
xJsnark: A Framework for Efficient Verifiable
Computation

Ahmed Kosba
UMD

akosba@cs.umd.edu

Charalampos Papamanthou
UMD

cpap@umd.edu

Elaine Shi
Cornell

rs2358@cornell.edu

Abstract—Many cloud and cryptocurrency applications rely
on verifying the integrity of outsourced computations, in which
a verifier can efficiently verify the correctness of a computation
made by an untrusted prover. State-of-the-art protocols for verifi-
able computation require that the computation task be expressed
as arithmetic circuits, and the number of multiplication gates in
the circuit is the primary metric that determines performance.
At the present, a programmer could rely on two approaches for
expressing the computation task, either by composing the circuits
directly through low-level development tools; or by expressing
the computation in a high-level program and rely on compilers
to perform the program-to-circuit transformation. The former
approach is difficult to use but on the other hand allows an expert
programmer to perform custom optimizations that minimize the
resulting circuit. In comparison, the latter approach is much more
friendly to non-specialist users, but existing compilers often emit
suboptimal circuits.

We present xJsnark, a programming framework for verifiable
computation that aims to achieve the best of both worlds:
offering programmability to non-specialist users, and meanwhile
automating the task of circuit size minimization through a
combination of techniques. Specifically, we present new circuit-
friendly algorithms for frequent operations that achieve constant
to asymptotic savings over existing ones; various globally aware
optimizations for short- and long- integer arithmetic; as well as
circuit minimization techniques that allow us to reduce redundant
computation over multiple expressions. We illustrate the savings
in different applications, and show the framework’s applicability
in developing large application circuits, such as ZeroCash, while
minimizing the circuit size as in low-level implementations.

I. INTRODUCTION

Succinct Noninteractive ARguments of Knowledge
(SNARK) [31], [42], [15], [13] is a powerful cryptographic
building block that allows a prover to prove to a verifier the
correctness of some computation, such that the verifier can
check correctness in asymptotically less time than what it
takes to perform the computation. SNARKs promise a broad
spectrum of applications. For example, it allows a possibly
computationally limited device to verifiably outsource
computation to a powerful cloud server, problem that is often
referred to as Verifiable Comptuation [42], [30], [45]. Known
SNARK constructions also allow the prover to supply secret
witnesses to the computation, thus enabling zero-knowledge
proofs (henceforth referred to as zk-SNARKs). zk-SNARKs
have been employed by various cryptocurrency systems such
as ZeroCash [16], PinocchioCoin [25], and Hawk [35], to
provide privacy-preserving transactions and/or smart contracts

in a way that safeguards the integrity of the currency ledger’s
book-keeping and the correctness of smart contract execution.

SNARKs or (zk-SNARKs) support general computations,
i.e., they can be used to prove the correctness of arbitrary,
polynomial-sized computation. Most known SNARK construc-
tions model computation as arithmetic circuits (or alternatively,
as a set of arithmetic constraints) over a finite field. There
are two existing methods for a programmer to express the
computation that needs to be verified, either through compila-
tion from a high-level language [42], [49], [24], or by manual
circuit construction frameworks [15], [5]. The former provides
programmers convenience; while the latter enables lower-level
control and optimizations, resulting in possibly much better
performance than circuits auto-generated by a compiler, but
requires effort and knowledge from the programmer.

In this paper, our goal is to bridge this gap. We design and
implement xJsnark, a programming framework for developing
(zk-)SNARK applications. xJsnark takes a language-compiler
co-design approach: It introduces user- and compiler-friendly
language features that allow the user to conveniently write
programs in a Java-like language and subsequently enable
the back end to extract additional information needed for
converting the user-supplied program to a compact, optimized
circuit.

As we show later, xJsnark reduces programmer effort in
comparison with existing SNARK compilers such as Buf-
fet [49] and Geppetto [24]; and meanwhile improves the
performance of the compiled SNARK implementation by 1.2⇥
to more than 3 ⇥ for different cryptographic and memory
access applications. We will also illustrate how the framework
reduces the effort in developing large circuits as in the case
of ZeroCash[16], while producing optimized output.

A. Problem Statement

An important goal of xJsnark is that of “program-to-
circuit” conversion, i.e., to compile a user-supplied program
described in a Java-like source language into a compact
circuit representation that is recognized by existing SNARK
schemes. At the moment, xJsnark emits circuits in a libsnark-
compatible format [6], such that the resulting SNARK can be
executed using the libsnark back end. Thus our contribution
is not the back end SNARK implementation, but rather, the
program-to-circuit conversion stage, and the co-design of the



source language and compile-time optimizations to minimize
the compiled circuit.

This problem of program-to-circuit conversion is commonly
encountered in designing programming frameworks for cryp-
tography: besides (zk-)SNARKs, it has also been investigated
in the context of secure multi-party computation [38], [37],
[44], [40] — in particular, known cryptographic building
blocks for securing the integrity and/or confidentiality of
computation customarily express computation as circuits.

SNARK-specific program-to-circuit conversion. Several fac-
tors make the program-to-circuit conversion problem unique in
the SNARK context, and our algorithmic techniques described
later would repeatedly make use of these optimizations to
achieve constant to asymptotic performance improvements
over existing approaches.

First, an important observation that fundamentally differen-
tiates circuit generation in the SNARK context than, say, in the
multi-party computation context [38], [37], [40], [44], [41], is
the following: a SNARK circuit need not necessarily compute
a function in the forward direction, it suffices to generate a
circuit that verifies the correct of the computation result —
and the latter is often much cheaper than the former. For
example, the statement y = x/a can be verified much more
efficiently by checking that y  a⇥  = x rather than computing
the division in the forward direction. This observation has also
been pointed out by several earlier works [42], [17], [18],
[24], [49], [25], [36] — but in this paper we will apply it in
new ways in the design of several circuit-friendly algorithms
that achieve constant to asymptotic performance improvements
over existing approaches.

Second, known SNARK constructions rely on arithmetic
circuits over a finite field. Moreover, known SNARK imple-
mentations have a unique performance profile where multipli-
cation of two variables are expensive; whereas addition gates
or multiplication with predetermined constants come almost
for free. Therefore, the optimization metrics are very different
from conventional compilers in our case. We focus on how to
emit arithmetic circuits that express a user-supplied program
while minimizing the number of expensive multiplication
gates.

B. Technical Highlights

To emit compact circuits for user-supplied programs, we
introduce new algorithmic techniques in all stages of the
compilation. Our new algorithms improve the circuit size by
constant to asymptotic factors for frequent building blocks
relative to the state-of-the-art, while not requiring as much
experience from the programmer compared to earlier compil-
ers.

New circuit-friendly building blocks. First, at the building
block level, we design new efficient, circuit-friendly algo-
rithms for frequent operations such as memory accesses and
short and long integer arithmetic; where “circuit-friendliness”
in our context means that the algorithm may be expressed
as a compact arithmetic circuit that minimizes the number of
multiplication gates (more specifically, multiplication of two

variables and not with a predetermined constant). Our new
algorithms can improve the performance by constant to asymp-
totic factors in comparison with known approaches. More
specifically, we make the following algorithmic contributions:

• Efficient read-only memory. We present an algorithm (Sec-
tion V) for verifying a batch ofk read-only memory accesses
in total cost proportional to k

p
n where n is the size of the

memory array to be accessed, where cost is expressed in
terms of the number of arithmetic multiplications of two
variables — note that the number of addition gates and
“multiply by constant” gates are still linear in n, but as
mentioned earlier these gates come almost for “free”. (Note
that earlier work on Boolean circuits obtained similar bounds
for the multiplicative complexity of a Boolean function [20].
In contrast, in this work we consider the case of arithmetic
circuits, while relying on the observation that multiplications
by constants are for free, and on external witnesses to
provide efficient checks). We will show that for a broad
range of choices over k and n, our read-only memory access
algorithm outperforms the state-of-the-art by factors ranging
between 3-10⇥, and overall we illustrate how it can improve
the AES implementation by more than 2⇥.

• Smart memory. Our xJsnark framework supports a smart
memory algorithm that adapts the memory implementation
to obtain high efficiency. Depending on the concrete value of
k and n, and whether the memory access is read-only, our
back end automatically selects the most efficient memory
access algorithm among the following: 1) the na ı̈ve linear
sweep algorithm which may be efficient for sufficiently
small values of k; 2) a permutation network [17], [18],
[49], and 3) our new read-only memory algorithm mentioned
above.

• Long integer arithmetic. We introduce several new circuit-
friendly algorithms for efficient long integer arithmetic.
xJsnark internally expresses long integers as an array of
short integers whose bitwidth can fit in the SNARK’s native
arithmetic field. Henceforth let m denote the length of this
array.

1) Multiplication. Known works employ either a na ı̈ve mul-
tiplication algorithm that incurs ⇥(m 2) circuit size (e.g.,
Cinderella [26]); or adopt Karatsuba [34] that incurs
⇥(m 1.58 ) circuit size (e.g., ObliVM [38], GraphSC [41])
— where circuit size counts only multiplication gates. We
propose a SNARK-friendly long-integer multiplication
algorithm that incurs only O(m) multiplication (by non-
constant) gates.

2) Modular arithmetic. Modular arithmetic is a frequently
encountered operation for implementing a wide class
of cryptographic algorithms (e.g., RSA circuits) in
SNARKs. To support modular arithmetic, an recurring
operation is to verify the modular congruence of two
variables, i.e., verify that a  b  q⌘ b ⇤ q ⇤ q  + rwhere q is the
modulus.
Using our long integer multiplication technique as a
building block, we devise an improved algorithm for



checking the modular congruence of long integers, lead-
ing to an improvement of 3⇥ for this operation, and
improving the overall performance by more than 1.5 ⇥
relative to the state-of-the-art [26] that was built on top
of Geppetto [24]. This is while minimizing the program-
mer’s effort/experience requirements.

Global optimizations for integer arithmetic. Besides opti-
mizing individual building blocks, our compiler also makes
(somewhat) global optimization decisions for frequent oper-
ations such as integer arithmetic. One challenge in support-
ing bitwidth-parametrized integers is to figure out when to
perform bitwidth realignment. More specifically, imagine that
the program contains operations on uint32 variables, i.e.,
unsigned integers of 32 bits. Since the SNARK’s native field
is much larger than 32 bits, we need not perform a mod 232

operation for each arithmetic operation (henceforth referred
to as bitwidth realignment). One na ı̈ve strategy (i.e., the lazy
strategy) is simply let the bitwidth grow but keep track of
the maximum bitwidth of internal variables — then we only
perform realignment whenever an overflow is just about to
happen. As we show later, this na ı̈ve lazy strategy is not the
optimal. Instead, our compiler is able to perform more globally
aware decisions as to when to perform bitwidth realignment.

Circuit minimization. Third, we implement a customized
version of the state-of-the-art circuit minimization techniques
— more specifically, multi-variate polynomial minimization
techniques — to minimize the generated circuit. Such cir-
cuit minimization techniques may have exponential time,
and therefore we devise algorithms to cluster the arithmetic
constraints to be verified into bounded-size groups, and we
apply multi-variate polynomial minimization to each group.

C. Implementation, Evaluation, and Open Source

Besides our new algorithmic techniques and various more
globally aware optimizations, one important contribution we
make is to integrate all these techniques into a unified, user-
friendly programming framework. We hope that the xJsnark
user can benefit from our effort and be able to develop efficient
SNARK implementations without needing much specialized
knowledge on the topic. To this end, we plan to open source
our xJsnark framework in the near future.

