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ABSTRACT 

The ISO-registered industry foundation classes (IFC) data standard can 

facilitate building information modeling (BIM) interoperability by allowing a “one-to-

many” software information flow pattern in the architecture, engineering, and 

construction (AEC) industry instead of the more complex “many-to-many” information 

flow pattern. However, even a full adoption of IFC cannot guarantee a seamless BIM 

interoperability, because of the flexibility allowed in adopting/using the IFC standard. 

Object classification in BIM is an important part of BIM interoperability. As part of an 

initial effort to pursue seamless BIM interoperability, the authors propose to use 

intrinsic geometric representations of IFC objects and geometric theorems to support 

the automated BIM object classification. A six-step method was proposed to develop 

automated IFC object classification algorithms using a data-driven approach. The 

method was preliminarily tested on classifying IFC objects into a cone frustum shape. 

The developed algorithm was successfully tested on three unseen bridge data. This 

shows an early promise of the proposed method to support error-free BIM object 

classification.  
 

INTRODUCTION 

Building information modeling (BIM) is intended to support all phases and all 

disciplines of a building and construction project. Therefore, interoperability between 

different BIM software used in different phases and by different disciplines in a 

construction project is critical for the success of BIM. Industry foundation classes (IFC) 

is an ISO-registered data standard for building and construction industry data – ISO 

16739. It is neutral and open. A wide adoption of the IFC standard can simplify the 

current “many-to-many” complex information flow pattern between BIM software into 

a “one-to-many” information flow pattern (Muller et al. 2017) in the architecture, 

engineering, and construction (AEC) industry. A broad use of the IFC standard can 

also reduce the current barriers to the transfer of information between different BIM 

applications, and alleviate/eliminate the information missing and inconsistency 

problems. However, even if the IFC standard is 100% adopted by all existing BIM 

software platforms, BIM interoperability still cannot be guaranteed to be seamless. This 

is largely because the IFC standard allows flexibility and can be used in a variety of 

ways. E.g., a wall might be modeled using IfcWallStandardCase, IfcSlab, or IfcBeam 

(Steel et al. 2012). Therefore, the object information directly read off from IFC entities 

may not be reliable. Nevertheless, such object information is required in a lot of BIM 

use scenarios such as automated cost estimation, where any object needs to be assigned 
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to a division (i.e., category, such as openings and furnishings) defined in the 

Construction Specifications Institute (CSI) classification systems such as UniFormat, 

MasterFormat, and OmniClass (Afsari and Eastman 2016). While object classification 

has been extensively researched on in natural language processing (e.g., named entity 

recognition) and computer vision domains (e.g., object recognition), similar efforts 

made in the civil engineering domain is relatively limited. Between the as-built model 

and as-design model, object classification studies that focused on as-design model are 

even fewer. It can be because this research gap is not quite obvious, as people tend to 

consider as-design models to be clear and well defined. Some automated BIM object 

classification efforts were reported by Belsky et al. (2015) and Ma et al. (2017), where 

expert knowledge were encoded into computable rules and heavily relied on for the 

classification decisions. Inconsistent results were observed using these methods, which 

may be partially attributed to the potential subjectivity of expert knowledge. In this 

paper, the authors propose a science-based and empirical data-driven method to 

develop automated object classification algorithms for IFC-based BIM models. The 

algorithm will rely on intrinsic properties of building elements and scientific theories 

(e.g., geometric theorems) rather than expert knowledge. The ultimate goal is to 

achieve an error-free object classification of IFC object in BIM models, to support 

seamless BIM interoperability in various AEC applications.  
 

