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Abstract
Tree-based regression and classification ensembles form a standard part of the data-science toolkit. Many

commonly used methods take an algorithmic view, proposing greedy methods for constructing decision trees;

examples include the classification and regression trees algorithm, boosted decision trees, and random forests.

Recent history has seen a surge of interest in Bayesian techniques for constructing decision tree ensembles,

with these methods frequently outperforming their algorithmic counterparts. The goal of this article is to survey

the landscape surrounding Bayesian decision tree methods, and to discuss recent modeling and computational

developments. We provide connections between Bayesian tree-based methods and existing machine learning

techniques, and outline several recent theoretical developments establishing frequentist consistency and rates

of convergence for the posterior distribution. The methodology we present is applicable for a wide variety of

statistical tasks including regression, classification, modeling of count data, and many others. We illustrate the

methodology on both simulated and real datasets.
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1. Introduction

Tree-based regression and classification ensembles form a standard part of the data-science toolkit.

Consider the generic problem of estimating the distribution f (y x) of some response Y �Z condi-

tional on a predictor X �Y. Tree-based methods recursively partition Y to obtain a decision tree X

such that the information in X about Y is contained entirely in which leaf node X falls in; this process

is illustrated in Figure 1 when X � [0, 1]2. Once the tree is constructed, we associate to each leaf node

η a parameter θη and set f (y x) = f (y θη(x)) where η(x) denotes the leaf node associated to x. For

example, we might obtain a semiparametric regression model by setting Y ≈ Normal(μη(X), σ
2
η(X)).

Decision trees have attracted the interest of practitioners due to their strong empirical performance,

and many algorithmic methods for constructing decision trees exist (Breiman et al., 1984; Kass, 1980;

Quinlan, 1993). An essential fact about decision trees is that a given dataset can typically be described

well by many different tree structures. This causes greedily-constructed trees to be very unstable,

with small perturbations of trees leading to vastly different tree topologies. This motivates methods

based on ensembles of decision trees, such as bagging (Breiman, 1996) and random forests (Breiman,

2001), which increase estimation stability by averaging predictions over the bootstrap distribution of

the decision tree (Efron and Gong, 1983).

Bayesian approaches fundamentally differ from these algorithmic approaches in that they posit

a full probability model for the data, combining a prior distribution π(X) for X with a likelihood

m(I X) for the data I = }(Xi,Yi) : 1 ≥ i ≥ N| . This approach falls in the framework of Bayesian
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Figure 1: Schematic depicting the construction of a decision tree (bottom) and the induced recursive partition

associated with the construction of the tree (top). After the decision tree is constructed, parameters associated to

leaf node η is given a mean parameter μ�.

nonparametrics/semiparameterics (see MacEachern, 2016 for a review) This viewpoint allows for

natural uncertainty quantification using the posterior distribution π(X I ). Furthermore, with no

additional effort, the Bayesian approach naturally has many of the features of state-of-the-art tree

ensembling methods. For example, the process of averaging predictions across samples from the pos-

terior distribution is similar to the averaging which occurs in the random forests algorithm, naturally

leading to stability in inferences.

Bayesian decision tree methods have experienced rapid development in recent years, and the pur-

pose of this article is to offer a timely review. We first provide a basic review of the Bayesian classi-

fication and regression trees (BCART) and Bayesian additive regression trees (BART) methods, and

provide an overview of the techniques used to fit them. We then make connections to other machine

learning techniques, including random forests, boosting, and Gaussian process regression. Addition-

ally, several recent works have provided theoretical justification for these methods by establishing

optimal posterior convergence rates for variants of BCART (Rockova and van der Pas, 2017) and

BART (Linero and Yang, 2017; Rockova and van der Pas, 2017); we review some of these develop-

ments.

2. Bayesian classification and regression trees

Our notation follows Chipman et al. (2013), who also provide a review of tree-based methods. Asso-

ciated to a tree X = }LX ,TX ,NX| we have a collection of internal (branch) nodes LX with decision

rules TX and leaf nodesNX . We let η(x) �NX denote the unique leaf node associated to x. Associated

to each η �NX is a parameter θη �ΘX where ΘX = }θη : η �NX| .

