satisfies eqn. (3.3) everywhere within the zone. It also exactly matches up 

with eqn. (3.4) at the top and bottom x-faces, eqn. (3.5) at the top and bottom y-faces and eqn. (3.6) 

at the top and bottom z-faces. By putting eqn. (3.2) into the right hand side of eqn. (3.3) we see 

that it provides four constraints. However, one of the four constraints is redundant because of eqn. 

(3.1). As a result, eqn. (3.3) effectively provides three independent constraints. Matching the 

variation at the top and bottom x-boundaries via eqn. (3.4) provides six further conditions. 

Likewise, matching the variation at the top and bottom y-boundaries via eqn. (3.5) provides six 

additional conditions. Similarly, matching the variation at the top and bottom z-boundaries via 

eqn. (3.6) gives yet another six conditions. We see, therefore, that the vector field for the electric 

displacement is specified by twenty-one independent coefficients. The lowest-order polynomial 

representation for the three components of the electric displacement vector field that enables us to 

meet all these requirements is given by 

0

2

D ( , , )       

1                      + 
12

x
x y z

xx xy xz

x y zx y z a a a a
x y z

x x y x za a a
x x y x z

    = + + +    ∆ ∆ ∆    
         + − +          ∆ ∆ ∆ ∆ ∆        

    (3.7) 

0

2

D ( , , )        

1                     
12

y
x y z

xy yy yz

x y zx y z b b b b
x y z

x y y y zb b b
x y y y z

    = + + +    ∆ ∆ ∆    
          + + − +         ∆ ∆ ∆ ∆ ∆         

    (3.8) 

0

2

D ( , , )        

1                      
12

z
x y z

xz yz zz

x y zx y z c c c c
x y z

x z y z zc c c
x z y z z

    = + + +    ∆ ∆ ∆    
        + + + −         ∆ ∆ ∆ ∆ ∆         

    (3.9) 

The terms in the above three polynomials are selected from symmetry and constraint-preserving 

considerations. The twenty-one independent coefficients in eqns. (3.7), (3.8) and (3.9) can be 

precisely specified by using the known coefficients in eqns. (3.2), (3.4), (3.5) and (3.6). The exact 

procedure for doing this is catalogued in Appendix C. 
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 This completes our description of the constraint-preserving reconstruction. The constraint-

preserving reconstruction is the first step that one does in a timestep loop. It takes the facially-

collocated normal components of the electric displacement vector and the magnetic induction 

vector and give us two constraint-satisfying vector fields for the electric displacement and 

magnetic induction that are valid at any location in the computational domain. Moreover, these 

vector fields are constructed with due attention paid to non-oscillatory reconstruction as given by 

modern TVD or WENO methods. 

 Realize that a constraint-preserving reconstruction strategy can always revert back to a 

divergence-free reconstruction strategy when the divergence of the vector field is exactly zero. 

Therefore, the same strategy works without any further changes for the vector field for the 

magnetic induction. When magnetic charges are absent, the magnetic induction vector field will 

be globally divergence-free at all locations on the mesh. In the code, the two sets of vector fields 

are reconstructed by using the same set of subroutines. This constraint-preserving reconstruction 

strategy can also be extended to higher orders as we will show in a sequel paper. 

 Also notice that the first four terms in eqns. (3.7), (3.8) and (3.9) are needed for second- 

order accuracy. The other three terms in the same equations are needed for consistency. The 

reconstructed vector fields for the electric displacement and magnetic induction would not globally 

satisfy their constraints without the use of all the terms in those three equations. The first four 

terms in eqns. (3.7), (3.8) and (3.9) are, therefore, evolutionary and participate in the ADER time 

evolution step which we describe next. 

IV) Second-order-Accurate ADER-DG Scheme with Sub-Cell Resolution of Material 

Properties and Implicit Treatment of Stiff Source Terms 

 The previous Section has shown us how we can obtain two constraint-satisfying vector 

fields for the electric displacement and magnetic induction that are valid at any location in the 

computational domain. This means that we have higher-order spatial derivatives within each zone 

for each of these two vector fields. We would like to know how these vector fields evolve for a 

short interval of time (in-the-small evolution) within each zone in a fashion that is consistent with 

the conservation law in eqn. (2.11). In this section, we present an ADER scheme that does precisely 

that. 
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 We divide this section into three parts. We realize that ADER schemes have not been used 

much at all in CED. Therefore, Sub-section IV.1 provides background information and also 

explains at an intuitive level why the variant of ADER scheme presented here is so valuable for 

CED. Sub-section IV.2 presents the equations and the solution methodology. Sub-section IV.3 

shows how the matrix inversion in the Newton step is considerably simplified in the ADER scheme 

that we present here. Sub-section IV.4 presents an extremely efficient treatment of stiff source 

terms in the limit where the permittivity and permeability matrices are diagonal. 

IV.1) Background on ADER Schemes and their Utility in CED 

 ADER schemes possess some very desirable properties. While the older ADER schemes 

by Toro, Millington and Nejad [53], Titarev and Toro [51], [52] and Toro and Titarev [54] are not 

very well-suited to our specific needs in this paper, there is another variant of ADER schemes that 

have some very desirable properties. We refer to ADER schemes in predictor-corrector format 

(Dumbser et al. [27], [28], Balsara et al. [6], [9]). In this paper we have formulated ADER schemes 

to accommodate the treatment of stiff source terms in the predictor step. What makes this ADER 

formulation novel is the use of a minimal number of source term evaluations. The method can 

accommodate sub-cell variations in the source terms, as well as sub-cell variation in the 

coefficients of flux terms, which is exactly the feature we seek in this paper. It also minimizes the 

number of implicit source term evaluations. Having an absolute minimum number of source term 

evaluations is a very desirable attribute when the source terms have to be solved implicitly. The 

source-term treatment in our present ADER schemes is also provably A-stable. For that reason, 

we use ADER schemes in predictor-corrector format with implicit treatment of stiff source terms. 

The use of these novel ADER schemes that are specially adapted to the needs of computational 

electrodynamics in this paper is indeed the third major advance reported in this paper. 

 At a very intuitive level, we can think of the ADER predictor step as a kind of Lax-

Wendroff (or Cauchy-Kovalevskaya) procedure that is applied to the governing PDE. In other 

words, given the spatial derivatives within a zone up to some order of accuracy, we wish to obtain 

time derivatives up to that same order of accuracy within that same zone. The time derivatives are 

obtained in such a way that they are consistent with the governing PDE. The ADER scheme that 

we describe here is also unlike a Lax-Wendroff procedure in the sense that the method is applied 

iteratively, with each iteration being very simple and computationally inexpensive. The iterations 
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are known to converge fast. The present strategy also differs from the Lax-Wendroff procedure 

because it permits a pointwise implicit treatment of the stiff source terms. The implicit terms are 

solved with a Newton method, which also converges very fast. Let us examine how these issues, 

as well as allied issues, play out in CED. 

 There are two very important physics issues that are most challenging in CED. The first 

has to do with the fact that permittivity and permeability can undergo up to an order of magnitude 

change at the interface between dielectrics (Farjadpour et al. [31], Oskooi et al. [39], Taflove, 

Oskooi, and Johnson [49]). The second has to do with the fact that the conductivity can undergo 

very substantial variation. This may happen when analyzing skin-depth effects in a metal, but it 

occurs much more often when dealing with perfectly matched layers (PML) at the boundary of a 

computational domain (Berenger [20], [21], Katz, Thiel and Taflove [36], Taflove and Hagness 

[48]). Let us, therefore, examine the consequences of such variation by focusing on the flux terms 

and source terms in eqn. (2.12). A through discussion of the issues will guide us to the optimal 

predictor step that enables us to make an evolution in-the-small for the equations of CED. We will 

then show that the particular variant of ADER scheme that we present here is the optimal response 

to those two vexatious physics issues. The ADER scheme that we present is optimal for CED in 

the following senses:- 1) It includes the effects of sub-cell variation in the dielectric properties. 2) 

It permits the inclusion of very large conductivities without having any impact on the CFL number. 

3) The implicit treatment of the source terms only requires the inversion of small 6 6×  matrices; 

the older ADER schemes would have required the inversion of larger matrices. 4) When the 

permittivity and permeability tensors are diagonal, the 6 6×  matrices mentioned above become 

diagonal, which further simplifies the matrix inversion. We should also mention that the ADER 

scheme presented here is very novel and we have not seen ADER schemes formulated in this way 

in the literature. 

 Let us first discuss the fact that the permittivity and permeability undergo dramatic sub-

cell variations at dielectric interfaces. As a result, we can always take the matrices 1−≡ε ε  and 
1−≡μ μ  and carry out a suitably high-order reconstruction of each of their components. But we 

need a scheme that directly incorporates the high-order reconstruction of the material tensors in 

the flux evaluation. From eqn. (2.12) we see that the material matrices play an important role in 

the fluxes. But, to capture the spatial variation in the material properties, we should have an ADER 
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scheme that not just responds to the fluxes but is also responsive to the gradients of the fluxes. 

That way, at each nodal point where the fluxes are evaluated, we will also have to evaluate the 

gradients of the fluxes, which incorporate the variation of the matrices in question. We will, indeed, 

design such an ADER scheme. We now also realize an ancillary benefit that comes from using the 

normal components of the electric displacement and the magnetic induction as the primal variables 

– such a choice allows us to directly incorporate the variation of the material properties into the 

flux terms. 

 Second, we discuss the fact that at PML boundaries, or in some instances at metallic 

interfaces, we will have rapid sub-cell variations in the conductivity. In such cases, the electric and 

magnetic conductivities can become very large and also have substantial variation within a zone. 

As a result, the ADER scheme should treat the source terms implicitly. But it should also 

incorporate the gradients of the source terms into the predictor step. We will, indeed, design such 

an ADER scheme. The ADER scheme that we present has a very desirable property that it couples 

only the source terms at a given spatial node. This reduces the size of the matrices that have to be 

inverted in the Newton step. Furthermore, as we will show, the resulting matrices can be 

manipulated into a form that only entails the inversion of block upper-triangular matrices. This 

simplifies the Newton step very considerably, especially at higher orders. 

IV.2) Description of our ADER Scheme at Second Order 

 To facilitate our narrative, let us make a linear mapping of the space-time extent of each 

zone in its local coordinates given by 

( ) [ ] [ ] [ ] [ ], , , / 2, / 2 / 2, / 2 / 2, / 2 0,x y z t x x y y z z t∈ −∆ ∆ × −∆ ∆ × −∆ ∆ × ∆  to the reference element 

given by ( ) [ ] [ ] [ ] [ ], , , 1/ 2,1/ 2 1/ 2,1/ 2 1/ 2,1/ 2 0,1ξ η ζ τ ∈ − × − × − ×  . With this linear mapping, the 

governing PDE becomes 

( ) ( ) ( ) ( ) ( ), , , , , , , , , , , ,
, , ,

ξ η ζ τ ξ η ζ τ ξ η ζ τ ξ η ζ τ
ξ η ζ τ

τ ξ η ζ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

u f g h
s    (4.1) 

where we have the slight redefinitions (and rescalings) given by ( ) ( ), , , , , ,x y z tξ η ζ τ =u U , 

( ) ( ), , ,  , , ,t x y z t xξ η ζ τ = ∆ ∆f F , ( ) ( ), , ,  , , ,t x y z t yξ η ζ τ = ∆ ∆g G  , 
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( ) ( ), , ,  , , ,t x y z t zξ η ζ τ = ∆ ∆h K  and ( ) ( ), , ,  , , ,t x y z tξ η ζ τ = ∆s S  . Please note that we are 

making a small notational realignment in the nomenclature for the z-flux. 

 The electric displacement and the magnetic induction are the primal variables of our 

scheme. Now realize that the reconstruction from Section III has provided us with one three-

component vector field for the electric displacement and another three-component vector field for 

the magnetic induction. This is shown in eqns. (3.7), (3.8) and (3.9). As discussed before, only the 

first four terms in each of the above-mentioned equations are time-evolutionary at second order of 

accuracy. As a result, consider a six-component vector w  of initial conditions that is defined at a 

node that resides at the zone center. The vector is filled with the constant part of eqns. (3.7), (3.8) 

and (3.9). The first three components of w  contain the constant parts of the electric displacement 

at the center of the zone; the next three components of w  contain the constant parts of the magnetic 

induction at the center of the zone. Furthermore, consider the six-component vector ( )ξ∂ w . This 

vector is filled with the x-variation from eqns. (3.7), (3.8) and (3.9) that has been suitably mapped 

to the reference element. The first three components of ( )ξ∂ w contain the ξ -derivatives of the 

electric displacement at the center of the zone; the next three components of ( )ξ∂ w  contain the ξ

-derivatives of the magnetic induction at the center of the zone. With this detailed description, the 

reader can understand how to initialize ( )η∂ w  and ( )ζ∂ w  with suitable η -derivatives and ζ -

derivatives of the solution vector. We can now write our initial conditions within each zone of the 

mesh as 

( ) ( ) ( ) ( ), , ξ η ζξ η ζ ξ η ζ= + ∂ + ∂ + ∂w w w w w        (4.2) 

This explains to us in rather explicit terms how the vector of initial conditions is initialized at 0τ =

for each zone of the mesh. We wish to evolve this initial condition in time in order to obtain a 

predictor step. 