Implementation. We present an overview of our xJsnark
framework in Figure 1. xJsnark’s front-end is developed atop
Java using Jetbrains MPS, an open-source project [4] for im-
plementing domain-specific languages. xJsnark’s compilation
back-end encompasses several stages:

• First pass: the back-end collects useful information about the
structure of the circuit, e.g., how variables are being used
(e.g. whether involved in arithmetic or Boolean operations,
and how many times used), how memory is being accessed,
etc. This is done by creating a dummy circuit that does not
realize every low-level detail, but only what is needed to
understand the characteristics of the circuit.

• Second pass: making use of information collected during
the first pass, the back end decides an efficient circuit
representation of the computation.

• Optional third pass: This pass uses a customized multivari-
ate polynomial minimization technique to introduce more
savings in the circuit.

Front end. The front end of xJsnark is developed as a Java
language extension using the Jetbrains MPS framework [4].
xJsnark’s front end supports numerous features designed to
help a non-specialist user. First, we provide parametrized
types, including bitwidth-parametrized integers, and Fp fields
elements at the language level, allowing the user to express
short and long integers very conveniently. The extension comes
with an Interactive Development Environment (IDE) that is
based on projectional editing and real-time type checking that
allows programmers to detect programming errors early on.
We provide code examples in Appendix A, and discuss the
trade-offs of using the underlying framework in Appendix D.

Using previous compilers like Buffet [49] or Geppetto[24],
programmers are assumed to have some additional experience
in order to develop efficient applications on top. For example,
programmers may need to carefully add extra casting state-
ments, specify additional prover inputs or add extra constraints
to the code in order to develop secure and efficient programs.
xJsnark attempts to solve these problems through both the
front end features, and the back end algorithms.

Performance. For four different cryptographic applications
spanning SHA-256, SWIFFT hash function, RSA, and AES,
we illustrate how xJsnark can produce more efficient circuits
by factors ranging between 1.2 ⇥ to more than 2 ⇥, while not
requiring the programmer to be experienced in the underlying
SNARK implementation (Section VII-A). Additionally, we
show how our framework produces efficient random access
circuits by a factor of 2-3⇥ in the case of sorting, while
also providing more efficient ways to obtain more concise
circuits (Section VII-B). Furthermore, we illustrate that the
framework can produce efficient circuits as done by existing
low-level implementations, as in the case of ZeroCash [16]
when developed in our framework (Section VII-C).

II. BACKGROUND AND RELATED WORK

In this section, we provide a necessary background to our
paper, in which we cover the basics and related works on
verifiable computation.

A (Zero-Knowledge) Succinct Noninteractive ARguments
of Knowledge (SNARK) scheme involves two parties, a prover
P and a verifier V, where P proves the correctness of
executing a program F on an input ~xfrom V, and (optionally)
a secret input ~ufrom P . P sends V both the output ~yand a
proof ~⇡to verify the result. Specifically, a SNARK scheme
typically consists of three algorithms [42]:

• (PK F , V KF ) KeyGen(F,1 ) : given an outsourced pro-
gram F and a security parameter , output a public proving
key PK F and a verification key V KF . The verification key
might be public or private depending on the setting.



Fig. 1: xJsnark Overview

TABLE I: Our contributions. The part in blue highlights our new algorithms in support of each language feature.

Bitwidth parametrized integers Long integers Memory access Circuit minimization

Buffet [49] Some Library Perm. net. Some

Gepetto [24] Some Library Does not support dynamic mem Some

xJsnark • Smart bitwidth alignment

• Improved algorithms
for multiplication, sub-
traction, and equality

• New algorithm for read-
only mem • Multivar. polynomial minimization• Smart selection btw
linear/read-only/perm net

• (~y, ~⇡)  Prove(F,PK F , ~x, ~u): given a program F , the
public proving key PK F , the public input ~x, and the prover’s
secret input ~u, output ~y F(~x,~u) , and the proof ~⇡proving
the correctness of the computation.

• {0,1}   Verify(VK F , ~x, ~y, ~⇡): given the verification key
V KF , the proof ~⇡, and the statement (~x, ~y), output 1 iff
~y = F(~x, ~u).

In particular, for the scheme to satisfy succinctness, both
the proof size and the time it takes to execute Verify must be
asymptotically smaller that the time it takes to evaluate F . For
simplicity, we mainly focus on what is called preprocessing
zk-SNARKs, in which the whole program is represented as
a single circuit or a single system of quadratic constraints,
and a one-time setup per each different circuit is needed
in the beginning. However, the techniques we describe in
this paper can also be extended in a straightforward way to
systems that support recursive composition of zk-SNARKs
[19], [24]. In the interest of space, we omit the formal security
definitions for (zk-)SNARKs, we refer interested readers to
existing papers [31] for formal definitions.

A. Program Representation and Cost model

In the preprocessing zk-SNARKs we are considering, the
program to be verified is expressed as a Quadratic Arithemtic
Program (QAP) [31], [42], where computations are repre-
sented as a set of quadratic equations over a finite field
(typically a 254-bit prime field p), or in other words, a circuit
of additions and multiplications gates mod p. We denote
each quadratic equation or a multiplication operation as a
constraint.

To translate a program into set of constraints, the main
operations can be translated as follows:
Arithmetic Operations (mod p). Translation of addition and
multiplication (mod p) is straightforward. Note that additions

and multiplication by constants are almost free operations,
while each multiplication gate costs one constraint.
Bitwise Operations. Access to the individual bits of a wire
in the circuit is expensive. For example, for an n-bit wire w,
it would require n + 1 constraints to verify that each bit wire
bi achieves the following constraint: bi (1 bi ) = 0 , and that
all bits achieve the constraint (

P
2i bi ) ⇥ 1 = w . We denote

this gate as split gate, following the naming of Pinocchio,
while the reverse operation as pack gate following the naming
convention of libsnark. Note that the pack operation can be
just implemented as a weighted linear combination of the
bits (some implementations add one constraint per a pack
operation). For any two bits bi , and bj , the operations: AND,
OR, and XOR each costs one constraint, while the negation
of a certain bit can be implemented as a linear combination
of the bit.
Arithmetic Operations (mod p0 6= p ). The problem of
representing arithmetic operations is more challenging when
the modulus is not equal to p. For example, when the oper-
ations are done over p0 = 2 n , to obtain a correct result, a
remainder operation needs to be applied on the result, which
leads to a number of constraints that are at least equal to
the bitwidth of the result, as it requires at least one split gate.
However, as we see in the paper, the compiler can apply some
heuristics for efficient translations of such operations. Previous
compilers such as [42], [24], [49] assume that the programmer
is responsible for taking such decisions.
Assertions and Comparisons (mod p). This refers to gates
that verify a constraint given input wires. In its general form,
an assertion gate accepts three inputs a, b and c, and verifies
that a  b⇥  = c . This differs from checking the equality of
two n-bit wires, which requires two constraints, while the
unsigned integer <, > comparison costs about n+2 constraints
(assuming n < dlog2 pe  1 ).



Memory accesses. A program is different from a circuit in
that it has control flows and dynamic memory accesses whose
addresses cannot be determined at compile time. We will
discuss how existing works and xJsnark translate memory
accesses to circuits later in the paper Section V.

B. Existing Tools

The currently used utilities for developing verifiable pro-
grams span two different categories:

High-level language compilers. This includes many works
such as Pinocchio [42], TinyRam [18], Pantry [21], ZØ[29],
Buffet [49], and Geppetto [24]. Pinocchio’s compiler translates
a subset of the C programming language to an arithmetic
file that provides a circuit representation of the computation
to be verified. Plus its support for large-scale computations
via Multi-QAPs, Geppetto’s compiler provides additional fea-
tures over Pinocchio’s compiler, e.g. enabling programmers
to define long integer types, specify bounding constraints in
the code and access to bit values. Geppetto’s compiler also
employs energy-saving circuits, by which the prover’s cost
gets minimized in branches that are not taken during execution.
Pantry and Buffet support a larger subset of the C language.
Pantry was the first to extend verifiability to computations with
state, such as map-reduce jobs. Buffet provides more efficient
control flow, and random memory accesses, combining the
permutation network approach with compiler optimizations.
The TinyRam compiler compiles high-level C programs to
TinyRam assembly instructions (a simple RISC architecture),
and generates arithmetic circuits that verifies the execution of
TinyRam programs. In a later work[15], vnTinyRam generates
a universal circuit that does not require a set up each time,
but results in higher cost per program step. ZØ translates
applications written in C# into code that produces scalable
zero knowledge proofs of knowledge. It splits applications
to distributed multi-tier code, and chooses between two zero-
knowledge back-ends (Pinocchio and ZQL) to optimize per-
formance.

Although the above tools include many theoretical and
engineering optimizations, it is not straightforward to develop
programs efficiently for zk-SNARKs, especially for crypto-
graphic operations.

Low-level circuit construction tools. Although such tools
require more programming effort, they were used in many
applications that require optimized performance [16], [35],
[33]. This for example includes libsnark’s gadget libraries [6],
and jsnark [5]. In libsnark’s C++ libraries, a programmer rep-
resents the verifiable program as gadgets connected together.
Each gadget defines a set of constraints, and how to set the
value of its output variables. jsnark provides a simpler Java
interface to libsnark so that it can make development easier
and likely to produce more efficient circuits, and it uses the
same libsnark cryptographic back end eventually. Other works
include snarklib [23] , and bellman [1].

III. xJsnark’S FRONT END

In this section, we discuss the language extension features,
in addition to some optimizations that can be applied early
during the translation to Java code process. Using our Java
extension built on top of Java using Jetbrains MPS, a program-
mer will specify the code for the computation to be verified.
Code examples are provided in Appendix A. Background and
discussion of Jetbrains MPS are provided in Appendix D.

A. Extension Features

1) Parametrized Types: To give the programmer greater
control, and in the same time enable our back end implementa-
tion to translate the code efficiently, our framework introduces
parameterized types for integers and field elements, where
the programmer can specify the bitwidth of integers, and the
modulus of the field elements. The following snippet shows
examples of variables declared using those types.

uint 7 x1 = 12;
uint 1024 x2 = 8105278157615764165361523651316112323v;
F swifft y1 = 123;
F p256 y2 = 810527815761576416536152365131v;
bit b1 = 1;

Note that the programmer easily specifies long integer
and field element types, without specifying how that will be
implemented in the background. Also, the programmer can
specify long integer literals without dividing them to chunks
according to the native underlying field. In order to enable the
programmer to define finite field types, the framework has a
special file where field identifiers can be specified, typically
in the following syntax:

swifft : 257
p256: .. // NIST Curve P 256 prime

Then, the programmer can use these identifiers when defining
field elements.

2) Operators: The framework allows the programmer to
directly use typical arithmetic operators with the types defined
above (e.g. +, , , /,⇤ q  &, |,) when applicable, instead of using
special methods. For example, the following snippet shows a
piece of code that verifies the ownership of an RSA secret
key:

Program RSA SecretKey Knowledge {
uint 2048 modulus;
uint 1024 p;
uint 1024 q;

input { modulus } ;
output { } ;
witness { p, q} ;

void Main() {
verifyEq (( uint 2048)p⇤ qq, modulus); // Equality Assertion

}
}

Due to the underlying Java implementation in MPS Jetbrains
, we introduce new operators for bit and equality operators
such as (AND, OR, NOT) to be compatible with our types.