The BCART was introduced by Chipman et al. (1998) and Denison et al. (1998), and provides the

basis for most of the subsequent developments. To simulate from the BCART prior, one first draws a

tree structure X ≈ π(X) from a prior π(X) (see Section 2.1) and next samples, for each leaf η �NX ,

a parameter vector θη. The response is then modeled as (Yi Xi = x,X ,ΘX ) ≈ f (y θη(x)) for some

family of densities f (y θ).
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Figure 2: Fits of the Bayesian classification and regression trees model in which the within-leaf response mean

is (left) a constant μη, (middle) a Gaussian process μη(x), and (right) a linear model μη(x) = αη + xDβη.

Example 1. [Semiparametric regression] Suppose Yi is continuous. We specify the model

Yi = μ(Xi) + εi, εi ≈ Normal
)
0, σ(Xi)

2
(
, (2.1)

where μ(x) = μη(x) and σ2(x) = σ2
η(x). Additional flexibility can be obtained by considering a locally

linear model Yi = α(Xi) + β(Xi)
DXi + εi; similarly, Gramacy and Lee (2008) allow for the within-leaf

models to be Gaussian process regressions (Rasmussen and Williams, 2006). The fits of these models

to the lidar data described in Section 4.1 are given in Figure 2.

Example 2. [Poisson regression for count data] Suppose Yi is a count. As an alternative to a Poisson

log-linear model, we set Yi ≈ Poisson(λη(Xi)). For an application of this type of model to overdispersed

count data, see Section 4.2.

Example 3. [Survival analysis with non-proportional hazards] Suppose Yi is a survival time, po-

tentially subject to right-censoring. We set Yi ≈ S η(Xi)(t) where S η(t) is a nonparametrically modeled

survival function given, e.g., a Pölya tree prior (Muliere and Walker, 1997).

The above approach extends naturally to other semiparametric models; for example, one obtains

a natural extension to a generic exponential family f (y θ) = exp }yθ B(θ) +C(y)| . The compu-

tational algorithms described in Section 3 are applicable whenever θη is given a prior for which the

marginal likeihood m(I X) =
∫
η�NX

∑∫
i:η(Xi)=η f (Yi θ)πθ(θη) dθη can be efficiently computed.

Chipman et al. (1998) and Denison et al. (1998) consider, in particular, the classification problem in

which f (y x) is categorical with Y ≈ Categorical(θη(X)) where θη ≈ Dirichlet(α1, . . . , αC) is a leaf-

specific distribution over categories. These extensions can be viewed as semiparametric competitors

to classical generalized linear models (McCullagh, 1984) or generalized additive models (Hastie and

Tibshirani, 1987). An attractive feature of these models is that they naturally allow for the inclusion

of complex interactions between predictors.
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2.1. Priors on tree structures

We consider priors on (X ,ΘX ) of the form

π(X ,ΘX ) = πX (X) ©
∫
η�NX

πθ(θη). (2.2)

That is, the θη’s are conditionally independent given the tree structure X .

We require a prior distribution πX (X) for the tree structure. A common choice is to use a branching

process prior, described initially by Chipman et al. (1998). For each node η in the tree, we split η
with prior probability q(η) = γ(1 + D(η)) β, where D(η) denotes the depth of η (where the root of the

tree has depth D(η) = 0). The parameters (γ, β) are parameters which control the shape of the trees.

The parameter γ > 0 controls the prior probability that the tree is empty (and hence is typically large),

while β > 0 penalizes trees which are too deep.

Once the tree topology is generated, we associate to each branch η �LX a splitting rule of the form

[x j(η) ≥ Cη]. We set j(η)
indep
≈ Categorical(s) where s = (s1, . . . , sP) is a probability vector and P is the

dimension of the prediction Xi; most implementations set s j = P 1, although this choice is not ideal

when the predictors do not have equal importance (Linero, 2016). Conditional on j(η) = j, we take

Cη ≈ GX ,η where GX ,η is a distribution G j restricted to the set of values which do not lead to logically

empty nodes when variable j is split on (if no such split exists, another predictor is selected according

to s). In most publicly available software G j is the empirical distribution of (Xi j : 1 ≥ i ≥ N).

There are several alternatives in the literature to the prior described above, differing in how the

topology of X is generated. Denison et al. (1998) suggest a hierarchical prior in which a prior is

placed on the number of leaf nodes L = NX ≈ 1 + Poisson(λ) and, conditional on L, a uniform

distribution is placed on the tree topologies with L leaves. Wu et al. (2007) construct a “pinball” prior

on the topology of X , which gives finer control over the shape of the resulting trees. Finally, Roy and

Teh (2009) introduced the Mondrian process, which gives an elegant joint prior on all components

of X (more precisely, the Mondrian process is a stochastic process }Xt : t > 0| , with larger values

of t corresponding to finer partitions). Lakshminarayanan et al. (2014) leverage the self-consistency

properties of the Mondrian process to construct probabilistic alternatives random forests which allow

online implementations.