 In the predictor step, we want to locate ourselves within each zone and use the initial spatial 

variation in the solution at 0τ =  to obtain the time-evolution of the solution in-the-small within 

that same zone. In other words, during the ADER predictor step, each zone evolves for a short 

period of time by using its own internal values without paying attention to neighboring zones. We 
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want to obtain the solution ( ), , ,ξ η ζ τu  implicitly in time so that it is defined at temporal nodal 

points given by 1 1/ 2τ =  and 2 1τ = . Those two nodal points are also centered in space at the zone 

center and have the same spatial modes at each time point as eqn. (4.2). Written explicitly, our two 

nodal points in space-time within the reference element are given by ( ) ( ), , , 0,0,0,1/ 2ξ η ζ τ =  and 

( ) ( ), , , 0,0,0,1ξ η ζ τ =  . Consequently, we can write the solution vector in space-time as 

( ) ( ) ( ) ( )( )( )( )

( ) ( ) ( )( )( )( )
1 1 1 1

2 2 2 2

, , , 2 1

                    + 2 1/ 2

ξ η ζ

ξ η ζ

ξ η ζ τ ξ η ζ τ

ξ η ζ τ

= + ∂ + ∂ + ∂ − −

+ ∂ + ∂ + ∂ −

u u u u u

u u u u
     (4.3) 

Let us interpret eqn. (4.3) in words because ADER schemes might not be familiar to the CED 

community. We see that 1u , ( )1ξ∂ u , ( )1η∂ u  and ( )1ζ∂ u  are the solution vector, its ξ -derivative, 

its η -derivative and its ζ -derivative respectively at the space-time nodal point given by 

( ) ( ), , , 0,0,0,1/ 2ξ η ζ τ = . We also see that 2u , ( )2ξ∂ u , ( )2η∂ u  and ( )2ζ∂ u  are the solution 

vector, its ξ -derivative, its η -derivative and its ζ -derivative respectively at the space-time nodal 

point given by ( ) ( ), , , 0,0,0,1ξ η ζ τ = . The eight vectors (with each vector having six components) 

described in the previous two sentences are the modes of the scheme. In the parlance of Galerkin 

formulations, the set of eight trial functions, ( ), , ,iφ ξ η ζ τ  with 1,..,8i =  , is given by 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2 3

4 5 6

7 8

, , , 2 1  ,   , , , 2 1  ,   , , , 2 1  ,

, , , 2 1  ,   , , , 2 1/ 2  ,   , , , 2 1/ 2  ,

, , , 2 1/ 2  ,   , , , 2 1/ 2

φ ξ η ζ τ τ φ ξ η ζ τ τ ξ φ ξ η ζ τ τ η

φ ξ η ζ τ τ ζ φ ξ η ζ τ τ φ ξ η ζ τ τ ξ

φ ξ η ζ τ τ η φ ξ η ζ τ τ ζ

= − − = − − = − − 
 

= − − = − = − 
 = − = − 

  

            (4.4) 

We will use test functions that are also defined from the above set of trial functions. 

 We see that eqn. (4.3) is very suitable for an iterative Galerkin method because the modes 

are indeed the desired solution vector and its derivatives at each of the two nodal points in space-

time. As a result, when the modes in eqn. (4.3) are improved during the course of each iteration, 

we can also use the modes to obtain the improved fluxes and their derivatives at each of those 
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nodal points in space-time. To take an example, given an improved set of four vectors, 1u , 

 ( )1ξ∂ u , ( )1η∂ u , and ( )1ζ∂ u  at space-time node “1”, we can use eqn. (2.12) and our rescaling of 

the fluxes to evaluate an improved set of ξ -fluxes and their derivatives given by 1f , ( )1ξ∂ f , ( )1η∂ f  

and ( )1ζ∂ f . We can do similarly at space-time node “2”. This enables us to write an expression for 

the ξ -flux that is analogous to eqn. (4.3) as follows 

( ) ( ) ( ) ( )( )( )( )

( ) ( ) ( )( )( )( )
1 1 1 1

2 2 2 2

, , , 2 1

                   + 2 1/ 2

ξ η ζ

ξ η ζ

ξ η ζ τ ξ η ζ τ

ξ η ζ τ

= + ∂ + ∂ + ∂ − −

+ ∂ + ∂ + ∂ −

f f f f f

f f f f
     (4.5) 

We can do similarly for the η - and ζ -fluxes in the next two equations 

( ) ( ) ( ) ( )( )( )( )

( ) ( ) ( )( )( )( )
1 1 1 1

2 2 2 2

, , , 2 1

                   + 2 1/ 2

ξ η ζ

ξ η ζ

ξ η ζ τ ξ η ζ τ

ξ η ζ τ

= + ∂ + ∂ + ∂ − −

+ ∂ + ∂ + ∂ −

g g g g g

g g g g
     (4.6) 

and 

( ) ( ) ( ) ( )( )( )( )

( ) ( ) ( )( )( )( )
1 1 1 1

2 2 2 2

, , , 2 1

                   + 2 1/ 2

ξ η ζ

ξ η ζ

ξ η ζ τ ξ η ζ τ

ξ η ζ τ

= + ∂ + ∂ + ∂ − −

+ ∂ + ∂ + ∂ −

h h h h h

h h h h
     (4.7) 

Formally, we can write the source terms in the same fashion as 

( ) ( ) ( ) ( )( )( )( )

( ) ( ) ( )( )( )( )
1 1 1 1

2 2 2 2

, , , 2 1

                  + 2 1/ 2

ξ η ζ

ξ η ζ

ξ η ζ τ ξ η ζ τ

ξ η ζ τ

= + ∂ + ∂ + ∂ − −

+ ∂ + ∂ + ∂ −

s s s s s

s s s s
     (4.8) 

Because we wish to treat the source terms implicitly, we will of course evaluate the vectors 1s  and 

2s  somewhat differently. This will become clearer in the next few paragraphs where we involve 

the governing equation, eqn. (4.1), and see what it gives us. 

 The governing equation, eqn. (4.1), regulates the time-evolution of the PDE system. It, 

therefore, controls the dynamics.  If we want to iteratively improve the solution vector itself, we 

should involve the governing equation in the iteration step. In other words, an improved iterate for 
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eqn. (4.3) can only be obtained if we involve eqn. (4.1). This is most easily done by using our test 

functions to make a Galerkin projection in space-time of the governing equation. In other words, 

let ( ), , ,iφ ξ η ζ τ  with 1,..,8i =  be one of the eight test functions from eqn. (4.4). For 1,..,8i =  we 

then demand that 

( )

( ) ( )

( ) ( ) ( )

1 1/2 1/2 1/2

0 1/2 1/2 1/2

, , , , , ,

, , , 0
, , , , , ,

, , ,
i d d d d

ξ η ζ τ ξ η ζ τ
τ ξ

φ ξ η ζ τ ξ η ζ τ
ξ η ζ τ ξ η ζ τ

ξ η ζ τ
η ζ

− − −

    ∂ ∂ 
 +    ∂ ∂        =        ∂ ∂       + + −        ∂ ∂     

∫ ∫ ∫ ∫

u f

g h
s

            (4.9) 

Please note that the square bracket in the previous equation is not a matrix. In the above equation, 

we are simply projecting the governing equation, i.e. eqn. (4.1), into the space of test functions 

and demanding that the projection is zero. Operationally, to carry out the Galerkin projection, we 

simply insert eqns. (4.3), (4.5), (4.6), (4.7) and (4.8) into the square bracket in eqn. (4.9). We then 

use a computer algebra system to carry out the four-dimensional space-time integrals. The 

computer algebra system is further asked to simplify the resulting eight conditions that we get from 

eqn. (4.9). After a little bit of dexterous manipulation with the computer algebra system, we get 

eight very elegant, and very simple, evolutionary equations which we will describe in the next 

paragraph. 

 The evolutionary equations that we obtain at node “1” are given by 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 1 1 1 2 2 2
4 1 4 1
6 6 6 6ξ η ζ ξ η ζ= + − − ∂ + ∂ + ∂ + ∂ + ∂ + ∂u w s s f g h f g h    (4.10) 

( ) ( ) ( ) ( )1 1 2
4 1
6 6ξ ξ ξ ξ∂ = ∂ + ∂ − ∂u w s s          (4.11) 

( ) ( ) ( ) ( )1 1 2
4 1
6 6η η η η∂ = ∂ + ∂ − ∂u w s s          (4.12) 

( ) ( ) ( ) ( )1 1 2
4 1
6 6ζ ζ ζ ζ∂ = ∂ + ∂ − ∂u w s s          (4.13) 
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The evolutionary equations that we obtain at node “2” are given by 

( ) ( ) ( )( )2 1 1 1 1ξ η ζ= + − ∂ + ∂ + ∂u w s f g h         (4.14) 

( ) ( ) ( )2 1ξ ξ ξ∂ = ∂ + ∂u w s           (4.15) 

( ) ( ) ( )2 1η η η∂ = ∂ + ∂u w s           (4.16) 

( ) ( ) ( )2 1ζ ζ ζ∂ = ∂ + ∂u w s           (4.17) 

If the source terms are not stiff in a given zone, these equations can be used as-is. Notice that the 

use of the gradients of the fluxes in eqn. (4.10) and (4.14) ensures that the gradients of the material 

properties within a zone are accounted for in the update. Also notice that eqns. (4.11) to (4.13) and 

also eqns. (4.15) to (4.17) do not depend on the gradients of the fluxes but they depend only on the 

gradients of the source terms. We see, therefore, that gradients in the source terms can influence 

the gradients in the solution. The gradients in the solution can, in turn, influence the gradients of 

the fluxes and, consequently, the evolution of eqns. (4.10) and (4.14). 

 When the source terms are stiff, a minimum requirement is that eqns. (4.10) and (4.14) 

have to be solved implicitly. In that case, it helps to realize that the source term 1s  depends on the 

state 1u . Likewise, the source term 2s  depends on the state 2u . Thus, in the course of constructing 

a Newton sub-iteration, we will have to construct the Jacobian of these source terms with respect 

to the states. Let us define the following residual terms 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1 2 1 1 1 2 2 2
4 1 4 1
6 6 6 6

R ξ η ζ ξ η ζ= − + + − − ∂ + ∂ + ∂ + ∂ + ∂ + ∂u w s s f g h f g h   (4.18) 

and  

( ) ( ) ( )( )2 2 1 1 1 1R ξ η ζ= − + + − ∂ + ∂ + ∂u w s f g h        (4.19) 

The sub-iteration within each iterative step should drive 1 0R →  and 2 0R → . This calls for a root 

solver and we choose a Newton method. Each sub-iteration produces increments to the states 1u  
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and 2u  , which we denote by 1δu  and 2δu . These increments are added to the original states and 

drive the solution closer to convergence. This root-solving process can be implemented in code by 

introducing one or more Newton sub-steps within each outer ADER iteration step. (We have found 

one Newton sub-step to be sufficient.) The presence of 2s  in eqn. (4.18), along with the presence 

of 1s  in eqn. (4.19) would suggest that we will have to solve the two equations simultaneously in 

a Newton step. Let ( )1∂us  denote the Jacobian of the source 1s  with respect to the state 1u . Let 

( )2∂us  denote the Jacobian of the source 2s  with respect to the state 2u . The Newton step for 

eqns. (4.18) and (4.19) gives us the 12 12×  matrix equation for the increments 1δu  and 2δu   

( ) ( )

( )
1 2 1 1

2 2
1

4 1
6 6

R
R

δ
δ

 − ∂ ∂      =        − ∂ 

u u

u

I s s u
us I

        (4.20) 

Here I  is a 6 6×  identity matrix. After each sub-iteration from eqn. (4.20) we set 1 1 1δ→ +u u u  

and 2 2 2δ→ +u u u  . A naïve assessment of eqn. (4.20) suggests that we would have to invert a 

12 12×  matrix in the Newton sub-iteration step. In the next sub-section, we bring out one of the 

hidden benefits of our ADER approach by showing that the Newton sub-iteration only requires the 

solution of one 6 6×  matrix equation, which is a substantially less expensive undertaking. In the 

next Sub-section we show that this simplification results from shrewdly exploiting the matrix 

structure of eqn. (4.20).  

 This completes our description of the ADER equations as well as our set-up for their 

implicit solution. The ADER scheme is the second logical step that gets invoked in a timestep loop 

for CED. We start with spatial derivatives for the primal variables within each zone and we wind 

up with an in-the-small evolution in time for such variables within each zone, thanks to the ADER 

scheme. Now those zones need to interact with one another. This sets the stage for the next Sub-

section which deals with the multidimensional Riemann solver. 

 Notice too that a converged solution also gives us the space-time representation of the 

source terms within each zone from eqn. (4.8). These source terms have been updated via an 

implicit update in the case where the source terms are stiff. Each zone boundary, where the sources 
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due to the currents are needed, has two zones abutting it. The properly implicited source term at 

each boundary can be obtained by evaluating the space-time averaged version of the source terms 

from both of the zones that abut the zone-boundary of interest.  These space-time averages from 

either side of a zone boundary are then arithmetically averaged and assigned to the zone-boundary 

that we are interested in. This completes our description of the ADER scheme’s role in enabling a 

proper treatment of the stiff, face-averaged source terms. 

