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A review of tree-based Bayesian methods
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Abstract

Tree-based regression and classification ensembles form a standard part of the data-science toolkit. Many
commonly used methods take an algorithmic view, proposing greedy methods for constructing decision trees;
examples include the classification and regression trees algorithm, boosted decision trees, and random forests.
Recent history has seen a surge of interest in Bayesian techniques for constructing decision tree ensembles,
with these methods frequently outperforming their algorithmic counterparts. The goal of this article is to survey
the landscape surrounding Bayesian decision tree methods, and to discuss recent modeling and computational
developments. We provide connections between Bayesian tree-based methods and existing machine learning
techniques, and outline several recent theoretical developments establishing frequentist consistency and rates
of convergence for the posterior distribution. The methodology we present is applicable for a wide variety of
statistical tasks including regression, classification, modeling of count data, and many others. We illustrate the
methodology on both simulated and real datasets.
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1. Introduction

Tree-based regression and classification ensembles form a standard part of the data-science toolkit.
Consider the generic problem of estimating the distribution f(y x) of some response ¥ T Z condi-
tional on a predictor X T Y. Tree-based methods recursively partition Y to obtain a decision tree X
such that the information in X about Y is contained entirely in which leaf node X falls in; this process
is illustrated in Figure 1 when X T[O, 1]. Once the tree is constructed, we associate to each leaf node
n a parameter ¢, and set f(y x) = f(y 6,.)) where n(x) denotes the leaf node associated to x. For
example, we might obtain a semiparametric regression model by setting ¥ ~ Normal(u,x), 0'727( x)-

Decision trees have attracted the interest of practitioners due to their strong empirical performance,
and many algorithmic methods for constructing decision trees exist (Breiman et al., 1984; Kass, 1980;
Quinlan, 1993). An essential fact about decision trees is that a given dataset can typically be described
well by many different tree structures. This causes greedily-constructed trees to be very unstable,
with small perturbations of trees leading to vastly different tree topologies. This motivates methods
based on ensembles of decision trees, such as bagging (Breiman, 1996) and random forests (Breiman,
2001), which increase estimation stability by averaging predictions over the bootstrap distribution of
the decision tree (Efron and Gong, 1983).

Bayesian approaches fundamentally differ from these algorithmic approaches in that they posit
a full probability model for the data, combining a prior distribution 7(X) for X with a likelihood
m(Z X) forthe data I = }(X;,Y;) : 1 > i > N|. This approach falls in the framework of Bayesian
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Figure 1: Schematic depicting the construction of a decision tree (bottom) and the induced recursive partition
associated with the construction of the tree (top). After the decision tree is constructed, parameters associated to
leaf node n is given a mean parameter fi;.

nonparametrics/semiparameterics (see MacEachern, 2016 for a review) This viewpoint allows for
natural uncertainty quantification using the posterior distribution 7(X 7). Furthermore, with no
additional effort, the Bayesian approach naturally has many of the features of state-of-the-art tree
ensembling methods. For example, the process of averaging predictions across samples from the pos-
terior distribution is similar to the averaging which occurs in the random forests algorithm, naturally
leading to stability in inferences.

Bayesian decision tree methods have experienced rapid development in recent years, and the pur-
pose of this article is to offer a timely review. We first provide a basic review of the Bayesian classi-
fication and regression trees (BCART) and Bayesian additive regression trees (BART) methods, and
provide an overview of the techniques used to fit them. We then make connections to other machine
learning techniques, including random forests, boosting, and Gaussian process regression. Addition-
ally, several recent works have provided theoretical justification for these methods by establishing
optimal posterior convergence rates for variants of BCART (Rockova and van der Pas, 2017) and
BART (Linero and Yang, 2017; Rockova and van der Pas, 2017); we review some of these develop-
ments.

2. Bayesian classification and regression trees

Our notation follows Chipman et al. (2013), who also provide a review of tree-based methods. Asso-
ciated to a tree X = } Ly, Tx, Nx| we have a collection of internal (branch) nodes Ly with decision
rules 7 x and leaf nodes Ny. We let n(x) T Ny denote the unique leaf node associated to x. Associated
to each 7 T Ny is a parameter 6, T®x where Oy = }6, : 7 T Nx|.

The BCART was introduced by Chipman et al. (1998) and Denison ef al. (1998), and provides the
basis for most of the subsequent developments. To simulate from the BCART prior, one first draws a
tree structure X =~ m(X) from a prior (X)) (see Section 2.1) and next samples, for each leaf n T Ny,
a parameter vector 6,. The response is then modeled as (¥; X; = x,X,0x) = f(y 6y) for some
family of densities f(y 6).
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Figure 2: Fits of the Bayesian classification and regression trees model in which the within-leaf response mean
is (left) a constant p,,, (middle) a Gaussian process u,(x), and (right) a linear model u,(x) = @, + xDﬁﬂ.