2.2. Bayesian additive regression trees

The BART framework introduced by Chipman et al. (2010) replaces the single X with a sum of trees

μ(x) =

T∏
t=1

g(x;Xt,Θt), (2.3)

where g(x;Xt,Θt) = μη(t,x), η(t, x) = η if x is associated to leaf node η in tree Xt, and Θt = }μη :

η �NXt | . The tree structures Xt are then given independent priors as described in Section 2.1. The

leaf parameters μη are given iid Normal(0, σ2
μ/T ) priors, with the scaling factor T chosen so that

Var}μ(x)| = σ2
μ irrespective of T . The BART model was initially motivated by analogy with boosting

algorithms (Freund et al., 1999), which combine many so-called “weak learners” to construct predic-

tions; the weak learners of choice in many boosting applications are shallow decision trees. By taking

β large in the branching process prior, the BART model represents a Bayesian version of this idea with

μ(x) represented as a sum of shallow decision trees.
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The BART algorithm applies most naturally to the semiparametric regression problem; repeated

experience has shown that it typically outperforms BCART in this setting, and is typically competitive

with state-of-the-art methods. Additionally, it is straight-forward to extend BART to classification

using the data augmentation strategy of Albert and Chib (1993). Much further work has gone into

extending BART to various other problems, including survival analysis (Sparapani et al., 2016) and

as an alternative to loglinear models (Murray, 2017). The strong predictive performance of BART has

also lead to it being widely adopted in estimating average causal effects in causal inference problems

(Hill, 2011).

BCART is more flexible as a framework than BART in the sense that it generalizes more easily

to non-regression settings. Whereas BCART allows for essentially any type of object in the leaf

nodes (scalars, probability vectors, survival functions, etc.), one must be able to add together the

parameters in the leaf nodes of BART, limiting us to leaf parameters in R (or possibly R
D for some

D). As suggested in Section 5.2, the BART model is perhaps best thought of as a high-quality drop-in

replacement for Gaussian process priors (see Rasmussen and Williams, 2006, for a textbook level

treatment).

Because the estimates of BART correspond to sums of step functions, BART produces estimates

which are not smooth. To address this issue, Linero and Yang (2017) proposed smoothed Bayesian

additive regression trees (SBART) which use so-called “soft” decision trees (Irsoy et al., 2012) in

constructing the ensemble; rather than going left or right down the tree, the tree assigns differing

weights to the left and right paths according to how close the observation is to the cutpoint. As

we show in illustrations here, this additional smoothing usually produces better estimates when the

underlying regression function is smooth. The cost of this additional flexibility is an increase in

computational effort.

2.3. Variable selection and automatic relevance determination

Bayesian tree-based models ostensibly conduct model selection through which variables are used to

construct splits. As noted by Linero (2016), however, Bayesian tree-based methods are not immedi-

ately applicable for variable selection due to the tendency for spurious predictors to be selected once

the number of branches becomes sufficiently large. This issue is most obvious in the case of BART,

which naturally produces ensembles with many branches, but is also expected to occur with BCART

when sufficiently deep trees are required. One attractive option to conduct variable selection is to

place a sparsity-inducing Dirichlet prior on the vector of splitting proportions

s ≈ Dirichlet
)
α

P
, . . . ,

α

P

{
. (2.4)

Linero (2016) shows that, given that the ensemble includes B branch nodes, the number of predictors

Q included in the model has an approximate 1 + Poisson(θ) distribution, where θ =
∏B

i=1 α/(α + i). In

addition to providing variable selection, the Dirichlet prior also functions as an automatic relevance
determination prior (Neal, 1995), allowing the model to adaptively learn the relative importance of

each predictor.

3. Computational details

Constructing efficient algorithms for exploring the posterior π(X I ) is perhaps the biggest standing

problem in the widespread adoption of Bayesian methods for decision trees. While Markov chain

Monte Carlo (MCMC) is the frequently used, we show in Section 4 that the widely available im-

plementations of BCART generally perform poorly compared to recent particle filtering algorithms
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(Lakshminarayanan et al., 2013; Taddy et al., 2011). We review the MCMC methods used to fit

BCART before discussing more recent methods based on sequential Monte Carlo. We then discuss

approaches for fitting BART.

