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Abstract 

 The Finite Difference Time Domain (FDTD) scheme has served the computational 

electrodynamics community very well and part of its success stems from its ability to satisfy the 

constraints in Maxwell’s equations. Even so, in the previous paper of this series we were able to 

present a second order accurate Godunov scheme for computational electrodynamics (CED) which 

satisfied all the same constraints and simultaneously retained all the traditional advantages of 

Godunov schemes. In this paper we extend the Finite Volume Time Domain (FVTD) schemes for 

CED in material media to better than second order of accuracy. 

 From the FDTD method, we retain a somewhat modified staggering strategy of primal 

variables which enables a very beneficial constraint-preservation for the electric displacement and 

magnetic induction vector fields. This is accomplished with constraint-preserving reconstruction 

methods which are extended in this paper to third and fourth orders of accuracy. The idea of one-

dimensional upwinding from Godunov schemes has to be significantly modified to use the 

multidimensionally upwinded Riemann solvers developed by the first author. In this paper, we 

show how they can be used within the context of a higher order scheme for CED. 

 We also report on advances in timestepping. We show how Runge-Kutta IMEX schemes 

can be adapted to CED even in the presence of stiff source terms brought on by large conductivities 

as well as strong spatial variations in permittivity and permeability. We also formulate very 
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efficient ADER timestepping strategies to endow our method with sub-cell resolving capabilities. 

As a result, our method can be stiffly-stable and resolve significant sub-cell variation in the 

material properties within a zone. Moreover, we present ADER schemes that are applicable to all 

hyperbolic PDEs with stiff source terms and at all orders of accuracy. Our new ADER formulation 

offers a treatment of stiff source terms that is much more efficient than previous ADER schemes. 

The computer algebra system scripts for generating ADER time update schemes for any general 

PDE with stiff source terms are also given in the electronic supplements to this paper. 

 Second, third and fourth order accurate schemes for numerically solving Maxwell’s 

equations in material media are presented in this paper. Several stringent tests are also presented 

to show that the method works and meets its design goals even when material permittivity and 

permeability vary by an order of magnitude over just a few zones. Furthermore, since the method 

is unconditionally stable and sub-cell-resolving in the presence of stiff source terms (i.e. for 

problems involving giant variations in conductivity over just a few zones), it can accurately handle 

such problems without any reduction in timestep. We also show that increasing the order of 

accuracy offers distinct advantages for resolving sub-cell variations in material properties. Most 

importantly, we show that when the accuracy requirements are stringent the higher order schemes 

offer the shortest time to solution. This makes a compelling case for the use of higher order, sub-

cell resolving schemes in CED. 

 

I) Introduction 

 The numerical solution of Maxwell’s equations is crucial to numerous computational 

electrodynamics (CED) applications in science and engineering. The Finite-difference time-

domain (FDTD) method (Yee [52], Taflove and Hagness [43], Taflove, Oskooi and Johnson [44]) 

has been the method of choice for CED applications for more than fifty years! The reason for the 

durability of FDTD is that it incorporates many of the features that are intrinsic to the physics of 

Maxwell’s equations. These desirable features include a direct interpretation of the two curl-type 

equations given by Faraday’s and extended Ampere’s laws and a natural satisfaction of the 

constraint equations given by Gausss’ law for electric charge and the absence of magnetic 

monopoles. This is achieved by staggering the electric field and magnetic field components. On a 
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simple Cartesian mesh, every electric field component is surrounded by four circulating magnetic 

field components and every magnetic field component is surrounded by four circulating electric 

field components. It is therefore essential that all improved methods for the numerical solution of 

Maxwell’s equations should retain the beneficial aspects of the FDTD method.  

 A mathematical analysis of Maxwell’s equations (Balsara et al. [19]) shows that they 

consist of an involution-constrained hyperbolic system. Powerful methods have been developed 

in the last three and a half decades for the high accuracy treatment of hyperbolic systems. Such 

methods go under the rubric of higher order Godunov methods and they use a zone-centered 

formulation. Formulations that treat Maxwell’s equations with zone-centered variables have been 

tried (Munz et al. [34], Hesthaven and Warburton [28], Ismagilov [30], Barbas and Velarde [21]) 

and references therein. The inability to reconcile the different collocations that are used in FDTD 

methods with higher order Godunov methods has been an impediment to progress. FDTD methods 

have been unable to benefit from advances in higher order Godunov methodology and higher order 

Godunov methods have been unable to deliver on some of the nice constraint-preserving properties 

of the FDTD method. In Balsara et al. [16], [19] steps were taken to broach that divide with a path-

breaking synthesis. However, the methods developed in Balsara et al. [19] focused on achieving 

such a synthesis for second order schemes that solve Maxwell’s equations in material media. It is 

usually challenging for schemes to transition from second order accuracy to accuracies of third 

and higher orders. In this paper we face up to that challenge by devising constraint-preserving 

higher order Godunov methods that solve Maxwell’s equations in material media with better than 

second order of accuracy. The methods that we present in this paper synthesize all the strengths of 

FDTD methods (Taflove [42], Taflove and Hagness [45]) along with all the strengths of higher 

order Godunov methodology (van Leer [50], [51]) whilst offering the significant advantages of 

higher order accuracy. These methods are inspired by our prior work on divergence-free numerical 

MHD (Balsara and Spicer [1], Balsara [2], [3], [4], [7], [11], Balsara and Nkonga [20]). A von 

Neumann stability analysis of divergence-free MHD schemes is available in Balsara and Käppeli 

[18] and an analogous von Neumann analysis of FVTD schemes for CED is on the way. 

 The motivations for going to higher order of accuracy are quite compelling. Higher order 

schemes provide better phase accuracy and the dissipation is well-controlled and restricted to 

waves that have wavelength comparable to the mesh size. Retaining accuracy at adaptive mesh 
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interfaces is also easier when the base-level scheme is better than second order. Furthermore, we 

show that higher order schemes are better at retaining the order of accuracy in regions where the 

material properties undergo a substantial variation. 

 The methods presented here are inspired by higher order Godunov schemes in their design 

philosophy. They use ideas of higher order non-oscillatory reconstruction and upwinding via 

Riemann solvers that have made the higher order Godunov schemes so popular. However, they 

also retain a staggering of variables that is inspired by the Yee mesh from FDTD methods. Two 

special advances go into enabling this synthesis. First, we use a very special form of constraint-

preserving reconstruction. Some aspects of this reconstruction were initially developed in the 

literature for magnetohydrodynamic (MHD) simulations (Balsara [2], [3], [4], Balsara and 

Dumbser [12], Xu et al. [53], Balsara et al. [16]), but here we import these ideas to computational 

electrodynamics. The second order extensions to CED were described in Balsara et al. [19]; the 

higher order extensions were first catalogued in Balsara et al. (2016) so we only provide a brief 

recapitulation here for the sake of completeness. Second, we draw on the multidimensional 

Riemann solver technology that has been recently developed (Balsara [7], [8], [11], [14], Balsara, 

Dumbser and Abgrall [10], Balsara and Dumbser [13], Balsara et al. [15] Balsara and Nkonga 

[20]). This enables us to get the correct multidimensional upwinding of Maxwell’s equations on a 

Yee-type mesh. The multidimensional Riemann solver for CED was thoroughly described in 

Section V of Balsara et al. [19] and we do not repeat that description here. 

 Higher order spatial reconstruction should be matched with higher order temporal 

evolution in order to have a numerical method that retains overall accuracy. We realize that a 

computational electrodynamics code has to be responsive to variations in material properties (i.e. 

the permittivity and permeability) that can change substantially over one or two zones. 

Furthermore, the source terms (i.e. the conductivity) can be stiff and can also vary in space. 

Functional Runge-Kutta schemes that can accommodate stiff source terms are only available up to 

third order of accuracy (Pareschi and Russo [36], Hunsdorfer and  Ruuth [29], Kupka et al. [33]) 

and in Balsara et al. [16] we showed how these can be used very effectively for CED with second 

and third orders of temporal accuracy. But it is hard to go past third order accuracy with Runge-

Kutta time stepping. ADER schemes are not similarly limited, and they extend seamlessly to fourth 

and higher orders of temporal accuracies. For that reason, we adapt ADER schemes for stiff source 
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terms that were developed by Dumbser et al. [25], Balsara et al. [6], [9] and Dumbser et al. [26]. 

This method acts on nodal points within a zone. At each of those nodal points it permits variation 

in the values and the higher moments of the dielectric permittivity and magnetic permeability. 

Because the values of the material properties and all their higher derivatives are allowed to vary 

substantially within a zone, we can incorporate sub-cell variations in material properties into our 

timestepping strategy. The value of the conductivity as well as its higher moments can also vary 

at the nodal points. The source terms associated with the current are also treated stiffly, permitting 

an A-stable, sub-cell resolving time update strategy.  

 Section II describes the governing equations and their constraint-preserving numerical 

discretization. Section III briefly recapitulates the reconstruction strategy at third order in three-

dimensions. Section IV presents a very special ADER scheme at high order that is well-suited to 

numerical treatment of Maxwell’s equations. Section V presents results. Section VI analyses 

accuracy as a function of time to solution, making a very compelling case for the higher order 

schemes presented here. Section VII provides conclusions. In the supplement to this paper we give 

more details associated with the ADER schemes that are described here. In the supplement to this 

paper we also show how we adapt the temporally second and third order Runge-Kutta methods 

with treatment of stiff source terms for this application. 

 

II) Maxwell’s Equations and their Constraint-Preserving Numerical Discretization. 

II.1) Very Brief description of Maxwell’s Equations 

 The equations of CED can be written as two evolutionary curl-type equations for the 

electric displacement (Ampere’s law) and the magnetic induction (Faraday’s law). The extended 

Ampere’s law for the time evolution of the electric displacement is given by 

t
∂

−∇× = −
∂
D H J            (2.1) 

where D  is the electric displacement (or electric flux density), H  is the magnetic field vector and 

J  is the electric current density. Faraday’s law for the time evolution of the magnetic induction is 

given by 
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t
∂

+∇× = −
∂
B E M            (2.2) 

where B  is the magnetic induction (or magnetic flux density), E  is the electric field and M  is 

the magnetic current density. The electric displacement and the magnetic induction vector fields 

also satisfy the following two non-evolutionary constraint equations given by 

Eρ∇⋅ =D             (2.3) 

and 

Mρ∇⋅ =B             (2.4) 

where Eρ  and Mρ  are the electric and magnetic charge densities. In any physical medium  

0Mρ = ; however, the imposition of boundary conditions might require the use of non-zero 

magnetic current densities. 

 In material media, the electric displacement vector is also related to the electric field vector 

via a constitutive relation given by  

 =D ε E             (2.5) 

where, in general, ε  is a symmetric 3×3 permittivity tensor that depends on material properties. 

Likewise, in material media, the magnetic induction vector is related to the magnetic field vector 

by 

 =  B μ H             (2.6) 

As before, μ  is a symmetric 3×3 magnetic permeability tensor that depends on material 

properties. We allow the permittivity and magnetic permeability tensors to have a general form. 

However, the analytical eigenstructure of the hyperbolic system is most easily found by making 

the simplifying assumption { }, ,xx yy zzdiag ε ε ε=ε  and { }, ,xx yy zzdiag µ µ µ=μ  . We will also need 

the inverses of the permittivity and permeability tensors. These 3 3×  inverse matrices will also be 
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symmetric and we denote them as 1−≡ε ε   and 1−≡μ μ  . The current density is related to the 

electric field via  

 σ=J E             (2.7) 

where σ  is the conductivity. Similarly, the magnetic current density is related to the magnetic 

field via 

*  σ=M H             (2.8) 

where *σ  is the equivalent magnetic loss, which is again zero in physical media, but may be non-

zero when imposing boundary conditions in CED.  

 The CED equations can be written in a flux form, which we formally write as  

t x y z∂ + ∂ + ∂ + ∂ =U F G K S          (2.9) 

The vector U  is given by ( ), , , , ,
T

x y z x y zD D D B B B=U . The fluxes are explicitly catalogued in 

eqn. (2.12) of Balsara et al. [19] and the eigenstructure of this hyperbolic system is analyzed in 

Section II.2 of Balsara et al. [19]. We do not repeat details here. 

II.2) Narrative Description of the FVTD Scheme at High Order 

 In Balsara et al. [19], a solution strategy was presented for solving the coupled equations 

for Faraday’s law and Ampere’s law on the same control volume. Fig. 1, from Balsara et al. [19], 

is repeated here just to show the arrangement of primal variables. The electric displacement and 

magnetic induction vector fields are the primal variables of our scheme. The normal components 

of these two vector fields are defined at the faces of the control volume shown in Fig. 1. The facial 

averages of the normal components of the electric displacement vector field are shown by the thick 

red arrows in Fig. 1 and they constitute one set of primal variables for our scheme. The facial 

averages of the normal components of the magnetic induction vector field are shown by thick blue 

arrows and they constitute the other set of primal variables for our scheme. This arrangement of 

primal variables will also lead to a pair of Yee-type curl equations as long as the magnetic and 

electric fields can be obtained in some multidimensionally upwinded sense at the edges of the 
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mesh shown in Fig. 1. The edge-averaged components of the magnetic vector field are shown by 

the thin red arrows in Fig. 1. They can be used for the update of the facially-averaged components 

of the electric displacement by using a discrete version of Ampere’s law in eqn. (2.1). The edge-

averaged components of the electric vector field are shown by the thin blue arrows in Fig. 1. They 

can be used for the update of the facially-averaged components of the magnetic induction by using 

a discrete version of Faraday’s law in eqn. (2.2).  

 For a multidimensional Godunov scheme, the edge-averaged components of the magnetic 

and electric fields are obtained with the help of a multidimensional Riemann solver as shown in 

Section V of Balsara et al. [19]. Further description of multidimensional Riemann solvers is also 

available (Balsara [7], [8], [11], [14], Balsara, Dumbser and Abgrall [10], Balsara and Dumbser 

[13], Balsara et al. [15] Balsara and Nkonga [20]). For our purposes, we can treat the 

multidimensional Riemann solver as an algorithm that lives at the edges of the mesh. This edge-

collocated algorithm takes as its inputs the electric displacement and magnetic induction vectors 

from the four zones that abut the edge in question. As its outputs, this algorithm gives us 

multidimensionally upwinded magnetic and electric vectors at the same edge. Of course, we would 

like this Riemann solver to give outputs that are as accurate as possible. Happily, it turns out that 

if the inputs to the Riemann solver are higher order accurate, the outputs from that same Riemann 

solver will also be higher order accurate. In the next paragraph we describe how these high order 

inputs are provided to the Riemann solver. 

 Our strategy for achieving this high accuracy is called the constraint-preserving 

reconstruction problem. We start with the facial averages shown in Fig. 1. Using electric 

displacement and magnetic induction variables from neighboring faces, we can obtain higher order 

moments for the components that reside in the faces of Fig. 1. The constraint-preserving 

reconstruction can be thought of as yet another algorithm that lives at the center of each zone. It 

takes as its inputs the facially-averaged electric displacement and magnetic induction components 

and their higher order moments for any zone. As its output, it produces a constraint-preserving 

high order polynomial representation of the electric displacement and magnetic induction vector 

fields that are valid throughout the zone. The constraint-preserving reconstruction is such that it 

exactly satisfies the non-evolutionary constraints posed by eqns. (2.3) and (2.4). As the accuracy 

of the facial moments is increased, the algorithm for constraint-preserving reconstruction produces 
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a higher order polynomial that is valid throughout the zone. Section III of Balsara et al. [19] shows 

how such a constraint-preserving reconstruction operates at second order of accuracy. Section III 

of this paper shows how such a constraint-preserving reconstruction algorithm operates at third 

order of accuracy. This can be formulated at all orders of accuracy and also on unstructured meshes 

(Balsara [2], [3], [4], Balsara and Dumbser [12], Xu et al. [53], Balsara et al. [16]). The purpose 

of the constraint-preserving reconstruction algorithm is to provide high accuracy input values for 

the multidimensional Riemann solver.  

 The constraint-preserving reconstruction and the multidimensional Riemann solver can 

give us a highly accurate set of edge-centered magnetic and electric field components. This enables 

a spatially accurate discretization of Ampere’s and Faraday’s laws. However, we desire temporal 

accuracy that matches the spatial accuracy in our scheme. Up to third order of temporal accuracy 

can be achieved in two possible ways. We can use Runge-Kutta methods that include the treatment 

of stiff source terms (Pareschi and Russo [36], Hunsdorfer and  Ruuth [29], Kupka et al. [33]); and 

such a scheme is adapted to CED in the supplement to this paper. Alternatively, we can use ADER 

methods that give us a full space-time extension of the electric displacement and magnetic 

induction within a zone by taking the spatial reconstruction as an input. The PDE system in eqn. 