Example 1. [Semiparametric regression] Suppose Y; is continuous. We specify the model
Y; = (X)) + €. €& ~ Normal )0, a(xi)z(, 2.1)

where p(x) = iy and o2 (x) = 0',27()(). Additional flexibility can be obtained by considering a locally
linear model ¥; = a(X;) + B(X;)?X; + €; similarly, Gramacy and Lee (2008) allow for the within-leaf
models to be Gaussian process regressions (Rasmussen and Williams, 2006). The fits of these models
to the lidar data described in Section 4.1 are given in Figure 2.

Ezxample 2. [Poisson regression for count data] Suppose Y; is a count. As an alternative to a Poisson
log-linear model, we set ¥; = Poisson(4,,x,)). For an application of this type of model to overdispersed
count data, see Section 4.2.

Ezxample 3. [Survival analysis with non-proportional hazards] Suppose Y; is a survival time, po-
tentially subject to right-censoring. We set Y; = §,,x,)(f) where S ,(¢) is a nonparametrically modeled
survival function given, e.g., a Polya tree prior (Muliere and Walker, 1997).

The above approach extends naturally to other semiparametric models; for example, one obtains
a natural extension to a generic exponential family f(y 6) = exp}yé B(6)+ C(y)| . The compu-
tational algorithms described in Section 3 are applicable whenever 6, is given a prior for which the
marginal likeihood m(I  X) = [, Z[ inxy=y S(Yi  O)me(6,) db, can be efficiently computed.
Chipman et al. (1998) and Denison et al. T1998) consider, in particular, the classification problem in
which f(y x) is categorical with ¥ ~ Categorical(6,x,) where 6, ~ Dirichlet(ay,...,ac) is a leaf-
specific distribution over categories. These extensions can be viewed as semiparametric competitors
to classical generalized linear models (McCullagh, 1984) or generalized additive models (Hastie and
Tibshirani, 1987). An attractive feature of these models is that they naturally allow for the inclusion
of complex interactions between predictors.
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2.1. Priors on tree structures

We consider priors on (X, ®x) of the form

(X, 0x) =nx(X) O my(6y). (2.2)
nINx

That is, the 6,’s are conditionally independent given the tree structure X.

We require a prior distribution x (X) for the tree structure. A common choice is to use a branching
process prior, described initially by Chipman ez al. (1998). For each node 7 in the tree, we split n
with prior probability ¢(n) = y(1 + D(37)) #, where D(1) denotes the depth of 1 (where the root of the
tree has depth D(n7) = 0). The parameters (y, ) are parameters which control the shape of the trees.
The parameter y > 0 controls the prior probability that the tree is empty (and hence is typically large),
while 8 > 0 penalizes trees which are too deep.

Once the tree topology is generated, we associate to each branch T Ly a splitting rule of the form
[xjo) = C;1. We set j(n) e Categorical(s) where s = (s1,..., sp) is a probability vector and P is the
dimension of the prediction X;; most implementations set s; = P !, although this choice is not ideal
when the predictors do not have equal importance (Linero, 2016). Conditional on j() = j, we take
C, = Gx , where Gy, is a distribution G| restricted to the set of values which do not lead to logically
empty nodes when variable j is split on (if no such split exists, another predictor is selected according
to ). In most publicly available software G| is the empirical distribution of (X;; : 1 > i > N).

There are several alternatives in the literature to the prior described above, differing in how the
topology of X is generated. Denison e al. (1998) suggest a hierarchical prior in which a prior is
placed on the number of leaf nodes L = Ny = 1 + Poisson(1) and, conditional on L, a uniform
distribution is placed on the tree topologies with L leaves. Wu et al. (2007) construct a “pinball” prior
on the topology of X, which gives finer control over the shape of the resulting trees. Finally, Roy and
Teh (2009) introduced the Mondrian process, which gives an elegant joint prior on all components
of X (more precisely, the Mondrian process is a stochastic process }X, : t > 0|, with larger values
of ¢ corresponding to finer partitions). Lakshminarayanan et al. (2014) leverage the self-consistency
properties of the Mondrian process to construct probabilistic alternatives random forests which allow
online implementations.