3.1. Markov chain Monte Carlo for Bayesian classification and regression trees

Consider first BCART under a prior respecting (2.2). The posterior πX (X I ) can be written

πX (X I ) =
πX (X)

{ (I )

∫
η�N

̂ ∫
i:η(Xi)=η

f (Yi θη) dπθ(θη) =
πX (X)m(I X)

{ (I )
.

Efficient inference requires that the marginal likelihood m(I X) can be computed efficiently, while

the normalizing constant { (I ) is not required for further computations.

Example 4. [Poisson regression] Suppose (Yi Xi = x,X ,ΘX ) ≈ Poisson(λη(x)). Suppose that

(λη X) ≈ Gam(a, b). Then

m(I X) =
baL

Γ(a)L ∫ N
i=1 Yi!

∫
η�NX

Γ(a + S η)
(b + nη)a+S η

,

where L = N , nη = }i : η(Xi) = η| , and S η =
∏

i:η(Xi)=η Yi.

Example 5. [Gaussian homoskedastic regression] Suppose Yi = μ(Xi) + εi where μ(x) = μη(x) and

εi
iid
≈ Normal(0, σ2). Suppose that (μη X)

iid
≈ Normal(m, σ2

μ). Then

m(I X) =
∫
η�NX

)
2πσ2

( nη
2 σ2

σ2 + nησ2
μ

exp

⎫⎝⎝⎝⎬⎝⎝⎝⎭ SSE(η)

2σ2

1

2

nη
)
Ȳη m

(2

nησ2
μ + σ

2

⎩⎝⎝⎝⎪⎝⎝⎝⎨ ,
where, using the same notation as in the Poisson setting, Ȳη = S η/nη and SSE(η) =

∏
i:η(Xi)=η(Yi Ȳη)2.

With the marginal likelihood m(I X) in hand, one then typically samples approximately from

π(X I ) using the Metropolis-Hastings algorithm (Hastings, 1970), which uses a proposal distribu-
tion q(X (m) ∝ X∞) to construct a Markov chain X (1),X (2), . . . with invariant distribution π(X I ). If

X (m) is the state of X at iteration m of the Markov chain we (i) sample X∞≈ q(X ∝ X∞) and (ii) set

X (m+1) = X∞with probability

a(X (m) ∝ X∞) = min

}
π(X∞ I ) ©q(X∞∝ X (m))

π(X (m) I ) ©q(X (m) ∝ X∞)
, 1

⎛
,

and setX (m+1) = X (m) with probability 1 a(X (m) ∝ X∞). The difficulty with lies in constructing useful

proposals q(X ∝ X∞). This is because there are typically a large number of trees with non-negligible

posterior probability which are structurally dissimilar, separated by decision trees with low posterior

probability. Hence, if q(X ∝ X∞) places its mass on trees which are structurally similar to X , one

expects the sampler to get stuck in a local mode of π(X I ). Works addressing the construction of

proposal distributions to use with Metropolis-Hastings include Chipman et al. (1998), Pratola (2016),

Wu et al. (2007), and Lakshminarayanan et al. (2015).

The transition function q(X ∝ X∞) is constructed as a mixture distribution over a collection of

possible modifications to X . The following modifications proposed by Chipman et al. (1998) are
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widely used in implementations; they all suffer from the same problem of being “local” modifications

toX . Let RX denote the set of branches whose children are both leaves (i.e., RX is the set of branches

without grandchildren).

≡ Grow: Randomly select η �NX and turn it into a branch node with two children, randomly sam-

pling the predictor and cutpoint for the splitting rule from the prior.

≡ Prune: Select ν �RX . Make ν a leaf by deleting its children.

≡ Change: Randomly select ν �LX and change the decision rule [x j ≥ C] by sampling ( j,C) accord-

ing to the prior.

To complement these local moves, Wu et al. (2007) propose a non-local radical restructure move,

which proposes X∞so that the data partition of X is preserved; hence, one moves to a very different

tree structure while simultaneously preserving the likelihood of the data. Pratola (2016) develops

global Metropolis-Hastings proposals by constructing tree-rotation operators on the space of trees, and

further develops a generalization of the “change” rule. These additional moves can provide massive

improvements in mixing of the Markov chain, but unfortunately we are unaware of any publicly

available software implementations.