(2.9) tells us how the temporal evolution takes place for a given spatial reconstruction. Such an 

ADER scheme also includes treatment of stiff source terms and is described in Section IV of this 

paper. These ADER methods are based on our prior papers (Dumbser et al. [25], Balsara et al. [6], 

[9] and Dumbser et al. [26]). ADER timestepping methods seamlessly extend to all orders, which 

is why they may be a stronger suit compared to Runge-Kutta methods. The innovations in ADER 

reported here go beyond the classical ADER methods mentioned previously because we show that 

there is an unusually efficient way to order the temporal nodes which results in a very efficient 

treatment of stiff source terms. With either of the methods described in this paragraph we can 

update the electric displacement using the extended Ampere’s law, eqn. (2.1), and the magnetic 

induction using Faraday’s law, eqn. (2.2). This completes our narrative description of the scheme. 

 In contrast to the methods described here, FDTD methods use a pair of staggered control 

volumes, making it difficult to devise higher order Godunov schemes for FDTD. While the 

reconstruction can be carried out as described here even for FDTD methods, the multidimensional 

Riemann solver requires that all the inputs, which may be discontinuous across the edges, come 
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together at the same point. It is for this fundamental reason that multidimensionally upwinded 

higher order Godunov schemes cannot be designed for the FDTD staggering of variables. 

II.3) The Update Equations 

 We take integer subscripts as denoting zone-centers and half-integer subscripts as denoting 

face-centers and edge-centers depending on how they are used; please see Fig. 1. Superscripts 

denote time-steps so that we describe a one-step update from time nt  to time 1n nt t t+ = + ∆  . 

Consistent with Fig. 1 and the narrative from the previous paragraph, we can write a discrete form 

for the time-update in eqn. (2.1) as  

( )

1
; 1/2, , ; 1/2, , ; 1/2, ,

; 1/2, 1/2, ; 1/2, 1/2, ; 1/2, , 1/2 ; 1/2, , 1/2

D = D J

         H H H H

n n
x i j k x i j k x i j k

z i j k z i j k y i j k y i j k

t
t z z y y

y z

+
+ + +

+ + + − + − + +

− ∆

∆
+ ∆ −∆ + ∆ −∆
∆ ∆

  (2.10a) 

( )

1
; , 1/2, ; , 1/2, ; , 1/2,

; , 1/2, 1/2 ; , 1/2, 1/2 ; 1/2, 1/2, ; 1/2, 1/2,

D = D J

         H H H H

n n
y i j k y i j k y i j k

x i j k x i j k z i j k z i j k

t
t x x z z

x z

+
− − −

− + − − − − + −

− ∆

∆
+ ∆ −∆ + ∆ −∆
∆ ∆

  (2.10b) 

( )

1
; , , 1/2 ; , , 1/2 ; , , 1/2

; , 1/2, 1/2 ; , 1/2, 1/2 ; 1/2, , 1/2 ; 1/2, , 1/2

D = D J

         H H H H

n n
z i j k z i j k z i j k

x i j k x i j k y i j k y i j k

t
t x x y y

x y

+
+ + +

− + + + + + − +

− ∆

∆
+ ∆ −∆ + ∆ −∆
∆ ∆

  (2.10c) 

The current densities, ; 1/2, ,Jx i j k+  , ; , 1/2,Jy i j k−  and ; , , 1/2Jz i j k+  can be evaluated at nt  or 1nt +  resulting 

in schemes that are explicit or implicit in their treatment of the source terms. In practice, the 

inclusion of stiff source terms is more intricate and is explained in detail in Sections IV for ADER 

schemes. We can write an analogous discrete form for the time-update in eqn. (2.2) as 

( )

1
; 1/2, , ; 1/2, , ; 1/2, ,

; 1/2, 1/2, ; 1/2, 1/2, ; 1/2, , 1/2 ; 1/2, , 1/2

B = B M

        E E E E

n n
x i j k x i j k x i j k

z i j k z i j k y i j k y i j k

t
t z z y y

y z

+
+ + +

+ + + − + − + +

− ∆

∆
− ∆ −∆ + ∆ −∆
∆ ∆

   (2.11a) 

( )

1
; , 1/2, ; , 1/2, ; , 1/2,

; , 1/2, 1/2 ; , 1/2, 1/2 ; 1/2, 1/2, ; 1/2, 1/2,

B = B M

        E E E E

n n
y i j k y i j k y i j k

x i j k x i j k z i j k z i j k

t
t x x z z

x z

+
− − −

− + − − − − + −

− ∆

∆
− ∆ −∆ + ∆ −∆
∆ ∆

   (2.11b) 
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( )

1
; , , 1/2 ; , , 1/2 ; , , 1/2

; , 1/2, 1/2 ; , 1/2, 1/2 ; 1/2, , 1/2 ; 1/2, , 1/2

B = B M

        E E E E

n n
z i j k z i j k z i j k

x i j k x i j k y i j k y i j k

t
t x x y y

x y

+
+ + +

− + + + + + − +

− ∆

∆
− ∆ −∆ + ∆ −∆
∆ ∆

   (2.11c) 

Similar comments, as above, apply for the treatment of the magnetic current densities. 

 The computational task consists of specifying the magnetic field components on the right 

hand side of eqn. (2.10) and the electric field components on the right hand side of eqn. (2.11). 

The method should also accommodate stiff source terms from the current densities when they are 

present. 

 

III) Constraint-Preserving Reconstruction at Third Order 

 Since this is the first time that this reconstruction strategy is being presented to the CED 

community, it helps to present all the details in one place. From eqn. (2.3) we see that Gauss’ law 

represents a non-evolutionary constraint on the three-dimensional electric displacement vector 

field. The components of this vector field are specified at the two-dimensional faces of the zone 

shown in Fig. 1. Therefore, a strategy needs to be found that starts with the two-dimensional facial 

components and retrieves the entire three-dimensional vector field in a fashion that is consistent 

with the constraint imposed by Gauss law. The strategy should be higher order accurate up to the 

desired order; for the purposes of this Section it should be third order accurate.  

 Let us place the origin at the center of the zone so that the extent of the zone is given by 

[ ] [ ] [ ]/ 2, / 2 / 2, / 2 / 2, / 2x x y y z z−∆ ∆ × −∆ ∆ × −∆ ∆ . The time-level is not shown as a superscript for 

all the equations in this Section because they all apply to the same time level. The zone-averaged 

components of the electric displacement at the right and left x-faces of Fig. 1 are denoted by 0
xD ±  

. The zone-averaged components of the electric displacement at the upper and lower y-faces of 

Fig. 1 are denoted by 0
yD ±  . The zone-averaged components of the electric displacement at the top 

and bottom z-faces of Fig. 1 are denoted by 0
zD ±  . These are the face-centered primal variables for 

the electric displacement. These are the mesh-based variables that we start with when we begin to 

make a constraint-preserving reconstruction of the vector field.  
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 Let the zone-averaged charge density be denoted by 0q  so that a discrete form of eqn. (2.3) 

gives 

0 0 0 0 0 0
0

x x y y z zD D D D D Dq
x y z

+ − + − + −− − −
= + +

∆ ∆ ∆
        (3.1) 

This charge density is obtained for all the zones of the mesh. Since the zone-averaged charge 

density can be defined for all the zones, we can reconstruct it using traditional higher order 

reconstruction in multiple dimensions; see for example the multidimensional WENO 

reconstruction in Balsara et al. [6]. (For a description of WENO methods, see also Jiang and Shu 

[31], Balsara and Shu [5], Dumbser and Käser [24] and Balsara, Garain and Shu [17]). The 

reconstructed charge density ( ), ,E x y zρ  that is third order accurate is then given by 

( )
22

0

2

1 1, ,
12 12

1                 
12

E x y z xx yy

zz xy yz xz

x y z x yx y z q q q q q q
x y z x y

z x y y z x zq q q q
z x y y z x

ρ
            = + + + + − + −            ∆ ∆ ∆ ∆ ∆           

            + − + + +             ∆ ∆ ∆ ∆ ∆ ∆ ∆            z
 
 
 

  (3.2) 

Eqn. (3.2) will constitute the right hand side of the constraint eqn. (2.3) given by Gauss law. 

 Notice from Fig. 1 that each face will have adjoining faces. As a result, two-dimensional 

WENO reconstruction (or any other good, reconstruction strategy) can be used to endow the x-

components of the electric displacement vector in the x-face of Fig. 1 with variation in the 

transverse direction. Denoting this by ( ),xD y z±  in the right and left faces of Fig. 1, we can write 

( )
2 2

0
1 1,

12 12
x x x x x x x

y z yy zz yz
y z y z y zD y z D D D D D D
y z y z y z

± ± ± ± ± ± ±
              = + + + − + − +             ∆ ∆ ∆ ∆ ∆ ∆            

 

            (3.3) 

The above equation serves to define the moments x
yD ±  , x

zD ±  , x
yyD ±  , x

zzD ±  and x
yzD ± ; and these are 

the moments that we obtain by applying WENO reconstruction to the x-component values from 
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neighboring faces in the x-plane. An analogous procedure can be done in the upper and lower y-

faces of Fig. 1 to give us 

( )
2 2

0
1 1,

12 12
y y y y y y y

x z xx zz xz
x z x z x zD x z D D D D D D
x z x z x z

± ± ± ± ± ± ±
             = + + + − + − +                ∆ ∆ ∆ ∆ ∆ ∆             

 

            (3.4) 

The above equation serves to define the moments y
xD ±  , y

zD ±  , y
xxD ±  , y

zzD ±  and y
xzD ±  ; and these 

are the moments that we obtain by applying WENO reconstruction to the y-component values from 

neighboring faces in the y-plane. An analogous procedure can be done in the top and bottom z-

faces of Fig. 1 to give us 

( )
22

0
1 1,

12 12
z z z z z z z

x y xx yy xy
x y x y x yD x y D D D D D D
x y x y x y

± ± ± ± ± ± ±
             = + + + − + − +              ∆ ∆ ∆ ∆ ∆ ∆             

 

            (3.5) 

The above equation serves to define the moments z
xD ±  , z

yD ±  , z
xxD ±  , z

yyD ±  and z
xyD ±   ; and these are 

the moments that we obtain by applying WENO reconstruction to the z-component values from 

neighboring faces in the z-plane. The above three equations show us how the three components of 

the electric displacement within the six faces of the cube shown in Fig. 1 are endowed with sub-

structure. 

 Despite having substructure within the faces, our narrative so far has not described how 

the electric displacement vector field is described everywhere within the volume shown in Fig. 1. 

Such a description is essential if we wish to provide the electric displacement vector as an input to 

the multidimensional Riemann solver. It is also essential if we wish to develop an ADER predictor 

step for the PDE system in eqn. (2.9). Let the three components of the electric displacement vector 

that are valid everywhere inside the zone shown in Fig. 1 be denoted by ( ), ,xD x y z , ( ), ,yD x y z  

and ( ), ,zD x y z . At third order, these components should at least have all the modes that are 

similar to the modes shown in eqn. (3.2). However, we will soon see that further satisfaction of 
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the non-evolutionary constraint imposed by Gauss law, as well as matching the facial variation, 

requires a few more modes. As a result, for ( ), ,xD x y z  we have 

( )
22

0

2

1 1, ,
12 12

1                  +
12

x
x y z xx yy

zz xy yz xz

x y z x yD x y z a a a a a a
x y z x y

z x y y z x za a a a
z x y y z x

            = + + + + − + −            ∆ ∆ ∆ ∆ ∆           
            − + + +             ∆ ∆ ∆ ∆ ∆ ∆           

3 2 2

2

3 1 1             +
20 12 12

1                
12

xxx xxy xxz

xyy xzz

z

x x x y x za a a
x x x y x z

x y x za a
x y x z

 
 ∆ 

               − + − + −                    ∆ ∆ ∆ ∆ ∆ ∆               
       + − +     ∆ ∆ ∆ ∆      

2 1
12 xyz

x y za
x y z

       − +          ∆ ∆ ∆      

  (3.6) 

Likewise, for ( ), ,yD x y z  we have 

( )
22

0

2

1 1, ,
12 12

1                  +
12

y
x y z xx yy

zz xy yz xz

x y z x yD x y z b b b b b b
x y z x y

z x y y z x zb b b b
z x y y z x

            = + + + + − + −            ∆ ∆ ∆ ∆ ∆           
            − + + +             ∆ ∆ ∆ ∆ ∆ ∆           

3 2 2

2

3 1 1             +
20 12 12

1                 
12

yyy xyy yyz

xxy yzz

z

y y x y y zb b b
y y x y y z

x y y zb b
x y y z

 
 ∆ 

                    − + − + −               ∆ ∆ ∆ ∆ ∆ ∆               
      + − +      ∆ ∆ ∆ ∆      

2 1
12 xyz

x y zb
x y z

       − +          ∆ ∆ ∆       

  (3.7) 

Similarly, for ( ), ,zD x y z  we have 
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( )
22

0

2

1 1, ,
12 12

1                  +
12

z
x y z xx yy

zz xy yz xz

x y z x yD x y z c c c c c c
x y z x y

z x y y z x zc c c c
z x y y z x

            = + + + + − + −            ∆ ∆ ∆ ∆ ∆           
            − + + +             ∆ ∆ ∆ ∆ ∆ ∆           

3 2 2

22

3 1 1             +
20 12 12

1 1                
12 12

zzz xzz yzz

xxz yyz

z

z z x z y zc c c
z z x z y z

x z yc c
x z y

 
 ∆ 

               − + − + −                    ∆ ∆ ∆ ∆ ∆ ∆               

      + − + −       ∆ ∆ ∆      
xyz

z x y zc
z x y z

          +         ∆ ∆ ∆ ∆       

  (3.8) 

The first two lines in eqns. (3.6), (3.7) and (3.8) are needed for satisfying the order property. The 

inclusion of the next two lines in eqns. (3.6), (3.7) and (3.8) ensure that the non-evolutionary 

constraint is satisfied and for ensuring that the facial values are matched. Consequently, the 48 

coefficients in the above three equations are required to match the facial values in eqns. (3.3), (3.4) 

and (3.5) as well as the constraint equation.  

 Let us now turn to the constraint equation provided by Gauss law. Eqn. (2.3) gives 

( ) ( ) ( ) ( ), , , , , , , ,x y z
x y z ED x y z D x y z D x y z x y zρ∂ + ∂ + ∂ =       (3.9) 

Because the left and right sides of eqn. (3.9) are polynomials, satisfying the non-evolutionary 

constraint in eqn. (3.9) is tantamount to matching the polynomials on either side of eqn. (3.9) at 

all applicable orders. Since eqn. (3.2) is a quadratic polynomial, and since eqns. (3.6), (3.7) and 

(3.8) are at most cubic polynomials, we see that we will get ten equations of constraint in three-

dimensions. These are explicitly catalogued in Appendix A. In that Appendix, we also explicitly 

provide a solution for the 48 coefficients in eqns. (3.6), (3.7) and (3.8). These coefficients are 

chosen so as to explicitly match the quadratic variation of the components of the electric 

displacement in the six faces that are documented in eqns. (3.3), (3.4) and (3.5). The reason for 

providing all 48 coefficients explicitly using a leisurely notation in Appendix A is to facilitate easy 

entry into the field of higher order CED. Appendix B of this paper gives the fourth order case in a 

format that is optimally adapted for use with fourth order ADER schemes. 

 In this Section we have documented a constraint-preserving reconstruction strategy for the 

electric displacement vector field that is consistent with the non-evolutionary constraint in eqn. 
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(2.3). The magnetic induction vector field can also be obtained consistent with the non-

evolutionary constraint in eqn. (2.4). The constraint-preserving reconstruction of the magnetic 

induction vector field follows a strategy that is identical to the one developed in this Section. We 

therefore do not describe it any further here. 

 

IV) ADER Timestepping Adapted to Computational Electrodynamics 

 There are two very important physics issues that are most challenging in CED. The first 

has to do with the fact that permittivity and permeability are tensors and can undergo up to an 

order of magnitude change at the interface between dielectrics (Farjadpour et al. [27], Oskooi et 

al. [35], Taflove, Oskooi, and Johnson [44]). The second has to do with the fact that the 

conductivity can undergo very substantial variation. This may happen when analyzing skin-depth 

effects in a metal, but it occurs much more often when dealing with perfectly matched layers 

(PML) at the boundary of a computational domain (Berenger [22], [23], Katz, Thiel and Taflove 

[32], Taflove and Hagness [43]). 