2.2. Bayesian additive regression trees

The BART framework introduced by Chipman et al. (2010) replaces the single X with a sum of trees

T
u = | e X0, 23)
t=1

where g(x; X;,0,) = .0, 7(t, x) = nif x is associated to leaf node 7 in tree X;, and ©; = }u, :
n T Nx,|. The tree structures X; are then given independent priors as described in Section 2.1. The
leaf parameters u,, are given iid Normal(0, 0'2/ T) priors, with the scaling factor 7' chosen so that
Varju(x)| = 0'5 irrespective of 7. The BART model was initially motivated by analogy with boosting
algorithms (Freund et al., 1999), which combine many so-called “weak learners” to construct predic-
tions; the weak learners of choice in many boosting applications are shallow decision trees. By taking
B large in the branching process prior, the BART model represents a Bayesian version of this idea with
u(x) represented as a sum of shallow decision trees.
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The BART algorithm applies most naturally to the semiparametric regression problem; repeated
experience has shown that it typically outperforms BCART in this setting, and is typically competitive
with state-of-the-art methods. Additionally, it is straight-forward to extend BART to classification
using the data augmentation strategy of Albert and Chib (1993). Much further work has gone into
extending BART to various other problems, including survival analysis (Sparapani et al., 2016) and
as an alternative to loglinear models (Murray, 2017). The strong predictive performance of BART has
also lead to it being widely adopted in estimating average causal effects in causal inference problems
(Hill, 2011).

BCART is more flexible as a framework than BART in the sense that it generalizes more easily
to non-regression settings. Whereas BCART allows for essentially any type of object in the leaf
nodes (scalars, probability vectors, survival functions, etc.), one must be able to add together the
parameters in the leaf nodes of BART, limiting us to leaf parameters in R (or possibly R” for some
D). As suggested in Section 5.2, the BART model is perhaps best thought of as a high-quality drop-in
replacement for Gaussian process priors (see Rasmussen and Williams, 2006, for a textbook level
treatment).

Because the estimates of BART correspond to sums of step functions, BART produces estimates
which are not smooth. To address this issue, Linero and Yang (2017) proposed smoothed Bayesian
additive regression trees (SBART) which use so-called “soft” decision trees (Irsoy et al., 2012) in
constructing the ensemble; rather than going left or right down the tree, the tree assigns differing
weights to the left and right paths according to how close the observation is to the cutpoint. As
we show in illustrations here, this additional smoothing usually produces better estimates when the
underlying regression function is smooth. The cost of this additional flexibility is an increase in
computational effort.

2.3. Variable selection and automatic relevance determination

Bayesian tree-based models ostensibly conduct model selection through which variables are used to
construct splits. As noted by Linero (2016), however, Bayesian tree-based methods are not immedi-
ately applicable for variable selection due to the tendency for spurious predictors to be selected once
the number of branches becomes sufficiently large. This issue is most obvious in the case of BART,
which naturally produces ensembles with many branches, but is also expected to occur with BCART
when sufficiently deep trees are required. One attractive option to conduct variable selection is to
place a sparsity-inducing Dirichlet prior on the vector of splitting proportions
5 Dirichlet)g, e
P P
Linero (2016) shows that, given that the ensemble includes B branch nodes, the number of predictors
Q included in the model has an approximate 1 + Poisson(6) distribution, where 6 = Hle a/(a+1i). In
addition to providing variable selection, the Dirichlet prior also functions as an automatic relevance
determination prior (Neal, 1995), allowing the model to adaptively learn the relative importance of
each predictor.

(2.4)

3. Computational details

Constructing efficient algorithms for exploring the posterior 7(X I ) is perhaps the biggest standing
problem in the widespread adoption of Bayesian methods for decision trees. While Markov chain
Monte Carlo (MCMC) is the frequently used, we show in Section 4 that the widely available im-
plementations of BCART generally perform poorly compared to recent particle filtering algorithms
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(Lakshminarayanan et al., 2013; Taddy et al., 2011). We review the MCMC methods used to fit
BCART before discussing more recent methods based on sequential Monte Carlo. We then discuss
approaches for fitting BART.

3.1. Markov chain Monte Carlo for Bayesian classification and regression trees

Consider first BCART under a prior respecting (2.2). The posterior mx(X 1 ) can be written

mx(X) ax(Xm(I X)
Y, 6,)dry(6,) = XML A)
XN J¥i 6y dmo(®y) (@)

mx(X I)=

inXi)=n

Efficient inference requires that the marginal likelihood m(Z X)) can be computed efficiently, while
the normalizing constant { (7 ) is not required for further computations.

Example 4. [Poisson regression] Suppose (¥; X; = x,X,0y) = Poisson(4,)). Suppose that
(14, X)~ Gam(a, b). Then
bk I'(a+S,)

mI X = >
GO @ Ty, S

where L= N,n, = }i:n(X)) =nl,and S, = [Tiyx)=y Vi-

Example 5. [Gaussian homoskedastic regression] Suppose Y; = u(X;) + € where u(x) = ) and
€ B Normal(0, 0%). Suppose that Wy, X) B Normal(m, o-i). Then

] 2 \ n )Y m(2 L
m(T X):J )2770'2( 2 O——expk SSE(n) l n ) k’
Nx

o2+ nyo? k 202 2 n,]ofl + 02 k

u
where, using the same notation as in the Poisson setting, ¥;, = S, /n, and SSE()) = [Tinxy=n(Yi 17,,)2.