3.2. Sequential Monte Carlo

Several authors have proposed sequential Monte Carlo (SMC) algorithms to approximate the posterior

distribution, bypassing MCMC. By taking advantage of particle systems which evolve (almost) in

parallel, they are also able to explore different modes of the posterior. Additionally, SMC methods

may be easier to implement in practice than MCMC methods. The strategies described here are based

on a generic particle filtering approach; see Cappé et al. (2007) for a review.

To apply SMC it is helpful to introduce auxiliary variables X (0), . . . ,X (T ) = X with joint distri-

bution π(X (0))π(X (0) ∝ X (1))©©©π(X (T 1) ∝ X (T )) so that we can view the model as a state-space

model. Lakshminarayanan et al. (2013) do this by considering X (t) to be the state of X in the branch-

ing process prior described in Section 2.1 truncated to t steps. At each stage of the particle filter the

density h(X (t)) ′ π(X (t))m(I X (t)) is targeted, where m(I X (t)) represents the marginal likelihood

of the data given that X = X (t). Given a proposal kernel q(X (t 1) ∝ X (t)) (possibly depending on I )

this leads to the sequential approximation (with w(0)
m ≤ 1)

h
)
X (t)

(
�

1∏M
m=1 w(t)

m

M∏
m=1

w(t)
m δX (t)

m
, w(t)

m ′ w(t 1)
m

π
)
X (t 1) ∝ X (t)

(
m

)
I X (t)

(
q X (t 1) ∝ X (t)∣ m I X (t 1)

∣ , (3.1)

where δX denotes a point-mass distribution at X . To prevent weight degeneracy, one may resample

X (t) from the approximation of h(X (t)) and set w(t)
m →

∏
m w(t)

m /M. There are several possibilities for

choosing q(X (t 1) ∝ X (t)), but Lakshminarayanan et al. (2013) recommend simply using π(X (t 1) ∝

X (t)) and choosing M large.

Taddy et al. (2011) take a different approach, directly using a dynamic model X (0), . . . ,X (N)

for observations i = 1, . . . ,N in which an evolving predictive distribution f (Yi Xi,I
(i 1),X (i 1)) is

specified, where I (n) = }(Xi,Yi)|
n
i=1

. The trees X (t) are assumed to evolve according to a Markov

process (growing, pruning, or staying the same). This algorithm leads to weights of the form w(i)
m =

w(i 1)
m f (Yi Xi,I

(i 1),X (i 1)) in (3.1), and we note that Taddy et al. (2011) recommend resampling

steps after every update.
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3.3. Bayesian additive regression trees and Bayesian backfitting

BART is fit by combining the Metropolis-Hastings schemes in Section 3.1 with a so-called Bayesian

backfitting algorithm (Hastie and Tibshirani, 2000). The use of shallow trees by BART has a large

computational payoff, as the “local moves” described in Section 3.1 are much more effective at ex-

ploring the posterior of shallow trees. Consider the regression setting with Yi =
∏T

t=1 g(Xi;Xt,Θt)+ εi.
The Bayesian backfitting algorithm proceeds by Gibbs sampling, updating (Xt,Θt I ,X t,Θ t) where

X t = (Xj : j � t) and Θ t = (Θ j : j � t). The term “backfitting” comes from the observation that one

can write

Rit = g (Xi;Xt,Θt) + εi, where Rit = Yi

∏
j�t

g
)
Xi;Xj,Θ j

(
.

After conditioning on (X t,Θ t,I ), this reduces to the BCART problem for regression, with the

pseudo-response Rit playing the role of Yi; hence, the MCMC strategies in Section 3.1 can be used

with Rit in place of Yi.

4. Illustrations

4.1. Nonparametric regression and classification

We now compare and contrast the various methods presented here on both simulated and real datasets.

First we consider the lidar, which is available in the package SemiPar in R (Wand, 2014) and

consists of measurements from a light detection and ranging experiment; the goal is to use the dis-

tance light travels before being reflected to predict the ratio of received light from two laser sources.

This data is amenable to the semiparametric regression model (2.1). Because the predictor is one-

dimensional, it allows for easy visual comparisons of methods. We consider the BCART model given

in (2.1), the BART model (2.3), as well as the dynamic regression trees model of Taddy et al. (2011).