 Section IV.1 provides a quick preview of the ADER predictor step and its utility for CED. 

Sub-section IV.2 describes the ADER predictor step at third order in some detail. Sub-section IV.3 

shows how easy it is to invert the matrices that result from the implicit treatment of stiff source 

terms. Sub-section IV.4 gives step-wise implementation-related details for an ADER-WENO 

scheme. 

IV.1) Preview of ADER Predictor Step with a Focus on its Utility for CED 

 The spatial reconstruction from Section III (and Appendices A or B) can provide a three-

dimensional, spatially high order reconstruction of the electric displacement and magnetic 

induction vector fields. Given spatial derivatives, eqn. (2.9) shows that they can be related to the 

time derivatives for any PDE; Maxwell’s equations included. This means that if the spatial 

reconstruction is known within the zone up to some order of accuracy, we should be able to provide 

an in-the-small temporal evolution within that zone up to the same order of accuracy. This is what 

the ADER predictor step provides. In the case of CED, ADER schemes are especially valuable 

because they allow us to include the sub-cell spatial variation of the permittivity, permeability and 



17 
 

conductivities within a zone. Moreover, these material properties can be spatially varying, 

anisotropic tensors with no loss of generality or accuracy in our algorithm and our code. For 

dispersive and resistive media, we can even endow these tensors with time-variation, perhaps in a 

way that is consistent with some governing ordinary differential equation for the evolution of these 

material properties.  

 Once we have a higher order space and time representation of the electric displacement 

and magnetic induction vector fields within all the zones, we can make these variables interact 

with one another at the zone edges using the multidimensional Riemann solver. This gives us the 

edge-collocated electric and magnetic field components shown in Fig. 1. ADER schemes have 

another valuable feature that is useful for CED. They can treat stiff source terms, which are 

generated when the conductivities are large. This is done in such a way that the stiff source terms 

are naturally integrated into the time-evolution of the rest of the PDE. Moreover, sub-cell 

variations in the conductivities within a zone are also treated in a fully time-implicit fashion. By 

making an arithmetic average of the space-time integrated stiff source terms at the faces of any 

two neighboring zones, the facial source terms are also treated in a stable and time-implicit fashion. 

IV.2) Third Order ADER Predictor Step that is Adapted for CED 

 While the older ADER schemes by Toro, Millington and Nejad [48], Titarev and Toro [46], 

[47] and Toro and Titarev [49] are not very well-suited to our specific needs in this paper, the 

newer ADER schemes in predictor-corrector format (Dumbser et al. [25], [26], Balsara et al. [6], 

[9]) prove to be very valuable. However, even these newer ADER methods are inefficient in their 

treatment of source terms. The innovations in ADER reported here go beyond the classical ADER 

methods mentioned previously because we show that there is an unusually efficient way to arrange 

the ordering of the temporal nodes which results in a very efficient treatment of stiff source terms. 

The full details about the treatment of source terms will become clear in the next sub-section. To 

facilitate our narrative, let us make a linear mapping of the space-time extent of each zone in its 

local coordinates given by ( ) [ ] [ ] [ ] [ ], , , / 2, / 2 / 2, / 2 / 2, / 2 0,x y z t x x y y z z t∈ −∆ ∆ × −∆ ∆ × −∆ ∆ × ∆  

to the reference element given by ( ) [ ] [ ] [ ] [ ], , , 1/ 2,1/ 2 1/ 2,1/ 2 1/ 2,1/ 2 0,1ξ η ζ τ ∈ − × − × − ×  . 

With this linear mapping, the governing PDE becomes 
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( ) ( ) ( ) ( ) ( ), , , , , , , , , , , ,
, , ,

ξ η ζ τ ξ η ζ τ ξ η ζ τ ξ η ζ τ
ξ η ζ τ

τ ξ η ζ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

u f g h
s    (5.1) 

where we have the slight redefinitions (and rescalings) given by ( ) ( ), , , , , ,x y z tξ η ζ τ =u U , 

( ) ( ), , ,  , , ,t x y z t xξ η ζ τ = ∆ ∆f F , ( ) ( ), , ,  , , ,t x y z t yξ η ζ τ = ∆ ∆g G  , 

( ) ( ), , ,  , , ,t x y z t zξ η ζ τ = ∆ ∆h K  and ( ) ( ), , ,  , , ,t x y z tξ η ζ τ = ∆s S  . Please note that we are 

making a small notational realignment in the nomenclature for the z-flux. 

 Since we will need to evaluate the time-averaged electric and magnetic fields at the edges 

of the mesh, see Fig. 1, it is very beneficial if our ADER predictor step gives us the time-evolution 

of the primal variables at those locations. To obtain up to fourth order of accuracy, we need to 

have fourth order accurate quadrature at each edge and that is provided by the Simpson quadrature 

rule. The nodal points that we choose within each reference element are, therefore, a tensor product 

of the Gauss-Lobatto quadrature points as shown in Fig. 2. In this Sub-section, we describe the 

ADER predictor step with third order of accuracy. The present ADER scheme is closest to the one 

in Dumbser et al. [26]. However, it differs in two significant ways. First, we use Gauss-Lobatto-

like quadrature points inside the reference element instead of using Gaussian quadrature points. 

This has the advantage that it directly gives us the primal variables at the edges of the mesh. This 

is advantageous in overall scheme design because the Riemann solvers are also invoked at the 

edges of the mesh in a CED code. The overall accuracy of the scheme is not compromised. Second, 

we use a special set of nodal points in time. This special set of nodal points simplifies the matrix 

inversion dramatically when stiff source terms are present, as will be shown in the next Sub-

section. While we specialize to third order, all the innovations described here extend to all orders 

and can be applied to any hyperbolic PDE system with stiff source terms. 

 Fig. 2 shows the nodal points in the reference element that are used for the ADER predictor 

step at third order. The reference element has coordinates ( ), ,ξ η ζ . The nodal points are shown 

as filled dots. Notice that we use a tensor product of the third order accurate Gauss-Lobatto 

quadrature points. The plane that is shown in the middle of the x-direction is just intended to guide 

the eye. Label the coordinates in Fig. 2 with an index “i”, so that the thi  nodal point is given by 

( ), ,i i i iξ η ζ=r . We have 1,..., 27i =  such nodal points within the reference element at third order 
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as seen from Fig. 2. The specific numbering of nodes that we chose at third order is shown in Fig. 

2 and the nodal numbers are color-matched with the nodes they represent. (At fourth order, we 

would have 64 such nodal points). At third order we consider polynomials that are built from the 

tensor product of the following polynomial sets: { } { } { }2 2 21, , 1, , 1, ,ξ ξ η η ζ ζ⊗ ⊗ . Note that the 

polynomials that we are considering have as many free coefficients as the number of nodal points 

in Fig. 2. We now form 1,..., 27j =  such polynomials, denoted by ( )jφ r , which are obtained by 

asserting the following rule 

( )         1,..., 27   and    1,..., 27j i ij i jφ δ= ∀ = =r        (5.2) 

These ( )jφ r  form the spatial basis for our scheme. With these spatial basis in hand, we can use 

the reconstructed vector fields to write the solution vector at the initial time as 

( ) ( )
27

1
, ,  j j

j
ξ η ζ φ

=

=∑w w r           (5.3) 

Here jw  is the value of the six-component solution vector from eqn. (2.9) at the nodal point “j” 

within the reference element shown in Fig. 2 at time 0τ = . 

 Since we want the third order accurate temporal evolution of the PDE, we define three 

temporal nodal points given by the two Gaussian points ( )1 1 1 3 2τ = −  , ( )2 1 1 3 2τ = +  and 

the third temporal node given by 3 1τ = . (For fourth order, it is important to choose the three 

Gaussian points ( )1 1 3 5 2τ = −  , 2 1 2τ =  , ( )3 1 3 5 2τ = +  and the fourth temporal node 

given by 4 1τ = ). There is something special about this way of choosing these specific temporal 

nodal points, and this is an insight that we missed in Dumbser et al. [26]. With this choice of nodal 

points, the update equation for the solution vector at the last temporal nodal point only depends on 

the source terms at the previous temporal nodal points at the same spatial location. This can be 

used to make a dramatic simplification of the matrix inversion when stiff source terms are present 

– this is a point that we will illustrate in Sub-section IV.3, and the insight carries over to all orders. 

In simple terms, say we want to treat the stiff source terms in an M-component hyperbolic system 

with Nth order of temporal accuracy.  The original Dumbser et al. [26] ADER scheme would 
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require us to invert an ( ) ( )NM NM×  matrix at each spatial nodal point. Our new arrangement of 

temporal nodes is such that we only have to invert N matrices, each of size M M×  , at each spatial 

nodal point in our new ADER scheme. This is a significant improvement in computational 

efficiency when dealing with stiff source terms. When the source terms are non-stiff, both ADER 

methods operate with comparable efficiency and they also have comparable accuracy. In fact, 

when source terms are non-stiff, SSP-RK methods are also available at all reasonable orders of 

accuracy (Shu and Osher [39], [40], Spiteri and Ruuth [37], [38]). But please note that even for 

non-stiff hyperbolic problems SSP-RK methods have been shown to be inefficient relative to the 

original ADER schemes (see Balsara et al. [6]). However, in CED, it is very common to have very 

high conductivities, and therefore very stiff source terms. For this reason, we suggest that our 

newer ADER scheme might be more efficient for hyperbolic problems with stiff source terms than 

our original ADER scheme in Dumbser et al. [26] and also the RK schemes for treating stiff source 

terms (Pareschi and Russo [36], Hunsdorfer and  Ruuth [29], Kupka et al. [33]). 

 We define temporal basis functions, which are quadratic polynomials in “τ ”. Denote the 

three such polynomials by ( )kθ τ  and we make them satisfy the property 

( )         1,...,3   and    1,...,3k m km k mθ τ δ= ∀ = =        (5.4) 

We seek a DG-like formulation for ADER where we will use the functions in eqn. (5.4) to define 

a space-time bases. The assembly of these spatial and temporal basis sets can be automated with a 

computer algebra system and the polynomials themselves are not needed in the computer code 

implementation.  

 We now define the space-time basis functions given by ( ), ,j kψ τr  that are defined by 

( ) ( ) ( ), ,           1,..., 27    and    1,...,3j k j k j kψ τ φ θ τ= ∀ = =r r      (5.5) 

The above equation gives us 81 space-time bases and the full space-time solution vector within 

the zone is specified by 81 coefficients as follows 

( ) ( )
3 27

, ,
1 1

, , ,  ,j k j k
k j

ξ η ζ τ ψ τ
= =

=∑∑u u r          (5.6) 
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Given the definition of our space-time basis functions, we see that the 81 coefficients ,j ku  in the 

above equation are indeed the nodal values of the solution vector at the 81 space-time nodes. These 

81 six-component vectors, { }, ; 1,..., 27 and 1,...,3j k j k= =u  , are the desired output from the 

ADER predictor step. We want to find them consistent with the initial conditions, given by the set 

of 27 six-component vectors { }; 1,..., 27j j =w  in eqn. (5.3), and the governing PDE given by eqn. 

(5.1) in the reference element. We seek a DG-like formulation for ADER where the bases 

( ), ,j kψ τr  will be used as both the trial and the test functions. 

 We wish to obtain converged values for { }, ; 1,..., 27 and 1,...,3j k j k= =u  via an iterative 

process. A very good starting guess with which to start the iteration would be 

,   1,...,3j k j k= ∀ =u w  . Let us say that we have some intermediate guess for 

{ }, ; 1,..., 27 and 1,...,3j k j k= =u  . We can now evaluate the x-flux as ( ), ,j k j k≡f f u  and the source 

terms as ( ), ,j k j k=s s u at each of those space-time nodal points so that we can write 

( ) ( )
3 27

, ,
1 1

, , ,  ,j k j k
k j

ξ η ζ τ ψ τ
= =

=∑∑f f r          (5.7) 

and 

( ) ( )
3 27

, ,
1 1

, , ,  ,j k j k
k j

ξ η ζ τ ψ τ
= =

=∑∑s s r          (5.8) 

Analogous definitions can be made for the y- and z-fluxes. We now explain how we obtain the 

governing equations with which the iterations can be advanced. 

 Our solution strategy at third and fourth orders exactly follows the approach laid out in 

Balsara et al. (2017) at second order. We, nevertheless, give a few brief details for the sake of 

completeness. The PDE in eqn. (2.9), and analogously eqn. (5.1), controls the dynamics.  If we 

want to iteratively improve the solution vector itself, we should involve the governing PDE in the 

iteration step. In other words, an improved iterate for eqn. (5.6) can only be obtained if we involve 

eqn. (5.1). This is most easily done by using our test functions to make a Galerkin projection in 
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space-time of the governing equation. In other words, let ( ), , , ,j kφ ξ η ζ τ  with 1,.., 27j = and 

1,...,3k =  be one of the 81 test functions from eqn. (5.6). For 1,.., 27j = and 1,...,3k =  we then 

demand that 

( )

( ) ( )

( ) ( ) ( )

1 1/2 1/2 1/2

,
0 1/2 1/2 1/2

, , , , , ,

, , , 0
, , , , , ,

, , ,
j k d d d d

ξ η ζ τ ξ η ζ τ
τ ξ

φ ξ η ζ τ ξ η ζ τ
ξ η ζ τ ξ η ζ τ

ξ η ζ τ
η ζ

− − −

    ∂ ∂ 
 +    ∂ ∂        =        ∂ ∂       + + −        ∂ ∂     

∫ ∫ ∫ ∫

u f

g h
s

            (5.9) 

Please note that the square bracket in the previous equation is not a matrix. In the above equation, 

we are simply projecting the governing equation, i.e. eqn. (5.1), into the space of test functions 

and demanding that the projection is zero. To do this consistent with the initial conditions in eqn. 

(5.3), we carry out integration by parts for the time-derivative term in eqn. (5.9) to yield 

  

( ) ( ) ( ) ( ){ }

( ) ( )

( )

1/2 1/2 1/2

, ,
1/2 1/2 1/2

1 1/2 1/2 1/2
,

0 1/2 1/2 1/2

,

, , , 1 , , , 1 , , , 0 , ,

, , ,
, , ,

, , ,

j k j k

j k

j k

d d d

d d d d

φ ξ η ζ τ ξ η ζ τ φ ξ η ζ τ ξ η ζ ξ η ζ

φ ξ η ζ τ
ξ η ζ τ ξ η ζ τ

τ

φ ξ η ζ τ

− − −

− − −

   = = − =   
   
   ∂        −        ∂        

∂

+

∫ ∫ ∫

∫ ∫ ∫ ∫

u w

u

( ) ( )

( ) ( )

1 1/2 1/2 1/2

0 1/2 1/2 1/2

, , , , , ,

0
, , ,

, , ,
d d d d

ξ η ζ τ ξ η ζ τ
ξ η

ξ η ζ τ
ξ η ζ τ

ξ η ζ τ
ζ

− − −

    ∂ 
 +    ∂ ∂        =        ∂       + −        ∂     

∫ ∫ ∫ ∫

f g

h
s

  

            (5.10) 

Operationally, to carry out the Galerkin projection, we simply insert eqns. (5.3), (5.6), (5.7) and 

(5.8), as well as their analogues, into the square bracket in eqn. (5.10). We then use a computer 

algebra system to carry out the four-dimensional space-time integrals. The computer algebra 

system is further asked to simplify the resulting 81 equations that we get from eqn. (5.10). After a 

little bit of manipulation with the computer algebra system, we get 81 very elegant, very compact, 
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and very simple, evolutionary equations which we will describe briefly in the next paragraph. 

Computer algebra systems have become so sophisticated that one can just ask them to solve the 

81 conditions in eqn. (5.10) for each of the elements of the set { }, ; 1,..., 27 and 1,...,3j k j k= =u   

and they will, almost effortlessly, provide a solution. 