With the marginal likelihood m(Z X)) in hand, one then typically samples approximately from
n(X 1) using the Metropolis-Hastings algorithm (Hastings, 1970), which uses a proposal distribu-
tion g(X"™ o« XY to construct a Markov chain XV, X, ... with invariant distribution 7(X ). If
X is the state of X at iteration m of the Markov chain we (i) sample X®~ g(X o« X and (ii) set
X+ = X *with probability

A X® IT)QX %< XMy
AX® T)GX™ o« Xy~

a(X™ o« X% :min}

and set X 1) = X" with probability I a(X™ o« X*. The difficulty with lies in constructing useful
proposals g(X o X*©j. This is because there are typically a large number of trees with non-negligible
posterior probability which are structurally dissimilar, separated by decision trees with low posterior
probability. Hence, if ¢(X o X*©) places its mass on trees which are structurally similar to X, one
expects the sampler to get stuck in a local mode of 7(X 7). Works addressing the construction of
proposal distributions to use with Metropolis-Hastings include Chipman et al. (1998), Pratola (2016),
Wu et al. (2007), and Lakshminarayanan et al. (2015).

The transition function g(X o X°©j is constructed as a mixture distribution over a collection of
possible modifications to X. The following modifications proposed by Chipman et al. (1998) are
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widely used in implementations; they all suffer from the same problem of being “local” modifications
to X. Let R x denote the set of branches whose children are both leaves (i.e., R x is the set of branches
without grandchildren).

= Grow: Randomly select 7 T Nx and turn it into a branch node with two children, randomly sam-
pling the predictor and cutpoint for the splitting rule from the prior.

= Prune: Select v TR x. Make v a leaf by deleting its children.

= Change: Randomly select v T Ly and change the decision rule [x; > C] by sampling (j, C) accord-
ing to the prior.

To complement these local moves, Wu et al. (2007) propose a non-local radical restructure move,
which proposes X “so that the data partition of X is preserved; hence, one moves to a very different
tree structure while simultaneously preserving the likelihood of the data. Pratola (2016) develops
global Metropolis-Hastings proposals by constructing tree-rotation operators on the space of trees, and
further develops a generalization of the “change” rule. These additional moves can provide massive
improvements in mixing of the Markov chain, but unfortunately we are unaware of any publicly
available software implementations.

3.2. Sequential Monte Carlo

Several authors have proposed sequential Monte Carlo (SMC) algorithms to approximate the posterior
distribution, bypassing MCMC. By taking advantage of particle systems which evolve (almost) in
parallel, they are also able to explore different modes of the posterior. Additionally, SMC methods
may be easier to implement in practice than MCMC methods. The strategies described here are based
on a generic particle filtering approach; see Cappé et al. (2007) for a review.

To apply SMC it is helpful to introduce auxiliary variables X©,..., XT) = X with joint distri-
bution 7(X (X @ o« XD)Y@H(XT D o« XD)) 50 that we can view the model as a state-space
model. Lakshminarayanan et al. (2013) do this by considering X to be the state of X in the branch-
ing process prior described in Section 2.1 truncated to 7 steps. At each stage of the particle filter the
density /(X)) 7 7(XD)m(I X©)is targeted, where m(Z  X) represents the marginal likelihood
of the data given that X = X, Given a proposal kernel g(X" P o« X?) (possibly depending on I )
this leads to the sequential approximation (with wffj) <1

ﬁ)X(’ Do X(’)(m)f X(’)(
g Xt Do X0l T X0 nr’

M
1
h)x<’>(<<—[_]w§f)5w, Wy gl D 3.1)
1

HIAV:I:I Wl(7t1) m=
where 0 denotes a point-mass distribution at X. To prevent weight degeneracy, one may resample
X from the approximation of 4(X®) and set wfq? = [ wﬁ,? /M. There are several possibilities for
choosing (X 1V o« X®), but Lakshminarayanan et al. (2013) recommend simply using (X D o
X ) and choosing M large.