We also introduce new operators like inv , which obtains the
multiplicative inverse of a field element (assuming a prime
order).

3) External Code Blocks: In many cases, computing the
value of prover’s witnesses can be more expensive than its
verification, e.g. verifying a solution for a linear system of
equations has less complexity than computing the solution
itself. In such cases, previous compilers assume that the
computation of such witnesses happens independently outside
the circuit, and only the verification is specified in the code.
We believe this may be inconvenient, due to writing code
in two different frameworks. Instead, the programmer can
specify in our framework within the same code how these
computations will take place in Java. To specify code to be
executed outside the circuit, the xJsnark programmer can use
the external code blocks, and the $val $ operator, which
refers to the value during runtime (See Appendix A-B).

4) Smart Memory and Permutation Verifier: As we will
discuss in detail in the back end, xJsnark provides a smart
memory implementation that decides the best way to translate
memory operations after analyzing the workload of each array.
Additionally, xJsnark provides a function that can be used to
verify that a group of elements is a permutation of another,
without exposing the programmer to the internal details of
switching networks. This feature can be used along with the
external code block and constraints to compile some appli-
cations more efficiently, e.g. sorting with respect to arbitrary
criteria (See Appendix A-B for an example, and Section VII-B
for performance results).

We provide additional technical details on type and syn-
tactic checking, control flow, code generation and additional
extension features in the appendix (Appendix F).

IV. DATA TYPE REPRESENTATION

In this section, we describe how xJsnark’s back end
represents data types and implements their operations. The
discussion will be mainly focused on integers and field el-
ements (recall that integers are field elements, where the
modulus is a power of two). In the beginning, we make a
distinction between short integer and large integer arithmetic.
Assuming the underlying SNARK prime is p, typically a 254-
bit prime, then short integer arithmetic is applied when the
modulus of the field p0 is less than

p
p. For simplicity, when

dlog2 p0e < 0.5dlog 2 pe . The reason for that decision is to
make sure that the initial result of multiplying two elements
will be less than p, i.e. fits in one wire. Otherwise, dividing
the element across multiple words will be needed, as will be
shown when the long arithmetic is described in detail.

Representing the operations of a different field on top of
the SNARK field requires some care, as operations are done
modulo p in the circuits. Therefore, adding two 32-bit integers
is expected to produce a 33-bit value, but we mainly care
about the least significant 32-bit. Converting the 33-bit value
to the correct 32-bit is an expensive process that requires
34 multiplications. This conversion is not always necessary.
In other words, many operations can be done, e.g. additions

or multiplications, before it comes necessary to convert the
element to a value within its field, e.g. to avoid overflows
(when the result of an operation exceeds p), or if the element
is involved in a comparison. The same holds for general field
elements, but the conversion is even more costly here due to a
more expensive remainder operation, as will be shown shortly.

In order to make our implementation safe against overflows,
we keep track of the maximum value that any element can
have at any point. For an element or word x , we denote the
maximum value it can have as xmax .

In the following subsections, we discuss different design
decisions for both short and long integer arithmetic.

A. Short Integer Arithmetic

Assume the field being represented is Fp0, log2 p0 < 0.5 ⇤ q
log2 p. Each element is represented as a single word.

1) Bitwidth Adjustment: Addition and multiplication are
straightforward operations for short integer arithmetic, how-
ever they typically increase the bitwidth of the resulting ele-
ment beyond dlog2 p0e. Deciding when to convert an element
back to the range of its field is a challenging problem. First,
we have to make a distinction between three types of elements.
• Elements within range, i.e. 0  e e max < p 0 : examples

include input elements (which are guaranteed to be in
range), or elements resulting from bitwise operations, e.g.
bitwise XOR. In that case, the output element is guaranteed
to be within range, as it is been computed based on packing
individual bits.

• Elements that could be above the range, i.e. p0   e emax < p
and required to be returned within range: This may in-
clude elements that are labeled as output, elements that are
involved in bitwise operations and comparisons, elements
involved in operations like division or remainder, and ele-
ments that are involved in memory operations. In the context
of integer elements, this also includes elements that are
involved in operations or assignments with higher bitwidth.
For example, adding a 32-bit element to a 64-bit element,
requires that the 32-bit element is in range. Otherwise, this
will lead to a wrong result.

• Elements that could be above the range, i.e. p0   e emax < p
but are not always required to be within range: This includes
intermediate elements between multiplication and addition
operations, such that none of the above conditions apply.

In order to be able to classify the elements into the above
categories, we make an initial pass constructing a dummy
circuit to identify the class of each of the elements. This is
one main objective for the initial phase described in Figure
1. Based on the classification of the elements above, the
main question is when to adjust the bitwidth of an element
e falling in the third category, to achieve the following two
goals (in order): Ensuring no overflows can happen in later
operations involving e, and minimizing the total cost resulting
from bitwidth adjustments.

This can be modeled as a constrained optimization prob-
lem. To illustrate that by example, Figure 2 provides sample
circuits, assuming p0 = 2 32 . For each element ei that does not



Fig. 2: Bitwidth adjustment examples

fall in the first category, we define the following two variables
bi , vi : bi is a binary variable denoting whether ei is going to be
adjusted or not, while vi represents the value of the bitwidth
before applying adjustments if any. bi is 1 for any elements
falling in the second category. Note that adjusting the bitwidth
of an n-bit element will cost n + 1 constraints. Now, we can
specify both the objective function and the constraints, for
circuit (a) in Figure 2.

The objective function can be defined as the total number of
constraints resulting from all adjustments f =

P
i bi (vi + 1)

Subject to the following constraints

v1 =v 2 = 64
b5 =b6 = 1
v3 =v 1 + b1(32 v1) + v 2 + b2(32 v2)
v4 =v 3 + b3(32 v3) + 1
v5 =v 6 = v 4 + b4(32 v4) + 32
vi 2{32, .., blog2 pc  1}
bi 2{0, 1}

It is possible to express the problem as a function of bi ’s
only, however, the reason vi ’s were introduced is that the size
of the expressions will grow without the equality constraints.
Based on our experience trying multiple nonlinear optimiza-
tion algorithms, using the above approach for large circuits
will not be efficient, but has the advantage of producing
optimal solutions.

Greedy Strategies. Due to the cost of the above solution,
one alternative could be to apply a simple greedy algorithm
after the initial phase, where adjustments are only introduced
if the next operation is going to result in an overflow. This
approach can work well for most of the applications we
consider. Note that the initial phase itself can introduce some
optimizations through the knowledge of how elements are
being used later. For example, in this sample example, it can
be noted that x1 is being used in a bitwise operation later, i.e.
it falls under category 2 defined earlier, and its bitwidth will be
adjusted in all cases. However note that the line x2 = x1  x⇤ q 1
occurs before the bitwise operation. This line could make use
of the fact that x1 will be adjusted back to its range. This is

not possible unless we make a complete pass over the program
first as we do already in the first phase in the back end.

// assume in1, in2 are uint 32 variable inputs , while out is
uint 32 output .

uint 32 x1 = in1 ⇤ qin2 ;
uint 32 x2 = x1 ⇤ qx1;
uint 32 x3 = x1 ˆ in1 ;
..
out = x2+x3;

Another greedy approach will be to study how an element
contributes to different paths leading to an adjustment in the
end. Note that solving the above optimization problem (Figure
2 [a]) will lead to b4 = 1 , while b1 = b2 = b3 = 0 . This result
can possibly be justified by noticing that wire #4 contributes
eventually to two distinct paths through two multiplication
gates, each leading to an adjustment in the end. However, in
[b] it is expected that no adjustment will be needed in any
of the intermediate levels, although wire #4 still contributes
to two paths, but they are not leading to different adjustment
outcomes. It’s possible during compilation time to study which
intermediate wires contribute to the end points, and select
wires that contribute with multiplications in more than one
path. However, this won’t ensure optimality in all cases as
well. It is also still important to handle the possibilities of
overflows, as the strategy does not directly take that into
account. For example, in Figure 2 [c], applying the strategy
above directly might lead to an overflow in the lower level,
except if the corresponding wire is adjusted.

In summary, the greedy strategies will not always achieve
the optimal solution, but can compile many applications faster.

Adjustment Implementation Adjustment for an element
x is done by computing the element r = x mod p0. Imple-
menting the remainder operation is straightforward when p0

is a power of two. In that case, it is enough to split x , trim
the unnecessary bits, and pack the rest to a new element (if
needed). The cost for the adjustment in that case is nearly:
log2 xmax + 1 constraints.

To get the remainder in the case of general field elements
where p0 is not a power of two, we use the power of SNARK
verification where the prover can provide two values r and q,
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and the circuit checks the following constraint: qp0 + r = x ,
while restricting the bitwidth of q such that no overflow will
happen, and also asserting that 0  r < p e 0. This last constraint
is implemented by checking that the bitwidth of r is less than
or equal to the bitwidth of p0, and applying the comparison
test mentioned earlier to ensure that r < p 0.

However, an additional optimization in the case of fields,
where p0 is not a power of two, is to implement bitwidth
adjustment differently for the elements falling in the third
category described earlier. Such elements do not have to apply
the second part of the third constraint. It is enough for the
prover to provide a valuer that satisfies the bitwidth constraint,
but no need to check that r < p 0, as adjusting the elements of
the third category is mainly done to avoid overflows.

2) Subtraction: To subtract two short elements x and y, the
result will depend on p if x < y . To avoid that, we introduce an
auxiliary constant a such that a = c.p0, where c is the smallest
integer such that c.p0 ymax . If c.p0 p, this means that the
value of y needs to be adjusted, i.e. we need to compute the
value y mod p0 in the circuit as above, and set c to 1 for the
subtraction. The result of the subtraction will be: a + x y.

3) Division and Remainder operations: Division and re-
mainder operations supported only for integers have a similar
implementation to the implementation of bitwidth adjustment
described earlier. A similar approach can also apply for
the multiplicative inverse for field elements, by forcing the
remainder of the product of the operand and the result to be
equal to 1 (mod p0), while checking that the inverse result is
in range.

B. Long Integer Arithmetic

Typically, the prime field used in zk-SNARK implementa-
tion is a 254-bit prime field, however in many cryptographic
applications, longer integer arithmetic is required for high
security, such as in RSA or Elliptic Curves. Hence, a long
integer is represented using a group of wires rather than a
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single wire. An n-bit long integer x is represented by a group
of b-bit words x[i] , where i 2 {0, 1, ..m 1} , and m =

⌃n
b

⌥
,

such that x =
P m 1

i=0 x[i]2 ib , and b < log2 p.
A technical question here is how to set b properly to

achieve high performance. As we are going to show, setting the
bitwidth b, to be the largest possible while avoiding overflows
does not necessarily result in the best performance or the
cheapest circuit.

Additionally, as in the short integer case, care is also needed
when another field is represented on top of the 254-bit field
case. However, unlike the short integer case, the algorithms
for when to adjust long integers back will have to be adapted
a little bit as in the following. Most of the operations are
similar to what have been discussed in the short integer case.
We mainly highlight the major differences.