 It is also possible to use a strong stability preserving Runge-Kutta (SSP-RK) method for 

CED (Balsara et al. [16]). The stiffness in the source terms can be accommodated at high order of 

accuracy via such methods. However, the sub-cell variation in the flux terms cannot be 

accommodated by such methods. This is why the ADER predictor step followed by a corrector 

step and a one-step update might have an advantage over SSP-RK methods in CED. For the sake 

of completeness, for time-explicit SSP-RK methods, see Shu and Osher [44], [45], Shu [46] and 

Spiteri and Ruuth [42], [43]; for implicit-explicit SSP-RK methods, see Pareschi and Russo [40], 

Hunsdorfer and Ruuth [33] and Kupka et al. [37]. 

IV.3) Computationally Efficient Treatment of the Newton Sub-Iteration 

 First realize that the matrix in eqn. (4.20) is a 12 12×  matrix with a special inner structure. 

It is very easy to transform the diagonal terms to identity by taking 4 6−  times the second row 

and adding it to the first row. Eqn. (4.20) then becomes 

( )

( )
2 1 1 2

2
1 2

1 4 4
6 6 6

R R

R

δ
δ

   ∂ − −    =       − ∂   

u

u

I s I u
us I

       (4.21) 

Next, we left-multiply the first row by ( )1∂us  and add it to the second row to get 

( )

( ) ( ) ( )

2 1 2
1

2
1 2 2 1 1 2

1 4 4
6 6 6

1 4 40
6 6 6

R R

R R R

δ
δ

   ∂ − −       =        + ∂ ∂ − + ∂ −            

u

u u u

I s I
u
uI s s I s

     (4.22) 

The upper triangular structure of the matrix in eqn. (4.22) is clearly displayed. The lower row in 

eqn. (4.22) can be solved for 2δu  by solving a single 6 6×  linear system. The resulting 2δu  can 
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be inserted into the first row of eqn. (4.22). This gives us a solution for 1δu  . This completes our 

description of a computationally efficient treatment of the stiff source terms in the ADER predictor 

step. 

 Notice the 6 6×  identity matrices on the diagonal of eqn. (4.21). They suggest that if the 

problem is well-scaled then the diagonal elements of eqn. (4.21) can serve as a good pivot. We 

cannot prove that this is so, however, we have carried out extensive numerical experiments with 

eqns. (4.20), (4.21) and (4.22) where we solved several linear and non-linear systems by direct 

inversion of eqn. (4.20) as well as the method presented in eqn. (4.22) along with the narrative 

immediately after it. In all our tests, as long as the eigenvalues of ( )1∂us  and ( )2∂us  were negative, 

we found identical results and identical convergence rates. Direct inversion of eqn. (4.20), of 

course, costs much more than the method in eqn. (4.22). Also please note that requiring that the 

eigenvalues of ( )1∂us  and ( )2∂us  are negative is crucial for the physics of stably solving any PDE. 

From the structure of the source terms in eqn. (2.12), we see that this is guaranteed for CED. 

 When the source terms are extremely stiff, as in a conductor, it is also useful to have an 

implicit treatment of the derivative terms in eqns. (4.11), (4.12), (4.13), (4.15), (4.16) and (4.17). 

Eqn. (4.11) and (4.15) form a pair and can be solved simultaneously. In fact, they result in the 

same matrix system as the one solved in this section. As a result, the same upper triangular matrix 

from eqn. (4.22) can be reused for the implicit treatment of the gradient terms. We will show in a 

subsequent paper that this is a common theme in all the ADER schemes (even at higher orders) 

that are designed according to the principles adopted here. As a result, this family of ADER 

schemes is special because it has an in-built efficiency in the treatment of stiff source terms. 

IV.4) Extremely Efficient Treatment of the Source Terms for Diagonal Permittivity and 

Permeability Matrices 

 The solution of eqns. (4.10) and (4.14) can be significantly simplified when the permittivity 

and permeability tensors are diagonal. Since this is also the case that occurs most frequently in 

practice, we specialize an explicit solution strategy for that case. In that case, from eqn. (2.12), we 

have J  Dx xx xσ ε=  , J  Dy yy yσ ε=   and J  Dz zz zσ ε=  , with analogous terms for the magnetic current 

density (if it is present). Let us define the following right hand side terms 
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( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1 1 2 2 2
4 1
6 6

R ξ η ζ ξ η ζ= − ∂ + ∂ + ∂ + ∂ + ∂ + ∂w f g h f g h      (4.23) 

and  

( ) ( ) ( )( )2 1 1 1R ξ η ζ= − ∂ + ∂ + ∂w f g h          (4.24) 

We get the solution for 1u  and 2u  as 

( )

1
1 1 2 2 1 2

2

* * *

1    ;   
6
4 1where  
6 6

and     diag ,   ,   ,   ,   ,   xx yy zz xx yy zz

R R R

t t t t t tσε σε σε σ µ σ µ σ µ

−  = − = + 
 

≡ − +

≡ −∆ −∆ −∆ −∆ −∆ −∆

u P Q u Qu

P I Q Q

Q

  

     

  (4.25) 

Because the inverse of a diagonal matrix is very simple to evaluate, we see that the fully implicit 

treatment of stiff source terms in CED is easy to implement and computationally inexpensive when 

the permittivity and permeability tensors are diagonal. 

 When the source terms are extremely stiff, as in a conductor, it is also useful to have an 

implicit treatment of eqns. (4.11), (4.12), (4.13), (4.15), (4.16) and (4.17), which carry the 

derivative information. Notice that eqns. (4.11) and (4.15) couple exclusively to one another; 

similarly for eqns. (4.12) and (4.16); likewise for eqns. (4.13) and (4.17). Consequently, we only 

need to describe a solution strategy for eqns. (4.11) and (4.15). In the case where the permittivity 

and permeability tensors are diagonal, this is especially simple. For a conductor, using diagonal 

permittivity and permeability tensors is usually an excellent approximation. The solution for eqns. 

(4.11) and (4.15) then becomes 

( ) ( ) ( ) ( ) ( )1
1 2 1

1    ;   
6ξ ξ ξ ξ ξ

−  ∂ = − ∂ ∂ = ∂ + ∂ 
 

u P I Q w u Q u w      (4.26) 

We see, therefore, that a fully implicit treatment of the gradients of stiff source terms in CED is 

also easy to implement and computationally inexpensive in the limit where the permittivity and 

permeability tensors are diagonal. 

V) An Efficient Multidimensional Riemann Solver for Maxwell’s Equations 
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 The previous ADER step has given us an in-the-small space-time representation of the 

primal variables within each zone. However, we are dealing with a hyperbolic system where all 

the zones interact with one another to yield the edge-collocated magnetic and electric fields shown 

in Fig. 1. The multidimensional Riemann solver, described in this Section, mediates that 

interaction in a truly multidimensionally upwind fashion. 

 Multidimensional Riemann solvers that are easy to implement have reached a level of 

maturity (Balsara [7], [8], [11], [14], Balsara, Dumbser and Abgrall [10], Balsara and Dumbser 

[13], Balsara et al. [15]). These Riemann solvers are also called MuSIC Riemann solvers because 

they are based on a Multidimensional Self-similar strongly-Interacting state that is Consistent with 

the PDE system. For Maxwell’s equations, we design the simplest MuSIC Riemann solver without 

any sub-structure in the strongly interacting state. The reason for ignoring sub-structure is that all 

the waves arising from Maxwell’s equations move very fast relative to the mesh and none of them 

can be stationary on the computational mesh. As a result, the sub-structure (that plays an important 

role in crisply capturing stationary discontinuities on the mesh) is not very important.  

 We restrict attention to Cartesian meshes in this paper; extension to unstructured meshes 

will be undertaken later. The two-dimensional Riemann solver lives at the edges of the mesh. It 

takes four states as its input, as shown in Fig. 2. These four states interact with each other resulting 

in four one-dimensional Riemann problems, as shown in Fig. 3. These four one-dimensional 

Riemann problems interact with one another, giving rise to the shaded strongly-interacting state in 

Fig. 3. For Maxwell’s equations, this strongly-interacting state always overlies the edge being 

considered with the result that it is the correct physical state to assign to the edges of the mesh. It 

is, therefore, also the correct state that is to be used in the update of the two curl equations. We do 

not repeat the conceptual underpinnings for multidimensional Riemann solvers. We just 

operationally describe the process of obtaining the strongly-interacting state. We give sufficient 

information for handling the general case when the permittivity and permeability are full 3×3 

tensors. In the limit when the permittivity and magnetic permeability are diagonal tensors, we also 

provide explicit formulae for the edge-centered electric and magnetic fields and provide a detailed 

discussion of their numerical dissipation. 

 We only need a two-dimensional Riemann solver to achieve proper upwinding at the edges 

of the mesh. We focus on the z-edge of the mesh. For the purposes of defining a multidimensional 
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Riemann solver in the xy-plane, we only need to focus on the portion of the PDE system given by 

0t x y∂ + ∂ + ∂ =U F G . The four states coming together at the vertex in question have subscripts RU 

(for right-upper), LU (for left-upper), LD (for left-down) and RD (for right-down) and are shown 

for the specific case of Maxwell’s equations in Fig. 2. Fig 2 depicts the incoming states at the z-

edge of the mesh before the states have had a chance to interact. While we conceptualize four 

constant states interacting in the two-dimensional Riemann problem, in reality, the four states are 

obtained from a higher order reconstruction within the four zones shown in Fig. 2. The arrows in 

Fig. 2 are meant to suggest that the higher order reconstruction is carried out in each zone and the 

four input states are obtained by evaluating the reconstructed variables at the edge being 

considered. 

 An analysis of the characteristic matrix associated with the x-flux shows that the extremal 

right-going speed is easy to find. For diagonal material tensors, please see eqn. (2.13) to realize 

that the extremal right-going speed is given by ( )max ,  R zz yy yy zzS µ ε µ ε≡     whereas the extremal 

left-going speed is given by RS− . For material tensors with off-diagonal components, eqn. (2.15) 

enables us to identify the extremal right-going speed as 

max 2 ,  2x x x x x x
RS τ χ κ τ χ κ ≡ − + 

 
, with the extremal left-going speed given by 

RS− . This enables us to identify the bounding speeds of any one-dimensional Riemann solver that 

operates in the x-direction. Please see Fig. 3 which shows the situation after the input states in Fig. 

2 have been allowed to interact. Here we will use the simplest one-dimensional HLL (or LLF) 

Riemann solver with only one intermediate state. Consequently, between the right-upper and left-

upper states we have a resolved HLL state that can be explicitly written as 
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            (5.1) 

Between the right-down and left-down states we have a resolved HLL state that can be explicitly 

written by changing the subscript “U” to the subscript “D” in the above equation. Call that state 
*
DU  . When the permittivity and permeability tensors are diagonal, a simpler version of eqn. (5.1) 

can be written. 

 An analysis of the characteristic matrix associated with the y-flux shows that the extremal 

upward-going speed is easy to find. For diagonal material tensors, please see eqn. (2.14) to realize 

that the extremal upward-going speed is given by ( )max ,U xx zz zz xxS µ ε µ ε≡     whereas the 

extremal downward-going speed is given by US− . For material tensors with off-diagonal 

components, eqn. (2.16) enables us to identify the extremal upward-going speed as 

max 2 ,  2y y y y y y
US τ χ κ τ χ κ ≡ − + 

 
, with the extremal downward-going speed 

given by US− . This enables us to identify the bounding speeds of any one-dimensional Riemann 

solver that operates in the y-direction. Consequently, between the right-upper and right-down 

states we have a resolved HLL state that can be explicitly written as 
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            (5.2) 

Between the left-up and left-down states we have a resolved HLL state that can be explicitly 

written by changing the subscript “R” to the subscript “L” in the above equation. Call that state 
*
LU  . When the permittivity and permeability tensors are diagonal, a simpler version of eqn. (5.2) 

can be written. 

 The strongly-interacting state, ( )* * * * * * *D , D , D , B , B , B
T

x y z x y z≡U , in Fig. 3 is shown 

by the grey shaded region. It is the state that overlies the z-edge of the mesh. It is, therefore, the 

state that will provide the resolved electric and magnetic fields at the z-edge that get used for the 

curl-type update shown in Fig. 1. The previous two paragraphs have shown us how to obtain the 

four state vectors ( *
RU  , *

UU  , *
LU  and *

DU ) that surround the strongly-interacting state in Fig. 3. 

For each of those states, we can use eqn. (2.12) to evaluate the corresponding fluxes. We use the 

state vector *
RU  to obtain the x-flux vector *

RF  ; likewise, we use the state vector *
LU  to obtain the 

x-flux vector *
LF  . We also use the state vector *

UU  to obtain the y-flux vector *
UG  ; similarly, we 

use the state vector *
DU  to obtain the y-flux vector *

DG  . Using eqn. (12) in Balsara (2014) enables 

us to obtain the strongly-interacting state *U . In terms of the notation used here, that equation 

becomes 

* * * * * * * * *1 1 1 1
4 4 4 4 R R R L R L U U U D U D

R R U U

S S S S
S S S S

       = − − + + − − + +       U F U F U G U G U   (5.3) 

Once the strongly-interacting state is available, the electric and magnetic fields at the z-edge of the 

mesh can be found as follows 
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* * * * * * * *E D D D     ;    H B B Bz xz x yz y zz z z xz x yz y zz zε ε ε µ µ µ= + + = + +           (5.4) 

These are the edge-centered fields from the strongly-interacting state of the MuSIC Riemann 

solver that are to be used in the curl-type updates shown in Fig. 1 and explicited in the next section. 