BACKGROUND 

 

Object Classification 

Object classification is detecting and recognizing an object automatically using 

a computer, based on the features and properties of the object. There are two main types 

of methods for object classification – machine learning (ML)-based methods and rule-

based methods. A ML-based method utilizes ML algorithms for object classification 

(e.g., Weiss et al. 2010), whereas a rule-based method utilizes manually-coded rules 

(e.g., Li et al. 2001). Rule-based methods require more human effort for rule 

development, but tend to show high processing performance (Dragut and Blaschke 

2006). Object classification is an important topic in many research areas such as 

computer vision (Hu et al. 2004), where the methods/algorithms for classifying static 

and moving objects into different categories (e.g., buildings, road signs, pedestrian) 

have been in rapid development.    

In the AEC domain, models can be classified into two categories according to 

the way data were generated: as-designed model where people created the data, and as-

built model where people collected the data. As-designed models are often created 

using a BIM authoring tool such as Autodesk Revit, Bentley Microstation, and 

Graphisoft ArchiCAD. As-built models are often created using sensors to detect and 

record physical objects. One of the most widely used sensing technique in the AEC 

domain is the Light Detection and Ranging (LIDAR) technique. It uses pulsed laser 

light and the reflection pulses to measure distances from any point in the space and 

derive the coordinates of all such points (NOS 2017). It was first used by the National 

Center for Atmospheric Research to measure clouds, and was widely used now in the 

AEC domain for capturing an as-built model (Rabatel et al. 2008). As-built models and 

As-designed models have different representation properties. For example, as-designed 
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models often use structured data formats such as IFC whereas as-built models often use 

unstructured data formats such as PCD (i.e., a format for point cloud data from 

LiDAR). 

 

BIM Object Classification 

BIM is expected to facilitate information exchange between different 

stakeholders in the same AEC project, by representing both physical and functional 

characteristics of a project throughout all the phases of its lifecycle (GSA 2007). 

Industry foundation classes (IFC), as the ISO registered data standard for building and 

construction industry data, is designed to support information modeling and exchange 

in all phases of a building and construction project throughout its lifecycle: planning, 

design, construction, operation & maintenance, demolition or remodeling, to support 

the idea of BIM. Almost all major BIM software vendors claimed compatibility of their 

products with the IFC standard (Steel et al. 2012). IFC has been heavily studied in 

research and is representing the main focus area for solving BIM interoperability 

problems (Poirier et al. 2014). However, even with the clearly defined entities and 

attributes in an IFC schema, data can still be represented in different ways because of 

the following three main reasons: (1) flexibility is enabled by allowing more than one 

way of representing an object, for example, the geometry of a box-shaped column can 

be represented using either a faceted boundary representation (Brep) or a swept solid 

representation; (2) more flexibility is allowed by customized representation of any 

information using IFC property set; and (3) modeling choices can affect information 

representation using IFC, which can originate from either the inherent choices 

prescribed in a software program (e.g., using Brep to represent a beam) or the arbitrary 

decisions of a modeler who is using a BIM authoring software to create models (e.g., 

use ifcSlab to represent a wall). This variation in data representation using IFC goes 

against the interoperability goal of BIM. It clearly affects BIM applications such as a 

cost estimation tool. In cost estimation, there are two main steps: quantity take-off of 

building objects according to cost items, and pricing of the cost items based on unit 

price data. An important premise of these two steps is a correct identification of 

building objects, such as walls, doors, and slabs, and assigning them to the correct 

category in the corresponding classification system such as UniFormat, MasterFormat, 

and OmniClass. To automate such identification and assignment, automated object 

classification is needed. While there were few research works addressing such 

automated BIM object classification (Belsky et al. 2015; Ma et al. 2017), error-free 

classification to support seamless BIM interoperability is beyond the state of the art. 

The names of the objects defined in the IFC data may include errors caused by misuse. 

For example, an IfcSlab may be misused to represent a wall because their shapes could 

be similar. While the names of IFC entities can be misleading in this case of entity 

misuse, the geometric shapes information are reliable and it is almost always accurate 

for a successful building representation. To address the research gap of BIM object 

classification, a drastically different approach was initiated (Mandava and Zhang 2016; 

Akanbi and Zhang 2017) to investigate the potential of using solid scientific theories 

and intrinsic properties of BIM objects to support a seamless BIM interoperability. As 

part of this initial effort, the authors propose to use intrinsic geometric representations 
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of IFC objects and geometric theorems to support the automated BIM object 

classification. 