Taddy et al. (2011) take a different approach, directly using a dynamic model X©,...,X™
for observations i = 1,..., N in which an evolving predictive distribution f(¥; X;, 7@ D, X@ D) ig
specified, where 7 ™ = }(X;, Y;)|"_,. The trees X are assumed to evolve according to a Markov
process (growing, pruning, or staying the same). This algorithm leads to weights of the form wil) =
wi Ve, X, 76D, X0 Dy in (3.1), and we note that Taddy ef al. (2011) recommend resampling
steps after every update.
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3.3. Bayesian additive regression trees and Bayesian backfitting

BART is fit by combining the Metropolis-Hastings schemes in Section 3.1 with a so-called Bayesian
backfitting algorithm (Hastie and Tibshirani, 2000). The use of shallow trees by BART has a large
computational payoff, as the “local moves™ described in Section 3.1 are much more effective at ex-
ploring the posterior of shallow trees. Consider the regression setting with ¥; = H¢T=1 (X X1, O)) + €.
The Bayesian backfitting algorithm proceeds by Gibbs sampling, updating (X;,®, 7 ,X ,,0 ;) where
X;=(Xj:j#and O ;, = (0, : j# 1). The term “backfitting” comes from the observation that one
can write

Ry =g(X;; X;,0,) + ¢, where Ry, =Y, ]—[g)Xi;Xj,Gj(-
J#t

After conditioning on (X ;,® ,, 1), this reduces to the BCART problem for regression, with the
pseudo-response R;, playing the role of Y;; hence, the MCMC strategies in Section 3.1 can be used
with R;; in place of ;.

4. lllustrations
4.1. Nonparametric regression and classification

We now compare and contrast the various methods presented here on both simulated and real datasets.
First we consider the lidar, which is available in the package SemiPar in R (Wand, 2014) and
consists of measurements from a light detection and ranging experiment; the goal is to use the dis-
tance light travels before being reflected to predict the ratio of received light from two laser sources.
This data is amenable to the semiparametric regression model (2.1). Because the predictor is one-
dimensional, it allows for easy visual comparisons of methods. We consider the BCART model given
in (2.1), the BART model (2.3), as well as the dynamic regression trees model of Taddy ez al. (2011).
We also consider the smoothed variant SBART of BART described in Section 2.2, the random forests
algorithm of Breiman (2001) as implemented in the grf package, and the tree boosting algorithm in
the package xgboost. Fits to the 1idar dataset are given in Figure 3.

From Figure 3, we see that BCART and dynamic trees induce the least amount of smoothing,
and essentially produce step functions. For comparison, the random forests algorithm produces a
smoother estimate. BART smooths the data more than BCART, and produces a fit which is very
similar to gradient boosting and random forests. The smoothest fit is given by SBART, which takes
advantage of an assumed continuity of the regression curve.

Our experience is that the additional smoothing obtained by random forests, BART, gradient
boosting, and SBART almost always leads to improved performance. Moreover, it is not clear if
the lack of smoothness in BCART and dynamic trees is due to fundamental properties of the prior or
is merely a symptom of inaccuracies in the Monte Carlo approximations. We have found dynamic
trees to generally perform better than BCART, and speculate that this is due to the use of particle
filtering rather than MCMC to fit the model.

To see more clearly the potential benefits of smoothing, we consider

Yi=uX)) + e, p(x)=10sin(mrx;xz) + 20(x3 0.5)% + 10x4 + 5xs, “4.1)

where X; ~ Uniform([0, 1]') and & % Normal(0, ). This function was introduced by Friedman
(1991) to illustrate the use of multivariate adaptive regression splines. We consider o> = 1 and a

sample size of N = 250, and evaluate methods by integrated root mean squared error JRMSE =
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Figure 3: Fits of various methods to the 1idar dataset. BART = Bayesian additive regression trees; BCART =
Bayesian classification and regression trees; SBART = smoothed Bayesian additive regression trees.
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Figure 4: Integrated RMSE under (4.1) across 30 independent replications, with n = 250,06 = 1. SBART =
smoothed Bayesian additive regression trees; BART = Bayesian additive regression trees; BCART = Bayesian

classification and regression trees; RMSE = root mean squared error.

(x)  Q(x))*> dx|'/? where fi(x) is an estimate of u(x) produced by each method. Results on 30
replications are given in Figure 4. In addition to the methods used on the 1idar data, we also consider
the treed Gaussian process described in Example 2.

On (4.1), Figure 4 demonstrates that smoother methods typically do better. The best performing
method is SBART, followed by treed Gaussian processes and BART. BCART performs the worst,
however the fact that it is outperformed substantially by dynamic trees suggests that this may be due
to poor mixing of the MCMC scheme.



552 Antonio R. Linero

Random Forest -

BART -

Dynamic Trees -

Gradient Boosting -

BCART -

i

T T T
0.00 0.03 0.06 0.09 0.12
Error rate

Figure 5: Error rates for the competing methods on the Wisconsin breast cancer dataset for each fold in the
cross-validation experiment. BART = Bayesian additive regression trees; BCART = Bayesian classification and
regression trees.