 We write down the three equations that we get from the above procedure at the first nodal 

point in Fig. 2. I.e., we want to examine the structure of the equations for 1,1u  , 1,2u  and 1,3u  . The 

update equation for 1,1u  can be written (with the source terms taken over to the left hand side) as 

( ) ( ) ( ) ( )

( ) ( )

1,1 1,1 1,2 1,3 1 3,1 2,1 5,1 4,1 7,1 6,1

3,2 2,2 5,2 4,2 7,2 6,2 3,3 2,3 5,3 4,3 7,3 6,3

18 3 12 11 3 3 18 3
60 60 30 60

12 11 3 3                 +
60 30

− − −
− − − = + − + − + −

−
− + − + − + − + − + −

u s u s u s u w f f g g h h

f f g g h h f f g g h h
 

            (5.11) 

The update equation for 1,2u  can be written (with the source terms taken over to the left hand side) 

as 

( ) ( ) ( ) ( )

( ) ( )

1,2 1,1 1,2 1,3 1 3,1 2,1 5,1 4,1 7,1 6,1

3,2 2,2 5,2 4,2 7,2 6,2 3,3 2,3 5,3 4,3 7,3 6,3

12 11 3 18 3 3 12 11 3
60 60 30 60

18 3 3                                  +
60 30

+ + +
− − + = + − + − + −

+
− + − + − − − + − + −

u s u s u s u w f f g g h h

f f g g h h f f g g h h
 

            (5.12) 

The update equation for 1,3u  can be written (with the source terms taken over to the left hand side) 

as 

( ) ( ) ( )

( )

1,3 1,1 1,2 1 3,1 2,1 5,1 4,1 7,1 6,1

3,2 2,2 5,2 4,2 7,2 6,2

1 1 1
2 2 2

1                                               +
2

− − = + − + − + −

− + − + −

u s u s u w f f g g h h

f f g g h h
    (5.13) 

It is useful to mention several interesting traits in the above three equations. The right hand sides 

of eqns. (5.11), (5.12) and (5.13) can be evaluated by using the set of all 
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{ }, ; 1,..., 27 and 1,...,3j k j k= =u  from the previous iteration. Notice too that the right hand sides 

of the above three equations have an elegant finite difference-like quality; this makes computer 

implementations very simple. This is a trait that we see for the update equations at all 27 nodal 

points in Fig. 2. (It also extends to fourth and higher orders for this class of ADER schemes.) The 

left hand sides of eqns. (5.11), (5.12) and (5.13) should be evaluated implicitly because they 

contain the contributions from stiff source terms. Notice that the source terms ( )1,1s u  , ( )1,2s u  and 

( )1,3s u  are the only source terms that couple to 1,1u  , 1,2u  and 1,3u . All these traits are also available 

in the formulation from Dumbser et al. [26]. However, eqn. (5.13) has a trait that is not available 

in the formulation from Dumbser et al. [26] and this extra trait opens the door to a very simple 

solution strategy. Observe from eqn. (5.13) that its left hand side lacks a term with ( )1,3s u . This 

will be exploited to produce a very simple solution strategy in the next section. Such a simple 

solution strategy is not possible for the formulation from Dumbser et al. [26]. It is important to 

point out that this trait will be observed at all 27 nodal points at third order. Indeed, as long as the 

temporal basis set from eqn. (5.4) is used, it will be observed at all orders. Physically, eqn. (5.13) 

expresses the update of 1,3u  at 3 1τ = . It is then evident that the time-integration of the source terms 

is just given by ( ) ( )( )1,1 1,2 2+s u s u  . Consequently, ( )1,3s u  does not appear on the left hand side 

of eqn. (5.13). In retrospect, this is the physical motivation for choosing the temporal quadrature 

points that we indeed chose. 

 The above three equations can also be used to check whether the user’s computer algebra 

system has produced the correct answers. In the next Sub-section we describe our efficient solution 

strategy for making a time-implicit solution of eqns. (5.11), (5.12) and (5.13). In the electronic 

supplements on the JCP website, we provide the computer algebra system codes for ADER 

schemes at second third and fourth orders. Please cite this paper, and its allied papers (Dumbser et 

al. [25], [26], Balsara et al. [6], [9]) when the associated ADER scheme is used for any PDE system 

with stiff source terms. 

IV.3) Efficient Treatment of Implicit Source Terms at Third Order 
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 Let us now describe our efficient solution strategy for making a time-implicit solution of 

eqns. (5.11), (5.12) and (5.13). Let us begin by defining the following Jacobian matrices for the 

source terms 

( ) ( ) ( )1,1 1,2 1,3
1,1 1,2 1,3

1,1 1,2 1,3

     ;          ;     
∂ ∂ ∂

≡ ≡ ≡
∂ ∂ ∂

s u s u s u
M M M

u u u
     (5.14) 

Also let 0
1,1R  , 0

1,2R  and 0
1,3R  be the residuals for eqns. (5.11), (5.12) and (5.13). Let I  be the 6 6×  

identity matrix. Then the matrix equation that we need to solve for the increments  1,1δu  , 1,2δu  

and 1,3δu  is given by 

0
1 1,1 2 1,2 3 1,3 1,1 1,1

0
1 1,1 2 1,2 3 1,3 1,2 1,2

0
1 1,1 2 1,2 1,3 1,3

a a a
b b b
c c

δ
δ
δ

    − − −
    − − − =     
    − −     

I M M M u R
M I M M u R
M M I u R

       (5.15) 

with  

1 2 3

1 2 3 1 2

18 3 12 11 3 3   ;      ;      ;   
60 60 30

12 11 3 18 3 3 1 1   ;      ;      ;      ;   
60 60 30 2 2

a a a

b b b c c

− −
= = =

+ +
= = = − = =

    (5.16) 

For CED, the matrix in eqn. (5.15) is an 18 18×  matrix and its direct inversion would be rather 

expensive. This is especially true for an ADER scheme because such 18 18×  matrices would have 

to be inverted at all 27 nodal points. It would be very desirable if we could simplify the problem 

so that we only had to invert two 6 6×  matrices! Because of the identity matrix in the lower right 

corner of the matrix in eqn. (5.15) we can perform row operations with the 6 6×  blocks in order 

to achieve this goal. We make this strategy explicit in the next paragraph. 

 Performing row operations on the 6 6×  blocks, we can write eqn. (5.15) as 

1 1 1
1,2 1,3 1,1 1,1

1 1 1
2,1 2,3 1,2 1,2
1 1 1
3,1 3,2 1,3 1,3

δ
δ
δ

    
     =    
        

I N N u R
N I N u R
N N I u R

         (5.17) 
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with 

1 1 1 11 2 2 1 1 1 2 2 1 2
1,2 1,2 1,3 3 1,3 2,1 1,1 2,3 3 1,3

1 1 2 2

1 1 1 0 0 1 01 2
3,1 1 1,1 3,2 2 1,2 1,1 1,1 1,3 1,2 1,2

1

    ;        ;        ;       ;

    ;        ;        ;    

a c a c a c b c b ba b
c c c c

a bc c
c c

− −
= = − − = = − −

= − = − = − = −

N M N I M N M N I M

N M N M R R R R R 0 1 0
1,3 1,3 1,3

2

    ;   =R R R
 

            (5.18) 

Performing another round of row operations on the 6 6×  blocks, we can write eqn. (5.17) as 

2 2 2
1,2 1,3 1,1 1,1
2 2 2
2,2 2,3 1,2 1,2
2 2 2
3,2 3,3 1,3 1,3

0
0

δ
δ
δ

    
     =    
        

I N N u R
N N u R
N N u R

         (5.19) 

with 

2 1 2 1 2 1 1 2 1 1 1
1,2 1,2 1,3 1,3 2,2 2,1 1,2 2,3 2,3 2,1 1,3

2 1 1 1 2 1 1
3,2 3,2 3,1 1,2 3,3 3,1 1,3

2 1 2 1 1 1
1,1 1,1 1,2 1,2 2,1 1,1

    ;        ;        ;        ;

    ;        ;    

    ;        ; 

= = = − = −

= − = −

= = −

N N N N N I N N N N N N

N N N N N I N N

R R R R N R 2 1 1 1
1,3 1,3 3,1 1,1       ;= −R R N R

   (5.20) 

Now we evaluate the 6 6×   matrix ( ) 12
2,2

−
N  and we use it to do another round of row operations 

on the 6 6×  blocks. From eqn. (5.19) we then get 

( )
( )

( )
( )

2 2 2
1,2 1,3 1,1

1,1
1 12 2 2 2

2,2 2,3 1,2 2,2 1,2

1 12 2 2 2 2 2 2 21,3
3,3 3,2 2,2 2,3 1,3 3,2 2,2 1,2

0

0 0

δ
δ
δ

− −

− −

   
    
    =    
     − −      

I N N Ru
I N N u N R

uN N N N R N N R

    (5.21) 

A further solution of the 6 6×   linear system given by the last block of rows in eqn. (5.21)  reduces 

the above system to a solvable upper triangular system with a trivial solution. In other words, solve 

on the 6 6×   linear system ( ) ( )1 12 2 2 2 2 2 2 2
3,3 3,2 2,2 2,3 1,3 1,3 3,2 2,2 1,2δ

− − − = −  
N N N N u R N N R  first, then the 

solution for the rest of eqn. (5.21) becomes trivial. Notice that we have been able to invert the 

system of equations in eqn. (5.15) with just the inversion of one 6 6×   matrix and the solution of 

one 6 6×   linear system. This is a substantial improvement over the inversion of the 18 18×  matrix 
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in eqn. (5.15)! The method presented here is very general and applies to any PDE system with stiff 

source terms. The simplified matrix solution strategy also extends to all orders of temporal 

accuracy when the ADER schemes from this paper are used. When the permittivity and 

permeability tensors in CED are diagonal, the inversions simply entail inverting a diagonal matrix, 

which makes the solution even simpler. 

IV.4) Stepwise Implementation-related Details for ADER-WDENO schemes for CED 

 Here we describe the computer implementation of a spatially and temporally third order 

accurate ADER-WENO scheme for CED in a pointwise form. The corresponding fourth order 

ADER-WENO scheme can also be constructed once the steps described here are understood. 

1) At the time of initializing the code, reconstruct the permittivity and permeability tensors, as well 

as the conductivities, so that they have the appropriate order of reconstruction. For example, at 

third order, the material properties should also have the same moments as the ones shown in eqn. 

(3.2). 

2) We start with the primal variables shown in Fig. 1. In other words, the primal variables for our 

method are the face-averaged components of the electric displacement and magnetic induction 

vector fields. 

3) Using eqn. (3.1) we build the zone-averaged charge density within each zone. Using that charge 

density and any reasonable WENO scheme applied to the charge density, we build the higher 

moments of the charge density within each zone; see eqn. (3.2). 

4) Using any reasonable WENO scheme applied to the primal variables in the faces (Balsara and 

Shu 2000, Balsara et al. 2009, Balsara, Garain and Shu 2016) we construct the moments of the 

primal variables within each face, as shown in eqns. (3.3), (3.4) and (3.5).  

5) Use the constraint-preserving reconstruction strategy from Appendix A to obtain the 

coefficients of the eqns. (3.6), (3.7) and (3.8). This gives the electric displacement vector field at 

any point within all the zones of the mesh. Follow an analogous procedure to obtain the magnetic 

induction vector field within all the zones. 
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6) Using the reconstructed electric displacement and magnetic induction vector fields, evaluate the 

set of 27 six-component nodal vectors { }; 1,..., 27j j =w  that are needed in eqn. (5.3). Eqns. (3.6), 

(3.7) and (3.8), which we specified in the previous step, give us the method for evaluating these 

input values for the ADER predictor step. We will also need the permittivity and permeability 

tensors and the conductivities at those nodal points. These too have to be evaluated with suitably 

high order of accuracy. Initialize the iteration with ,    1,..., 27 and 1,...,3j k j j k= ∀ = =u w  . Also 

evaluate the coefficients in the fluxes and the source terms in eqns. (5.7), (5.8) and their analogues. 

As the ADER iterations progress, these flux and source coefficients have to be re-evaluated for 

each new iteration, of course. 

7) Eqns. (5.11), (5.12) and (5.13) explicitly provide the update equations at the first nodal point 

shown in Fig. 2. It is expected that the implementer will obtain analogous equations at all the nodes 

shown in Fig. 2. (Hopefully, the detailed description of ADER schemes in the electronic 

supplement to this paper will help. We do request that this paper, and its allied papers (Dumbser 

et al. [25], [26], Balsara et al. [6], [9]), be cited when the associated ADER scheme is used.) Carry 

out one iteration of these update equations. Use the methods in Sub-section IV.3 to treat implicit 

source terms, if such stiff source terms are present. This gives us an improved approximation for 

the set { }, ; 1,..., 27 and 1,...,3j k j k= =u  that can be used in the next iteration. Our experience has 

been that at third order, we never need more than three ADER iterations. At fourth order, we need 

four ADER iterations. We assume that by the end of this ADER iteration step we have the outputs 

of the ADER iteration, which are the coefficients ,j ku  in eqn. (5.6). This gives us the entire space 

and time variation of the primal variables within each zone. This variation is also third order 

accurate in space and time within each zone. 

8) Using the outputs from step 7, we can build the time-averaged nodal values that are needed at 

the edge of each zone. These are one set of outputs from the ADER predictor step and will 

constitute the inputs for the multidimensional Riemann solver.  

9) Using the outputs from step 7 again, we can build the space and time-averaged stiff source terms 

at each face of Fig. 2. As a result, each face will have two space-time averaged, and implicitly 

treated source terms (current densities) from the two zones that abut it. These are the second set of 
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outputs from the ADER predictor step and will constitute the inputs for the facial source terms. 

Since these source terms have already been implicitly treated within each zone, we just 

arithemtically average the source terms from either side of each face in order to get the facial 

current densities that are to be used in the one-step update shown in eqns. (2.10) and (2.11). 

10) Within each edge, thanks to Fig. 2, we have already identified three nodal points consistent 

with the Simpson rule. We wish to apply the multidimensional Riemann solver at each of those 

nodal points. The multidimensional Riemann solver takes as its input the four electric displacement 

and magnetic induction vectors from the four zones that surround the edge in question. (Unlike the 

Runge-Kutta step, these are time-averaged values that we have obtained from step 8.) The material 

properties, evaluated with sufficient order of accuracy, should also be provided as inputs to the 

multidimensional Riemann solver. For our purposes, the multidimensional Riemann solver returns 

as an output the edge-aligned components of the electric and magnetic field vectors as shown in 

Fig. 1. Please see Section V of Balsara et al. (2017), and specifically eqns. (5.6) and (5.7), of 

Balsara et al. (2017) for a detailed description of the multidimensional Riemann solver for CED. 

Because we have three quadrature points, we can use the weighting from the Simpson rule to 

obtain a higher order line-averaged value for the electric and magnetic field components within 

each edge. These line-averaged values are also time-averaged. Consequently, they are just the right 

edge-averaged electric and magnetic field components that are needed in the one-step update 

shown in eqns. (2.10) and (2.11). 

11) The previous two steps have shown us how to obtain the space-time averaged current densities 

at the faces of the mesh as well as the space-time averaged electric and magnetic field components 

at the edges of the mesh. Assemble these terms using eqns. (2.10) and (2.11) in order to complete 

one full ADER-WENO step. 

This completes our stepwise description of the ADER-WENO scheme for CEM.  

 

V) Results 
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 We first provide several tests that demonstrate that our methods meet their designed order 

of accuracy. Subsequently, we report on several interesting and stringent test problems. Uniform 

meshes are used for all of these tests. 

V.a) Propagation of a Plane Electromagnetic Wave in Two Dimensions 

 The three-dimensional version of this test has already been reported in Balsara et al. 

(2016b) and the two-dimensional version of this test has been reported in Balsara et al. (2017). We 

do not repeat the problem set-up here. This test problem consists of a plane polarized 

electromagnetic wave propagating in a vacuum along the north-east diagonal of a two dimensional 

Cartesian mesh spanning [ ] [ ]0.5,0.5 0.5,0.5− × − . Periodic boundary conditions were enforced. The 

problem was run with a CFL of 0.45 to a final time of unity on the computational mesh. 

Table I shows the accuracy analysis for the second order ADER-WENO scheme. We see 

that the scheme meets its designed second order accuracy. Table II shows the accuracy analysis 

for the third order ADER-WENO scheme. We see that the scheme is indeed third order accurate. 

Table III shows the accuracy analysis for the fourth orderADER-WENO scheme. We see that the 

scheme is indeed fourth order accurate. It is noteworthy that our fourth order scheme, acting on a 

162 mesh can produce an accuracy that is comparable to a second order scheme, acting on a 1282 

mesh. It shows the value of the higher order formulations for computational electromagnetism 

developed in this paper. 