    

PROPOSED METHOD 

The authors propose the following 6-step method to automatically classify BIM 

objects in IFC (Figure 1): (1) create an environment (e.g., database) for extracting 

objects from IFC-based BIM models and initially build a classification algorithm with 

no rules or patterns; (2) extract a single object from an IFC-based BIM model (i.e., 

training model); (3) process the object using the classification algorithm, if there is no 

match with any pattern, go to step (4), otherwise, go to step (5); (4) study the 

representation of this object in IFC, add/revise a sub-algorithm using pattern-based 

rules for identifying this type of object into the classification algorithm, and go to step 

(5); (5) check the classification result, if it is correct, go to step (2), otherwise, go to 

step (4); (6) when all objects in the training model is processed, apply the classification 

algorithm to testing data for evaluation.  

 

 
Figure 1. The proposed 6-step Method  

 

This method is designed for classifying any IFC object automatically into 

predefined categories. A rule-based sub-algorithm will be developed for each 

predefined category, to identify an object in that category, such as windows, walls, and 

slabs in the case of building object categories, and cubes, cylinders, and cones in the 

case of geometric shape categories. As a premise of the sub-algorithm development, 

properties of these IFC categories are studied and formalized into features to help 

construct the rule pattern for use in the sub-algorithm. Out of the rich information 

presented in an IFC model, geometric representations usually take a significant portion. 
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Therefore, geometric properties will be used primarily in the rules of sub-algorithms. 

Other information can be leveraged in addition as needed. In an IFC model, geometric 

properties are represented in two ways: (1) through the inherent geometric relationships 

between the Cartesian points used to represent a shape; and (2) through the IFC data 

structure in representing the geometric information.  

The ultimate algorithm developed using the proposed method will contain 

many sub-algorithms with each sub-algorithm designated for one known category. This 

algorithm will process an input object data by applying existing pattern-based rules of 

different categories to find a category match. Therefore, the success of the algorithm 

relies on the success in finding a category match by its sub-algorithms. To achieve an 

accurate classification, the sub-algorithm will check a combination of properties of the 

object based on geometric theorems. If the object matches all the required properties 

of a certain category, then it is classified into that category. Each sub-algorithm is 

designed to accept the data that belongs to the corresponding category, and reject the 

data that does not belong to that category.  

 

EXPERIMENTAL RESULTS 

To test the proposed method, a small experiment was conducted on cone 

frustum-shaped piers of simple bridge models in IFC, for classifying objects into this 

shape category. The detailed steps are described as follows:  

(1) Create an environment (e.g., database) for extracting objects from IFC-

based BIM models and initially build a classification algorithm with no rules or 

patterns. In this step, an empty database was created to accommodate future IFC 

objects; and a classification algorithm was initialized in Java programming language 

with no known type of shapes. 

(2) Extract a single object from an IFC-based BIM model (i.e., training model). 

In this step, the simple bridge model created by Mandava and Zhang (2016) was used 

as the training model. A cone frustum-shaped pier in the simple bridge model was 

extracted from the training model (Figure 2). A cone frustum shape is a cone shape 

with its top sliced off (WMW 1999). 

 

 

Figure 2. A cone frustum-shaped pier 

(3) Process the object using the classification algorithm, if there is no match 

with any pattern, go to step (4), otherwise, go to step (5). In this step, because the 
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classification algorithm was just initialized, it did not have any rules yet, so there was 

no match found with any pattern, we moved to step (4).      