This completes our formal description of the MuSIC Riemann solver without sub-structure for 

CED with general permittivity and permeability tensors. 

 When the permittivity and permeability tensors are diagonal, a very substantial 

simplification of eqn. (5.4) can be obtained. Please note that the diagonal terms in the above-

mentioned tensors can have different values, so the expressions we are about to derive have 

substantial utility. We are only interested in the z-components of the edge-collocated electric and 

magnetic field vectors. They can be written explicitly as follows 

( ) ( ) ( )

( ) ( )

*
; ; ; ; ; ; ; ;

; ; ; ;

1 1E D D D D B B B B
4 2 2 2

1 1                                                         + B B B B
2 2 2

zz xxzz
z z RU z LU z LD z RD x RU x LU x RD x LD

U

zz yy
y RU y RD y LU y LD

R

S

S

ε µε

ε µ

 = + + + − + − +  

 + − +  

 

 

  (5.5) 

and 

( ) ( ) ( )

( ) ( )

*
; ; ; ; ; ; ; ;

; ; ; ;

1 1H B B B B D D D D
4 2 2 2

1 1                                                          D D D D
2 2 2

zz xxzz
z z RU z LU z LD z RD x RU x LU x RD x LD
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zz yy
y RU y RD y LU y LD

R

S

S

µ εµ

µ ε

 = + + + + + − +  

 − + − +  





  (5.6) 

The above two equations can be defined at any z-edge of the mesh and are to be used in the curl-

type update equations. Cyclic rotations with ( ) ( ), , , ,x y z y z x→   and ( ) ( ), , , ,x y z z x y→  can be 

applied to the above two formulae to give us the edge-collocated x- and y-components. 

 The first terms in the above two equations clearly show that the multidimensional Riemann 

solver gives us a centered electric and magnetic field that is the arithmetic average of the four 

fields coming together at that vertex. The remaining two terms in each of the above two equations 

give us the multidimensional dissipation. We see that the edge-collocated components of the 

electric and magnetic fields provided by the two-dimensional Riemann solver can be obtained 
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entirely from the reconstructed magnetic induction vector and the reconstructed electric 

displacement vector. Section 4.2 of Balsara et al. [16] provides a detailed discussion of how these 

dissipation terms serve to stabilize a higher-order Godunov scheme. As the order of the 

reconstruction is improved, the dissipative contribution decreases for smooth variations in the field 

equations. As a result, with increasing order of accuracy, we get reduced dissipation when the 

primal variables are smoothly described on the mesh. 

 This completes our discussion of the multidimensional Riemann solver. This is the third 

step in a timestep loop for CED. The ADER scheme from the previous section is already capable 

of giving us the four space-centered and time-centered input variables that are needed to invoke 

the multidimensional Riemann solver at each edge, see Fig. 2. The MuSIC Riemann solver then 

gives us the multidimensionally upwinded edge-aligned components of the magnetic field and the 

electric field, see Fig. 1. These are the very variables that are needed for the time update that is 

described in eqns. (2.16) and (2.18). In fact, the update in eqns. (2.16) and (2.18) constitutes the 

fourth step in a timestep loop for CED. 

VI) Pointwise Synopsis of the Method at Second Order 

 We have indeed been describing the steps that go into a time-step loop for CED in Sections 

III, IV and V. So in some sense, the algorithm described in the paper is implemented in the same 

sequence that the paper is written. Even so, it may help to catalogue the steps in the algorithm in 

one place so that the interested reader can see the whole picture. 

 We start out with the facially-collocated normal components of the electric displacement 

and the magnetic induction. The overarching goal is to find a way to update these variables on the 

mesh using eqns. (2.16) and (2.18), as shown in Fig. 1. This is accomplished with the following 

steps. 

1) Starting with the facially-collocated normal components of the electric displacement and the 

magnetic induction, we carry out the constraint-preserving reconstruction for each of those two 

vector fields. For the electric displacement, the desired end result within each zone is a vector field 

given by eqns. (3.7), (3.8) and (3.9). For the magnetic induction, a completely analogous vector 

field can be specified within each zone. This is done by following the steps in Section III. 
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2) We now have higher-order spatial derivatives within each zone for each of these two vector 

fields. The vector fields for the electric displacement and the magnetic induction satisfy their 

respective constraints in a global sense. We would like to know how these vector fields evolve for 

a short interval of time (in-the-small evolution) within each zone in a fashion that is consistent 

with the conservation law in eqns. (2.11) and (2.12). This is done using the ADER predictor step 

described in Section IV. The ADER method at second order is based on eqns. (4.10) to (4.17). It 

can work with stiff or non-stiff source terms. The method is iterative and converges fast – within 

two or three iterations. If stiff source terms are present, the sub-iteration described in Sub-section 

IV.3 gives us a very fast solution method. The ADER method presented here is unconditionally 

stable and can handle source terms of any strength. The end result of this step is that it gives us the 

space-time representation (in the reference element for each zone) of the solution vector 

( ), , ,ξ η ζ τu  in eqn. (4.3). The modes of the solution vector within each zone are worth saving 

because they will give us the inputs for the multidimensional Riemann solver. The ADER step 

also gives us space-time representations of the fluxes; eqns. (4.4), (4.5) and (4.6). While the space-

time fluxes may be useful, we do not specifically save them in this implementation. The other 

important end result in this step is that we also get the space-time representation of the source 

terms ( ), , ,ξ η ζ τs . These source terms within each zone are worth saving because they give us the 

currents at the zone faces. 

3) The previous ADER step has given us an in-the-small space-time representation of the primal 

variables within each zone. However, we are dealing with a hyperbolic system where all the zones 

interact with one another to yield the edge-collocated magnetic and electric fields shown in Fig. 1. 

The MuSIC Riemann solver, described in Section V, mediates that interaction in a truly 

multidimensionally upwinded fashion. It is invoked at each edge of the mesh. It takes as its input 

the four space-time reconstructed values of the primal variables from the four zones that surround 

that edge, see Fig. 2. It produces as an output the edge-aligned components of the magnetic field 

and the electric field. When the material properties result in diagonal permittivity and permeability 

tensors, i.e. the usual case, eqns. (5.5) and (5.6) can be directly used to get those outputs. When 

the permittivity and permeability tensors are non-diagonal, eqns. (5.1) to (5.4) give us those desired 

outputs. 
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4) At each face of the mesh, we also want a high-order estimate of the current densities. Each face 

has two neighboring zones on either side of it. Since we have saved the space-time evolution of 

the source terms ( ), , ,ξ η ζ τs  within each zone, we can arithmetically average the appropriate 

source terms from the neighboring zones to the zone-face. This is done for all zone faces. This 

gives us the current densities at the faces. It does so in a way that respects the stiffness of the source 

terms. 

5) We have now assembled all the terms that are needed in the update that is described in eqns. 

(2.16) and (2.18). Those updates are made, giving us a time-advanced version of our primal 

variables at each face of the mesh.  

 This completes our description of the time-update for CED using our new scheme that is 

based on three novel algorithmic developments reported in this paper. The advances are: 

1) constraint-preserving reconstruction; 2) ADER predictor step that respects the sub-cell variation 

of the material properties and the stiffness in the source terms; 3) Multidimensional upwinding 

given by the MuSIC Riemann solvers. Our new method has all the nice constraint-preserving 

properties of the FDTD methods, while also benefiting from our novel reformulations of all the 

desirable attributes of FVTD methods within the framework of higher-order Godunov schemes. In 

that sense, it represents a grand synthesis of FDTD and FVTD methods in CED, with the best 

attributes of both methods included in our present method. We have made all these advances within 

the context of second-order schemes, but in a sequel paper we will extend these advances to higher 

orders of accuracy. 

VII) Results 

 We present several stringent tests of our algorithm. The first test shows the native accuracy 

of the scheme. The next three tests concern the propagation of waves at dielectric interfaces with 

substantial variation in relative permittivity. The last two tests show the propagation of waves in 

conductors with very substantial variation in conductivity. In all instances, we used the second-

order ADER-WENO scheme that we have presented in this paper. 

 It is also interesting to compare our second-order ADER scheme to a second-order Runge-

Kutta scheme. Runge-Kutta schemes for PDEs have been described in Shu and Osher [44], [45], 
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Shu [46] and Spiteri and Ruuth [42], [43]; for implicit-explicit SSP-RK methods, see Pareschi and 

Russo [40], Hunsdorfer and Ruuth [33] and Kupka et al. [37]. In this work, we used the IMEX-

SSP2(3,2,2) stiffly-accurate scheme from Pareschi and Russo [40]. In Balsara et al. [16] we 

showed how these Runge-Kutta schemes can be adapted to treat stiff source terms in CED. Both 

the Runge-Kutta and the ADER schemes use the same reconstruction strategies and the same 

MuSIC Riemann solver for computational electrodynamics. The only difference is that during one 

time-step the ADER scheme requires one reconstruction step per zone, uses one predictor step per 

zone and invokes the Riemann solver once at each edge of the mesh. The Runge-Kutta scheme 

does not have a predictor step but rather carries out the update in two stages. We have to carry out 

one reconstruction step per zone for each of the two sub-stages in the Runge-Kutta algorithm. 

Likewise, we have to invoke the Riemann solver twice per time-step at each edge of the mesh.  

VII.a) Propagation of a Plane Electromagnetic Wave in Two Dimensions 

 The three-dimensional version of this test has already been reported in Balsara et al. [16]. 

For that reason, in this paper, we display the two-dimensional version of this test problem. This 

test problem consists of a plane polarized electromagnetic wave propagating in a vacuum along 

the north-east diagonal of a two-dimensional Cartesian mesh spanning  [ ] [ ]0.5,0.5 0.5,0.5− × −  

meter. Periodic boundary conditions were enforced. The magnetic induction was initialized using 

a magnetic vector potential given by  

( ) ( )1 ˆ, , , sin 2 2
2

x y z t x y ct yπ
π

 = + − A                                                                                 (7.1) 

and the components of the magnetic induction vector were obtained at the zone faces by using the 

relationship = ∇×B A . The electric displacement was initialized using an electric vector potential 

given by 

( ) ( )1 ˆ, , , sin 2 2
2 2

x y z t x y ct zπ
π

 = − + − C                                                                            (7.2) 

and the components of the electric displacement vector were obtained at the zone faces by using 

the relationship 0 ( )cε= ∇×D C  where c  is the speed of light in free space and 12
0 8.85 10ε −= ×  

F/m is the free space permittivity. With these analytical forms in hand, it is possible to evaluate 
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the accuracy of the solution at any later time if it is set up correctly at the initial time on the mesh. 

For this EM field, we choose the wavelength to be 1 meter. The problem was run to a final time 

of 3.5 nano-second on the computational mesh. 

Table I shows the accuracy analysis for the second order ADER-WENO scheme. It used 

the piecewise linear parts from a centered r=3 WENO reconstruction. The errors and accuracy in 

the y-component of the electric displacement vector and z-component of the magnetic induction 

are shown at the last time point in the simulation. Table II shows the accuracy analysis for the 

second order RK-WENO scheme. For a description of implicit-explicit SSP-RK methods, see 

Pareschi and Russo [40], Hunsdorfer and Ruuth [33] and Kupka et al. [37]. As before, the errors 

and accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown at the last time point in the simulation. We ran these simulations 

with a CFL of 0.45. We see that the schemes meet their designed second-order accuracy. However, 

please notice two important facets that emerge from comparing the numbers in Tables I and II. 

First, the ADER-WENO scheme reaches its design accuracy much faster. Second, the ADER-

WENO scheme retains a substantial advantage in accuracy over the RK-WENO scheme on meshes 

with comparable resolution. 

 Table III shows the same result from the classical FDTD scheme. Because FDTD is 

completely symmetrical (in free space) between electric and magnetic variables, the accuracy of 

the magnetic variables would exactly track that of the electric variables. For that reason, we only 

show the data for the electric displacement vector field. We see that FDTD also meets its designed 

second order of accuracy. Furthermore, we see that the ADER-WENO scheme and classical FDTD 

show somewhat comparable levels of error in the L1 norm. It is well-known that non-linear 

hybridization improves the phase accuracy of features that move on the mesh. For that reason, the 

ADER-WENO scheme, which is non-linearly hybridized, shows substantial improvement over the 

FDTD scheme in the L∞  norm. 