Table I shows the accuracy analysis for the second order ADER-WENO scheme for the 

propagation of an electromagnetic wave in vacuum. A CFL of 0.45 was used. The errors and 

accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown. 

zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

162 7.8656E-05  1.2448E-04  

322 1.5608E-05 2.33 2.4474E-05 2.35 

642 3.7288E-06 2.07 5.8575E-06 2.06 

1282 9.2983E-07 2.00 1.4606E-06 2.00 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 
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162 4.0557E-02  6.2464E-02  

322 8.2597E-03 2.30 1.3014E-02 2.26 

642 1.9705E-03 2.07 3.0920E-03 2.07 

1282 4.8785E-04 2.01 7.6614E-04 2.01 

 

Table II shows the accuracy analysis for the third order ADER-WENO scheme for the 

propagation of an electromagnetic wave in vacuum. A CFL of 0.45 was used. The errors and 

accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown. 

zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

162 3.8899E-05  5.7293E-05  

322 4.5684E-06 3.09 7.0625E-06 3.02 

642 5.4770E-07 3.06 8.5467E-07 3.05 

1282 6.7628E-08 3.02 1.0571E-07 3.02 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

162 2.0039E-02  3.0544E-02  

322 2.4112E-03 3.06 3.7362E-03 3.03 

642 2.9210E-04 3.05 4.5495E-04 3.04 

1282 3.6006E-05 3.02 5.6308E-05 3.01 

 

Table III shows the accuracy analysis for the fourth order ADER-WENO scheme for the 

propagation of an electromagnetic wave in vacuum. A CFL of 0.45 was used. The errors and 

accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown. 

zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

162 1.8613E-06  3.7388E-06  

322 9.2805E-08 4.33 1.3348E-07 4.81 

642 5.6665E-09 4.03 8.9423E-09 3.90 

1282 3.6462E-10 3.96 5.6873E-10 3.97 
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zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

162 1.0631E-03  1.8582E-03  

322 5.2974E-05 4.33 7.8582E-05 4.56 

642 3.1636E-06 4.07 4.9861E-06 3.98 

1282 2.0062E-07 3.98 3.1241E-07 4.00 

 

V.b) Compact Gaussian Electromagnetic Pulse Incident on a Refractive Disk 

 This problem was drawn from Zakharian et al. (2006) and further refined in Balsara et al. 

(2017). The physical domain spans [ ] [ ]7,7 7,7− × − . It shows the propagation of a Gaussian pulse 

of radiation that is incident on a refractive disk. The waves inside the Gaussian pulse have a 

wavelength of 1.5 m. The disk, with a radius of 0.75 m, has a refractive index of 3 relative to the 

ambient, which has a refractive index of unity. This means that the permittivity in the disk is almost 

an order of magnitude larger than the permittivity in the ambient. A taper of 0.08 m was applied 

to the relative permittivity of the disk so that it smoothly goes from a value of 9 inside the disk to 

a value of 1 outside it. In Balsara et al. (2017) we show further figures that show the refraction of 

the wave by the disk. The figures, as well as the problem set-up are not repeated here.  

 Tables IV, V and VI show the accuracy analysis for second, third and fourth order accurate 

ADER-WENO schemes for this problem. Tables VII, VIII and IX show the corresponding results 

for second, third and fourth order accurate RK-WENO schemes for this problem. This enables us 

to compare and contrast between the schemes. The fourth order RK-WENO scheme used fourth 

order accurate WENO reconstruction in space, but it only used a third order accurate RK scheme 

for the time-integration. As a result, the timestep was reduced with decreasing mesh size using the 

variation 4/3t x∆ ∆  . This ensures that the temporal accuracy matches the fourth order spatial 

accuracy of the RK-WENO scheme. For practical applications, when the timestep is not reduced 

in this fashion, the spatially fourth order RK-WENO scheme described here will be effectively 

third order accurate due to its lower order RK algorithm. 

 From Tables IV and V we see that the second and third order ADER-WENO schemes only 

reach their design accuracy on a 9602 zone mesh. However, from Table VI we see that the fourth 

order ADER-WENO scheme has already reached its design accuracy on a 4802 zone mesh. 
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Furthermore, the fourth order scheme on a 4802 zone mesh is already as accurate as a third order 

scheme on a 9602 zone mesh. On a 4802 zone mesh, the taper corresponds to ~3 grid points. It 

shows that the fourth order scheme indeed detects the sub-cell variation in the dielectric properties 

and responds to them. Also notice from Table V that the third order scheme is already second order 

accurate on a 4802 zone mesh. So, the third order scheme is also quite effective at detecting the 

spatial variation in permittivity and incorporating that variation into the solution. 

 We can also compare Tables IV, V and VI for ADER-WENO schemes to the corresponding 

Tables VII, VIII and IX for RK-WENO schemes. Comparing Table IV to Table VII we see that 

the second order ADER-WENO scheme offers a significant accuracy advantage compared to the 

second order RK-WENO scheme. Comparing Table V to Table VIII we see that the third order 

ADER-WENO scheme has accuracy that is comparable to the third order RK-WENO scheme. If 

we nominally compare Table VI to Table IX we would see that the same trend is repeated at fourth 

order. However, recall that the fourth order RK-WENO code had to use a progressively reduced 

CFL as the mesh was refined, and this is a significant disadvantage for practical computation.  

Table IV shows the accuracy analysis for the second order ADER-WENO scheme for the 

propagation of a Gaussian pulse of radiation that is incident on a refractive disk. A CFL of 

0.45 was used. The errors and accuracy in the y-component of the electric displacement 

vector and z-component of the magnetic induction are shown. 

zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

1202 4.4861E-05  1.7293E-02  

2402 2.6292E-05 0.77 1.7450E-02 -0.01 

4802 8.5367E-06 1.62 5.4298E-03 1.68 

9602 1.9295E-06 2.15 1.2868E-03 2.08 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

1202 1.8617E-02  2.7253E+00  

2402 9.3940E-03 0.99 2.9933E+00 -0.14 

4802 3.0817E-03 1.61 9.7009E-01 1.63 

9602 6.9444E-04 2.15 2.0541E-01 2.24 
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Table V shows the accuracy analysis for the third order ADER-WENO scheme for the 

propagation of a Gaussian pulse of radiation that is incident on a refractive disk. A CFL of 

0.45 was used. The errors and accuracy in the y-component of the electric displacement 

vector and z-component of the magnetic induction are shown. 

zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

1202 3.9216E-05  1.7314E-02  

2402 2.3791E-05 0.72 1.7018E-02 0.02 

4802 5.6346E-06 2.08 4.0016E-03 2.09 

9602 7.8591E-07 2.84 5.4984E-04 2.86 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

1202 1.5523E-02  2.7303E+00  

2402 8.3494E-03 0.89 2.9504E+00 -0.11 

4802 2.0493E-03 2.03 7.5348E-01 1.97 

9602 2.8917E-04 2.83 1.0480E-01 2.85 

  

Table VI shows the accuracy analysis for the fourth order ADER-WENO scheme for the 

propagation of a Gaussian pulse of radiation that is incident on a refractive disk. A CFL of 

0.45 was used. The errors and accuracy in the y-component of the electric displacement 

vector and z-component of the magnetic induction are shown. 

zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

1202 3.0490E-05  1.7238E-02  

2402 1.4925E-05 1.03 1.0730E-02 0.68 

4802 6.2729E-07 4.57 4.3484E-04 4.63 

9602 2.5970E-08 4.59 1.6122E-05 4.75 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

1202 1.0819E-02  2.7229E+00  

2402 5.3574E-03 1.01 1.9133E+00 0.51 

4802 2.3015E-04 4.54 8.0452E-02 4.57 

9602 1.0808E-05 4.41 2.6899E-03 4.90 
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Table VII shows the accuracy analysis for the second order RK-WENO scheme for the 

propagation of a Gaussian pulse of radiation that is incident on a refractive disk. A CFL of 

0.45 was used. The errors and accuracy in the y-component of the electric displacement 

vector and z-component of the magnetic induction are shown. 

zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

1202 7.2342E-05  1.7361E-02  

2402 4.9696E-05 0.54 2.0295E-02 -0.23 

4802 2.2189E-05 1.16 1.1110E-02 0.87 

9602 6.1890E-06 1.84 3.5042E-03 1.66 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

1202 3.3603E-02  2.7402E+00  

2402 2.0922E-02 0.68 3.3818E+00 -0.30 

4802 8.5658E-03 1.29 1.7471E+00 0.95 

9602 2.3723E-03 1.85 5.6219E-01 1.64 

  

Table VIII shows the accuracy analysis for the third order RK-WENO scheme for the 

propagation of a Gaussian pulse of radiation that is incident on a refractive disk. A CFL of 

0.45 was used. The errors and accuracy in the y-component of the electric displacement 

vector and z-component of the magnetic induction are shown. 

zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

1202 4.6479E-05  1.7353E-02  

2402 2.6840E-05 0.79 1.8232E-02 -0.07 

4802 6.4831E-06 2.05 4.4831E-03 2.02 

9602 9.1133E-07 2.83 6.1661E-04 2.86 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

1202 1.9435E-02  2.7331E+00  

2402 9.6392E-03 1.01 3.1132E+00 -0.19 

4802 2.3993E-03 2.01 8.4065E-01 1.89 
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9602 3.4171E-04 2.81 1.1744E-01 2.84 

  

Table IX shows the accuracy analysis for the fourth order RK-WENO scheme for the 

propagation of a Gaussian pulse of radiation that is incident on a refractive disk. The 

timestep was decreased with the decreasing mesh size so that 4/3t x∆ ∆ . The errors and 

accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown. 

zones Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

1202 3.2473E-05  1.7344E-02  

2402 1.6214E-05 1.00 1.1735E-02 0.56 

4802 7.4650E-07 4.44 5.1434E-04 4.51 

9602 3.9596E-08 4.24 2.1422E-05 4.59 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

1202 1.1771E-02  2.7269E+00  

2402 5.8246E-03 1.01 2.0886E+00 0.38 

4802 2.7220E-04 4.42 9.4284E-02 4.47 

9602 1.6876E-05 4.01 3.5698E-03 4.72 

 

V.c) Refraction of a Compact Electromagnetic Beam by a Dielectric Slab 

 This problem was described in detail in Balsara et al. (2017), so we do not repeat the 

description here. It is set up on a rectangular xy-domain that spans [ ] [ ]5,8 2.5,7 μm− × −  . For the 

simulation shown, we use a fourth-order-accurate scheme using a 1300 950×  zone mesh. The 

permittivity increases in a tapered fashion from 0ε  for 0x <  to 02.25ε  for 0x >  . A compact 

electromagnetic beam is incident on the slab at an angle of incidence given by o45 .  

 Figs. 3a, 3b, and 3c show, respectively, Bz, Dx, and Dy at the initial time. Figs. 3d, 3e, and 

3f show the same at the final time of 144.0 10−×  sec. The surface of the dielectric slab is shown by 

a vertical black line. The inclined black lines show the angles of incidence, refraction and reflection 

and these black lines are over-plotted on the field components to guide the eye. According to 
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Snell’s law, the angle of refraction should be 28.12°  since the refractive index of the dielectric 

slab is 1.5. We see that the code obtains the correct angle of refraction. We also observe that some 

of the radiation is reflected from the surface of the slab. The presence of a reflected wave is 

consistent with the Fresnel conditions for transmission and reflection of radiation at dielectric 

interfaces. 

V.d) Total Internal Reflection of a Compact Electromagnetic Beam by a Dielectric Slab 

 This problem was also described in detail in Balsara et al. (2017), so we do not repeat the 

description here. This problem is set up on a rectangular xy-domain that spans 

[ ] [ ]6,2 2.5,6 μm− × −  . For the simulation shown, we use a third-order-accurate scheme using a 

800 850×  zone mesh. Here, ε  is chosen such that it has a value of  04.0ε  for 0x ≤  and tapers 

rapidly to the ambient value of 0ε  for 0x > . This value of permittivity for 0x <  implies a 

refractive index of 2 for the dielectric slab. For this mesh, the taper width that is applied to the 

variation in the permittivity is 0.25 times a zone width. The wavelength in the dielectric medium 

corresponds to about 30 zones. 

 For such a slab, the critical angle for total internal reflection is 30° . As in the previous 

Sub-section, the angle of incidence of the incident radiation is o45 , with the result that the incident 

radiation will undergo total internal reflection. Figs. 4a, 4b, and 4c show, respectively, Bz, Dx, and 

Dy at the initial time. Figs. 4d, 4e, and 4f show the same at the final time of 145.0 10−×  sec. The 

surface of the dielectric slab is shown by a vertical black line. The inclined black lines for the 

incident and reflected rays are over-plotted on the field components to guide our eye. We see from 

the figures that the radiation undergoes total internal reflection, as expected. 

 It is also possible to go further in one’s study of total internal reflection. This interest is 

warranted because total internal reflection plays an important role in the design of optical fibers 

for carrying digital data and also in the design of nano-photonic devices. Let incθ  be the angle of 

incidence for the total internally refracting ray in Fig. 4. Let the optically dense material to the left 

of the black lines in Fig. 4 have a refractive index of 1n  and let the relatively less dense material 

to the right of the black lines in Fig. 4 have a refractive index of 2n  . While the radiation undergoes 
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total internal reflection in the sense of geometrical optics, there exists an evanescent wave in the 

less optically dense medium “2”. In this region, the electromagnetic field 

exhibits two properties. First, the zB  (and also the yD ) components of the radiation in medium 

“2” should die off exponentially with an exponential decay length given by 

( )
0

2 2 2
1 22 sin incn n

λδ
π θ

=
−

  

In the above equation, 0λ  is the free space wavelength. For the values chosen in this problem, we 

have an exponential decay length given by 70.95 10 mδ −= × . Second, realize that the flux of 

radiant energy into medium “2” should average to zero. This is tantamount to requiring that the 

variation of zB  and yD  in medium “2” should be 90o  out of phase. That is the only way that the 

time-average of the Poynting flux can be zero. These two pieces of physics are important markers 

that demonstrate the quality of a numerical scheme for this technologically important application. 

 Fig. 5a shows the envelope of the amplitude of zB  in air as a function of distance from the 

dielectric interface. The amplitude is expected to decay exponentially which is why we use a log-

linear plot. The red crosses show the data while the blue solid line shows the theoretical 

exponential decay. A distance of two exponential decay lengths from the interface is shown. Fig. 

5b shows the variation of zB  and yD  as a function of time at a station in the air. For there to be 

no energy transfer into the air from the total internal reflection, the two field variables should be 

90o  out of phase; a result which is confirmed by Fig. 5b. 

V.e) Compact Electromagnetic Beam Impinging on a Conducting Slab 

 This test problem was also described in Balsara et al. (2017) and is intended to demonstrate 

the ability of our method to handle gigantic variations in conductivity over very short distances. 

The problem is set up on a rectangular xy-domain that spans [ ] [ ]25,5 40,40− × − m . Please see the 

cited paper for further details. For the simulations shown, we use a fourth-order-accurate scheme 

using a 750 2000×  zone mesh. A copper slab is located in the domain 0x ≥  and the conductivity 

goes from zero for 0x <  to a conductivity of 7
0 5.9 10σ = × S/m for 0x >  with a taper of one zone! 
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This represents a gigantic change in the stiffness of the equations. We realize that the skin depth 

is unresolved in our simulations and we also realize that a perfect electrical conductor (PEC) 

surface in CED would be treated differently. Of course, we expect the radiation to be reflected at 

the copper surface.  

 Figs. 6a, 6b, and 6c show, respectively, Bz, Dx, and Dy at the initial time. Figs. 6d, 6e, and 

6f show the same at the final time of 71.83 10−× s. The surface of the conducting slab is shown by 

a black line. It is interesting to observe that with very reasonable resolutions, most of the incident 

intensity in the radiation is reflected back at the copper surface. Fig. 7 shows the interference 

pattern that develops between the incident and reflected radiation. 

V.f) Decay of a Sinusoidal Wave inside a Conductor 

 The previous problem did not resolve the skin depth of the conductor. In this one-

dimensional problem we resolve the skin depth of the conductor. This test problem was described 

in Balsara et al. (2017) and we do not repeat the description here. The problem is set up on a 1D 

domain that spans  [ ]0,10δ where δ  is the skin depth of the conductor. For the simulations shown, 

we use a second-order-accurate scheme using a 100 zone mesh. Thus, we use 10 zones per skin 

depth for this simulation. Two simulations were carried out. In our first simulation we used a 

conductivity of 32.0 10σ = × S/m which corresponds to the conductivity of amorphous carbon. In 

our second simulation we used 75.9 10σ = × S/m which corresponds to the conductivity of copper. 

For carbon, we choose 131.679 10ν = ×  Hz which gives 63.44 10δ −= × m and a wavelength of the 

plane wave as 51.38 10λ −= × m inside this material. We stop this simulation at a time of  
132.38 10−× s. For copper, we choose 131.0 10ν = ×  Hz which gives 82.06 10δ −= × m and a 

wavelength of the plane wave as 71.3 10λ −= × m inside this material. We stop this simulation at a 

time of  132.0 10−× s. 