(4) Study the representation of this object in IFC, add/revise a sub-algorithm 

using pattern-based rules for identifying this type of object into the classification 

algorithm. In this step, through studying the shape representation of the cone frustum-

shaped bridge pier, the following geometric representation details were found: to 

represent the shape of the pier, a faceted boundary representation (Brep) was used, 

which was composed of a closed shell. The closed shell was further composed of 18 

faces. Sixteen of the faces were rectangular, and two of the faces were hexadecagons. 

The hexadecagons were used to approximate circular shapes. The 16 rectangular faces 

were on the outer boundary of the object, to represent the side faces. These side faces 

together are approximating a smooth side face in one piece, in a similar way as the 

hexadecagons were used to approximate circles. Through analysis, the authors 

identified three intrinsic geometric properties of a cone frustum shape:  

 

a. Top and bottom faces are circles. 

b. Top and bottom faces are in parallel. 

c. The axis of the shape is perpendicular to the top and bottom faces. 

 

Correspondingly, the following pattern-based rules were developed:   

 

Rule #1: There are two and only two faces that are circles. From the 

mathematical definition, all points on the boundary of a circle have the same distance 

from the center of the circle. This definition was used to identify a circle. To find the 

center of the circle, Equation (1) was used: 

 

(𝑥, 𝑦, 𝑧) =
1

𝑛
∑ (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑛
𝑖=1             (1) 

 

In Equation (1), x, y, z are the coordinates of the center, and xi, yi, zi are the 

coordinates of vertex #i of the hexadecagon. The average of coordinates of all 16 

vertices were calculated and used as the coordinates of the center. A distance check 

was conducted by comparing the distances from all 16 vertices to the center. 

Theoretically this distance should be exactly the same. But due to rounding errors in 

practical data, a strict equation criterion would have failed. Therefore, a tolerance of 

error was needed. To analyze the needed tolerance, the distances from each of the 16 

vertices to the center for both the top and bottom surfaces were computed, using 

Equation (2). Figure 3 shows the results of the distances. 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2        (2) 

 

Units of measure were ignored because they would not affect the results of the 

rules. Based on observing the computed distances and the maximum rounding error, 

the tolerance of error was set to ±0.000001.  
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Figure 3. The distances from all vertices to the center of the circle, for top and 

bottom surfaces 

 

Rule #2: The top face and the bottom face must be in parallel. This was checked 

through comparing the mathematical representation of the two faces, using Equation 

(3) and criterion (1) below.  

 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0         (3) 

 

In Equation (3), x, y, and z are the coordinates of any point in the shape. A, b, 

c, d are four parameters used to define a plane. To decide these parameters for a 

hexadecagon, three points were randomly chosen from its 16 points. The parameters a, 

b, and c were solved by plugging in the coordinates of the three selected points. And 

plugging in the solved a, b, c, and coordinates of any one point can give the value of d. 

 

Criterion (1): Given two planes a1x + b1y + c1z + d1 = 0, and a2x + b2y + c2z + 

d2 = 0, they are parallel if and only if a1 = a2, b1 = b2, c1 = c2, and d1 ≠ d2. 

 

Rule #3: A line that connects the centers of the top and bottom faces must be 

perpendicular to both faces. This rule guarantees the cone frustum shape not to be a 

skewed cone frustum. Cylinder is a special case of a cone frustum. This case can be 

distinguished by the following Criterion (2); 

 

Criterion (2): If the top and bottom faces of the cone frustum have the same 

size (i.e., radius), then the cone frustum is a cylinder.  

 

After developing these rules and criteria, we moved to step (5). 

(5) Check the classification result, if it is correct, go to Step (2), otherwise, go 

to step (4). In this step, a quick check on the classification result of the cone frustum 
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shape using the above sub-algorithm found it correct. We should have moved to Step 

(2), but as a preliminary and exemplary small experiment, we only considered one 

shape category (i.e., cone frustum shape). So we moved to step (6).    

 

(6) When all objects in the training model is processed, apply the classification 

algorithm to testing data for evaluation. In this step, piers from three other bridges 

retrieved from online sources were used as the testing data (Mandava and Zhang 2016). 