Finally, we consider the performance of these methods on the Wisconsin breast-cancer detection
dataset. Given P = 10 features, the goal is to classify a tumor as benign or malignant. This dataset
is available at the UCI machine learning repository (Lichman, 2013). We performed 10-fold cross
validation on this dataset, and evaluated methods according to the 0-1 loss L(Y,Y) = I(Y # Y).
We did not consider SBART or treed Gaussian processes on this dataset due to the lack of softwa
available to fit these methods on classification data. Results on the breast cancer dataset are giv§n
in Figure 5, and the trends are essentially the same as in the semiparametric regression setting. The
primary difference is that random forests outperforms the Bayesian methods, with the out-of-fold
average loss being 0.026, compared to 0.032 for BART and 0.037 for dynamic trees.

4.2. Overdispersed count data with the Yelp dataset

We consider the Yelp dataset, which consists of the reviews for restaurants in the city of Phoenix.
This data is available publicly at https://www.yelp.com/dataset/challenge. We examine the number of
reviews Y; which are recorded for restaurant i. Intuitively, one might expect reviews for restaurant i to
arrive roughly according to a Poisson process, leading to Y; = Poisson(4;).

As restaurants are generally quite heterogeneous, one expects the 4;’s to vary considerably. One
mode of variability is in the spatial location of the restaurant, with restaurant’s situated in more pop-
ulated areas expected to accrue more reviews. In addition, unmeasured restaurant-specific variables
might influence the restaurant-specific rate A;. To get a sense of this, Figure 6 displays a histogram of
the Y;’s, and we note that the data is highly over-dispersed.

We set 4; = 6;6,x,) where X; consists of the latitude and longitude of restaurant i. The model
0; ~ Gam(a, b) leads to a negative-binomial model within each leaf, with likelihood

M Y a — M Sy an,
,-:,,‘[),] Y;!T'(a) vy vyt = Pl f 7 1V (1 v,

where v, = 6,/(6, + b) is the success probability of the negative binomial distribution with a trials.
The likelihood of v is conjugate to the Beta(a, 8) distribution; using this prior, we obtain the marginal
likelihood,

in(X;)= Fa+Y) I(a +B) I(a+S,)I+an,)
7 X)= f n(X)=n n - ’
e ,p[/X T@" [ o= Yit T@L'B) S p+5,+an)
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Figure 6: Left: histogram of the raw Yelp data, where Y denotes the number of reviews a given restaurant has;
the estimated mean p and variance o are also given. Right: kernel density estimator of the distribution of log(Y)
(solid) overlaid with the distribution of log(Y) under the negative binomial model with & = 0.65 (dashed).
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Figure 7: Plots of the Yelp data. On the left, points are colored by the log of their mean response value according
to the model, while on the right the points are colored by the log of their realized value. Figure created using the
ggmap package (Kahle and Wickham, 2013).

where S, = [liyx)=y ¥i and n, = }i : n(X;) = 5| . The right panel of Figure 6 displays the fit of
this model, when each observation is assigned its own leaf, to the data when @ = 0.65 and (8, a) are
chosen by matching the moment-matching equations

aa ,_ Wty
= N O- = —’
H=51 B 2

where o is the empirical variance and y is the empirical mean of the data (leading to a = 168 and
B = 2.4). We see that the negative binomial model is capable of accurately modeling the marginal
distribution of Y. Accordingly, we set (a, @, 8) = (168, 0.65,2.4) when applying BCART.

Figure 7 displays the fit of BCART to the Yelp data. The BCART model effectively de-noises the
raw data and reveals areas which are more likely to have a high number of reviews.
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5. Connections to machine learning algorithms

Tree-based Bayesian methods possess a number of interesting connections to their algorithmic cousins.
We describe points of contact between Bayesian methods and conventional machine learning meth-
ods. In addition to the obvious connections between BCART and random forests and connections
between BART and boosting, we provide less well-known connections between BART and kernel-
based methods, focusing in particular on Gaussian process regression.

5.1. Connections to random forests

BCART is similar operationally to random forests. For regression tasks, both methods make predic-
tions of the form

u(x) = Elg (x: X, 0x), (S.D

where E(QDis the expectation operatoy/ associated to (X,®yx) =~ P for some probability distribu-
tion P. Further, both approximate the expectation in (5.1) through Monte Carlo, using u(x) =

M T g X, G)g?f,)m) to produce predictions, where (X, ®§2"(,)”)) are (ideally) sampled frpm P.
iid

The random forests algorithm samples exactly (X, @;’f?")) ~ P, while BCART instead sample¥ from
a Markov chain with invariant distribution . Consequently, BCART and random forests have similar
operating properties; for example, random forests performs better as 7 o« € for the same reason
that longer Markov chains are preferred with BCART (adding more samples reduces the Monte Carlo
error).