 We will now show that the numerical results accurately match the analytic results even 

when the skin depth is resolved with no more than ten zones. A fourth-order-accurate ADER-

WENO scheme was used. Figs. 8a and 8b show the variations of Bz with radial distance inside 

carbon and copper, respectively. The exponentially decaying envelopes are also over-plotted. In 

Figs. 8c and 8d we present the structure of the numerical envelopes (red crosses) and the analytical 
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envelopes (blue curve) on a semi-log scale for carbon and copper, respectively. The numerically-

obtained envelopes match extraordinarily well with the analytical envelopes. Fig. 10 of Balsara et 

al. (2017) shows the same plot at the same resolution for a second order FVDT scheme for CED. 

We see a dramatic improvement in our fourth order data when it is compared to the second order 

data for this same problem. 

V.g) Accuracy Analysis for the Decay of a Sinusoidal Wave in a Conductor – Demonstrating 

Accuracy in the Presence of Extremely Stiff Source Terms 

 Sometimes, methods that are designed to retain accuracy for hyperbolic problems without 

source terms do not retain the same accuracy when stiff source terms are present. We demonstrate 

that this is not the case for our methods. We analyze the accuracy of wave propagation in a copper 

conductor. We focus on just the portion of the data that is shown in Fig. 8d and we compare the 

numerically-derived field components with the analytical field components in order to extract an 

order of accuracy. Please note, however, that the accuracy analysis was done somewhat differently. 

When performing an accuracy analysis, we provide the solution as a function of time on the ghost 

zones with 0x <  and also on the ghost zones with 71.0 10x m−> × . For the active computational 

domain with 70 1.0 10x m−≤ ≤ ×  we only initialize the solution at time 0t =  and we measure the 

error within the dynamically active part of the mesh at a time of 134.0 10 sect −= × . This 

corresponds to a situation where the wave propagates through the computational domain about 

five times. 

 Tables X, XI and XII show the accuracy, measured in the 1L  and L∞  norms, for second, 

third and fourth orders respectively. The ADER-WENO schemes were used for all the reported 

accuracy tests. The second and fourth order schemes show a serendipitous increase in accuracy. 

However, as in Sub-section VI.b, we see that all the ADER-WENO schemes achieve their design 

accuracies; and this accuracy requirement is met even when extremely stiff source terms are 

present. We also see that the higher order schemes reach their design accuracies on a smaller 

number of mesh points than the lower order schemes. This reinforces our conclusion that higher 

order constraint-preserving FVTD schemes are very versatile and valuable schemes for CED. 

Table X shows the accuracy analysis for the second order ADER-WENO scheme for the 

decay of a sinusoidal wave inside a copper conductor. A CFL of 0.45 was used. The errors 
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and accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown. 

Zones per skin 

depth 

Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

5 5.1861E-07  1.0174E-06  

10 5.8877E-08 3.14 1.2488E-07 3.03 

20 7.0982E-09 3.05 1.8261E-08 2.77 

40 1.0610E-09 2.74 2.5650E-09 2.83 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

5 4.9259E-02  1.0510E-01  

10 7.0452E-03 2.81 1.7416E-02 2.59 

20 9.3963E-04 2.91 2.3337E-03 2.90 

40 1.1686E-04 3.01 2.8815E-04 3.02 

  

Table XI shows the accuracy analysis for the third order ADER-WENO scheme for the decay 

of a sinusoidal wave inside a copper conductor. A CFL of 0.45 was used. The errors and 

accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown. 

Zones per skin 

depth 

Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

5 3.7217E-07  8.5076E-07  

10 4.2162E-08 3.14 9.1763E-08 3.21 

20 4.8410E-09 3.12 1.2439E-08 2.88 

40 7.6775E-10 2.66 1.8599E-09 2.74 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

5 3.3262E-02  7.2717E-02  

10 4.7679E-03 2.80 1.1811E-02 2.62 

20 6.3506E-04 2.91 1.5716E-03 2.91 

40 8.0823E-05 2.97 1.9900E-04 2.98 
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Table XII shows the accuracy analysis for the fourth order ADER-WENO scheme for the 

decay of a sinusoidal wave inside a copper conductor. A CFL of 0.45 was used. The errors 

and accuracy in the y-component of the electric displacement vector and z-component of the 

magnetic induction are shown. 

Zones per skin 

depth 

Dy L1 error Dy L1accuracy Dy Linf error Dy Linf accuracy 

5 1.0115E-08  2.2503E-08  

10 2.4695E-10 5.36 6.2465E-10 5.17 

20 7.1326E-12 5.11 1.6365E-11 5.25 

40 2.9685E-13 4.59 6.9852E-13 4.55 

zones Bz L1 error Bz L1accuracy Bz Linf error Bz Linf accuracy 

5 9.1428E-04  2.5348E-03  

10 3.1764E-05 4.85 8.5105E-05 4.90 

20 1.0120E-06 4.97 2.6776E-06 4.99 

40 3.1178E-08 5.02 8.2333E-08 5.02 

 

V.h) Long-Distance or Long-Time Propagation of Electromagnetic Radiation 

 Several problems in CED tend to involve scattering. In such problems, radiation has to 

propagate with minimal amplitude or phase change over many mesh points before it interacts with 

a scattering structure. As a result, it is interesting to demonstrate that a method for CED can 

propagate electromagnetic radiation over many thousands of mesh points with minimal dissipative 

or dispersive errors. Propagation along mesh lines, or at 45o  to the mesh, is quite easy for most 

schemes. For that reason, this problem is designed to propagate radiation at an angle that is 

different from the above-mentioned favorable angles. Instead of propagating the radiation over a 

large mesh, we propagate it over a square mesh with 120 120×  zones and periodic boundaries. The 

radiation is propagated over twenty orbits, so that this is equivalent to making it propagate over 

thousands of zones. Consequently, long time propagation over a periodic mesh is equivalent to 

long distance propagation over a non-periodic mesh.  
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 This problem is closely analogous to a test problem proposed in Balsara [3] to demonstrate 

the long-time propagation of torsional Alfven waves in MHD. We use a 120 120×  zone mesh with 

uniform zones. The computational domain spans [ ] [ ]/ 2, / 2 / 2, / 2r r r r− × −  in the xy-plane with 

6r = . The wave is made to propagate at an angle given by ( ) ( )1 1 0tan 1/ tan 1/ 6 9.462r− −= =  with 

respect to the y-direction of the mesh. The direction of wave propagation is along the unit vector 

given by 

2 2

1ˆ ˆ ˆ ˆ ˆ =   +   =   +  
  1   1

x y
rn n

r r+ +
n x y x y   

The phase of the wave is taken to be 

2  =  (        )x y
y

n x n y c t
n
πφ + −   

Where “c” is the speed of light. The vector potentials for the electric displacement and the magnetic 

induction are given by 

( ) ( ) ˆ, , , sin
2

yn
x y z t zφ

π
= −C   

and 

( ) ( ) ˆ, , , sin
2

y

x

n
x y z t y

n
φ

π
=A   

The components of the electric displacement vector field are obtained at the zone faces by using 

the relationship 0 ( )cε= ∇×D C  . The components of the magnetic induction vector field are 

obtained at the zone faces by using the relationship = ∇×B A . The exact expressions for the 

electric displacement vector field and the magnetic induction vector field are given by 

0 ˆ ˆ( cos( ) cos( ) )y xc n x n yε φ φ= − +D   

and 
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ˆcos( )zφ=B   

In the y-direction, each sinusoidal variation occupies 20 zones, which makes this a moderate 

resolution problem. The problem was run to a final time of 74.05 10 sec−×  with a CFL of 0.45. This 

final time corresponds to 20 orbits on the periodic mesh, which is equivalent to propagating the 

electromagnetic wave over 2400 zones of a uniform mesh. 

 Figs. 9a and 9b show the maximum of the Log (base 10) of the amplitude of zB  and yD  

as a function of time. We see that the scheme that uses second order accurate MC-limiting, and is 

shown by the magenta curve, has very poor wave propagation characteristics and much of the 

power of the radiation is dissipated by the end of the simulation. Now please focus on the blue and 

green curves in Figs. 9a and 9b. Our second order WENO reconstruction uses the linear part of the 

r=3 WENO, which means that it uses many elements of a third order WENO reconstruction. For 

that reason, we see that the second and third order ADER-WENO schemes in Figs. 9a and 9b show 

comparable decay. The red curve in Figs. 9a and 9b shows the results from the fourth order ADER-

WENO scheme. We see that the waves have been propagated by the fourth order ADER-WENO 

scheme with almost no reduction in amplitude, indicating that they have been propagated with 

minimal dissipation. Fig. 9c shows the variation in zB  as a function of x along the line y=0 at the 

final time. Fig. 9d shows the variation in zB  as a function of y along the line x=0 at the final time. 

In Figs. 9c and 9d, the black crosses show the exact analytical solution. The blue curve shows the 

second order result with our ADER-WENO scheme; the green curve shows the third order result 

with our ADER-WENO scheme; The red curve shows the fourth order result with our ADER-

WENO scheme; the magenta curve shows the result from a scheme that used the MC limiter. Of 

course, the MC-based scheme is clearly inferior. We also see that the results from the second order 

ADER-WENO scheme have a small phase shift relative to the results from the third order ADER-

WENO scheme. This shows that while the two schemes have comparable dissipation, the second 

order ADER-WENO scheme has higher dispersion error than its higher order counterparts. We 

also see that the results from the fourth order ADER-WENO scheme have minimal dispersion and 

minimal dissipation because they match up almost perfectly with the analytical results shown by 

the black crosses in Figs. 9c and 9d. 
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 We have also conducted a similar long-distance wave-propagation test using a standard, 

second-order accurate, open-region FDTD grid employing total-field/scattered-field grid zoning 

and a perfectly matched layer (PML) absorbing outer boundary. We found that standard FDTD 

propagates a sinusoidal wave without observable dissipation. However, using the parameters 

specified for the wave-propagation test results shown in Fig. 9, the FDTD-computed spatial 

oscillation period was 0.997 times the exact value, and the corresponding propagating wave 

exhibited a significant phase lag relative to the exact solution.  If directly compared to the results 

shown in Fig. 9c, the FDTD-computed result would be represented by a unit-amplitude sinusoid 

shifted to the left relative to the analytical result by 2.1 m; and in Fig. 9d, the sinusoids would be 

shifted to the left by 0.35 m. These results are consistent with previous Fourier-based analyses of 

FDTD numerical wave propagation (for example, see Chapter 4 of Taflove and Hagness [43]). 

 

VI) The Value of Higher Order Schemes in CED – Error Versus Time To Solution 

 The third order ADER-WENO scheme has a computational complexity that is 3.7 times 

that of a second order ADER-WENO scheme on the same mesh. Similarly, the fourth order ADER-

WENO scheme has a computational complexity that is 4.3 times that of a third order ADER-

WENO scheme on the same mesh. A naïve assessment would, therefore, indicate that it is more 

advantageous to use a second order scheme in all circumstances; but such an assessment is entirely 

specious. What matters in a practical scientific or engineering calculation is one’s ability to obtain 

an answer up to a specified accuracy in the shortest amount of time. It is also true that one may 

want to carry out several survey simulations with reduced accuracy. However, once the problem 

has been optimized with inexpensive survey simulations, one would want a few simulations at 

extremely high accuracy. What matters in practical computation is the ability to meet a specified 

error tolerance with a simulation that minimizes the time to solution. Please also recall that our 

second order WENO reconstruction uses the linear part of the r=3 WENO, which means that it 

uses many elements of a third order WENO reconstruction. As a result, we expect that the second 

order ADER-WENO scheme will deliver a result that is moderately comparable to the third order 

ADER-WENO scheme. 
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 Figs. 10a, 10b and 10c show the Log (base 10) of the error versus the Log (base 10) of the 

relative time to solution for the second, third and fourth order ADER-WENO schemes. We apply 

the schemes to several of the test problems documented here. Fig. 10a catalogues the error versus 

the time to solution for the propagation of a plane electromagnetic wave in vacuum from sub-

Section V.a. Fig. 10b documents analogous data for the compact Gaussian pulse that is incident 

on a refractive disk from Sub-section V.b. Fig. 10c shows similar data for the decay of a sinusoidal 

wave in a copper conductor from Sub-section V.g. The time to solution does depend on the 

dimensionality of the problem. In practice one wants to do large three-dimensional simulations 

where a doubling of the resolution increases the computational cost by a factor of 16. While the 

test problems are two-dimensional, we have used this three-dimensional scaling of computational 

cost because that is more meaningful in a modern context where large three-dimensional 

computations are the norm. In all instances, we see that if the accuracy requirements are not 

stringent, then the second order scheme obtains the solution in the shortest amount of time. 

However, Figs. 10a and 10b at least show us that at some point, the third order scheme reaches 

more stringent accuracies with a shorter time to solution. If one only had access to a second order 

and a third order scheme then at some stringent accuracy requirement the third order scheme would 

become the scheme of choice. Figs. 10a, 10b and 10c all show us that when the accuracy 

requirements become very stringent, the fourth order scheme provides the shortest time to solution 

for a specified accuracy. Thus when all three schemes are available, the fourth order scheme will 

become the scheme of choice when the scientific or technological problem requires high accuracy. 

Because of the serendipitous improvement in accuracy in Sub-section V.g, the third order scheme 

is never an optimal scheme in Fig. 10c. However, we hope that Fig. 10 makes a compelling case 

for higher order schemes in CED. 

 

VII) Conclusions 

 FDTD and FVTD schemes for CED have evolved along disjoint pathways for a while. 

FDTD does not use reconstruction strategies or Riemann solvers. However, via an exact 

representation of the curl-type equations on a Yee mesh, it preserves the divergence constraints. 

FVTD methods do use reconstruction strategies as well as Riemann solvers. However, at least in 

the past, they have used zone-centered collocations which preclude a preservation of the 
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divergence constraints. In Paper I of this series a synthesis of the two approaches was provided at 

second order of accuracy. The FVTD schemes that we presented use a staggered mesh formulation, 

resulting in an exact preservation of the constraints, just like FDTD schemes. However, FDTD 

schemes have also been available at fourth order of accuracy. Unfortunately, the fourth order 

variants of FDTD schemes for CED have not seen much practical use because they do not preserve 

accuracy at boundaries where the dielectric properties undergo significant variation. In contrast, 

the third and fourth order FVTD schemes for CED that we present here can function robustly and 

meet their design accuracies even when the permittivity and permeability undergo significant 

variation over a very small number of zones. Furthermore, the methods reported here extend to all 

orders of accuracy, resulting in a significant expansion of capabilities in CED computations. The 

methods also take well to problems with large variations in conductivity as well as substantial 

variations in permittivity and permeability, with the consequence that CED simulations with high 

order of accuracy involving realistic materials are now within range. This focus on high accuracy, 

in situations involving realistic materials, is one of the major advances reported for the first time 

in this paper. 

 The higher order FVTD methods we devise here are completely general. They can 

accommodate to any tensorial structure for the permittivity and permeability tensors; though a 

detailed demonstration of this property will be presented in a subsequent paper. In the current 

paper we have also shown that our higher order FVTD methods can function robustly even when 

there are gigantic variations in the conductivity spread over only a few zones. This demonstration 

of a high order FVTD method that can resolve sub-cell variation in the material properties while 

retaining its designed order of accuracy is an extremely important, useful and novel contribution 

arising from this paper. All the higher order FVTD methods presented here accurately preserve the 

same constraints that are preserved by FDTD schemes.  

 Three fundamental advances make the present innovations possible. First, we have 

designed constraint-preserving reconstruction strategies for CED that have been extended to third 

and fourth orders of accuracy in Section III and Appendices A and B. Second, in Balsara et al. 

[19] we have already described multidimensional Riemann solvers for CED and in this paper we 

show how they are used within the context of high accuracy schemes. The high order of spatial 

accuracy has to be matched with high order of temporal accuracy and our third advance consists 



48 
 

of offering temporally higher order strategies for advancing the CED equations. This third 

innovation is presented here in two variations. In the first variation, which we report in the 

electronic supplement to this paper, we adapt Runge-Kutta IMEX schemes to CED. However, 

Runge-Kutta IMEX schemes restrict us to second and third orders of accuracy in time. In the 

second variation, which we report in Section IV, we innovate ADER schemes for CED that can 

provide a treatment of stiff source terms at any order. These advances in ADER schemes should 

also be very useful for treating any general hyperbolic system with stiff source terms. The stiff 

source terms have to be treated implicitly, however, their presence does not cause any degradation 

in the CFL that can be used. 