1) Multiplication: Given two long integers x and y each
is m words. While addition is straightforward, i.e. can be
implemented by adding corresponding chunks, multiple op-
tions exist for multiplying x and y in the circuit. For exam-
ple, we can either apply the trivial O(m 2) approach, where
z[i] =

P
j+k=i x[j]y[k] , or Karatsuba’s method [34], which

costs O(m1.58 ) multiplications.
However, it’s possible to have an O(m) approach. The

result of the multiplication z can be computed independently
by the prover and provided as a witness to the circuit.
Then the circuit can verify the result using the following
approach: For each c 2 {0, .., 2m 2} , the circuit checks this
constraint: (

P m 1
i=0 x[i]c i ).(

P m 1
i=0 y[i]c i ) =

P 2m 2
i=0 z[i]c i . In

other words, the prover will be required to provide 2m 1
values that satisfy a linear system of 2m 1 independent
and consistent equations, that has a single solution. The total
number of constraints to implement this verification circuit
is 2m 1. Note that we mainly rely on the observation
that multiplication by hard-coded constants in the circuit is
almost free. Figure 4 illustrates a comparison between the
three approaches above with respect to the proof time on a
single processor.

2) Subtraction: Subtraction in the case of long integer
arithmetic is more challenging. Recall that in the case of short
integer arithmetic, an auxiliary constant value was added in
order to make sure the result stays in range. In the case of long



integer representation, we also need to ensure that the result of
subtracting corresponding chunks stays in range. The way we
do this is as follows: To subtract two long elements x and y,
we introduce an auxiliary constant a such that a = c.p0, where
c is the smallest integer such that c.p0 ymax . Additionally,
it must be possible to represent a = c.p0 as a group of words
a[i] , such that a[i] y[i] max for all i .

3) Bitwidth Adjustment: Similar to the case we had before,
bitwidth adjustment in the case of long integers is needed if
any of the operations involving its words may overflow, or if
the number is being used for comparison or equality checks.

The same greedy procedures described earlier can be ap-
plied in the case of long integers, however an easy observation
to make is that when a long integer is involved in a multiplica-
tion, this means that each of its words contributes to multiple
words in the output number, which implies the involvement
in multiple bitwidth adjustment end points. This can make the
decision of adjustment more straightforward. We apply this
simple heuristic: we adjust any long integer that is an output of
a long integer multiplication before being involved in another
multiplication operation.

4) Equality Assertion: In many applications such as RSA
or Elliptic Curves, many inverse and remainder operations
will be required to verify the correctness of the results.
These operations require applying equality constraints on long
integers. This is the most expensive part in the circuit, as
in [24], [36].

What makes the problem of equality assertion in long
integers more challenging is that the words of a long in-
teger operand may not be bounded to their starting range.
For example, consider the main building block of modular
exponentiation illustrated in Figure 3. Both of the integers
z1 = xy , and z2 = nq + r are supposed to be equal, but their
words do not have to be equal, as any z1[i] or z2[i] are not
expected to be within the range [0, 2b 1]. Assuming x and
y had properly bounded words, then it’s expected that z1[0]
falls in the range [0, 22b 1] for example. The way to force
equality efficiently would be by noting that the first b bits for
z1[0] z2[0] must be zero, while the rest can be propagated
to the check done at the second word, in which the first b bits
of the two words will be checked as well, and so on. This is
the approach applied adopted by [24], [36]. This costs about b
constraints per each pair of words, resulting in a total of 2mb
gates approximately (as xy requires 2m 1 words).

Additional optimization over [24], [36] is to utilize that
addition and multiplication by constants are free operations.
So, instead of forcing the first b bits of z1[0] z2[0] to
be zero, we can instead apply a grouping stage (as far
as b allows). For example, if b = 64 , it’s clear that we
can apply this constraint instead: force the first 2b bits of
z1[0] + 2 64z1[1] (z2[0] + 2 64z2[1]) to be zero, propagate
the rest of the bits to the next check (nearly b bits). This
implies that the circuit will need to pay about 64 gates per
each 2 pairs of words. If b was chosen the highest possible
(e.g. 120 in Cinderella’s implementation [26]), the number of
words will be less by a factor of 2, but the cost will be higher
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Fig. 5: Bitwidth Effect on Number of Gates in RSA modular
exponentiation circuit

per every pair of words. As b decreases, the more grouping
that can be done, and the more savings. That said, decreasing
b results in a higher number of words, which means more cost
for the multiplication module in the earlier steps. Based on a
parameter exploration for RSA 2048, choosing b at about 32
bits provides much more savings compared to both extremes
(Figure 5).

V. RAM I MPLEMENTATION

One challenge in translating programs to circuits is that pro-
grams make dynamic memory accesses (whose addresses are
not known at compilation time), whereas circuits have static
wiring. Before presenting our approach, we overview existing
techniques for verifying dynamic memory accesses [42], [49]:
Linear Scan. Each memory access is performed through a
linear sweep of the entire memory. Roughly speaking, this
costs O(kn) for making k memory accesses where n is the
total memory size.
Merkle Tree. Memory accesses are verified through memory
checking techniques such as a Merkle hash tree. This approach
requires roughly ⇥(k log n) hash computations inside the
SNARK circuit for making a total of k accesses. Although
the dependence on n is logarithmic, the hash evaluation is
expensive, and therefore this approach is in practice inefficient
unless for very large choices of n.
Permutation Network. Memory accesses are verified using
an AS-Waksman network [14]: This approach costs O((k +
n) log(k + n)) for k accesses where the starting memory size
is n. This approach was proposed in [17], and subsequently
used in TinyRAM [18], and Buffet [49].

In Appendix B-A, we discuss low-level optimizations for
both Merkle tree and permutation network approaches.

A. Algorithm for read-only memory access

In this section, we discuss a new method for implementing
dynamic memory accesses in read-only arrays whose contents
are prepopulated. This can fit many applications where the
memory content is known in advance, such as the cases for
S-box evaluation in cryptographic primitives, as in AES. It can



Fig. 6: O(n) methods for read-only memory access

also be extended to other cases where look-up tables are used
instead of expensive floating-point arithmetic computation, as
in logarithmic and trigonometric functions.

Problem statement and known techniques. Formally, given
a mapping M from A = {0, 1} log 2 n ! B = {0, 1} log 2 n .
Assume there is no straightforward mapping from A to B , as
in the case of random permutations. For simplicity, assume
that n is an even power of two. The mapping is fixed and
known in advance, however, an accessed index a in the circuit
is unknown at compilation time. To resolve the mapping
and obtain b = M(a) in the circuit, we can employ any
of the known techniques, including linear scan, Merkle tree,
or permutation networks — in fact, we can make further
optimizations that improve the performance by O(1) factor
by making use of the fact that the array contents are known
at compile time (i.e., constants), and multiplication with a
constant comes for free in our cost model. When comparing
with these existing techniques, Table II will assume that these
optimizations have been applied to existing techniques.

Our algorithm. Now, we will show how to have a useful
O(

p
n) algorithm for resolving b = M(a) that can asymptot-

ically be better than all the above cases in practical cases.

Building block: polynomial function via a linear system
solution. We first describe a new building block for accessing a
read-only memory. Although this building block alone requires
O(n) cost per access, we will later explain how to combine
this technique with our na ı̈ve linear scan algorithm, to obtain
a new O(

p
n) algorithm.

An n-degree polynomial function can be introduced to
obtain a relation between the inputs and the outputs. In a pre-
processing phase, the compiler constructs an n⇥(n+1) matrix
P , where each row is the power vector [1, a, a2, .., an ] for all
ai 2 A , and a column vector b that has the corresponding n
elements of B . Then, a coefficient vectorc with n+1 elements
can be obtained by solving the linear system P c = b . Note

that the last element of c is set to 1. A solution will always
exist since the finite field we operate on has a prime order.
Then, in the circuit, the coefficients c can be just hardcoded as
constants in the circuits, and to resolve an index a, the power
vector a is constructed costing n 1 gates, and the result is
obtained by the dot product b = a · c costing zero gates. We
denote this method as the linear system-based method in the
next discussions.
Intuition. The proposed technique relies on the power of
SNARK verification. The actual value of b = M(a) does not
have to be computed by the circuit, but instead, the prover can
provide b as a witness, and the circuit can just verify that the
pair (a, b) is a valid pair with respect to M .

The O(
p

n) method we propose for checking the validity
of the pair is a hybrid of the first two O(n) methods men-
tioned earlier (Both methods are illustrated in Figure 6). The
approach is mainly inspired by two observations in the second
method: 1) The cost of the dot product operation is zero, since
the coefficient vector is computed in advance. 2) The cost of
the technique is mainly due to computing the powers of a,
which costs O(n) multiplications.

Now, the goal is to reduce the length of the power vector,
while introducing multiple dot product operations instead.
In brief, this will be done by decomposing the problem of
accessing one array that has n distinct elements to checking
membership in

p
n arrays, each has

p
n distinct elements.

In particular, for each array, a linear system is solved in
the preprocessing phase, and a coefficient vector is obtained.
Then, in the constructed circuit, a shorter power vector is
computed (only up to

p
n elements), and then the free dot

product operations are applied on the
p

n hardcoded vectors.
The output element will be verified using a more efficient
version of the linear scan method, which will iterate only overp

n elements instead of n elements.
Approach. More formally, during the compilation time, since
the memory is fixed, the back end can compute the set S =
{z 0, z1, ..zn 1 } , where zi = b i + n.a i . Note that the elements
zi are guaranteed to be distinct even if the values bi are not,
as the indices ai are distinct, and 0  b e i < n .

The back end then divides the set S into
p

n subsets, such
that each subset Sj = {z k : j

p
n  k  e  e (j +1)

p
n 1} for all

j 2 0, 1, ..,
p

n 1. This implies that the cardinality of each
Sj is

p
n. For each Sj , the back end constructs the following

linear system of equations:
P p

n 1
k=0 c jk zk + z

p
n = 0 for each

z 2 S j , where c j is a column vector associated with Sj . Since
every set contains

p
n distinct elements, it’s expected to havep

n equations per each linear system, and a unique solution
always exists since we operate in finite field with a prime
order.

In the circuit construction phase, the back end hardcodes the
vectors {c i } in the circuit. To resolve a random access to index
a, the prover provides a witness b, and the circuit checks that
b = M(a) . In other words, the circuit checks that the value
z = b+a.n belongs to S. First, the circuit checks the range of
b, i.e. 0  b < n e . This costs about log2 n + 1 gates. Then, the
power vector z = [1, z, ..., z

p
n ] is computed (costing

p
n 1
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Fig. 7: Comparison between the proposed O(
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n) method
for read-only memory access, and other optimized approaches
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TABLE II: Comparing read-only constant memory access
techniques in terms of the total number of constraints for all
accesses (n denotes the memory size, and k denotes the total
number of reads.)