We also consider the smoothed variant SBART of BART described in Section 2.2, the random forests

algorithm of Breiman (2001) as implemented in the grf package, and the tree boosting algorithm in

the package xgboost. Fits to the lidar dataset are given in Figure 3.

From Figure 3, we see that BCART and dynamic trees induce the least amount of smoothing,

and essentially produce step functions. For comparison, the random forests algorithm produces a

smoother estimate. BART smooths the data more than BCART, and produces a fit which is very

similar to gradient boosting and random forests. The smoothest fit is given by SBART, which takes

advantage of an assumed continuity of the regression curve.

Our experience is that the additional smoothing obtained by random forests, BART, gradient

boosting, and SBART almost always leads to improved performance. Moreover, it is not clear if

the lack of smoothness in BCART and dynamic trees is due to fundamental properties of the prior or

is merely a symptom of inaccuracies in the Monte Carlo approximations. We have found dynamic

trees to generally perform better than BCART, and speculate that this is due to the use of particle

filtering rather than MCMC to fit the model.

To see more clearly the potential benefits of smoothing, we consider

Yi = μ(Xi) + εi, μ(x) = 10 sin(πx1x2) + 20(x3 0.5)2 + 10x4 + 5x5, (4.1)

where Xi ≈ Uniform([0, 1]10) and εi
iid
≈ Normal(0, σ2). This function was introduced by Friedman

(1991) to illustrate the use of multivariate adaptive regression splines. We consider σ2 = 1 and a

sample size of N = 250, and evaluate methods by integrated root mean squared error }RMSE =
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Figure 3: Fits of various methods to the lidar dataset. BART = Bayesian additive regression trees; BCART =

Bayesian classification and regression trees; SBART = smoothed Bayesian additive regression trees.

Figure 4: Integrated RMSE under (4.1) across 30 independent replications, with n = 250, σ2 = 1. SBART =

smoothed Bayesian additive regression trees; BART = Bayesian additive regression trees; BCART = Bayesian

classification and regression trees; RMSE = root mean squared error.

∑
(μ(x) μ̂(x))2 dx| 1/2 where μ̂(x) is an estimate of μ(x) produced by each method. Results on 30

replications are given in Figure 4. In addition to the methods used on the lidar data, we also consider

the treed Gaussian process described in Example 2.

On (4.1), Figure 4 demonstrates that smoother methods typically do better. The best performing

method is SBART, followed by treed Gaussian processes and BART. BCART performs the worst,

however the fact that it is outperformed substantially by dynamic trees suggests that this may be due

to poor mixing of the MCMC scheme.
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Figure 5: Error rates for the competing methods on the Wisconsin breast cancer dataset for each fold in the

cross-validation experiment. BART = Bayesian additive regression trees; BCART = Bayesian classification and

regression trees.

Finally, we consider the performance of these methods on the Wisconsin breast-cancer detection

dataset. Given P = 10 features, the goal is to classify a tumor as benign or malignant. This dataset

is available at the UCI machine learning repository (Lichman, 2013). We performed 10-fold cross

validation on this dataset, and evaluated methods according to the 0–1 loss L(Y,√Y) = I(Y � √Y).

We did not consider SBART or treed Gaussian processes on this dataset due to the lack of software

available to fit these methods on classification data. Results on the breast cancer dataset are given

in Figure 5, and the trends are essentially the same as in the semiparametric regression setting. The

primary difference is that random forests outperforms the Bayesian methods, with the out-of-fold

average loss being 0.026, compared to 0.032 for BART and 0.037 for dynamic trees.

4.2. Overdispersed count data with the Yelp dataset

We consider the Yelp dataset, which consists of the reviews for restaurants in the city of Phoenix.

This data is available publicly at https://www.yelp.com/dataset/challenge. We examine the number of

reviews Yi which are recorded for restaurant i. Intuitively, one might expect reviews for restaurant i to

arrive roughly according to a Poisson process, leading to Yi ≈ Poisson(λi).

As restaurants are generally quite heterogeneous, one expects the λi’s to vary considerably. One

mode of variability is in the spatial location of the restaurant, with restaurant’s situated in more pop-

ulated areas expected to accrue more reviews. In addition, unmeasured restaurant-specific variables

might influence the restaurant-specific rate λi. To get a sense of this, Figure 6 displays a histogram of

the Yi’s, and we note that the data is highly over-dispersed.