Table I shows the accuracy analysis for the second-order ADER-WENO scheme for the 

propagation of an electromagnetic wave in vacuum. A CFL of 0.45 was used. The errors and 

accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown. 
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Zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

162 4.0251E-05  6.2748E-05  

322 5.7988E-06 2.80 9.1293E-06 2.78 

642 1.2316E-06 2.24 1.9344E-06 2.24 

1282 3.0299E-07 2.02 4.7586E-07 2.02 

Zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

162 2.0025E-02  3.1079E-02  

322 2.8994E-03 2.79 4.5623E-03 2.77 

642 6.2719E-04 2.21 9.8436E-04 2.21 

1282 1.5490E-04 2.02 2.4327E-04 2.02 

 

Table II shows the accuracy analysis for the second-order RK-WENO scheme for the 

propagation of an electromagnetic wave in vacuum. A CFL of 0.45 was used. The errors and 

accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown. 

Zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

162 3.2807E-04  5.0943E-04  

322 8.8783E-05 1.89 1.3947E-04 1.87 

642 2.2671E-05 1.97 3.5602E-05 1.97 

1282 5.6986E-06 1.99 8.9518E-06 1.99 

Zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

162 1.7247E-01  2.7021E-01  

322 4.7337E-02 1.87 7.4087E-02 1.87 

642 1.2096E-02 1.97 1.8990E-02 1.96 

1282 3.0423E-03 1.99 4.7778E-03 1.99 

 

Table III shows the accuracy analysis for the classical, second-order FDTD scheme for the 

propagation of an electromagnetic wave in vacuum. A CFL of 0.5 was used. The errors and 

accuracy in the y-component of the electric displacement vector are shown. Because the 
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FDTD scheme is completely symmetrical in magnetic and electric variables, the accuracy of 

the z-component of the magnetic induction would exactly track the accuracy of the electric 

displacement. For this reason, we do not show the accuracy for the magnetic induction. 

Zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

162 6.0337E-05  1.2404E-02  

322 1.7142E-05 1.82 3.0721E-03 2.01 

642 4.4121E-06 1.96 7.6623E-04 2.00 

1282 1.1110E-06 1.99 1.9144E-04 2.00 

 

VII.b) Compact Gaussian Electromagnetic Pulse Incident on a Refractive Disk 

 This problem was slightly modified from Zakharian et al. [59] and concerns the scattering 

interaction of a compact electromagnetic pulse impinging upon a dielectric disk. The pulse was 

initialized with a Gaussian taper in both the transverse and longitudinal directions using magnetic 

and electric vector potentials given respectively by:  

( ) ( )
2 2

2
(x a) (y b)

2 ˆ, , sin e
2

x y z x y yχλ π
π λ

− + −
− = +  

A                                                                           (7.3) 

and 

( ) ( )
2 2

2
(x a) (y b)

2 ˆ, , sin e
2 2

x y z x y zχλ π
λπ

− + −
− = − +  

C                                                                    (7.4) 

Here, the components of the magnetic induction vector were calculated at the zone faces using  

= ∇×B A , and the components of the electric displacement vector were obtained at the zone faces 

using 0 ( )cε= ∇×D C . Numerical quadrature of sufficient accuracy was used at the edges of the 

mesh to evaluate the facially-collocated components of B and D. We used 1.5λ = m, 1.5χ = m 

and (a,b) ( 2.5, 2.5)= − − m to initialize A and C in two-dimensional rectangular computational grid 

spanning [ ] [ ]7,7 7,7− × − m. The simulation was run to a time of 23.3 ns. 
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Fig. 4a is a visualization of the Bz field of the impinging compact pulse as it is initialized 

on the computational grid at the start of the simulation period. The pulse propagates obliquely (at 

45 degrees) on the grid. Figs. 4b and 4c show, respectively, the Gaussian variation of the Bz field 

along transverse and longitudinal cuts through the compact pulse. 

The compact electromagnetic pulse described above subsequently strikes a circular 

dielectric disk located at the center of the computational grid. The disk has a radius of 0.75m, a 

permeability of 7
0 4 10µ π −= × N/A2, and a relative permittivity given by: 

2 2 0.75
(x, y, z) 5.0 4.0 tanh

0.08r
x y

ε
 + −
 = −
 
 

                                                                               (7.5) 

Here, 9rε =  at the center of the disk and tapers rapidly to the ambient value of 1 at the outer edge 

of the disk. We used uniform meshes with varying number of zones so that the taper in the above-

mentioned hyperbolic tangent function spans a larger number of zones on finer meshes. For 

example, on a uniform mesh with 1802 zones, a taper of 0.08 m in the above equation corresponds 

to about one zone width.  

Figs. 5a, 5b, and 5c show, respectively, Bz, Dx, and Dy at time 9.37 ns. Figs. 5d, 5e, and 5f 

show the same at time 23.3 ns. The perimeter of the dielectric disk is identified by the black circle. 

For the simulation shown in Fig. 5, we used a second-order-accurate scheme using a 720 720×  

zone mesh. We have also run this same simulation on a range of mesh sizes and used mesh 

convergence to show that the method actually achieves the designed order of accuracy. Because 

an analytical solution is not available, we used a very large mesh with 28802 zones to calculate the 

reference solution. Table IV shows the accuracy analysis for the second-order scheme for a range 

of mesh resolutions. We see that our second-order scheme achieves its designed accuracy.  

 The results from Runge-Kutta time-stepping are shown in Table V. Comparing Tables IV 

and V, we see that the ADER time-stepping is four to five times more accurate than the Runge-

Kutta time-stepping. Furthermore, because it can respond to sub-cell variations in the material 

properties, the ADER method reaches its design accuracy on a 7202 zone mesh whereas the Runge-

Kutta method seems to require a larger mesh to reach its design accuracy. However, both methods 

do reach their design accuracies.  
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 In this problem, the permittivity varies by almost an order of magnitude. We see, therefore, 

that the ADER-based code is more adept at handling large variations in the material properties that 

might occur over one or two zones. The ADER-based method is also 66% more expensive per 

time-step than the Runge-Kutta-based method when the stiff source terms are implicitly updated 

in each zone. (For this problem, of course, the source terms are not present and the update speeds 

are comparable.) However, as in the previous test problem, the ADER-WENO scheme achieves 

its design accuracy on smaller meshes than the RK-WENO scheme. Furthermore, the ADER-

WENO scheme provides a more accurate result than the RK-WENO scheme when meshes of 

comparable resolution are used. 

 The ADER versus Runge-Kutta results that are reported here are specific to second order. 

It is possible that at higher orders the higher quality reconstruction might close the accuracy gap 

between the two time-stepping paradigms. This is an interesting topic of future research. 

Table IV shows the accuracy analysis for the second-order scheme with ADER timestepping 

for the propagation of a Gaussian pulse of radiation that is incident on a refractive disk. A 

CFL of 0.45 was used. The errors and accuracy in the y-component of the electric 

displacement vector and z-component of the magnetic induction are shown. 

Zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

1802 3.3227E-05  2.0611E-02  

3602 1.4396E-05 1.21 9.6259E-03 1.10 

7202 3.3079E-06 2.12 2.2001E-03 2.13 

14402 5.9909E-07 2.47 4.0498E-04 2.44 

Zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

1802 1.2178E-02  3.5801E+00  

3602 5.1596E-03 1.24 1.6888E+00 1.08 

7202 1.1818E-03 2.13 3.6701E-01 2.20 

14402 2.1408E-04 2.46 6.4952E-02 2.50 

 

Table V shows the accuracy analysis for the second-order scheme with Runge-Kutta time-

stepping for the propagation of a Gaussian pulse of radiation that is incident on a refractive 
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disk. A CFL of 0.45 was used. The errors and accuracy in the y-component of the electric 

displacement vector and z-component of the magnetic induction are shown. 

Zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

1802 6.2097E-05  2.1167E-02  

3602 3.3412E-05 0.89 1.5553E-02 0.44 

7202 1.0626E-05 1.65 5.7303E-03 1.44 

14402 2.6146E-06 2.02 1.4605E-03 1.97 

Zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

1802 2.7652E-02  3.6734E+00  

3602 1.3262E-02 1.06 2.6027E+00 0.50 

7202 4.0789E-03 1.70 8.9640E-01 1.54 

14402 1.0160E-03 2.01 2.4597E-01 1.87 

 

VII.c) Refraction of a Compact Electromagnetic Beam by a Dielectric Slab 

The problem is set up on a rectangular xy-domain that spans [ ] [ ]5,8 2.5,7 μm− × −  . For the 

simulation shown, we use a second-order-accurate scheme using a 1300 950×  zone mesh. A 

dielectric slab having a permeability of 0µ  and permittivity of ε  is modeled such that ε  is given 

by 

0 0 8(x, y, z) 1.625 0.625 tanh ,
10

xε ε ε −

 = +  
 

                                                                               (7.6) 

where, 0ε  is the free space permittivity. Here, ε  is chosen such that it has a value of  02.25ε  for 

0x ≥  and tapers rapidly to the ambient value of 0ε  for 0x < . 

The magnetic induction was initialized using a magnetic vector potential given by  
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( ) ( )
SIGN(1, )( SIGN(1, ) )

0.25 2 2 2 2, , , sin 2 1 tanh
2

( ) ( ) 2 ˆ                  1 tanh
0.1

y x y x y x d
x y z t x y ct

x a y b ct y

λ π
π λ δ

λ

 − − −  −   = + − −           
  − + − −
−      

A

               

                (7.7) 

and the components of the magnetic induction vector at time 0t =  were obtained at the zone faces 

by using the relationship = ∇×B A . Numerical quadrature of sufficient accuracy was used at the 

edges of the mesh to evaluate the facially-collocated components of the magnetic induction. The 

SIGN function in the above equation is the same function that is standard in the Fortran language, 

so that the formulae given can be directly implemented in a code. The electric displacement was 

initialized using an electric vector potential given by 

( ) ( )
SIGN(1, )( SIGN(1, ) )

0.25 2 2 2 2, , , sin 2 1 tanh
2 2

( ) ( ) 2 ˆ                  1 tanh
0.1

y x y x y x d
x y z t x y ct

x a y b ct z

λ π
λ δπ

λ

 − − −  −   = − + − −           
  − + − −
−      

C

  

(7.8) 

The components of the electric displacement vector at time 0t =  were obtained at the zone faces 

by using the relationship 0 ( )cε= ∇×D C  . As before, numerical quadrature of sufficient accuracy 

was used at the edges of the mesh to evaluate the facially-collocated components of the electric 

displacement. We used 0.5μmλ = , 2.5d λ= , 0.5δ λ=  and ( , ) ( 3.0 , 3.0 )a b λ λ= − −  to set up the 

compact electromagnetic beam. The simulation was run to a time of 144.0 10−×  sec. For this two-

dimensional simulation, we use an inflow boundary condition on the left half of lower y-boundary 

and an outflow boundary condition for all other boundaries. We assign the time-dependent values 

of the facially-collocated components of electric displacement and magnetic induction in the ghost 
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zones of the inflowing boundary using the above mentioned time-dependent vector potentials. This 

enables the wave to smoothly flow into the computational domain. 

 Figs. 6a, 6b, and 6c show, respectively, Bz, Dx, and Dy at the initial time. Figs. 6d, 6e, and 

6f show the same at the final time. The surface of the dielectric slab is shown by a vertical black 

line. (In other words, the vertical black line shows the midpoint in the taper that is used for ε .) 

The inclined black lines show the angles of incidence, refraction and reflection and these black 

lines are over-plotted on the field components to guide our eye. The impinging beam of radiation 

is incident on the surface of the dielectric slab at an angle of 45° . Thus, according to Snell’s law, 

the angle of refraction should be 28.12°  since the refractive index of the dielectric slab is 1.5. We 

also observe that some of the radiation is reflected from the surface of the slab. The presence of a 

reflected wave is consistent with the Fresnel conditions for transmission and reflection of radiation 

at dielectric interfaces. 

VII.d) Total Internal Reflection of a Compact Electromagnetic Beam by a Dielectric Slab 

This problem is set up on a rectangular xy-domain that spans [ ] [ ]6,1 2.5,6 μm− × −  . For the 

simulation shown, we use a second-order-accurate scheme using a 700 850×  zone mesh. A 

dielectric slab having a permeability of 0µ  and permittivity of ε  is modeled such that ε  is given 

by 

0 0 9(x, y, z) 2.5 1.5 tanh ,
2.5 10

xε ε ε −

 = −  × 
                                                                               (7.9) 

where, 0ε  is the free space permittivity. Here, ε  is chosen such that it has a value of  04.0ε  for 

0x ≤  and tapers rapidly to the ambient value of 0ε  for 0x > . This value of permittivity for 0x <  

implies a refractive index of 2 for the dielectric slab. For such slab, the critical angle for total 

internal reflection is 30° .  

 The magnetic induction and electric displacement were initialized using eqns. (7.7) and 

(7.8), respectively and similar procedures as previous sub-section were used to evaluate the 

facially-collocated components of the field vectors. However, for this problem, we used a wave of 

frequency 145.0 10×  Hz which gives 0.3μmλ =  inside the dielectric slab. Also, 2.5d λ= , 
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0.5δ λ=  and ( , ) ( 3.0 , 3.0 )a b λ λ= − −  were used to set up the compact electromagnetic beam. The 

simulation was run to a time of 145.0 10−×  sec. For this two-dimensional simulation, we use an 

inflow boundary condition on the lower y-boundary and an outflow boundary condition for all 

other boundaries. We assign the time-dependent values of the facially-collocated components of 

electric displacement and magnetic induction in the ghost zones of the inflowing boundary using 

the above mentioned time-dependent vector potentials.  