Total Cost (Complexity) Actual Total Cost

Linear Scan O(kn) 2kn
Linear System O(kn) kn

Merkle Tree O(k log n) 2000k log2 n
Perm. N/w O((n + k)(log(n + k))) (n + k)(log 2 (n + k))+

2 log2(k + n) + 3 log 2 n

xJsnark O(k
p

n) k(2
p

n + log 2 n)

gates), and applied to each vector in the set {c j } via free dot
product operations. If the value b provided by the prover is
correct, then the value z should belong to only one of the sets
Sj , and result in a zero value in the corresponding dot product
operation. To verify the correctness of b, it suffices to check
that any of the dot product outputs is zero. This can be done
through a more efficient linear scan path that just multiplies
all the values and asserts the product value to be zero. This
costs only

p
n gates. An additional visual illustration of the

method can be found in Figure 8 in Appendix B-B. The actual
cost in the circuit will be equal to 2

p
n + log 2 n constraints

per access. Further optimization is provided in Appendix B-B.
Comparison with earlier methods In case of small hardcoded
memories, such as in AES S-box (which is a 256-element
array), the proposed method is clearly better than the O(n)
approaches. Additionally, it’s much better than the Merkle tree
approach due to the large cost of the hash function. When
the number of accesses is high, the main competitive to our
approach in the case of small memories is the permutation
network approach, which has two main issues: 1) Since the
memory does not start empty, n write operations will need to
be inserted in the permutation network as input initially. 2)
More importantly, the total cost of applying the permutation
network is O((n + k)(log(n + k))) as mentioned earlier,
which means it also depends on the number of accesses made,
besides the memory size. Table II compares all the techniques
discussed so far.

Case study when n = 256. Figure 7 compares the exist-
ing approaches (after optimizations) to the proposed O(

p
n)

method (in a logarithmic scale), identifying in which regions
each algorithm performs better. As shown, the proposed algo-
rithm performs better than all the other alternatives, achieving
speed-ups ranging from more than 10⇥when the number of
accesses is 2, to more than 3⇥, when the number of memory
accesses is more than 32 million.

B. Smart Memory Implementation

In our framework, a programmer will use a special syntax to
instantiate a smart memory, however the programmer will be
able to use the typical array operators. In the first preprocess-
ing stage of the back end, each memory is studied separately,
and the compiler takes the following factors into account: 1)
The number of read/write operations, 2) The type/size of data
being accessed, and 3) Whether the memory contents is read
only and known in advance or not. Based on these factors,
the back end decides the most appropriate implementation,
and its specifics. For example, in case of a general read-write
memory (with contents unknown during compilation time), it
can decide that a linear scan method is better than constructing
a permutation network, when the operations done are not
many or when they involve few random accesses among many
accesses to constant locations. Also, in the case of read-only
hardcoded memories, the framework automatically chooses the
best implementation, and performs any required preprocessing.

VI. ARITHMETIC OPTIMIZATION MODULE

In the previous optimizations, we discussed how to reduce
the number of constraints resulting from split gates, random
memory accesses and other operations. In this section, we
describe a low-level optimization that can further reduce the
number of gates via multivariate polynomial minimization.

This module is motivated by the following: As mentioned
earlier, the cost for bit-level operations is high. Any inefficient
implementation of boolean operations will have an effect on
the size of the circuit that correlates with the bitwidth of the
variables. For example, in this SHA-256 code, the majority
variable is being computed as in the following equation, where
all a, b and c are 32-bit words.

for ( int i = 0; i < 64; i++){
// ..
maj = (a ˆ b) & (b ˆ c) & (a ˆ c)
// ..
c = b;
b = a;
a = / ⇤ qCode omitted f (maj) ⇤ q/ ;

}

If this equation is translated into a circuit directly, given
the bits of a, b and c, computing each bit in maj will
cost 5 multiplications per bit, however using minimization
techniques, this can be reduced to 2 multiplications, saving
a total of 6144 multiplications across all bits in all rounds.
To achieve that, each bit i of maj can be expressed as:
maj i = t i + c i (ai + bi 2ti ), where t i = a i bi .



This cannot be specified directly in high-level C or java,
but instead, taking Geppetto as an example, the compiler
supports special instructions to have access to bits, and to write
constraints accordingly. An additional optimization that can be
done is to observe that the variable b is assigned to c, and a is
assigned to b. This implies that the maj computation across
rounds will have shared variables on the bit level. Making
use of that observation, additional 1024 multiplications can
be saved.

To perform such optimization automatically, we imple-
mented a customized technique for multi-variate polynomial
minimization based on [32] as a building block. This block
takes a set of multivariate polynomials as inputs, and tries
to minimize the expressions cost based on a greedy strategy.
Due to the large circuit sizes, we developed techniques for
clustering the arithmetic expressions into smaller subgroups
that can be optimized independently in parallel. Due to space
constraints, we provide the details in Appendix C.

VII. EXPERIMENTAL EVALUATION

In this section, we illustrate how our framework provides
savings for multiple cryptographic building blocks, spanning
hash functions, signatures, and encryption, compared to other
compilers, while achieving programmability. Additionally, we
discuss savings for random memory access. Furthermore,
the evaluation also includes the full large circuit used by
ZeroCash [16] for anonymous transactions, which we compare
to existing manual optimized implementations, and show that
our framework provides competitive performance to manual
implementation, while reducing the programmer’s effort.

A. Cryptographic Primitives

In the following, we evaluate four cryptographic prim-
itives using our proposed framework and algorithms. The
comparison is primarily done with respect to the state-of-
the-art compilers, [24], [49]. The savings are measured in
the number of the constraints (multiplication gates), while
any additional programmer effort/experience required by the
other compilers is mainly characterized by the following: 1)
Introducing additional prover inputs and constraints to the
circuit. 2) Specifying where bitwidth adjustment/remainder
operations are needed. 3) Adding special procedures, e.g. a
linear search code to implement random access.

SHA-256. We start by evaluating the SHA-256 circuit gen-
erated by the three compilers. SHA-256 has been used and
optimized for zk-SNARKs in many earlier systems before,
e.g. ZeroCash [16] and Hawk [35], mostly in a manually
optimized way built using either libsnark [6] or jsnark [5],
which provide a circuit that has approximately 27100 and
26100 gates respectively. In the following, we show how
xJsnark reduces the gap between the automated solutions and
the manual ones.

The code tested for SHA-256 is a typical SHA-256 code,
except that Java integer type is replaced by xJsnark’s
parametrized type uint_32 . We assume a corresponding C
code for both Buffet and Geppetto. We assume that the circuit

hashes one block only, and that all inputs are variables, i.e.
no padding is applied. Our experiments (Table III) indicate
that the SHA-256 circuit produced automatically by xJsnark
achieves (1.5⇥ and 1.7⇥) savings over the alternatives. Two
main reasons behind the savings in our automatically produced
SHA-256 circuit. The first is the smart bitwidth adjustment,
which saves about 3,200 constraints over Geppetto, 10,000
constraints over Buffet, and the multivariate polynomial min-
imization, which saves 8,800 constraints over both compilers.

Note that it is possible to enhance the SHA-256 circuits
in Geppetto and Buffet, but with the cost of additional pro-
gramming effort/experience (e.g. optimizing the expressions
by hand in Geppetto, or adding casting statements in Buffet).
In this example specifically, we assumed almost the same code
in all of the three alternatives.

SWIFFT hash function. The SWIFFT function is a lattice-
based hash function [39], in which the computations run in a
field with p0 = 257. As mentioned earlier, xJsnark allows the
programmer to define Field types for arbitrary p0. On the other
hand, Buffet and Geppetto do not have native data types that
represent fields. As indicated in Table III, xJsnark achieves
the most savings while being easy to program. The savings
are due to efficient remainder checking when the represented
p0 can be expressed as 2n + 1 , while the programmability
is mainly due to that fact that the programmer in that case
does not choose where to do the remainder operation. In
comparison, Buffet supports mod operations (in a less efficient
way), and the programmer will have to select where to do the
mod operations. The result in Table III assumes the optimal
positioning of remainder operations in Buffet.

To the best of our knowledge, Geppetto does not (yet)
support mod operations when the modulus is not a power
of two, so it’s assumed that the programmer will have to
manually add the additional inputs and constraint checking
of the remainder operations, plus choosing where to perform
the remainder operations.

RSA-2048 Modular Exponentiation. Due to the complexity
of the RSA circuit, we only compare with existing imple-
mentations/specifications, such as the state-of-the-art imple-
mentation in Cinderella [26], which was developed on top of
Geppetto. It is true that Buffet as well provides a library for
long integer operations, however the remainder operation is not
implemented, and to implement it efficiently, it would require
the programmer to specify prover witness inputs to the circuit.

To ensure a fair comparison, we implemented the speci-
fication provided in the Cinderella paper (assuming a pre-
known modulus), and compared it with our back end technique
described earlier (The cost of our Cinderella implementation
is less, which provides a good lower bound). Cinderella’s
implementation divides the big integers to 120-bit words,
and hence cannot apply the group step described in our
equality assertion algorithm, while in xJsnark’s case, the back
end sets the bitwidth to 32, applies our O(n) multiplication
algorithm, and the improved equality assertion algorithm with
the additional group step. The result is shown in Table III,



TABLE III: Comparison between different compilers with
respect to the number of constraints and programmability.
A filled circle indicates more effort/experience by the pro-
grammer relatively. A † symbol indicates a conservative lower
bound.

Buffet [49] Geppetto [24] xJsnark

SHA-256 44999 # 38556 # 26155 #
SWIFFT 3857 G# 3006†  3006 #
RSA-2048 -  144933[26] G# 90804 #
AES-128 (300) 9.3⇥106† # 27.2⇥106† G# 4.2⇥106 #

showing more than 1.5⇥speed-up overall. Looking closer, the
enhancement in the equality assertion step exceeds 3⇥, as both
implementations share about 70,000 constraints for verifying
the range of prover witness values. Note that in our case, the
programmer does not deal with any additional witness inputs
or constraints, compared to Cinderella’s code in Geppetto. This
all happens in the background.

AES-128. The major cost incurred by an AES block in
naive implementations is mainly due to the cost of randomly
accessing its S-Box, therefore we focus in this section only
on this part while assuming that the rest of the AES function
has been implemented optimally for all the other compilers.
This is in particular to show the savings that our proposed
memory technique introduces. Table III illustrates the results,
when the number of AES blocks is high, e.g. 300. (Note
that our technique always provides better results (Figure 7)).
To the best of our knowledge, Geppetto does not currently
support random accesses of unknown indices, therefore the
linear scan method is the default method to implement S-Box
there. For the Buffet case, we computed an estimate using
the equation provided in the original paper [49], which uses
an unoptimized permutation network. As shown in the table,
our O(

p
n) technique provides more than 2 ⇥ speedup over

Buffet for the whole AES circuit. It should also be noted
that our O(

p
n) approach used in this evaluation achieves

1.7⇥ enhancement over the optimized permutation network
approach we use. The savings also apply to the key sizes and
the memory usage.

B. Random Memory Access Application

In this section, we discuss the savings introduced by our
framework in sorting applications. We start by comparing the
result of compiling merge sorting code using Buffet [49],
and xJsnark. The first two columns of Table IVcompare
the circuit sizes produced by a merge sort implementation
of an array of 16-bit integers, that is according to Buffet’s
available repository [2]. The code written using xJsnark is
almost similar except for minor syntax differences. For the
first case where n = 32, our adaptive memory algorithm selects
the linear scan method over the permutation network after
analyzing the memory workload in the first phase. In the other
cases, the linear scan performs worse, and the back end selects
the permutation network instead. In both cases, there is 2-3⇥
improvement over earlier implementations.

TABLE IV: Number of constraints for sorting circuits (n: input
size)

n Buffet[49] xJsnark xJsnark
Merge Sort Merge Sort Verify Permut.