BCART and random forests differ in the distribution P that they aim to sample from. A large
advantage random forests have over BCART is that one can sample exactly from IP; random forests
grow trees in a greedy fashion, with randomness coming from (i) bootstrap sampling the data used
to construct the tree and (ii) random sub-sampling of features when constructing splits. BCART, by
contrast, takes IP to be the posterior distribution 7(X,®x I ), which cannot be sampled from exactly.

5.2. Connections to kernel-based methods

BART has an interesting connection to kernel-based estimators. Note that the BART model can equiv-
alently be written

T .
g0) =T : ng(x; X, 0,), . "EP Normal )0, a‘i(.
=1

The random variables }g(x; X, ®;) : t ~ 1| are iid Normal(0, 0'}2[) random variables, implying g(x) =~
Normal(0, 0'2). More generally, the multivariate central limit theorem implies that, for any collection

of design points (xi,..., x)?, the vector z = (g(x1), ..., g(xm))D has a limiting multivariate Gaussian
distribution

zoc Normal(0,%), % =0, Pr(xi~x)), (asT o €),

where [x; ~ x;] is the event that x; and x; are associated to the same terminal node in X (the equality
Cov(g(x)),g(xj)) = 0',21 Pr(x; = x;) is easily checked). This suggests the following result.

Theorem 1. (Heuristic) Consider the BART specification (2.3) with prior as described in Sec-
tion 2.2 with a fixed prior mx (which is not assumed to be a branching process prior). Then, as
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T < €, }u(x) : x TY| converges to a Gaussian process with mean function m(x) = 0 and covariance
function X(x, x° = a'fl Pr(x ~ x.

“Theorem” 1 is heuristic because a formally correct statement requires technical conditions on the
prior myx. Theorem 1 is intuitively implied by the convergence of the finite dimensional joint distribu-
tions noted above, but giving a formal statement and proof is an exercise in empirical process theory
(Van der Vaart and Wellner, 1996) that we omit.

This connection to Gaussian processes is interesting from several standpoints. First, it provides
a link between BART and kernel-based methods such as Gaussian process regression and support
vector machines. Second, it formalizes several known connections between decision tree ensembling
methods and kernel-based methods. For example, Scornet (2016) provides connections between ran-
dom forests and kernel-methods, which were known also to Breiman (2000). Remarkably, kernels
corresponding the BART, random forests, and Mondrian forests are very similar and often coincide;
in particular, the kernels are similar to the exponential kernel described in the following proposition.

Proposition 1. Consider the BART model (2.3) constructed so that (i) for any n T N;, D(n) =~
Poisson(A); (ii) for any n T L, j(n) = Categorical(s), (iii) given j(n), C;, ~ Uniform(0, 1) (allowing
Sfor logically empty nodes); (iv) given X,...,Xr, i1, iizd Normal(0, 0'5). Then the associated kernel
function 2(x, x5 = a'fl Pr(x = x% is given by

P (
£(x,x = o exp] A]_[sj (/rj x}’@ (5.2)
j=1

A very similar result is obtained by Balog et al. (2016) in the context of their Mondrian forests
algorithm, giving some evidence that all of these methods are fundamentally making use of the same
information about the dissimilarity of the points (x, x°j in Euclidean space. Balog et al. (2016) use
this connection to approximate inference under the “ideal” kernel (5.2). We note that samples from
the BART prior could also be used for such a purpose.

A natural question one might ask is “given this connection, why not use Gaussian process re-
gression directly?” First, Gaussian process regression does not scale favorably with the sample size;
without making any approximations, training a Gaussian process regression model requires @(n>)
computations. Furthermore, our experience is that the empirical performance of a minimally-tuned
implementation of BART is frequently better than Gaussian process regression using the equivalent
kernel Z(x, x%. That is, BART provides better performance using less computation. We conjecture
that the reason for BART outperforming Gaussian process regression is that limiting the number of
trees in the ensemble allows one to learn a data-adaptive notion of distance between points.

A natural question one might ask is “given this connection, why not use Gaussian process re-
gression directly?” First, Gaussian process regression does not scale favorably with the sample size;
without making any approximations, training a Gaussian process regression model requires @(n°)
computations. Furthermore, our experience is that the empirical performance of a minimally-tuned
implementation of BART is frequently better than Gaussian process regression using the equivalent
kernel Z(x, x%. That is, BART provides better performance using less computation. We conjecture
that the reason for BART outperforming Gaussian process regression is that limiting the number of
trees in the ensemble allows one to learn a data-adaptive notion of distance between points.