 We also present a suite of stringent tests to show that our constraint-preserving FVTD 

methods work and meet their design goals even when material permittivity and permeability vary 

by an order of magnitude over just a few zones. Furthermore, since our methods are 

unconditionally stable and sub-cell-resolving in the presence of stiff source terms (i.e. in problems 

involving giant variations in conductivity over just a few zones), they can accurately handle such 

problems without any reduction in timestep. We also show that increasing the order of accuracy 

offers distinct advantages for resolving sub-cell variations in material properties. Most 

importantly, we show that when the accuracy requirements are stringent the higher order schemes 

offer the shortest time to solution. This makes a compelling case for the use of higher order, sub-

cell resolving schemes in CED. 
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Appendix A 

 The constraint equation given by eqn. (3.9) gives us six constraints at second order. They 

are given by 
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3   ;   3   ;
3   ;   2 2   ;

2 2   ;  2 2

xxx xxy xxz xx xyy yyy yyz yy

xzz yzz zzz zz xxy xyy xyz xy

xyz yyz yzz yz xxz xyz xzz xz

a x b y c z q a x b y c z q
a x b y c z q a x b y c z q
a x b y c z q a x b y c z q

∆ + ∆ + ∆ = ∆ + ∆ + ∆ =

∆ + ∆ + ∆ = ∆ + ∆ + ∆ =

∆ + ∆ + ∆ = ∆ + ∆ + ∆ =

   (A.1) 

Minimizing the energy of the electric displacement, which depends quadratically on the 

coefficients, enables us to obtain a further simplification given by the three equations:- xxy xyya b=  

, yyz yzzb c=  and xxz xzza c=  . The three constraints at first order are given by 

2    ;   2    ;
2

xx xy xz x xy yy yz y

xz yz zz z

a x b y c z q a x b y c z q
a x b y c z q

∆ + ∆ + ∆ = ∆ + ∆ + ∆ =

∆ + ∆ + ∆ =
    (A.2) 

The constraint at zeroth order will eventually turn out to be equivalent to the definition of the mean 

charge density in eqn. (3.1) and it is given by 

( ) ( )
( ) ( )0

3 20 12 12 3 20 12 12

3 20 12 12 12

x xxx xyy xzz y yyy xxy yzz

z zzz xxz yyz xx yy zz

a a a a x b b b b y

c c c c z q q q q

− − − ∆ + − − − ∆

+ − − − ∆ = − + +
   (A.3) 

Eqn. (A.3) is slightly different from eqns. (A.1) and (A.2) in that it does not help us to obtain the 

coefficients. Instead it helps us to validate that the coefficients are consistent with the discrete 

constraint in eqn. (3.1). 

 We again focus on Fig. 1. We wish to relate the polynomial coefficients that have been 

defined in the interior of the cube (i.e. eqns. (3.6), (3.7) and (3.8)) to the variation that has been 

posited in the faces of the cube (i.e. eqns. (3.3), (3.4) and (3.5)). Matching the quadratic variation 

in the right and left x-faces gives 

( ) ( )
( )

2    ;      ;   2    ;

   ;   2    ;   

x x x x x x
yy yy yy xyy yy yy zz zz zz

x x x x x x
xzz zz zz yz yz yz xyz yz yz

a D D a D D a D D

a D D a D D a D D

+ − + − + −

+ − + − + −

= + = − = +

= − = + = −
    (A.4) 

Matching the quadratic variation in the upper and lower y-faces gives 

( ) ( )
( )

2    ;      ;   2    ;

   ;   2    ;   

y y y y y y
xx xx xx xxy xx xx zz zz zz

y y y y y y
yzz zz zz xz xz xz xyz xz xz

b D D b D D b D D

b D D b D D b D D

+ − + − + −

+ − + − + −

= + = − = +

= − = + = −
    (A.5) 
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Matching the quadratic variation in the top and bottom z-faces gives 

( ) ( )
( )

2    ;      ;   2    ;

   ;   2    ;   

z z z z z z
xx xx xx xxz xx xx yy yy yy

z z z z z z
yyz yy yy xy xy xy xyz xy xy

c D D c D D c D D

c D D c D D c D D

+ − + − + −

+ − + − + −

= + = − = +

= − = + = −
    (A.6) 

Applying the second order constraints from eqn. (A.1) gives 

( ) ( )

   ;      ;      ;
3 3 3

   ;      ;
2 2

xxy xyy yyz yzzxxz xzz
xxx xx yyy yy zzz zz

xyz xyz
xxy xyy xy yyz yzz yz

xzz

b a c bc ax y za q b q c q
y z x z x y

c ax y y za b q b c q
x y z y z x

c a

     ∆ ∆ ∆
= − − = − − = − −     ∆ ∆ ∆ ∆ ∆ ∆     

   ∆ ∆ ∆ ∆
= = − = = −   ∆ + ∆ ∆ ∆ + ∆ ∆   

=
( )2

xyz
xxz xz

bx z q
x z y

 ∆ ∆
= − ∆ + ∆ ∆ 

  

            (A.7) 

We now turn our attention to the linear variation. 

 Matching the linear variation in the right and left x-faces gives 

( )
( )

2 6    ;      ;

2 6    ;   

x x x x
y y y xxy xy y y

x x x x
z z z xxz xz z z

a D D a a D D

a D D a a D D

+ − + −

+ − + −

= + − = −

= + − = −
       (A.8) 

Matching the linear variation in the upper and lower y-faces gives 

( )
( )

2 6    ;      ;

2 6    ;   

y y y y
x x x xyy xy x x

y y y y
z z z yyz yz z z

b D D b b D D

b D D b b D D

+ − + −

+ − + −

= + − = −

= + − = −
       (A.9) 

Matching the linear variation in the top and bottom z-faces gives 

( )
( )

2 6    ;      ;

2 6    ;   

z z z z
x x x xzz xz x x

z z z z
y y y yzz yz y y

c D D c c D D

c D D c c D D

+ − + −

+ − + −

= + − = −

= + − = −
       (A.10) 

Applying the first order constraints from eqn. (A.2) gives 
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   ;      ;   
2 2 2

xy xy yz yzxz xz
xx x yy y zz z

b a c bc ax y za q b q c q
y z x z x y

     ∆ ∆ ∆
= − − = − − = − −     ∆ ∆ ∆ ∆ ∆ ∆     

  (A.11) 

We now turn our attention to the constant terms in the faces. 

 Matching the constant terms in the right and left x-faces gives 

( ) ( )0 0 0 0 02 6    ;   10x x x x
xx x xxxa D D a a D D a+ − + −= + − = − −       (A.12) 

Matching the constant terms in the upper and lower y-faces gives 

( ) ( )0 0 0 0 02 6    ;   10y y y y
yy y yyyb D D b b D D b+ − + −= + − = − −       (A.13) 

Matching the constant terms in the top and bottom z-faces gives 

( ) ( )0 0 0 0 02 6    ;   10z z z z
zz z zzzc D D c c D D c+ − + −= + − = − −       (A.14) 

When the relevant equations from eqn. (A.4) to (A.14) are inserted in eqn. (A.3) we retrieve eqn. 

(3.1). This emphasizes the role of eqn. (A.3) as a consistency condition.  This completes our 

detailed description of third order constraint-preserving reconstruction of the electric displacement 

vector field in three-dimensions. When making a computer implementation it is most efficient to 

implement the equations sequentially from eqn. (A.4) to (A.14). In other words, the computer 

implementation follows the text of this paper. Constraint-preserving reconstruction of the magnetic 

induction vector field works similarly. 

Appendix B 

 We now present the basics of constraint-preserving reconstruction at fourth order. Let the 

zone size be x∆ , y∆  and z∆  in the x-, y- and z-directions. While the third order case was presented 

in coordinate space, it is more economical to present the results for the fourth order case in the 

space of a reference element spanning [ ]31/ 2,1/ 2−  . The present formulation expands on the 

fourth order constraint-preserving reconstruction from Appendix B of Balsara et al. (2016b). That 

formulation is only suitable for Runge-Kutta timestepping because it provides an order-preserving 

reconstruction at zone-boundaries. However, Appendix B of Balsara et al. (2016b) ignores some 
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important terms that only operate in the interior of a zone and are needed in ADER timestepping. 

At the right and left x-faces of the reference element, the fourth order accurate facial reconstruction 

of the x-component of the electric displacement is given by 

( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
0

3 3 2 2

, 1/12 1/12  

               3 / 20 3 / 20 1/12 1/12

x x x x x x x
y z yy zz yz

x x x x
yyy zzz yyz yzz

D y z D D y D z D y D z D y z

D y y D z z D y z D y z

± ± ± ± ± ± ±

± ± ± ±

= + + + − + − +

+ − + − + − + −
  (B.1) 

A WENO strategy for obtaining the moments of the above equation is described in (Balsara and 

Shu 2000, Balsara et al. 2009). The fourth order accurate facial reconstruction for the y-component 

of the electric field at the upper and lower y-faces are given by 

( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
0

3 3 2 2

, 1/12 1/12  

                3 / 20 3 / 20 1/12 1/12

y y y y y y y
x z xx zz xz

y y y y
xxx zzz xxz xzz

D x z D D x D z D x D z D x z

D x x D z z D x z D x z

± ± ± ± ± ± ±

± ± ± ±

= + + + − + − +

+ − + − + − + −
  (B.2) 

The analogous facial reconstruction for the z-component of the electric field at the top and bottom 

z-faces are given by 

( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
0

3 3 2 2

, 1/12 1/12  

                3 / 20 3 / 20 1/12 1/12

z z z z z z z
x y xx yy xy

z z z z
xxx yyy xxy xyy

D x y D D x D y D x D y D x y

D x x D y y D x y D x y

± ± ± ± ± ± ±

± ± ± ±

= + + + − + − +

+ − + − + − + −
  (B.3) 

We wish to find a solution in the interior of the zone in question, consistent with the facial 

variations in eqns. (B.1), (B.2) and (B.3).  

 We also want the solution for the electric displacement in the interior of the zone in 

question to be consistent with the constraint in eqn. (2.3). The most economical way to initialize 

such a computation is to transcribe 0 0
x xD D x± ±→ ∆  and similarly for all the other coefficients in 

eqn. (B.1). For all the coefficients in eqn. (B.2) we make transcriptions that are analogous to 

0 0
y yD D y± ±→ ∆  . Likewise, for all the coefficients in eqn. (B.3) we make transcriptions that are 

analogous to 0 0
z zD D z± ±→ ∆  . The analogue of eqn. (3.1) then becomes 

( ) ( ) ( )0 0 0 0 0 0 0
x x y y z zq D D D D D D+ − + − + −= − + − + −        (B.4) 
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Once such a zone-averaged charge density is obtained in all the zones, we can apply zone-centered 

WENO reconstruction to the zone-averaged charge density to get  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 2 2
0

3 3 3

2 2 2

, , 1/12 1/12 1/12

               +    3 / 20 3 / 20 3 / 20

               + 1/12 1/12 1/12

               

E x y z xx yy zz

xy yz xz xxx yyy zzz

xxy xxz xyy

x y z q q x q y q z q x q y q z

q x y q y z q x z q x x q y y q z z

q x y q x z q x y

ρ = + + + + − + − + −

+ + + − + − + −

− + − + −

( ) ( ) ( )2 2 2+ 1/12 1/12 1/12   yyz xzz yzz xyzq y z q x z q y z q x y z− + − + − +

  

            (B.5) 

Eqn. (B.5) gives us the right-hand side for eqn. (2.3). 

 Let the x-component of the electric displacement within the unit cube be described by the 

following polynomial 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0

2 2 2

3 3 3 2 2

( , , )          z

                 1/12 1/12 1/12 +    

                 3 / 20 3 / 20 3 / 20 1/12 1/12  

           

x
x y z

xx yy zz xy yz xz

xxx yyy zzz xxy xxz

D x y z a a x a y a

a x a y a z a x y a y z a x z

a x x a y y a z z a x y a x z

= + + +

+ − + − + − + +

+ − + − + − + − + −

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2 2 2

4 2 3 3

3 3 2

       + 1/12 1/12 1/12 1/12   

                  + 3 /14 3 / 560 + 3 / 20 3 / 20

                  + 3 / 20 3 / 20 + 1/12

xyy yyz xzz yzz xyz

xxxx xyyy xzzz

xxxy xxxz xxyy

a x y a y z a x z a y z a x y z

a x x a x y y a x z z

a x x y a x x z a x y

− + − + − + − +

− + − + −

− + − − ( ) ( )
( )( ) ( ) ( )
( ) ( )( )
( )

2 2

2 2 2 2

4 2 2 3

4 2

1/12 + 1/12

                 1/12 1/12  1/12 1/12  

                 3 /14 3 / 560 + 1/12 3 / 20

                 3 /14 3 / 560 +

xyyz

xxzz xyzz xxyz

xxxxy xxyyy

xxxxz xxzzz

a x y z

a x z a x y z a x y z

a x x y a x y y

a x x z a x

− −

+ − − + − + −

+ − + − −

+ − + ( )( )2 31/12 3 / 20z z− −

 

            (B.6) 

Notice that eqn. (B.6) has all the terms that are needed for up to fourth order accurate 

reconstruction. But it also has extra terms for ensuring that the facial moments can be matched and 

that the constraints can be preserved. The zone-centered terms xxya  and xxza  in the above equation 

cannot be satisfied by just examining the values in the faces of that zone and we will specify a 

WENO method that looks at the x-face values of the adjoining zones in the x-direction. Let the y-

component of the electric displacement within the unit cube be described by the following 

polynomial 
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0

2 2 2

3 3 3 2 2

( , , )            

                1/12 1/12 1/12 +    

                3 / 20 3 / 20 3 / 20 1/12 1/12

            

y
x y z

xx yy zz xy yz xz

xxx yyy zzz xxy xxz

D x y z b b x b y b z

b x b y b z b x y b y z b x z

b x x b y y b z z b x y b x z

= + + +

+ − + − + − + +

+ − + − + − + − + −

( ) ( ) ( ) ( )
( ) ( ) ( )
( )( ) ( )

2 2 2 2

4 2 3 3

2 2 2 3

     + 1/12 1/12 1/12 1/12   

                 3 /14 3 / 560 3 / 20 3 / 20

                 1/12 1/12 1/12  3

xyy yyz xzz yzz xyz

yyyy xxxy yzzz

xxyy xxyz xyyy

b x y b y z b x z b y z b x y z

b y y b x x y b y z z

b x y b x y z b x y y

− + − + − + − +

+ − + + − + −

+ − − + − + −( ) ( )
( ) ( )( ) ( )
( ) ( )( )
( )

3

2 2 2 2

4 2 3 2

4 2 2

/ 20 3 / 20

                  1/12 1/12 1/12 1/12

                 3 /14 3 / 560 3 / 20 1/12

                 3 /14 3 / 560 1/

yyyz

xyzz yyzz xyyz

xyyyy xxxyy

yyyyz yyzzz

b y y z

b x y z b y z b x y z

b x y y b x x y

b y y z b y

+ −

+ − + − − + −

+ − + + − −

+ − + + −( )( )312 3 / 20z z−

 

            (B.7) 

The zone-centered terms xyyb  and yyzb  in the above equation cannot be satisfied by just examining 

the values in the faces of that zone and we will need a WENO method that looks at the y-face 

values of the adjoining zones in the y-direction. Let the z-component of the electric displacement 

within the unit cube be described by the following polynomial 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0

2 2 2

3 3 3 2 2

( , , )            

                 1/12 1/12 1/12 +    

                 3 / 20 3 / 20 3 / 20 1/12 1/12

          

z
x y z

xx yy zz xy yz xz

xxx yyy zzz xxy xxz

D x y z c c x c y c z

c x c y c z c x y c y z c x z

c x x c y y c z z c x y c x z

= + + +

+ − + − + − + +

+ − + − + − + − + −

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )( ) ( )

2 2 2 2

4 2 3 3

2 2 2 2

        + 1/12 1/12 1/12 1/12   

                 3 /14 3 / 560 3 / 20 3 / 20

            1/12  1/12 1/12 1/12

xyy yyz xzz yzz xyz

zzzz xxxz yyyz

xxyz xxzz xyyz

c x y c y z c x z c y z c x y z

c z z c x x z c y y z

c x y z c x z c x y

− + − + − + − +

+ − + + − + −

+ − + − − + − ( )( )
( ) ( ) ( )
( ) ( )( )
( )

2 2

3 3 2

4 2 3 2

4 2 3

1/12 1/12

                 3 / 20 3 / 20  1/12

                 3 /14 3 / 560 3 / 20 1/12

                 3 /14 3 / 560 3 / 2

yyzz

xzzz yzzz xyzz

xzzzz xxxzz

yzzzz yyyzz

z c y z

c x z z c y z z c x y z

c x z z c x x z

c y z z c y y

+ − −

+ − + − + −

+ − + + − −

+ − + + −( )( )20 1/12z −

 

            (B.8) 

 

As before, the zone-centered terms xzzc  and yzzc  in the above equation cannot be satisfied by just 

examining the values in the faces of that zone and we will need a WENO method that looks at the 
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z-face values of the adjoining zones in the z-direction. Once the coefficients in eqns. (B.6), (B.7) 

and (B.8) are defined, we can require that they satisfy the divergence constraint 

( )( , , ) ( , , ) ( , , ) , ,x y z
x y z ED x y z D x y z D x y z x y zρ∂ + ∂ + ∂ =  at all orders in the polynomial 

expansion. The need to balance all the terms in the constraint equation in a nice and symmetrical 

way accounts for many of the fourth and fifth order polynomial terms in eqns. (B.6), (B.7) and 

(B.8). 