32 276⇥103 79⇥103 782
64 714⇥103 266⇥103 1646
512 7.9⇥106[49] 3.8⇥106 14830

TABLE V: Comparison between the manual implementation
and different compilers in the case of ZeroCash’s Pour Circuit.
A filled circle indicates more effort/experience by the program-
mer. A † symbol indicates a conservative lower bound.

# Constraints Development Effort

Existing Manual 4 ⇥ 106 [16], [7]  
Implementations

xJsnark 3.81⇥106 #
Buffet [49] 6⇥106† #
Geppetto [24] 5⇥106† #

Furthermore, note that it will be more efficient to write
code for verifying the sorting result directly, using the high-
level permutation verification feature introduced in Section III.
This method provides significantly better results as it saves
a logarithmic factor of comparisons, and eliminates the cost
of read/write memory operations. Table IV shows the savings
compared to basic approaches (Appendix A-C provides a code
example).

C. ZeroCash’s ZK-SNARK Circuit

Using our framework, we developed one existing applica-
tion that was manually developed using the libsnark gadget
library [6], [7], mainly the pour circuit in the ZeroCash system
[16], which is used to add privacy to transactions on top of
the blockchain.

Table V compares the alternatives for developing the Ze-
roCash Pour circuit. The reason xJsnark provides slightly
better results than the manual optimized implementation is
due to some further low-level arithmetic optimizations that can
be automatically detected such as those by the multi-variate
polynomial minimizer, by detecting similarities across loops
(As described in Section VI). In terms of the development
effort, the implementation is more compact in comparison with
the existing available implementation online on Github [7],
and the gadgets it uses from libsnark [6]. The rest of the table
shows the efficiency achieved by xJsnark compared to other
compilers.

A detailed discussion of limitations and future work is
provided in Appendix E. The full version of the paper and
additional code examples will be made available on this
website [10].
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APPENDIX A
ADDITIONAL CODE EXAMPLES

A. Simple Circuit Example

The following piece of code specifies a simple circuit that
performs a dot product operation:

Program SimpleCircuit {
// SIZE denotes the vector size
uint 32 [] x = new uint 32[SIZE];
uint 32 [] y = new uint 32[SIZE];
uint 32 z ;

inputs { x, y} ; // circuit inputs
outputs { z} ; // circuit outputs



witnesses {} ; // external prover input

void Main() {
z = 0;
for ( int i = 0; i < SIZE; i++) {

z = z + x[ i ] ⇤ qy[ i ];
}

}
}

B. External Code Example

The following piece of code specifies a circuit, where a
solution is desired for a simple 2⇥2 linear system of equations:

Program LinearSystemVerification {
uint 32 [] a1 = new uint 32 [2];
uint 32 [] a2 = new uint 32 [2];
uint 32 b1;
uint 32 b2;
uint 32 [] solution = new uint 32 [2];

inputs { a1,a2,b1,b2 } ;
outputs { } ;
witnesses { solution } ;

void Main() {
external {

// read the values of the variables during runtime , and
// convert them to the BigInteger Java type
BigInteger [] a1 vals = new BigInteger []{ a1 [0]. $val$ ,

a1 [1]. $val$} ;
BigInteger [] a2 vals = new BigInteger []{ a2 [0]. $val$ ,

a2 [1]. $val$} ;
BigInteger [] b vals = new BigInteger []{ b1.$val$ , b2.$val$ } ;

BigInteger [] solution vals = solve ( a1 vals , a2 vals , b vals ) ;
solution [0]. $val$ = solution vals [0];
solution [1]. $val$ = solution vals [1];

}
verifyEq ( solution [0]⇤ qa1[0] + solution [1] ⇤ qa1 [1], b1)
verifyEq ( solution [0]⇤ qa2[0] + solution [1] ⇤ qa2 [1], b2)

}

BigInteger [] solve ( .. ){
// A Java method that solves linear systems of equations over

finite fields
}

}

C. Sorting Code Example

This example illustrates the usage of both the permutation
verifier feature along with the external code blocks. The
omitted code is simple Java sorting calls.

Program Sort {
int SIZE = 1024;
uint 32 [] array = new uint 32[SIZE];
uint 32 [] sortedArray = new uint 32[SIZE];

inputs { array } ;
witnesses { sortedArray } ;
outputs { sortedArray } ;

void Main() {
external {

// outside circuit

// extract values
BigInteger [] values = new BigInteger[SIZE];

for ( int i = 0; i < SIZE; i++)
values [ i ] = array [ i ]. $val$ ;

/⇤ q⇤ qcode omitted ..
Apply sorting outside the circuit to obtain sortedValues
and sortedIdx ( the index of elements after sorting ) . ⇤ q⇤ q/

// provide solution
for ( int i = 0; i < SIZE; i++)

sortedArray [ i ]. $val$ = sortedValues [ i ];

// Give hint to the evaluator during run time
resolve permutation ( sortedIdx , ”id1”) ;

}
// Inside circuit
verify permutation < uint 32> ( array , sortedArray , ”id1” ) ;
for ( int i = 0; i < SIZE 1; i++)

verify ( sortedArray [ i ] < = sortedArray[i + 1] ) ;
}

}

APPENDIX B
ADDITIONAL DETAILS FOR MEMORY IMPLEMENTATION

A. Optimizations for earlier methods

In this section, we discuss optimizations for both the Merkle
tree and the permutation network approaches:

1) Merkle tree approach: The main bottleneck in Merkle
tree implementations is the cost of the hash function applied at
each level. Pantry reported about 4700 multiplication gates per
level. Instead, it is possible to use a SNARK-friendly collision
resistant hash function, as the one initially proposed in [19],
and later analyzed in [36]. Using such hash function, the cost
per level can be 2032 gates to achieve more than 128 bit
security level.

2) Permutation network approach: A permutation network
is typically implemented as an AS-Waksman network in order
to fit the arbitrary number of accesses. Buffet reported the
cost per access nearly to be: c + 10 log k + 2 log n, where
k is the number of memory accesses, n is the memory size
and c is a constant. The reason for the factor of 10 is due to
the observation that every memory access contributes a record
of four wires to the permutation network, since every memory
access is implemented as a tuple of four elements (Timestamp,
Index, Data Element, LOAD/WRITE). Any switch in the
permutation network will receive two tuples as input, and a
verifiably binary input to set the direction of the switch.

In some situations involving small memories and short data
elements, it might be better to pack the four elements of a tuple
together to a single wire, such that every switch in the network
will only have two wires as inputs. An interesting observation
here is that a switch in that case can be implemented without
using an input to handle the switching. In fact, it can be
implemented using one constraint. For a switch receiving two
wires w1 and w2, the prover provides the first output wire as
an external witness w0

1, such that (w1 w0
1)(w2 w0

2) = 0 ,
and the other wire can be computed as a linear function of the
three other wires, simply by w0

2 = (w 1 + w 2) w0
1.

Deciding whether to do the packing or not is a decision by
the compiler that depends on the memory workload, and the
type/size of the data elements stored.



Fig. 8: Additional illustration of the read-only memory approach in Section V-A

B. The Read-only memory case

Additional Illustration Figure 8 provides an additional visual
illustration of the read-only memory approach in Section V-A.
Additional Optimizations. Further optimizations can be made
to the earlier approach to reduce the number of gates per
access, but still within the O(

p
n) complexity. For example,

in the above description, instead of completely relying on
the power vector in constructing the linear systems, if the
bit decompositions of a and b are available/needed for other
purposes in the circuit (b’s bit decomposition is already needed
for the range check), then the bits can be used instead to
partially construct the linear systems. This has to be done
carefully, such that the constructed linear system of equations
ensure a unique solution. This may require shuffling the
elements before dividing them into

p
n groups, and including

few elements from the power vector.
Such optimization helps in reducing the cost of the AES

implementation, since the bit decomposition of a and b are
typically needed for other parts in the circuit.

APPENDIX C
ARITHMETIC OPTIMIZATION MODULE DETAILS

In this section, we illustrate the details of the arithmetic
optimization module.

A. Assignment of Input and Output Symbols

In many programs, it is not possible to express the circuit
outputs as polynomial functions of the inputs. This is mainly
due to having special kinds of gates, where the output cannot

be written as a polynomial function of the inputs. This
includes the split gate, the zero checking gate, and typically
user-defined gadgets that rely on verification properties, e.g.
a gadget for verifying a linear system of equations. Such
gates appear in any programs that have bitwise operations,
conditionals, division and others. Therefore, we may need
to split the circuit to multiple sub-circuits depending on its
shape. The way this is done is by labeling wires as opt-input
(denoting an input variable to an optimization problem) or
opt-output (denoting an output variable to an optimization
problem) in an initial phase. The notion of opt-input and opt-
output variables used above should not be confused with the
input and output wires of the circuit. After labeling, the sub-
problems are chosen accordingly.

The criteria by which we initially label wires as opt-input
or opt-output variables, are as follows.

• Program input and prover witness wires are labeled as
opt-inputs, while outputs are labeled as opt-outputs.

• For any gates in which the output cannot be expressed
as a polynomial of the input, the inputs to the gate are
labeled as opt-outputs, while the outputs of the gate are
considered opt-inputs to be used in later expressions.
This applies to the split gate and conditional gates.
Furthermore, although the pack gate does not fall under
the same category (as its output can be expressed as a
linear combination of its inputs), we apply the same rule
here in order to separate the Boolean operations from
arithmetic ones.

• All inputs to assertions, which have no output wires, are
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Fig. 9: How opt-input and opt-output wires are selected. Red
wires indicate opt-inputs, and green wires indicate opt-outputs.

labeled as opt-outputs.

Additional criteria can also be employed for selecting opt-
output wires. One approach would be to rely on the usage
count. When the usage count of a certain intermediate wire
is high, this may suggest that this is a good point to split
this part of the circuit. For example, assume a program that
computes a linear function of the inputs, and then use the
result in a heavy computations later that are independent from
the previous part. To reduce the running time of the optimizer,
it may be beneficial to use such criteria.

For the rest of the discussion, we will denote opt-input and
opt-output wires assigned to the optimization problems as x i

and yi . Figure 9 illustrates an example of how the wires of a
simple circuit are labeled.

B. Clustering Expressions

After opt-input and opt-output variables are chosen, the
expressions are computed by iterating over the gates of the
circuit, and computing the output polynomial of each gate
given its input polynomials.

Optimizing single multivariate expressions alone may not
lead to the optimal solution. However, when we have a group
of such expressions, we can eliminate shared computation and
allow one expression to benefit from intermediate variables
of another. For example, in the following case, the terms
x1x2 and x1x3 can be computed once, and no additional
multiplications will be needed to compute any of yi .

y1 = x 1x2 + x 1x3; y2 = x 1x2 + x 4; y3 = x 1x3 + x 5

If each expression is optimized alone, the resulting expres-
sions will be:

y1 = x 1(x2 + x 3); y2 = x 1x2 + x 4; y3 = x 1x3 + x 5

This will be more costly than the earlier case when we had
a more global view of other expressions. Therefore, in order
to decide whether an optimization is useful to apply or not,
its effect on other parts of the circuit should be considered,
by studying multiple related expressions at the same time.

We would ideally like to perform optimizations over all
expressions extracted from the circuit. However, since the
multivariate polynomial minimization algorithm we rely on
runs in worst-case exponential time, in practice this global
approach would be too expensive. Our approach is to instead
cluster the expressions together based on the variables they
share. We define a cluster as a set of expressions in which
any two expressions must share at least two input variables,
or different power terms for the same input variable.