556 Antonio R. Linero

5.8. Connections to boosting

The original motivation for the BART algorithm given by Chipman et al. (2010) was to provide a
Bayesian analog to boosted decision trees (Freund ez al., 1999). Boosted decision tree methods take
essentially the same form as BART, setting fi(x) = I—[,Tzl g(x; X;, ®,) and, like BART, a preference is
given for the individual trees to be weak learners. Unlike random forests, ensembles of decision trees
obtained from boosting are typically such that (i) the individual decision trees are shallow and (ii) no
single decision tree is sufficient to provide an adequate fit to the data on its own.

BART differs from boosting in a number of ways. First, boosting algorithms are greedy, and do
not update trees once they are included in the model. By contrast, BART makes use of a Bayesian
backfitting which continuously updates all trees in the model. Second, boosting algorithms run the risk
of overfitting the data as more trees are added, while BART is shielded from overfitting as more trees
are added due to its link with Gaussian processes noted in Section 5.2. Third, the Bayesian paradigm
also allows for automatic tuning of hyperparameters through the use of priors, while boosting is
typically tuned by cross-validation.

6. Frequentist properties of trees and tree ensembles

Beyond consistency, one may be interested in the convergence rate of the posterior. A natural target
to aim for is the minimax rate for a particular estimation problem. For the semiparametric regression
problem Y; = uo(X;) + €, € i Normal(0, o’%), the optimal rate of convergence is €, = n /(2d+Qo)
whenever fy(x) is d-times differentiable and depends on Q) « P predictors (more precisely, the
assumption is that fy(x) is a d-Holder function; see, e.g., Yang and Tokdar, 2015) where, for simplicity,
P and Q are regarded as fixed. This problem was considered by Linero and Yang (2017), whose
results imply that the BART posterior concentrates at the rate €, (up-to logarithmic factors), d T (0, 1].
Independently, Rockova and van der Pas (2017), using a specifically chosen prior mx, established
contraction of the posterior BART and BCART priors at the rate €, (up-to logarithmic factors) under
essentially the same assumptions.

The limitation d T (0, 1] described above is informative. When d = 1, uo(x) is a Lipschitz-
continuous function; d < 1 corresponds to fractionally smooth wy(x); and d > 1 corresponds to
functions which are smoother than Lipschitz-continuous. This suggests that BART and BCART can
adapt to rough functions (d > 1) but cannot take advantage of high-order smoothness in (x). Linero
and Yang (2017) show that this barrier can be overcome by smoothing the decision trees in BART,
leading to the SBART model.

In view of Rockova and van der Pas (2017), there is no difference in convergence rate between
BART and BCART for the problem of estimating a sparse function po(x); hence, the results described
above do not fully account for the improved performance of BART relative to BCART. There are sev-
eral practical reasons for expecting BART to outperform BCART. In particular, BART may outper-
form BCART for the following reasons: (i) BART uses shallow trees, so the mixing of the associated
Markov chain is much better; (ii) realizations of BART are smoother, so that BART is better able to
borrow information from neighboring points; and (iii) functions po(x) which arise in practice are more
structured than merely being sparse, and BART takes advantage of this structure. We focus on (iii)
here. Yang and Tokdar (2015) establish additional minimax rates of convergence when p(x) admits
a sparse additive structure po(x) = ]—R/:l Hoy(x). In particular, if p,(x) is @,-smooth and Q, sparse,
the minimax rate of convergence is simply obtained by summing the squared component-specific con-
vergence rates, i.e., the rate is € = }[]/_, n 2®/Co+C)| 12 Comparing €’ to €,, note that € can be
substantially smaller than €, as long as the number of interactions between the predictors is small.



A review of tree-based Bayesian methods 557

if the true model is additive, for example, the ¢ is limited only by the number V of additive com-
ponents. Linero and Yang (2017) and Rockova and van der Pas (2017) independently show that the
BART posterior concentrates at the rate €, up-to logarithmic factors (assuming @, T (0, 1] for BART
and @, > 0 for SBART). This fact hinges crucially on the fact that BART decomposes additively;
hence, the BCART posterior is not thought to concentrate at the rate €.

7. Discussion

In this paper we have reviewed Bayesian tree-based models, focusing on recent developments in com-
putation and modeling. We also outlined connections to more traditional machine learning algorithms
and reviewed some exciting results on posterior consistency which fill a previously long-standing gap
between theory and practice. Much work remains to be done; in particular, further improvements
in computation would make these methods more feasible in structured regression problems where
boosting algorithms currently dominate (Nielsen, 2016).

Also important to the dissemination of these methods is the development of software, and cur-
rently there are many options. The fits in this paper were obtained using the CRAN packages tgp for
treed Gaussian processes, dbarts for BART, and dynaTree for dynamic trees, and the non-CRAN
package SoftBart available at www.github.com/theodds/SoftBART. Other packages of note include
bartMachine and BART for fitting BART models.
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