 Figs. 7a, 7b, and 7c show, respectively, Bz, Dx, and Dy at the initial time. Figs. 7d, 7e, and 

7f show the same at the final time. The surface of the dielectric slab is shown by a vertical black 

line. (In other words, the vertical black line shows the midpoint in the taper that is used for ε .) 

The inclined black lines for the incident and reflected rays are over-plotted on the field components 

to guide our eye. The impinging beam of radiation is incident on the surface of the dielectric slab 

at an angle of 45° . Thus, the incident angle is more than the critical angle for this material and 

hence, we see total internal reflection of the incident beam. 

VII.e) Compact Electromagnetic Beam Impinging on a Conducting Slab 

 The purpose of this simulation is to show the performance of our algorithm when handling 

a conductor with a finite skin depth. We realize that a perfect electrical conductor (PEC) surface 

in CED would be treated differently. However, it is interesting to show how the code behaves 

when a compact electromagnetic beam impinges on a planar conducting slab with a finite but very 

large conductivity. From Huygen’s principle, we of course expect most of the incident radiation 

to be reflected.  

 The problem is set up on a rectangular xy-domain that spans [ ] [ ]25,5 40,40− × − m . For the 

simulations shown, we use a second-order-accurate scheme using a 1500 4000×  zone mesh. A 

conducting slab having permittivity of 0ε  and permeability of 0µ  is modeled for 0x ≥  such that 

the conductivity σ  is given by 

( ) ( )( )0, , 1.0 tanh
2

x y z xσσ = + ∆                                                                                                (7.10) 

Here, the conductivity goes from zero for x < 0 to 0σ  over a single zone.  
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The magnetic induction and electric displacement were initialized using Eqs. (7.7) and 

(7.8), respectively and similar procedures as previous two sub-sections were used to evaluate the 

facially-collocated components of the field vectors. However, for this problem, we used 2λ = m, 

4d λ= , δ λ=  and ( , ) ( 7.5 , 7.5 )a b λ λ= − −  to set up the compact electromagnetic beam. The 

simulation was run to a time of 71.83 10−× s. For this two-dimensional simulation, we use an inflow 

boundary condition on the lower half of left x-boundary and an outflow boundary condition for all 

other boundaries. We assign the time-dependent values of the facially-collocated components of 

electric displacement and magnetic induction in the ghost zones of the inflowing boundary using 

the above mentioned time-dependent vector potentials.  

 We present results for the simulation run with conductivity of 7
0 5.9 10σ = × S/m which 

corresponds to the conductivity of copper, and hyperbolic tangent taper width of 0.0125λ∆ =

which corresponds to slightly more than one-zone width. Figs. 8a, 8b, and 8c show, respectively, 

Bz, Dx, and Dy at the initial time. Figs. 8d, 8e, and 8f show the same at the final time of 71.83 10−×

s. The surface of the conducting slab is shown by a black line. (In other words, the black line shows 

the midpoint in the taper that is used for σ .)  

 Since the beam has a finite width, we see a small amount of spreading of the beam in the 

transverse direction because of diffraction. This is inevitable. However, it is interesting to see that 

with very reasonable resolutions, most of the incident intensity in the radiation is reflected back. 

Fig. 9 shows the interference pattern that develops between the incident and reflected radiation. 

Decreasing the taper ∆  on a larger mesh would have increased the intensity of the reflected 

radiation. Likewise, increasing the conductivity 0σ  would also have increased the reflected 

intensity, while decreasing the skin depth. (For the meshes used here, we are unable to resolve the 

skin depth, but do please see the next problem.) Please also note that the method did not require 

any reduction of the time-step due to the very stiff source terms. Happily, the taper width can be 

restricted to a zone or two, with the result that the loss of resolution is not substantial, especially 

when adaptive mesh refinement is used.  

VII.f) Decay of a Sinusoidal Wave inside a Conductor 
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 The previous problem did not resolve the skin depth of the conductor. In this problem we 

do that and show that the numerical results accurately match the analytic results even when the 

skin depth is resolved with no more than ten zones. We use this one-dimensional problem to study 

the decay of sinusoidal plane wave propagating inside a conductor. For a good conductor, the 

conductivity 1σ   and the amplitude of a sinusoidal wave propagating through such a conductor 

decays exponentially. Using this test problem, we test the performance of our code to verify 

whether the theoretical decay rate is actually captured by our code. 

 The problem is set up on a 1D domain that spans  [ ]0,10δ where δ  is the skin depth of the 

conductor. For the simulations shown, we use a second-order-accurate scheme using a 100 zone 

mesh. Thus, we use 10 zones per skin depth for this simulation. Below we provide the analytical 

equations for a plane sinusoidal wave propagating in the positive x-direction inside the conducting 

material having permittivity of 0ε , permeability of 0µ  and conductivity σ . The magnetic 

induction vector is given by, 

ˆ( , , , ) exp( sin( ) ) cos( cos( ) t)
2 2

x y z t r x r x zφ φ ω= − −B        (7.11) 

and the electric displacement vector is given by, 

0 ˆ( , , , ) exp( sin( ) ) cos( cos( ) )
2 2 2

x y z t r x r x t y
r

ωε ϕ ϕ ϕω= − − −D      (7.12) 

Here, 2 2 2
0 0 0( ) ( )r µ ε ω σµ ω= +  and 1

0

tan ( )σφ
ε ω

−=  , with ω  being the angular frequency of the 

plane wave. Here ω  is given by 2ω πν= , and ν  is the frequency of the wave measured in Hz. 

As before, numerical quadrature of sufficient accuracy was used at the faces of the mesh to 

evaluate the facially-collocated components of the field vectors. As can be seen from Eqs, (7.11) 

and (7.12), the skin depth for this material is given by 1

sin( )
2

r
δ φ=  . The analytical form of the 

incoming wave (along with its time-dependence and its exponential taper) was initialized on the 

faces of the mesh in the four ghost zones to the left of the active computational domain. We used 

an outflow boundary condition at the right x-boundary.  
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 Two simulations were carried out. In our first simulation we used a conductivity of 
32.0 10σ = × S/m which corresponds to the conductivity of amorphous carbon. In our second 

simulation we used 75.9 10σ = × S/m which corresponds to the conductivity of copper. For carbon, 

we choose 131.679 10ν = ×  Hz which gives 63.44 10δ −= × m and a wavelength of the plane wave 

as 51.38 10λ −= × m inside this material. We stop this simulation at a time of  132.38 10−× s. For 

copper, we choose 131.0 10ν = ×  Hz which gives 82.06 10δ −= × m and a wavelength of the plane 

wave as 71.3 10λ −= × m inside this material. We stop this simulation at a time of  132.0 10−× s. Figs. 

10a and 10b show the variations of Bz with radial distance inside carbon and copper, respectively. 

The exponentially decaying envelopes are also over-plotted. In Figs. 10c and 10d, we present the 

structure of the numerical envelopes (red crosses) and the analytical envelopes (blue curve) on a 

semi-log scale for carbon and copper, respectively. The numerically-obtained envelopes match 

quite well with the analytical envelopes. We have also carried out further tests (not reported here) 

that show that a substantially better match-up is obtained between simulated and the theoretical 

results if we use more than 10 zones per skin-depth.    

VIII) Conclusions 

 FDTD and FVTD schemes for CED have evolved independently for a while. FDTD does 

not use reconstruction strategies or Riemann solvers. However, via an exact representation of the 

curl-type equations on a Yee mesh, it preserves the divergence constraints. FVTD methods do use 

reconstruction strategies as well as Riemann solvers. However, at least in the past, they have used 

zone-centered collocations. The zone-centered collocation precludes a preservation of the 

divergence constraints. In this paper we have made an important synthesis of the two methods so 

that the best advantages of FDTD and FVTD schemes are retained in the method presented here. 

The schemes we present use a staggered mesh formulation, resulting in an exact preservation of 

the constraints, just like FDTD schemes. However, they use the reconstruction strategies and 

Riemann solvers (after substantial modification and innovation) so that they retain the phase 

accuracy and gracious dissipation of the smallest-scale waves that are some of the better attributes 

of the FVTD schemes. Like all FVTD schemes, our methods extend seamlessly to higher orders, 

as will be shown in a subsequent paper. 
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 Three advances are reported here that make our novel method especially well-adapted to 

the needs of the CED community. First, instead of using two staggered control volumes for the 

discretization of Ampere’s and Faraday’s laws, as is done in FDTD, we use the same control 

volume for both the curl-type equations, see Fig. 1. As a result, the primal variables in our scheme 

are the facially-collocated normal components of the electric displacement and the magnetic 

induction vector fields. A special type of globally constraint-preserving reconstruction is 

developed and presented in Section III for those vector fields, which enables the specification of 

the electric displacement vector field and the magnetic induction vector field at all points on the 

mesh. Second, a special type of ADER scheme is reported in Section IV that permits close and 

efficient coupling between the flux and stiff source terms; i.e. high conductivities. Our ADER 

scheme also makes allowance for sub-cell variations in material properties; i.e. permittivity and 

permeability. After the ADER predictor step is evaluated, we can supply the input variables for 

the multidimensional Riemann solver at any time-point in the course of a time-step evolution. The 

ADER predictor step is not a crucial part of the method, however, and we show that a Runge-Kutta 

strategy will also perform quite well. The update of the face-centered electric displacement using 

Ampere’s law requires edge-centered magnetic field components. Likewise, the update of the face-

centered magnetic induction using Faraday’s law requires edge-centered electric field components 

(Fig. 1). The third advance, reported in Section V, consists of realizing that the edge-centered 

magnetic and electric fields can be provided by the MuSIC Riemann solver. Section VI provides 

a synopsis of the method that is useful for implementation. 

 Several results are reported in Section VII showing that the method works well. Indeed, it 

retains second-order accuracy even on problems which have almost an order-of-magnitude 

variation in the permittivity within one or two zones. Because our ADER-based predictor step is 

unconditionally stable in the presence of stiff source terms, our method can also handle near-

infinite variations in the conductivity across one or two zones without any degradation in the time-

step. This can be very useful in treating metallic surfaces where the effect of finite skin depth needs 

to be retained in the calculation. In general, the ADER-based code is more accurate at resolving 

sub-cell variations in the permeability and permittivity than the Runge-Kutta based code. 

However, the Runge-Kutta based code is slightly faster and easier to implement.  
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Appendix A 

 We consider the case where the permittivity and permeability matrices are diagonal in this 

Appendix. The matrix of right eigenvectors in the x-direction, with the eigenvectors arranged in 

columns having the same ordering as (2.13), is given by 

0 0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1

zz zz

yy yy

x yy yy

zz zz

µ µ
ε ε

µ µ
ε ε

 
 
 − 
 
 

=  −
 
 
 
 
 
 

R

 

 

 

 

       (A.1) 

The corresponding matrix of left eigenvectors in the x-direction, with the eigenvectors arranged as 

rows having the same ordering as (2.13), is given by 

1 10 0 0 0
2 2

1 10 0 0 0
2 2

1 0 0 0 0 0
0 0 0 1 0 0

1 10 0 0 0
2 2

1 10 0 0 0
2 2

yy

zz

zz
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x

zz

yy

yy

zz

ε
µ

ε
µ

ε
µ

ε
µ

 
− 

 
 
 
 
 
 

=  
 
 

− 
 
 
 
 
 

L

















        (A.2) 
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 The matrix of right eigenvectors in the y-direction, with the eigenvectors arranged in 

columns having the same ordering as (2.14), is given by 

0 0 0 0

0 0 1 0 0 0

0 0 0 0

0 1 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 1

zz zz

xx xx

y xx xx

zz zz

µ µ
ε ε

µ µ
ε ε

 
− 

 
 
 
 

= − 
 
 
 
 
 
 

R

 

 

 

 

       (A.3) 

The corresponding matrix of left eigenvectors in the y-direction, with the eigenvectors arranged as 

rows having the same ordering as (2.14), is given by 

1 10 0 0 0
2 2

1 10 0 0 0
2 2

0 1 0 0 0 0
0 0 0 0 1 0

1 10 0 0 0
2 2

1 10 0 0 0
2 2

xx

zz

zz

xx
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zz
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xx

zz
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ε
µ

ε
µ

ε
µ
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 
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 
 
 
 
 
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 
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




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
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
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        (A.4) 

 

Appendix B 

 We consider the case where the permittivity or permeability matrices have off-diagonal 

elements in this Appendix. The eigenvalues in eqn. (2.15) are so designed that we smoothly 

retrieve the limit in eqn. (2.13) when the permittivity and permeability become diagonal tensors. 

We can, therefore, design eigenvectors that smoothly retrieve the eigenvectors in eqns. (A.1) and 

(A.2). Let 1
xl  and 1

xr  denote the left and right eigenvectors corresponding to 
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1 2x x x xλ τ χ κ= − +  . I.e., 1
xλ  is the first eigenvalue in the diagonal matrix xΛ , and so on. 