It should be noted that before running the next step, the
symbolic evaluation of the circuit so far can help reduce the
number of multiplication gates. For example, it can detect the
cases where some operations are unnecessary, e.g. when a
programmer writes code for a swapping operation using XOR
instructions instead of using a temporary variable. Using the
XOR method is much more expensive for SNARKs, compared
to the free assignment instructions. The symbolic execution
can detect and partially optimize this case.

C. Minimization

After clustering the equations based on the input variables,
we implemented a customized optimization technique for
reducing the cost of multivariate polynomial evaluations. Our
implementation follows the greedy algorithm specified in [32],
which is already based on known techniques in Multi-level
logic synthesis, such as [22]. The implemented techniques
can provide better results in comparison with multi-variate
Horner’s rule, and techniques for common sub-expression
elimination.

The main difference between our implementation, and the
algorithm in [32] is that we distinguish between multiplication
of variables, and multiplication by constants, to suit the cost
model described earlier in the background section. Addition-
ally, we added a brute force exploration module within the
algorithm that can help with small problem sizes. Finally, we
add a tunable parameter for the programmer to control the
level of exploration required for the optimization.

D. Limitation

Our approach is greedy and does not guarantee optimality
— in general achieving optimality is intractable. However, it
was observed that this approach performs better than others
for common cases [32]. Another limitation is its running time
and memory consumption for large problems, therefore, we
restrict the size of the problems tackled by this module.

APPENDIX D
ADDITIONAL BACKGROUND : LANGUAGE EXTENSION AND

JETBRAINS MPS

Our language extension for the front end is built using
Jetbrains MPS [4], an open source language workbench [28]



based on projectional editing. In this section, we provide some
background on language workbenches and Jetbrains MPS.

Language workbenches have been developed to facilitate
the development of new general-purpose or domain-specific
languages. They can be generally classified into parser/text-
based development tools, such as Xtext [11], and projectional
editor-based workbenches such as Jetbrains MPS that we
use here [3]. Projectional editing is a technique that allows
the programmers to manipulate the abstract syntax tree of a
program directly, without relying on parsers/grammars.

Jetbrains MPS provides flexibility in defining new language
extensions, and in modular composition of languages. The
MPS approach has been used already to develop different
domain-specific languages, including mbeddr [8] which pro-
vides extensions on top of the C language for embedded
system development. Other examples include Youtrack [12],
an issue tracking system that has a Java language extension for
working with persistent data and queries among others [46],
and MetaR which facilitates biological data analysis with the R
language [9]. For the drawbacks, the use of projectional editing
is less common than text editing for general programming,
however the usage of a projectional editor enables the modular
composition of language extensions in a more flexible way.
Additionally, Jetbrains MPS attempts to handle most of the
usability issues that arise from projectional editing [48], while
the mbeddr authors [47] argue that their pilot usability study
suggest a quick learning curve for the end language users to get
familiar with the editor. In the discussion section (Appendix
E), we discuss other future plans to investigate the usage of
other front ends for our optimizations and algorithms in the
back end.

In the following, we give a brief idea about the necessary el-
ements that a Java language extension on top of MPS Jetbrains
needs to have [43]. To define a language extension, such as
the one that we use in this paper, the following modules need
to be defined. Some details are omitted/simplified for brevity.
Abstract syntax: The first step is to define the structure,
by specifying the additional AST nodes required for the
extension. This is done through the definition of new con-
cepts. A concept definition typically includes the properties,
children and references of each node. Then, the constraints
on the structure are defined, to specify any restriction on the
properties, children and references of any concept.
Editor (Concrete Syntax): This specifies the projectional
editor behavior for the new concepts, e.g. the visualization
of the newly added extensions, and the automated actions by
the editor.
Type system: This specifies the type system equations needed
for any introduced new types.
Code generation: This specifies how the extensions constructs
will be translated to the base Java language, based on the
definition of reduction rules.

After the language developer specifies the above, the user of
the extended language will be able to write programs in the
new language with IDE support, e.g. auto-completion, error
highlighting, and others.

APPENDIX E
DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations of our current
implementation, and directions for future work.
1. Integration of other optimizations. Previous implementa-
tions like Buffet or Geppetto have other orthogonal optimiza-
tions that we plan to integrate in our next implementation.
For example, Buffet provides a technique for loop coalescing,
which helps to reduce the complexity of nested loops, when
the total running time is O(n) , while the trivial compilation to
SNARK circuits can lead to O(n2) size. This can be helpful
for some applications, beyond what we discussed in this paper.
An optimization implemented by Geppetto is energy-saving
circuits, which reduces the prover’s running time by making all
the wire values for not taken branches have a zero value. Other
optimizations include: dead code elimination, which ignores
any parts of the circuit that did not contribute to the output
of the circuit. Most of such optimizations can be integrated in
our back end. Another direction would be to formally argue
about the correctness of the compiler as in the PinocchioQ
compiler [27].

2. Front end alternatives. As illustrated earlier, we used
Jetbrains MPS to build our Java extension for the front end.
One possible drawback of using MPS Jetbrains is that in
order for the programmers to develop the code, it has to be
done in the projectional editor provided by MPS. Although
this framework is free and can be used on top of Windows,
Linux, OS X and others, we plan to make our implementation
more generic, and investigate other approaches for developing
the java extension in order for our framework to be more
accessible. Note that the optimizations described in our back
end does not depend on the specific framework of the front
end, and can be integrated with any other front end providing
a similar interface.

3. Dynamic Pointer/Reference Assignments 1. Our imple-
mentation does not allow manipulating references to xJs-
nark’s structs (which correspond to pointers in C) within
code blocks that rely on a circuit run-time conditional check.
Although the Buffet compiler [49] supports it, it might not be
implemented in the most optimized way, as it does not take
into account how the pointers are being used. Additionally,
in some cases, it might be more efficient to cluster pointer
accesses into groups, and study each separately. One direction
of future work will be how to analyze pointer usage in the
first pass automatically, and integrate our adaptive memory
back end algorithms with pointer manipulation.

APPENDIX F
ADDITIONAL FRONT-END DETAILS

A. Extension Features (continued)

1) Composite Structures: This allows the programmer to
define a collection of xJsnark’s introduced native data types

1This limitation has been resolved in our most recent version, through the
runtime struct feature, which will be explained in detail with examples in a
future version



or other composite structures. Such structures have a special
implementation in the back end, so that the programmer can
easily manipulate them as circuit inputs/outputs. The program-
mer uses the keyword struct to define such special classes.
This will be illustrated in the zerocash coding example.

2) Assertions: xJsnark provides supports for writing high-
level constraints in the code. As in the previous example, the
keyword verifyEq forces two values to be exactly the same.
Additional assertion keywords include verifyNotEqual ,
verifyZero and verifyNonZero .

B. Type and Syntactic Constraint Checking

Introducing new types and features requires additional type
rules and constraints to be enforced/checked by the front end.
Type checking rules includes checking bitwidth properties dur-
ing assignments and operations. For simplicity, the following
code snippet shows few examples illustrating the type checks:

..
uint_19 a;
uint_33 b;
F_swifft f1;
F_p256 f2;
..
a = b; // error
b = a; // allowed
uint_33 c = a + b; // type of (a+b) is uint_33
f1 = f2; // error
f1 = f1+f2; // error

Examples for constraint checking include ensuring the
external code block appearing within a method definition,
and that $val $ operator is only used when inside that block.
Another example is to only use variables declared as xJsnark
types inside the input, output and witness blocks.

C. Front-End Code Generation

In this section, we briefly discuss few technical points
regarding the transformation from the xJsnark code to normal
Java code. JetBrains MPS requires specifying Java code to
replace the extension feature in some special language. There-
fore, for every type or feature we have, there are Java classes
in the back end that handle its functionalities.

To translate conditional if statements, one naive approach
would be to compute the result of the conditional statement as
a bit variable, multiply it by other bits from outer conditional
statements (if any), and then use this bit variable in all
operations, such that assignment operations, to ensure that all
effects are applied only if this bit is true.

A more efficient approach would be to apply the single
assignment algorithm, as in the [40] compiler. This can do
potential savings in nested if statements, and when multiple
operations are inside a block. Since we are not building the
compiler from the ground-up, we implemented the algorithm
differently, by adding instructions in both in the code gen-
eration, and adding classes in the back end that apply the
algorithm, only on xJsnark types. It has the same complexity
as in the fairplay compiler [40].

APPENDIX G
ZERO -CASH ’S POUR CIRCUIT

As a case study, we illustrate how the framework can
be used to program the pour circuit of ZeroCash [16], and
compare the resulting number of gates, and the implementation
effort with the manual implementation.

The Pour circuit is the main circuit used in ZeroCash to
hide the flow of money, relying on the power of zk-SNARKs.
The circuit relies mainly on SHA-256 as a building block, and
uses it to instantiate commitments, Merkle trees and PRFs. In
the original ZeroCash paper [16], the benchmarks assumed 264

total number of coins, which lead to a large circuit consisting
of millions of gates. This made the manual implementation
more attractive in comparison with the existing high-level
compilers at the time. The ZeroCash paper reported the
number of multiplication gates to be 4109330, after manual
optimization. (A slightly better implementation is available
here [7], achieving about 4017157 gates).

In comparison with the above low-level implementation,
our framework achieves a very close and actually better
number due to some low-level arithmetic optimizations that
can be automatically detected by the multi-variate polynomial
minimizer. Our framework provides a total of 3814264 gates,
saving more than 2 ⇥ 105 gates. This is while the programmer
provided the code in a high-level manner, without specifying
any of the low-level optimizations.

In the following subsections, we list the code written for the
Pour circuit using xJsnark. Note that this is all the code the
programmer writes in our case. There are no specific manual
optimizations done by the programmer in any of the code
snippets. The code tries to follow the namings used in the
original ZeroCash paper[16] for better readability (The reader
may consult Figure 2 in the ZeroCash Paper for the detailed
specifications).