 We now present a strategy for satisfying all the coefficients in all of the above equations 

in a format that also satisfies all the constraints. We do this in such a way that the person seeking 

to make a computer implementation simply has to sequentially follow all the steps that are given 

below. Let us denote x
yD ++  and x

zD ++  to be the facial values of the y- and z-gradients in the right 

x-face of the right neighbor to the zone that we are considering. Similarly, let x
yD −−  and x

zD −−  to 

be the facial values of the y- and z-gradients in the left x-face of the left neighbor to the zone that 

we are considering. We can define three possible values of xxya  , denote them by 1
xxya  and 2

xxya  

for each of the two smaller stencils and 3
xxya  for the larger stencil. We can write 

( ) ( ) ( )1 2 3 1 22 2    ;   2 2    ;   2x x x x x x
xxy y y y xxy y y y xxy xxy xxya D D D a D D D a a a++ + − + − −−= − + = − + = +   (B.9) 

We can achieve a CWENO-style non-linear hybridization of the three stencils as follows 

( )( ) ( )( ) ( )( )
( ) ( ) ( )

2 2 21 1 2 2 3 3

1 1 1 2 3 2 2 1 2 3 3 3 1 2 3

1 1 2 2 3 3

1    ;   1    ;   100    ;

   ;      ;      ;

xxy xxy xxy

xxy xxy xxy xxy

w a w a w a

w w w w w w w w w w w w w w w

a w a w a w a

ε ε ε= + = + = +

= + + = + + = + +

= + +

  (B.10) 

where ε  is any very tiny positive number. A similar strategy can be applied to obtain xxza  by using 

x
zD ++  , x

zD +  , x
zD −  and x

zD −−  . We can also use a similar line of reasoning to obtain xyyb  and yyzb ; 

an analogous line of reasoning gives us xzzc  and yzzc . By matching the quadratic cross terms in the 

faces we also obtain 

   ;      ;   x x y y z z
xyz yz yz xyz xz xz xyz xy xya D D b D D c D D+ − + − + −= − = − = −       (B.11) 



56 
 

 We now wish to satisfy all the fourth order constraints and some of the second order 

constraints. This is accomplished by first defining three auxiliary variables, α  , β  and γ  . We 

obtain 

( ) ( )
( )

35 2 2 12    ;   =35 2 2 12    ;

35 2 2 12

xy xxy xyy xyz yz xyz yyz yzz

xz xxz xyz xzz

q a b c q a b c

q a b c

α β

γ

= − − − − − −

= − − −
   (B.12) 

The above equation also ensures that the second order constraints involving the cross terms are 

satisfied. The six fourth order constraints are also satisfied in an energy-minimizing fashion by 

making the following choices 

   ;   2    ;      ;   2    ;
   ;    2

xxxxy xyyyy xxxyy xxyyy yyyyz yzzzz yyzzz yyyzz

xxxxz xzzzz xxzzz xxxzz

a b b a b c b c
a c a c

α α β β

γ γ

= = = = − = = = = −

= = = = −
  (B.13) 

 By matching the third order facial values in the right and left x-faces we obtain 

( )
( )
( ) ( )

2 6    ;      ;   

2 6     ;       ;   

2    ;      ;   2    ;   

x x x x
yyy yyy yyy xxyyy xyyy yyy yyy

x x x x
zzz zzz zzz xxzzz xzzz zzz zzz

x x x x x x
yyz yyz yyz xyyz yyz yyz yzz yzz yzz

a D D a a D D

a D D a a D D

a D D a D D a D D

+ − + −

+ − + −

+ − + − + −

= + − = −

= + − = −

= + = − = + x x
xyzz yzz yzza D D+ −= −

 (B.14) 

Similarly, matching the third order facial values in the upper and lower y-faces gives 

( )
( )
( ) ( )

2 6    ;      ;

2 6     ;      ;

2    ;      ;   2    ;   

y y y y
xxx xxx xxx xxxyy xxxy xxx xxx

y y y y
zzz zzz zzz yyzzz yzzz zzz zzz

y y y y y y
xxz xxz xxz xxyz xxz xxz xzz xzz xzz xyzz

b D D b b D D

b D D b b D D

b D D b D D b D D b D

+ − + −

+ − + −

+ − + − + −

= + − = −

= + − = −

= + = − = + = y y
xzz xzzD+ −−

  (B.15) 

Likewise, matching the third order facial values in the top and bottom z-faces gives 

( )
( )
( ) ( )

2 6    ;      ;

2 6    ;      ;

2    ;      ;   2    ;   

z z z z
xxx xxx xxx xxxzz xxxz xxx xxx

z z z z
yyy yyy yyy yyyzz yyyz yyy yyy

z z z z z z
xxy xxy xxy xxyz xxy xxy xyy xyy xyy xyyz x

c D D c c D D

c D D c c D D

c D D c D D c D D c D

+ − + −

+ − + −

+ − + − + −

= + − = −

= + − = −

= + = − = + = z z
yy xyyD+ −−

 (B.16) 

Applying the third order constraints while minimizing the energy in the field gives 
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( ) ( ) ( )
( ) ( )
( )

4    ;   4    ;   4    ;

3 20    ;   14 9    ;   3 20    ;   14 9    ;

3 20    

xxxx xxx xxxy xxxz yyyy yyy xyyy yyyz zzzz zzz xzzz yzzz

xxyy xxy xxyz xxxy xxyy xxzz xxz xxyz xxxz xxzz

xxyy xyy xyyz

a q b c b q a c c q a b

b q c a b c q b a c

a q c

= − − = − − = − −

= − = = − =

= − ( )
( ) ( )

;   14 9    ;   3 20    ;   14 9   ;

3 20    ;    14 9    ;   3 20    ;   14 9    ;

6

xyyy xxyy yyzz yyz xyyz yyyz yyzz

xxzz xzz xyzz xzzz xxzz yyzz yzz xyzz yzzz yyzz

xxyz xyyz xyzz xyz

b a c q a b c

a q b c a b q a c b

a b c q

= = − =

= − = = − =

= = =

  

            (B.17) 

 Matching the second order facial values in the right and left x-faces gives 

( )
( ) ( )

2 6    ;      ;

2 6    ;       ;   2 6

x x x x
yy yy yy xxyy xyy yy yy

x x x x x x
zz zz zz xxzz xzz zz zz yz yz yz xxyz

a D D a a D D

a D D a a D D a D D a

+ − + −

+ − + − + −

= + − = −

= + − = − = + −
  (B.18) 

Similarly, matching the second order facial values in the upper and lower y-faces gives 

( )
( ) ( )

2 6    ;      ;

2 6    ;      ;   2 6

y y y y
xx xx xx xxyy xxy xx xx

y y y y y y
zz zz zz yyzz yzz zz zz xz xz xz xyyz

b D D b b D D

b D D b b D D b D D b

+ − + −

+ − + − + −

= + − = −

= + − = − = + −
  (B.19) 

Likewise, matching the second order facial values in the top and bottom z-faces gives 

( )
( ) ( )

2 6    ;      ;

2 6    ;      ;   2 6    ;

z z z z
xx xx xx xxzz xxz xx xx

z z z z z z
yy yy yy yyzz yyz yy yy xy xy xy xyzz

c D D c c D D

c D D c c D D c D D c

+ − + −

+ − + − + −

= + − = −

= + − = − = + −
  (B.20) 

Some of the second order constraints were resolved in eqn. (B.12). But we still have three more 

second order constraints which can now be resolved as 

( ) ( ) ( )3   ;   3    ;   3xxx xx xxy xxz yyy yy xyy yyz zzz zz xzz yzza q b c b q a c c q a b= − − = − − = − −   (B.21) 

 Matching the first order facial values at the right and left x-faces gives 

( ) ( )
( ) ( )

2 6 70    ;   10    ;

2 6 70    ;   10

x x x x
y y y xxy xxxxy xy y y xxxy

x x x x
z z z xxz xxxxz xz z z xxxz

a D D a a a D D a

a D D a a a D D a

+ − + −

+ − + −

= + − − = − −

= + − − = − −
   (B.22) 

Similarly, matching the first order facial values at the upper and lower y-faces gives 
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( ) ( )
( ) ( )

2 6 70    ;   10    ;

2 6 70    ;   10

y y y y
x x x xyy xyyyy xy x x xyyy

y y y y
z z z yyz yyyyz yz z z yyyz

b D D b b b D D b

b D D b b b D D b

+ − + −

+ − + −

= + − − = − −

= + − − = − −
    (B.23) 

Likewise, matching the first order facial values at the top and bottom z-faces gives 

( ) ( )
( ) ( )

2 6 70    ;   10    ;

2 6 70    ;   10

z z z z
x x x xzz xzzzz xz x x xzzz

z z z z
y y y yzz yzzzz yz y y yzzz

c D D c c c D D c

c D D c c c D D c

+ − + −

+ − + −

= + − − = − −

= + − − = − −
    (B.24) 

The three first order constraints then give us 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( )

2 3 40 24 3 14 12

    24 3 40    ;

2 3 40 24 3 14 12

    24 3

xx x xy xz xxx xyy xzz xxxx xxyy xxzz

xyzz xyyz xxxy xyyy xxxz xzzz

yy y xy yz yyy xxy yzz yyyy xxyy yyzz

xyzz xxyz xxxy xyyy yy

a q b c q q q a a a

b c b b c c

b q a c q q q b b b

a c a a c

= − − − − + + + +

+ + + + + +

= − − − − + + + +

+ + + + +( )
( ) ( ) ( )
( ) ( )

40    ;

2 3 40 24 3 14 12

    24 3 40

yz yzzz

zz z xz yz zzz xxz yyz zzzz xxzz yyzz

xyyz xxyz xxxz xzzz yyyz yzzz

c

c q a b q q q c c c

a b a a b b

+

= − − − − + + + +

+ + + + + +

   (B.25) 

 Matching the zeroth order facial values at the right and left x-faces give 

( ) ( )0 0 0 0 02 6 70    ;   10x x x x
xx xxxx x xxxa D D a a a D D a+ − + −= + − − = − −     (B.26) 

Similarly, matching the zeroth order facial values at the upper and lower y-faces gives 

( ) ( )0 0 0 0 02 6 70    ;   10y y y y
yy yyyy y yyyb D D b b b D D b+ − + −= + − − = − −     (B.27) 

Likewise, matching the zeroth order facial values at the top and bottom z-faces gives 

( ) ( )0 0 0 0 02 6 70    ;   10z z z z
zz zzzz z zzzc D D c c c D D c+ − + −= + − − = − −      (B.28) 

The constant part of the constraint is actually a consistency condition and gives us consistency 

with the equation given in eqn. (B.4). It is given by 
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( ) ( ) ( )03 20 12 12x y z xxx yyy zzz xyy xzz xxy yzz xxz yyz xx yy zza b c a b c a a b b c c q q q q+ + − + + − + + + + + = − + +  

            (B.29) 

 Recall that we divided all the coefficients of eqns. (B.1), (B.2) and (B.3) by x∆ , y∆  and 

z∆  respectively before embarking on the constraint-preserving reconstruction described in the 

above paragraphs. We now undo that process so that all the coefficients in eqn. (B.6) are multiplied 

by x∆ ; so that we have 0 0  a a x→ ∆  for example. Similarly, all the coefficients of eqn. (B.7) are 

multiplied by y∆ ; so that we have 0 0  b b y→ ∆  for example. Likewise, all the coefficients of eqn. 

(B.8) are multiplied by z∆ ; so that we have 0 0  c c z→ ∆  for example. 
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Figure Captions 

Fig. 1 shows us that the primal variables of the scheme, given by the normal components of the 

magnetic induction and electric field displacement, are facially-collocated. They undergo an 

update from Faraday’s law and the generalized Ampere’s law respectively. The components of the 

primal magnetic induction vector are shown by the thick blue arrows while the components of the 

primal electric displacement vector are shown by the thick red arrows. The edge-collocated 

electric fields, which are used for updating the facial magnetic induction components, are shown 

by the thin blue arrows close to the appropriate edge. The edge-collocated magnetic fields, which 

are used for updating the facial electric displacement components, are shown by the thin red 

arrows close to the appropriate edge.  

Fig. 2 shows the nodal points in the reference element that are used for the ADER predictor step 

at third order. The reference element has coordinates (x, h, z ). The nodal points are shown as 

filled dots, and their color-matched numbering is shown alongside them. Notice that we use a 

tensor product of the third order accurate Gauss-Lobatto quadrature points. The plane that is 

shown in the middle of the x-direction is just intended to guide the eye.  

Figs. 3a, 3b, and 3c visualize Bz, Dx, and Dy at the initial time. Figs. 3d, 3e, and 3f show the same 

at a final time of 4×10-14 sec. The surface of the dielectric slab is identified by the vertical black 

line. The oblique black lines demarcate the angle of incidence, the angle of refraction and the 

angle of reflection. 

Figs. 4a, 4b, and 4c visualize Bz, Dx, and Dy at the initial time. Figs. 4d, 4e, and 4f show the same 

at final time of 5×10-14 sec. The surface of the dielectric slab is identified by the vertical black line. 

The oblique black lines demarcate the angle of incidence and the angle of total internal reflection. 
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Fig. 5a shows the envelope of the amplitude of Bz in air as a function of distance from the dielectric 

interface. The amplitude is expected to decay exponentially which is why we use a log-linear plot. 

The red crosses show the data while the blue solid line shows the theoretical exponential decay. 

Fig. 5b shows the variation of Bz and Dy as a function of time at a station in the air. For there to 

be no energy transfer into the air from the total internal reflection, the two field variables should 

be 90 degrees out of phase; a result which is confirmed by Fig. 5b. 

Figs. 6a, 6b and 6c show the initial configuration of Bz, Dx and Dy for the test problem where a 

beam of radiation is incident upon a conductor at 45o . Figs. 6d, 6e and 6f show the same variables 

at the final time of  1.83×10-7 sec when the beam has reflected off the surface of the conductor. 

The conductor is located at x=0 in the figure and is shown by a black line. 

Figs. 7a, 7b and 7c show a zoom-in of Figs. 6d, 6e and 6f and these figures are centered on the 

reflection region, spanning the sub-domain [-3,3]×[-10,10]m. The location of the midpoint in the 

taper for the conductivity is again shown by a black line.  

Figs. 8a and 8b show the radial variations of Bz (black lines) and the decaying envelopes (red 

lines) inside carbon and copper, respectively. Figs. 8c and 8d present the structure of the 

numerically-obtained envelopes (red crosses) and the analytical envelopes (blue curve) on a semi-

log scale for carbon and copper, respectively.  

Figs. 9a and 9b show the maximum of the Log (base 10) of the amplitude of Bz and Dy as a function 

of time. Fig. 9c shows the variation in Bz as a function of x along the line y=0 at the final time. 

Fig. 9d shows the variation in Bz as a function of y along the line x=0 at the final time. In Figs. 9c 

and 9d, the black crosses show the exact solution. The blue curve shows the second order result 

with our ADER-WENO scheme; the green curve shows the third order result with our ADER-

WENO scheme; The red curve shows the fourth order result with our ADER-WENO scheme; the 

magenta curve shows the result from a scheme that used the MC limiter. 

Figs. 10a, 10b and 10c show the Log (base 10) of the error versus the Log (base 10) of the relative 

time to solution for the second, third and fourth order ADER-WENO schemes. We apply the 

schemes to several of the test problems documented here. Fig. 10a catalogues the error versus the 

time to solution for the propagation of a plane electromagnetic wave in vacuum from sub-Section 

VI.a. Fig. 10b documents analogous data for the compact Gaussian pulse that is incident on a 



66 
 

refractive disk from Sub-section VI.b. Fig. 10c shows similar data for the decay of a sinusoidal 

wave in a copper conductor from Sub-section VI.g. 
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