We formally write 1
xl  and 1

xr  in a form that could retrieve the eigenvectors in eqns. (A.1) and 

(A.2) as  

( )1 2 3 5

1 1 2 3 4 5

0, , , 0, , 1

1, , , , ,
2

Tx

x

r x x x

l y y y y y

=

 =  
 

         (B.1) 

Here 2x , 3x  and 5x  are temporary variables that are evaluated by the following stack of equations 

( )
( ) ( )

5 2

1

2 5 3 5
1 1

  ;

1 1  ;  

zz yz yz zz

x
yz yz zz yy
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λ ε µ ε µ

µ µ µ µ
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−
=

+ −

= + = − +

  

  

   

       (B.2) 

Similarly, 1y  through 5y  are temporary variables that are evaluated by the following stack of 

equations 

( )( )
( ) ( ) ( )

( )

5 2

1

1 5 2 5 3 5
1 1 1

4 2 3
1

  ;
2

1 1 12   ;  2   ;  2   ;

1

yy yz yz yy

x
yz yz zz yy

xz xy yz yy zz yzx x x

xz xyx

y

y y y y y y

y y y

ε µ ε µ

λ ε µ ε µ

ε ε ε ε ε ε
λ λ λ

µ µ
λ

−
=

+ −

= − − = − − = − −

= −

  

  

     

 

  (B.3) 

Let 2
xl  and 2

xr  denote the left and right eigenvectors corresponding to 2 2x x x xλ τ χ κ= − −  . 

We formally write 2
xl  and 2

xr  in a form that could retrieve the eigenvectors in eqns. (A.1) and 

(A.2) as  

( )2 2 3 6

2 1 2 3 4 6

0, , , 0, 1,

1, , , , ,
2

Tx

x

r x x x

l y y y y y

=

 =  
 

         (B.4) 
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Here 2x , 3x  and 6x  are temporary variables that are evaluated by the following stack of equations 

( )
( ) ( )

6 2

2

2 6 3 6
2 2

  ;

1 1  ;  

yy yz yz yy

x
yz yz yy zz

zz yz yz yyx x

x

x x x x

ε µ ε µ

λ ε µ ε µ

µ µ µ µ
λ λ

−
=

+ −

= + = − +

  

  

   

       (B.5) 

Similarly, 1y  through 6y  are temporary variables that are evaluated by the following stack of 

equations 

( )( )
( ) ( ) ( )

( )

6 2

2

1 6 2 6 3 6
2 2 2

4 2 3
2

  ;
2

1 1 12   ;  2   ;  2   ;

1

zz yz yz zz

x
yz yz yy zz

xy xz yy yz yz zzx x x

xz xyx

y

y y y y y y

y y y

ε µ ε µ

λ ε µ ε µ

ε ε ε ε ε ε
λ λ λ

µ µ
λ

−
=

+ −

= − = − = −

= −

  

  

     

 

   (B.6) 

The eigenvectors 5
xl  and 5

xr  are obtained from eqns. (B.4) to (B.6) after setting 2 5
x xl l→  , 2 5

x xr r→  

and 2 5
x xλ λ→  . The eigenvectors 6

xl  and 6
xr  are obtained from eqns. (B.1) to (B.3) after setting 

1 6
x xl l→  , 1 6

x xr r→  and 1 6
x xλ λ→  . Please note that the left and right eigenvectors will not be 

normalized, but that normalization is easy to accomplish post facto. 

 The eigenvalues in eqn. (2.16) are so designed that we smoothly retrieve the limit in eqn. 

(2.14) when the permittivity and permeability become diagonal tensors. We can, therefore, design 

eigenvectors that smoothly retrieve the eigenvectors in eqns. (A.3) and (A.4). Let 1
yl  and 1

yr  

denote the left and right eigenvectors corresponding to 1 2y y y yλ τ χ κ= − +  . I.e., 1
yλ  is the 

first eigenvalue in the diagonal matrix yΛ , and so on. We formally write 1
yl  and 1

yr  in a form that 

could retrieve the eigenvectors in eqns. (A.3) and (A.4) as  

( )1 1 3 4

1 1 2 3 4 5

, 0, , , 0, 1

1, , , , ,
2

Ty

y

r x x x

l y y y y y

=

 =  
 

         (B.7) 
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Here 1x , 3x  and 4x  are temporary variables that are evaluated by the following stack of equations 

( )
( ) ( )

4 2

1

1 4 3 4
1 1

  ;

1 1  ;  

zz xz xz zz

y
xz xz zz xx

xz zz xx xzy y

x

x x x x

ε µ ε µ

λ ε µ ε µ

µ µ µ µ
λ λ

−
=

+ −

= − + = +

  

  

   

       (B.8) 

Similarly, 1y  through 5y  are temporary variables that are evaluated by the following stack of 

equations 

( )( )
( ) ( ) ( )

( )

4 2

1

1 4 2 4 3 4
1 1 1

5 3 1
1

  ;
2

1 1 12   ;  2   ;  2   ;

1

xx xz xz xx

y
xz xz zz xx

xz xx yz xy zz xzy y y

xy yzy

y

y y y y y y

y y y

ε µ ε µ

λ ε µ ε µ

ε ε ε ε ε ε
λ λ λ

µ µ
λ

−
=

+ −

= − = − = −

= −

  

  

     

 

   (B.9) 

Let 2
yl  and 2

yr  denote the left and right eigenvectors corresponding to 2 2y y y yλ τ χ κ= − −  

. We formally write 2
yl  and 2

yr  in a form that could retrieve the eigenvectors in eqns. (A.3) and 

(A.4) as  

( )2 1 3 6

2 1 2 3 5 6

, 0, , 1, 0,

1, , , , ,
2

Ty

y

r x x x

l y y y y y

=

 =  
 

         (B.10) 

Here 1x , 3x  and 6x  are temporary variables that are evaluated by the following stack of equations 

( )
( ) ( )

6 2

2

1 6 3 6
2 2

  ;

1 1  ;  

xx xz xz xx

y
xz xz xx zz

zz xz xz xxy y

x

x x x x

ε µ ε µ

λ ε µ ε µ

µ µ µ µ
λ λ

−
=

+ −

= − + = +

  

  

   

       (B.11) 
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Similarly, 1y  through 6y  are temporary variables that are evaluated by the following stack of 

equations 

( )( )
( ) ( ) ( )

( )

6 2

2

1 6 2 6 3 6
2 2 2

5 3 1
2

  ;
2

1 1 12   ;  2   ;  2   ;

1

zz xz xz zz

y
xz xz xx zz

xx xz xy yz xz zzy y y

xy yzy

y

y y y y y y

y y y

ε µ ε µ

λ ε µ ε µ

ε ε ε ε ε ε
λ λ λ

µ µ
λ

−
=

+ −

= − − = − − = − −

= −

  

  

     

 

  (B.12) 

The eigenvectors 5
yl  and 5

yr  are obtained from eqns. (B.10) to (B.12) after setting 2 5
y yl l→  , 

2 5
y yr r→  and 2 5

y yλ λ→  . The eigenvectors 6
yl  and 6

yr  are obtained from eqns. (B.7) to (B.9) after 

setting 1 6
y yl l→  , 1 6

y yr r→  and 1 6
y yλ λ→  . Please note that the left and right eigenvectors will not 

be normalized, but that normalization is easy to accomplish post facto. 

Appendix C 

 Imposing the constraint from eqn. (3.3) now gives us three conditions from the linear terms; 

they are 

;0 ;0 ;0

22 2   ;      ;    xy xy yy yz yzxx xz xz zz
x E y E z E

b a b c ba c a c
x y z x y z x y z

ρ ρ ρ+ + = ∆ + + = ∆ + + = ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

  (C.1) 

The constant term from the constraint equation, eqn. (3.3), gives 

;0
yx z

E

ba c
x y z

ρ+ + =
∆ ∆ ∆

           (C.2) 

We will soon see that the above equation is equivalent to eqn. (3.1) and provides no new 

information. 

 Matching the linearly varying parts of D ( 2, , )x x x y z= ±∆  from eqn. (3.7) with the 

corresponding terms from eqn. (3.4) we get 
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( ) ( )0 0 0 0 0 0 0 0D D 2   ;  D D   ;  D D 2   ;  D Dx x x x x x x x
y y y xy y y z z z xz z za a a a+ − + − + − + −= ∆ + ∆ = ∆ −∆ = ∆ + ∆ = ∆ −∆  

            (C.3) 

Matching the linearly varying parts of D ( , 2, )y x y y z= ±∆  from eqn. (3.8) with the corresponding 

terms from eqn. (3.5) we get 

( ) ( )0 0 0 0 0 0 0 0D D 2   ;  D D   ;  D D 2   ;  D Dy y y y y y y y
x x x xy x x z z z yz z zb b b b+ − + − + − + −= ∆ + ∆ = ∆ −∆ = ∆ + ∆ = ∆ −∆  

            (C.4) 

Matching the linearly varying parts of D ( , , 2)z x y z z= ±∆  from eqn. (3.9) with the corresponding 

terms from eqn. (3.6) we get 

( ) ( )0 0 0 0 0 0 0 0D D 2   ;  D D   ;  D D 2   ;  D Dz z z z z z z z
x x x xz x x y y y yz y yc c c c+ − + − + − + −= ∆ + ∆ = ∆ −∆ = ∆ + ∆ = ∆ −∆  

            (C.5) 

The constraints from eqn. (C.1) can now be used to obtain expressions for xxa , yyb  and zzc  as 

follows 

;0 ;0 ;0   ;      ;   
2 2 2

xy xy yz yzxz xz
xx x E yy y E zz z E

b a c bc ax y za b c
y z x z x y

ρ ρ ρ
     ∆ ∆ ∆

= ∆ − − = ∆ − − = ∆ − −     ∆ ∆ ∆ ∆ ∆ ∆     
  

            (C.6) 

Matching the constant parts of D ( 2, , )x x x y z= ±∆  from eqn. (3.7) with the corresponding terms 

from eqn. (3.4) we get 

( )0 0 0 0 0D D    ;   D D 2 6x x x x
x xxa a a+ − + −= − = + −        (C.7) 

Matching the constant parts of D ( , 2, )y x y y z= ±∆  from eqn. (3.8) with the corresponding terms 

from eqn. (3.5) we get 

( )0 0 0 0 0D D    ;   D D 2 6y y y y
y yyb b b+ − + −= − = + −        (C.8) 
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Matching the constant parts of D ( , , 2)z x y z z= ±∆  from eqn. (3.9) with the corresponding terms 

from eqn. (3.6) we get 

( )0 0 0 0 0D D    ;   D D 2 6z z z z
z zzc c c+ − + −= − = + −        (C.9) 

It is best to evaluate eqns. (C.3) to (C.9) in the order that they are listed here. This gives us all the 

coefficients in eqns. (3.7), (3.8) and (3.9), thereby completing our description of constraint 

preserving reconstruction. Also notice from the expressions for xa  , yb  and zc  in the previous 

three equations that eqn. (C.2) will be automatically satisfied because of the definition in eqn. 

(3.1).  

 

Figure Captions 

Fig. 1shows us that the primal variables of the scheme, given by the normal components of the 

magnetic induction and electric field displacement, are facially-collocated. They undergo an 

update from Faraday’s law and the generalized Ampere’s law respectively. The components of the 

primal magnetic induction vector are shown by the thick blue arrows while the components of the 

primal electric displacement vector are shown by the thick red arrows. The edge-collocated 

electric fields, which are used for updating the facial magnetic induction components, are shown 

by the thin blue arrows close to the appropriate edge. The edge-collocated magnetic fields, which 

are used for updating the facial electric displacement components, are shown by the thin red 

arrows close to the appropriate edge.  

Fig. 2 shows four zones in the xy-plane that come together at the z-edge of a three-dimensional 

mesh. Since the mesh is viewed from the top in plan view, the z-edge is shown by the black dot and 

the four abutting zones are shown as four squares. The four states have subscripts given by “RU” 

for right-upper; “LU” for left-upper; “LD” for left-down and “RD” for right-down. Fig 2 shows 

the situation before the states start interacting via four one-dimensional and one multidimensional 

Riemann problems. The arrows indicate that higher-order reconstruction is used to obtain the four 

states at the z-edge. 
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Fig. 3 shows the same situation as Fig. 2. However, it shows the situation after the four incoming 

states start interacting with each other. Four one-dimensional Riemann problems, shown by 

dashed lines, develop between the four pairs of states. The shaded region depicts the strongly 

interacting state that arises when the four one-dimensional Riemann problems interact with one 

another. We want to find the z-component of the electric and magnetic fields in the strongly 

interacting state 

Fig. 4a is a visualization of the Bz field of the impinging compact pulse in the computational grid 

at the beginning of the simulation. The pulse propagates obliquely (at 45 degrees) on the mesh. 

Figs. 4b and 4c show, respectively, the Gaussian variation of the Bz field along transverse and 

longitudinal cuts through the compact pulse. 

Figs. 5a, 5b, and 5c visualize Bz, Dx, and Dy at time 9.36 ns. Figs. 5d, 5e, and 5f show the same at 

time 23.3 ns. The perimeter of the dielectric disk is identified by the black circle. 

Figs. 6a, 6b, and 6c visualize Bz, Dx, and Dy at the initial time. Figs. 6d, 6e, and 6f show the same 

at a final time of 4×10-14 sec. The surface of the dielectric slab is identified by the vertical black 

line. The oblique black lines demarcate the angle of incidence, the angle of refraction and the 

angle of reflection. 