A. ZeroCash Data Structures

1. Coin Information. Every coin structure includes a secret
value, randomness secrets, and a public address.

struct Coin {
uint 64 value ;
uint 32 [] rho = new uint 32 [8];
uint 32 [] rand = new uint 32 [12];
PubKey pubKey = new PubKey();

}

The following data structures store the key information.
Note that the keys in ZeroCash also include encryption keys
but they are not part of the circuit.

struct PrivKey {
uint 32 [] a sk = new uint 32 [8];

}

struct PubKey {
Digest a pk = new Digest() ;

}



2. Hash Digests. For readability, this is a simple data structure
to represent a SHA-256 output. It also includes a method for
equality assertion.

struct Digest {

uint 32 [] array = new uint 32 [8]; // Typically SHA 256 output

void assertEqual ( Digest other ) {
for ( int i = 0; i < array. length ; i++) {

verifyEq ( array [ i ], other . array [ i ]) ; // built in equality
assertion

}
}

}

3. Merkle Tree Authentication Path. This data structure
represents the Merkle tree authentication path. It includes an
integer to specify to which direction, the witness digests are
added (left or right). This structure also defines a method to
compute the merkle tree root. As will be shown later, the
programmer instantiates one or more MerkleAuthPath objects,
labels them as witnesses, and verifies the root computed
through the Merkle tree.

struct MerkleAuthPath {

Digest [] digests = new Digest[ PourCircuit . HEIGHT];
uint 64 directionSelector ; // Path specification

public MerkleAuthPath() {
for ( int i = 0; i < digests . length ; i++) {

digests [ i ] = new Digest() ;
}

}

Digest computeMerkleRoot(Digest leaf) {
bit [] directionBits = directionSelector . bits ;
Digest currentDigest = leaf ;

uint 32 [] inputToNextHash = new uint 32[16];

for ( int i = 0; i < PourCircuit . HEIGHT; i++) {
for ( int j = 0; j < 16; j++) {

if ( directionBits [ i ]) {
inputToNextHash[j] = j > = 8 ? currentDigest . array [ j 8] :

digests [ i ]. array [ j ];
} else {
inputToNextHash[j] = j < 8 ? currentDigest . array [ j ] :

digests [ i ]. array [ j 8];
}

}
currentDigest = Util . SHA256(inputToNextHash);

}
return currentDigest ;

}
}

B. Utilities

This mainly includes the code for the SHA-256 hash func-
tion. Its code is pretty standard without any SNARK hints that
could benefit the framework’s backend.

public class Util {

public static Digest SHA256(uint 32[] input) {

uint 32 [] K = { /⇤ q⇤ qSHA 256 Hardcoded Constants ⇤ q⇤ q/}
uint 32 [] H = { /⇤ q⇤ qSHA 256 Hardcoded Constants ⇤ q⇤ q/} ;

uint 32 [] words = new uint 32[64];
uint 32 a = H[0];
uint 32 b = H[1];
uint 32 c = H[2];
uint 32 d = H[3];
uint 32 e = H[4];
uint 32 f = H[5];
uint 32 g = H[6];
uint 32 h = H[7];

for ( int j = 0; j < 16; j++) {
words[j ] = input [ j ];

}

for ( int j = 16; j < 64; j++) {
uint 32 s0 = rotateRight (words[j 15], 7) ˆ

rotateRight (words[j 15], 18) ˆ (words[j 15] >> 3);
uint 32 s1 = rotateRight (words[j 2], 17) ˆ

rotateRight (words[j 2], 19) ˆ (words[j 2] >> 10);
words[j ] = words[j 16] + s0 + words[j 7] + s1;

}

for ( int j = 0; j < 64; j++) {
uint 32 s0 = rotateRight (a , 2) ˆ rotateRight (a , 13) ˆ

rotateRight (a , 22) ;
uint 32 maj = (a & b) ˆ (a & c) ˆ (b & c);
uint 32 t2 = s0 + maj;
uint 32 s1 = rotateRight (e , 6) ˆ rotateRight (e , 11) ˆ

rotateRight (e , 25) ;
uint 32 ch = (e & f) ˆ (˜( e) & g);
uint 32 t1 = h + s1 + ch + K[j] + words[j ];
h = g;
g = f ;
f = e;
e = d + t1 ;
d = c;
c = b;
b = a;
a = t1 + t2 ;

}

H[0] = H[0] + a;
H[1] = H[1] + b;
H[2] = H[2] + c;
H[3] = H[3] + d;
H[4] = H[4] + e;
H[5] = H[5] + f ;
H[6] = H[6] + g;
H[7] = H[7] + h;

Digest out = new Digest() ;
out . array = H;
return out ;

}

public static uint 32 rotateRight ( uint 32 in , int r ) {
return ( in >> r) | ( in << (32 r));

}

public static uint 32 [] concat ( uint 32 [] a1, int idx1 , int l1 ,
uint 32 [] a2, int idx2 , int l2 ) {

uint 32 [] res = new uint 32[l1 + l2 ];
for ( int i = 0; i < l1; i++) {

res [ i ] = a1[ i + idx1 ];
}
for ( int i = 0; i < l2; i++) {

res [ i + l1 ] = a2[ i + idx2 ];
}
return res ;



}
}

C. The ZeroCash Pour Circuit

The following represents the program representing the Pour
circuit written using xJsnark.

Program PourCircuit {

/⇤ q⇤ qMerkle tree height ⇤ q⇤ q/
public static final int HEIGHT = 64;

/⇤ q⇤ qMerkle tree root ⇤ q⇤ q/
Digest root = new Digest() ;

/⇤ q⇤ qMerkle tree authentication paths ⇤ q⇤ q/
MerkleAuthPath authPath1 = new MerkleAuthPath();
MerkleAuthPath authPath2 = new MerkleAuthPath();

/⇤ q⇤ qCoin Data ⇤ q⇤ q/
Coin c1 old = new Coin();
Coin c2 old = new Coin();
Coin c1 new = new Coin();
Coin c2 new = new Coin();

/⇤ q⇤ qSerial numbers used to prevent double spending ⇤ q⇤ q/
Digest sn1 old = new Digest() ;
Digest sn2 old = new Digest() ;

/⇤ q⇤ qCoin Commitments ⇤ q⇤ q/
Digest c1 old comm = new Digest();
Digest c2 old comm = new Digest();
Digest c1 new comm = new Digest();
Digest c2 new comm = new Digest();

/⇤ q⇤ qSecret keys of old coins ⇤ q⇤ q/
PrivKey sk1 old = new PrivKey();
PrivKey sk2 old = new PrivKey();

/⇤ q⇤ qHash of a PK used for One time Sig ⇤ q⇤ q/
Digest h sig = new Digest() ;
/⇤ q⇤ qMACs to prevent malleability ⇤ q⇤ q/
Digest h1 = new Digest() ;
Digest h2 = new Digest() ;

/⇤ q⇤ qpublic transaction amount (e.g. transaction fees ) ⇤ q⇤ q/
uint 64 pubVal;

inputs {
root , pubVal, h sig

}

/⇤ q⇤ qData Kept Secret ⇤ q⇤ q/
witnesses {

authPath1 , authPath2 , c1 old , c2 old , c1 new, c2 new,
c1 old comm, c2 old comm, sk1 old, sk2 old

}

outputs {
sn1 old , sn2 old , c1 new comm, c2 new comm, h1, h2

}

public void Main() {

// verifying that the commitments have appeared before on the
ledger

authPath1 . computeMerkleRoot(c1 old comm).assertEqual(root);
authPath2 . computeMerkleRoot(c2 old comm).assertEqual(root);

// verify the knowledge of the secret keys

c1 old . pubKey.a pk.assertEqual (PRF(”addr”, sk1 old . a sk , new
uint 32 []{ 0, 0, 0, 0, 0, 0, 0, 0} )) ;

c2 old . pubKey.a pk.assertEqual (PRF(”addr”, sk2 old . a sk , new
uint 32 []{ 0, 0, 0, 0, 0, 0, 0, 0} )) ;

// Compute old coins serial numbers ( this avoids double spending)
sn1 old = PRF(”sn”, sk1 old . a sk , c1 old . rho) ;
sn2 old = PRF(”sn”, sk2 old . a sk , c2 old . rho) ;

// Verify old commitments and compute the new ones
c1 old comm.assertEqual(COMM s(COMM r(c1 old.rand,

c1 old.pubKey.a pk.array, c1 old.rho).array, c1 old.value)) ;
c2 old comm.assertEqual(COMM s(COMM r(c2 old.rand,

c2 old.pubKey.a pk.array, c2 old.rho).array, c2 old.value)) ;
c1 new comm = COMM s(COMM r(c1 new.rand,

c1 new.pubKey.a pk.array, c1 new.rho).array, c1 new.value);
c2 new comm = COMM s(COMM r(c2 new.rand,

c2 new.pubKey.a pk.array, c2 new.rho).array, c2 new.value);

// verifying the correct flow of money
verifyEq ( c1 old . value + c2 old. value , c1 new.value +

c2 new.value + pubVal ) ;

// verifying there are no overflows ( the positivity of the values
is guaranteed by the backend)

uint 65 sum = uint 65(c1 old. value ) + c2 old. value ;
uint 65 mask = 0x10000000000000000u;
verifyEq ( sum & mask , 0 );

// Compute MACs needed for non malleability
// 3 bits from h sig are truncated (SEE page 23 in
//

http :// zerocash project . org / media/pdf/ zerocash extended 20140518.pdf
)

// 1 bit is truncated here , and 2 bits are already truncated
later in PRF call

uint 32 [] h sigTruncated = truncate ( h sig . array , 1) ;
h1 = PRF(”pk”, sk1 old.a sk , h sigTruncated ) ;
h sigTruncated [0] = h sigTruncated [0] | 0x80000000u;
h2 = PRF(”pk”, sk2 old.a sk , h sigTruncated ) ;

}

/⇤ q⇤ qParametrized PRF Function ⇤ q⇤ q/
private Digest PRF(String type , uint 32 [] x , uint 32 [] z) {

// truncate 2 least significant bits
// See page 22 in

http :// zerocash project . org / media/pdf/ zerocash extended 20140518.pdf
z = truncate (z , 2) ;
uint 32 mask = 0u;
if ( type . equals (”addr”) ) {

mask = 0u;
} else if ( type . equals (”sn”) ){

mask = 0x40000000u;
} else if ( type . equals (”pk”)) {

mask = 0x80000000u;
}

uint 32 [] input = new uint 32 [16];
for ( int i = 0; i < 16; i++) {

if ( i < 8) {
input [ i ] = x[ i ];

} else if ( i == 8) {
input [ i ] = z[ i 8] | mask;

} else {
input [ i ] = z[ i 8];

}
}
return Util . SHA256(input);

}

/⇤ q⇤ qCommitment r Function ⇤ q⇤ q/
private Digest COMM r(uint 32[] r, uint 32[] a pk, uint 32 [] rho) {



uint 32 [] input1 = Util . concat (a pk, 0, a pk. length , rho , 0,
rho . length ) ;

uint 32 [] out1 = Util . SHA256(input1).array;
uint 32 [] input2 = Util . concat ( r , 0, r . length , out1 , 0,

out1 . length / 2) ;
return Util . SHA256(input2);

}

/⇤ q⇤ qCommitment s Function ⇤ q⇤ q/
private Digest COMM s(uint 32[] k, uint 64 val) {

uint 32 [] paddedVal = new uint 32[]{ 0, 0, 0, 0, 0, 0,
uint 32 (( val >> 32)), uint 32(val )} ;

uint 32 [] input = Util . concat (k, 0, k. length , paddedVal, 0,
paddedVal. length ) ;

return Util . SHA256(input);
}

// truncates n least signicant bits . n is assumed to be < = 32
// This is to follow the implementation decision in (page 22) :

http :// zerocash project . org / media/pdf / zerocashextended 20140518.pdf
private uint 32 [] truncate ( uint 32 [] words, int n) {

if (n > 32 || n < 0) { throw new
IllegalArgumentException(” Invalid truncation argument”); }

uint 32 [] t = new uint 32[words. length ];
for ( int i = 0; i < words.length; i++) {

t [ i ] = words[i ];
}
t [words. length 1] = t[words. length 1] >> n;
for ( int i = words. length 2; i > = 0; i ) {

t [ i + 1] = t [ i + 1] | ( t [ i ]<< (32 n));
t [ i ] = t [ i ] >> n;

}
return t ;

}

}

In comparison with the existing low-level implementation
for ZeroCash that is available in [7] and its gadget dependen-
cies in [6], it can be observed how xJsnark saves a lot of
the programming effort, while producing efficient output as
illustrated in Section VII-C.
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