Table 1 shows some parameters of these piers. Applying the developed classification 

algorithm on these three piers successfully classified them into the cone frustum shape 

category.    

 

Table 1. Parameters of the three piers in the testing data. 
 

Margins Axis Length Top Face Radius Bottom Face Radius 

Bridge Pier 2.36 0.04 0.16 

Test Pier 1 10.00 2.25 9.00 

Test Pier 2 5.00 0.40 4.00 

Test Pier 3 1.16 0.03 0.14 

 

ANALYSIS 

In this experiment, an algorithm was developed based on the IFC model of a 

simple bridge pier, to identify the cone frustum shape. The developed algorithm was 

successfully tested on three more bridge piers retrieved from online sources. An error 

tolerance in equal distance check was decided by taking the maximum rounding error 

observed. Although it was tested to be successful in the testing data, it may not be the 

case in all possible testing data. Because such rounding errors depend on the software 

used to create the model as well as the parameters/configurations chosen by the 

modeler. In the ultimate classification algorithm that includes sub-algorithms for all 

known categories, a good estimation of this error tolerance may be obtained by 

analyzing a large amount of training data. Also, the use of a relative value to represent 

error tolerance (i.e., a percentage of a dimension of the shape) may be more robust than 

the use of an absolute value to represent error tolerance, such as the value ±0.000001 

used in this experiment. But this may also be dependent on the range of the absolute 

sizes of the dimensions. E.g., when comparing two data values close to zero, their 

relative difference can be large where the absolute error stays small (i.e., bounded by 

the two data values). The same rationale used in comparing absolute value with relative 

value for error tolerance applies to relations used in the patterns of the sub-algorithms 

as well. Specifically, relative relations are expected to be more robust than absolute 

relations. For example, the relative relation (e.g., parallel relation) between the top and 

bottom surfaces of a cone frustum shape is more robust than the absolute relation (e.g., 

horizontal) between each surface and the world coordinate. But if certain assumptions 

are known to be valid, then absolute relations may be preferred because they are 

simpler to use. For example, if the assumption that all piers stand vertically is true, then 

it is easier to use the criterion that the top and bottom surfaces are horizontal. In terms 

of computing efficiency, the ultimate classification algorithm developed based on the 
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proposed method will have a time efficiency of O(n) with regard to the number of 

predefined categories for the classification.  

 

CONCLUSIONS 

Automated object classification is needed in many BIM applications to support 

BIM interoperability. However, few researches have focused on automated object 

classification of IFC models, and error-free classification is beyond the state of the art. 

As part of an initial effort to investigate the use of scientific theories and intrinsic 

properties of BIM objects to support seamless BIM interoperability, the authors 

propose a rule-based algorithm development method for developing IFC object 

classification algorithms. To test the proposed method, a preliminary experiment was 

conducted where an algorithm for classifying IFC objects into the cone frustum shape 

was developed based on one bridge pier of such shape. The algorithm was successfully 

tested on three other unseen bridge piers. The use of scientific theories and intrinsic 

properties of objects in such classification algorithms is expected to avoid errors from 

subjectivity embedded in expert knowledge. The use of a rule-based method makes it 

one step closer to error-free classification, which is hard (if not impossible) to achieve 

using machine learning-based methods.  

 

LIMITATIONS AND FUTURE WORK 

A main limitation of the reported research is the small scope of the preliminary 

experimental testing. The authors only tested the proposed method on one shape and a 

small amount of data. While this may well serve the purpose of explaining the proposed 

method and showing its potential impact, the testing on more categories is needed to 

reveal practical issues such as error tolerance variation. In addition, as the number of 

categories keep growing, an object may be found to match more than one categories. 

While this may be prevented theoretically by a well-defined taxonomy of categories, 

how this problem will reveal itself in practice and how it should be addressed need 

further investigation. In future work, the authors plan to extend the experiment by 

incorporating more categories and more data.  
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