Figs. 7a, 7b, and 7c visualize Bz, Dx, and Dy at the initial time. Figs. 7d, 7e, and 7f show the same 

at final time of 5×10-14 sec. The surface of the dielectric slab is identified by the vertical black line. 

The oblique black lines demarcate the angle of incidence and the angle of total internal reflection. 

Figs. 8a, 8b and 8c show the initial configuration of Bz, Dx and Dy for the test problem where a 

beam of radiation is incident upon a conductor at 45o . Figs. 8d, 8e and 8f show the same variables 

at the final time of  1.83×10-7 sec when the beam has reflected off the surface of the conductor. 

The conductor is located at x=0 in the figure and is shown by a black line. 

Figs. 9a, 9b and 9c show a zoom-in of Figs. 8d, 8e and 8f and these figures are centered on the 

reflection region, spanning the sub-domain [-3,3]×[-10,10]m. The location of the midpoint in the 

taper for the conductivity is again shown by a black line.  

Figs. 10a and 10b show the radial variations of Bz (black lines) and the decaying envelopes (red 

lines) inside carbon and copper, respectively. Figs. 10c and 10d present the structure of the 
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numerically-obtained envelopes (red crosses) and the analytical envelopes (blue curve) on a semi-

log scale for carbon and copper, respectively. 

 

 

 

  



64 
 

References 

[1] D. S. Balsara and D. S. Spicer, A staggered mesh algorithm using high order Godunov fluxes 

to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, Journal of 

Computational Physics 149 (1999) 270-292 

[2] D.S. Balsara , Divergence-free adaptive mesh refinement for magnetohydrodynamics, Journal 

of Computational Physics 174 (2001)  614-648 

[3] D. S. Balsara, Second-order-accurate schemes for magnetohydrodynamics with divergence-
free reconstruction, Astrophysical Journal Supplement 151 (2004) 149-184 

[4] D.S. Balsara, Divergence-free reconstruction of magnetic fields and WENO schemes for 

magnetohydrodynamics,  J. Comput. Phys., 228 (2009) 5040-5056 

[5] D. S. Balsara and C.-W. Shu, Monotonicity Preserving Weighted Non-oscillatory schemes with 

increasingly High Order of Accuracy, Journal of Computational Physics 160 (2000) 405-452 

[6] D.S. Balsara, T. Rumpf, M. Dumbser and C.-D.Munz, Efficient, high accuracy ADER-WENO 

schemes for hydrodynamics and divergence-free magnetohydrodynamics, Journal of 

Computational Physics 228 (2009) 2480-2516 

[7] D.S.Balsara, Multidimensional HLLE Riemann solver; Application to Euler and  
Magnetohydrodynamic Flows, J. Comput. Phys., 229 (2010) 1970-1993 

[8] D.S. Balsara, A two-dimensional HLLC Riemann solver for conservation laws: Application to 
Euler and magnetohydrodynamic flows,  Journal of Computational Physics 231 (2012) 7476-7503 

[9] D.S. Balsara, M. Dumbser, C. Meyer, H. Du, Z. Xu, Efficient implementation of ADER schemes 
for Euler and magnetohydrodynamic flow on structured meshes – comparison with Runge–Kutta 
methods, J. Comput. Phys. 235 (2013) 934–969 

[10] D.S. Balsara, M. Dumbser and R. Abgrall, Multidimensional HLL and HLLC Riemann Solvers 
for Unstructured Meshes – With Application to Euler and MHD Flows, Journal of Computational 
Physics 261 (2014) 172-208 

[11] D.S. Balsara,  Multidimensional Riemann Problem with Self-Similar Internal Structure – Part 
I –  Application to Hyperbolic Conservation Laws on Structured Meshes, Journal of Computational 
Physics 277 (2014) 163-200 

[12] D.S. Balsara and M. Dumbser,  Divergence-Free MHD on Unstructured Meshes using High 
Order Finite Volume Schemes Based on Multidimensional Riemann Solvers,  Journal of 
Computational Physics 299 (2015a) 687-715 



65 
 

[13] D.S. Balsara and M. Dumbser, Multidimensional Riemann Problem with Self-Similar Internal 
Structure – Part II –  Application to Hyperbolic Conservation Laws on Unstructured Meshes, 
Journal of Computational Physics 287 (2015b) 269-292 

[14] D.S. Balsara, Three Dimensional HLL Riemann Solver for Structured Meshes; Application to 
Euler and MHD Flow, Journal of Computational Physics 295 (2015) 1-23 

[15] D.S. Balsara, J. Vides, K. Gurski, B. Nkonga, M. Dumbser, S. Garain, E. Audit, A Two-
Dimensional Riemann Solver with Self-Similar Sub-Structure – Alternative Formulation Based on 
Least Squares Projection, Journal of Computational Physics 304 (2016a) 138-161 

[16] D.S. Balsara, T. Amano, S. Garain, J. Kim, High Order Accuracy Divergence-Free Scheme 
for the Electrodynamics of Relativistic Plasmas with Multidimensional Riemann Solvers, Journal 
of Computational Physics 318 (2016b) 169-200 

[17] D.S. Balsara, S. Garain, and C.-W. Shu, An efficient class of WENO schemes with adaptive order, 
Journal of Computational Physics, 326 (2016c) 780-804 

[18] D.S. Balsara and R. Käppeli, von Neumann Stability Analysis of Globally Divergence-free 
RKDG and PNPM schemes for the Induction Equation Using Multidimensional Riemann Solvers, 
Journal of Computational Physics 336 (2017) 104-127 

[19] A. Barbas and P. Velarde, Development of a Godunov method for Maxwell’s equations with 

Adaptive Mesh Refinement, Journal of Computational Physics, 300 (2016) 186-201 

[20] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. 

Comput. Phys. 114(2) (1994) 185–200 

[21] J.-P. Berenger, Three-dimensional perfectly matched layer for the absorption of 

electromagnetic waves, J. Comput. Phys. 127(2) (1996) 363–379 

[22] S. H. Brecht, J. G. Lyon, J. A. Fedder, K. Hain, A simulation study of east-west IMF effects 

on the magnetosphere, Geophysical Research Lett. 8 (1981) 397 

[23] S.H. Chang and A. Taflove, Finite-difference time-domain model of lasing action in a four-

level two-electron system, Optics Express, 12 (2004) 3827-3833 

[24] W. Dai and P.R. Woodward, On the divergence-free condition and conservation laws in 

numerical simulations for supersonic magnetohydrodynamic flows, Astrophysical Journal 494 

(1998) 317-335 



66 
 

[25] C. R. DeVore, Flux-corrected transport techniques for multidimensional compressible 

magnetohydrodynamics, Journal of Computational Physics 92 (1991) 142-160 

[26] M. Dumbser & M. Käser, Arbitary high order non-oscillatory finite volume schemes on 

unstuructured meshes for linear hyperbolic systems, Journal of Computational  Physcis, 221 

(2007) 693-723 

[27] M. Dumbser, D. Balsara, E.F. Toro, C.D. Munz, A unified framework for the construction of 

one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. 

Phys. 227 (2008) 8209–8253 

[28] M. Dumbser, O. Zanotti, A. Hidalgo and D.S. Balsara, ADER-WENO Finite Volume Schemes 

with Space-Time Adaptive Mesh Refinement, J. Comp. Phys., 248  (2013) Pgs. 257-286 

[29] N. Elkina & H. Ruhl, Reflection-free finite volume Maxwell solver for adaptive meshes, 

Journal of Computational Physics (2017) to appear 

[30] C.R.Evans and J.F.Hawley, Simulation of Magnetohydrodynamic Flows: A Constrained 

Transport Method, Astrophysical Journal 332 (1989) 659 

[31] A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bernel, J. Joannopoulos, S. 

Johnson, P. Burr, Optics Letters, 31 (2006) 2972-2974 

[32] J. Hesthaven, T. Warburton, Nodal High-Order Methods on Unstructured Grids: I. Time-

Domain Solution of Maxwell's Equations, Journal of Computational Physics, 181 (2002) 186-221 

[33] W. Hunsdorfer, S.J. Ruuth, IMEX extensions of linear multistep methods with general 

monotonicity and boundedness properties, Journal of Computational Physics,  225 (2007) 2016–

2042 

[34] T.Z. Ismagilov, Second order finite volume scheme for Maxwell’s equations with 

discontinuous electromagnetic properties on unstructured meshes, Journal of Computational 

Physics, 282 (2015) 33–42 

[35] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes,Journal of 

Computational Physics 126 (1996) 202-228 



67 
 

[36] D.S. Katz, E.T. Thiel and A. Taflove, Validation and extension to three dimensions of the 

Berenger PML absorbing boundary condition for FD-TD meshes, IEEE Microwave and Guided 

Wave Letters, 4(8) (1994) 268 

[37] F. Kupka, N. Happenhofer, I. Higueras, O. Koch, Total-variation-diminishing implicit–

explicit Runge–Kutta methods for the simulation of double-diffusive convection in astrophysics, J. 

Comput. Phys. 231 (2012) 3561–3586 

[38] C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voß, Divergence correction 

techniques for Maxwell solvers based on a hyperbolic model, Journal of Computational Physics, 

161 (2000) 484 

[39] A. Oskooi, C. Kottke and S. Johnson, Optics Letters, 34 (2009) 2778-2780 

[40] L. Pareschi, G. Russo, Implicit–explicit Runge–Kutta schemes and applications to hyperbolic 

systems with relaxation, J. Sci. Comput. 25 (2005) 129 

[41] D. Ryu, F. Miniati, T. W. Jones, and A. Frank, A divergence-free upwind code for 

multidimensional magnetohydrodynamic flows, Astrophysical Journal 509 (1998) 244-255 

[42] Spiteri, R.J. and Ruuth, S.J., A new class of optimal high-order strong-stability-preserving 

time-stepping schemes,  SIAM Journal of Numerical Analysis, 40 (2002), pp. 469–491 

[43] Spiteri, R.J. and Ruuth, S.J., Non-linear evolution using optimal fourth-order strong-stability-

preserving Runge-Kutta methods, Mathematics and Computers in Simulation 62 (2003) 125-135 

[44] C.-W. Shu, S.J. Osher, Efficient implementation of essentially non-oscillatory shock capturing 

schemes, J. Comput. Phys. 77 (1988) 439–471 

[45] C.-W. Shu, S.J. Osher, Efficient implementation of essentially non-oscillatory shock capturing 

schemes II, J. Comput. Phys. 83 (1989) 32–78 

[46] C.-W. Shu, Total variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput. 9 

(1988) 1073–1084 



68 
 

[47] A. Taflove, Review of the formulation and applications of the finite-difference time-domain 

method for numerical modeling of electromagnetic wave interactions with arbitrary structures, 

Wave Motion, 10 (1988) 547-582 

[48] A. Taflove and S. Hagness, Computational Electrodynamics, third edition, Artech House 

(2005) 

[49] A. Taflove, A. Oskooi and S. Johnson, Advances in FDTD Computational Electrodynamics 

– Photonics and Nanotechnology, Artech House (2013) 

[50] A. Taflove and S. Hagness, Finite Difference Time Domain Solution of Maxwell’s Equations, 

WEEEE Review (2016) 8303 

[51] V.A. Titarev, E.F. Toro, ADER: arbitrary high order Godunov approach, J. Sci. Comput. 

17(1–4) (2002) 609–618 

[52] V.A. Titarev, E.F. Toro, ADER schemes for three-dimensional nonlinear hyperbolic systems, 

J. Comput. Phys. 204 (2005) 715–736 

[53] E.F. Toro, R.C. Millington and R.C.M. Nejad, Towards very high--order Godunov schemes 

Godunov Methods: Theory and Applications, Edited Review, E. F. Toro (Editor), Kluwer 

Academic/Plenum Publishers (2001) 905-937 

[54] E.F. Toro, V.A. Titarev, Solution of the generalized Riemann problem for advection reaction 

equations, Proc. R. Soc. Lond. Ser. A 458 (2002) 271–281 

[55] van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to 

numerical convection, Journal of Computational Physics, 23 (1977) 276-299 

[56] van Leer, B., Towards the Ultimate Conservative Difference Scheme V.  A Second Order 

Sequel to Godunov's Method, Journal of Computational Physics, 32 (1979) 101-136 

[57] K.S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell 

Equation in an Isotropic Media, IEEE Trans. Antenna Propagation 14 (1966) 302 



69 
 

[58] Z. Xu, D.S. Balsara and H. Du, Divergence-Free WENO Reconstruction-Based Finite Volume 

Scheme for Ideal MHD Equations on Triangular Meshes, Communications in Computational 

Physics, 19(04) (2016) 841-880 

[59] A. R. Zakharian, M. Brio, C. Dineen, and J. V. Moloney, Second-Order Accurate FDTD 

Space and Time Grid Refinement Method in Three Space Dimensions, IEEE Photonics Technology 

Letters, 18(11) (2006) 1237 

 



70 
 

 



71 
 

 



72 
 

 



73 
 

 



74 
 

 



75 
 

 



76 
 

 



77 
 

 



78 
 

 



79 
 

 



80 
 

 

 

 

 

 

 

 

 

 

 



81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

 

 

 

 