We set λi = δiθη(Xi) where Xi consists of the latitude and longitude of restaurant i. The model

δi ≈ Gam(a, b) leads to a negative-binomial model within each leaf, with likelihood∫
i:η(Xi)=η

Γ(a + Yi)

Yi!Γ(a)
νYi
η (1 νη)

a =

∫
Γ(a + Yi)

Γ(a)nη
∫

Yi!
ν

S η
η (1 νη)

anη ,

where νη = θη/(θη + b) is the success probability of the negative binomial distribution with a trials.

The likelihood of ν is conjugate to the Beta(α, β) distribution; using this prior, we obtain the marginal

likelihood,

m(I X) =
∫
η�NX

∫
i:η(Xi)=η Γ(a + Yi)

Γ(a)nη
∫

i:η(Xi)=η Yi!
©
Γ(α + β)

Γ(α)Γ(β)
©
Γ(α + S η)Γ(β + anη)
Γ(α + β + S η + anη)

,
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Figure 6: Left: histogram of the raw Yelp data, where Y denotes the number of reviews a given restaurant has;

the estimated mean μ and variance σ2 are also given. Right: kernel density estimator of the distribution of log(Y)

(solid) overlaid with the distribution of log(Y) under the negative binomial model with α = 0.65 (dashed).

Figure 7: Plots of the Yelp data. On the left, points are colored by the log of their mean response value according

to the model, while on the right the points are colored by the log of their realized value. Figure created using the

ggmap package (Kahle and Wickham, 2013).

where S η =
∏

i:η(Xi)=η Yi and nη = }i : η(Xi) = η| . The right panel of Figure 6 displays the fit of

this model, when each observation is assigned its own leaf, to the data when α = 0.65 and (β, a) are

chosen by matching the moment-matching equations

μ =
aα
β 1

, σ2 =
μ2 + μ

β 2
,

where σ2 is the empirical variance and μ is the empirical mean of the data (leading to a = 168 and

β = 2.4). We see that the negative binomial model is capable of accurately modeling the marginal

distribution of Y . Accordingly, we set (a, α, β) = (168, 0.65, 2.4) when applying BCART.

Figure 7 displays the fit of BCART to the Yelp data. The BCART model effectively de-noises the

raw data and reveals areas which are more likely to have a high number of reviews.
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5. Connections to machine learning algorithms

Tree-based Bayesian methods possess a number of interesting connections to their algorithmic cousins.

We describe points of contact between Bayesian methods and conventional machine learning meth-

ods. In addition to the obvious connections between BCART and random forests and connections

between BART and boosting, we provide less well-known connections between BART and kernel-

based methods, focusing in particular on Gaussian process regression.

5.1. Connections to random forests

BCART is similar operationally to random forests. For regression tasks, both methods make predic-

tions of the form

√μ(x) = E }g (x;X ,ΘX )| , (5.1)

where E(©) is the expectation operator associated to (X ,ΘX ) ≈ P for some probability distribu-

tion P. Further, both approximate the expectation in (5.1) through Monte Carlo, using √μ(x) =

M 1 ∏M
m=1 g(x;X (m),Θ(m)

X (m) ) to produce predictions, where (X (m),Θ(m)

X (m) ) are (ideally) sampled from P.

The random forests algorithm samples exactly (X (m),Θ(m)

X (m) )
iid
≈ P, while BCART instead samples from

a Markov chain with invariant distribution P. Consequently, BCART and random forests have similar

operating properties; for example, random forests performs better as T ∝ ∈ for the same reason

that longer Markov chains are preferred with BCART (adding more samples reduces the Monte Carlo

error).

BCART and random forests differ in the distribution P that they aim to sample from. A large

advantage random forests have over BCART is that one can sample exactly from P; random forests

grow trees in a greedy fashion, with randomness coming from (i) bootstrap sampling the data used

to construct the tree and (ii) random sub-sampling of features when constructing splits. BCART, by

contrast, takes P to be the posterior distribution π(X ,ΘX I ), which cannot be sampled from exactly.

5.2. Connections to kernel-based methods

BART has an interesting connection to kernel-based estimators. Note that the BART model can equiv-

alently be written

g(x) = T
1
2

T∏
t=1

g(x;Xt,Θt), μη
indep
≈ Normal

)
0, σ2

μ

(
.

The random variables }g(x;Xt,Θt) : t ∼ 1| are iid Normal(0, σ2
μ) random variables, implying g(x) ≈

Normal(0, σ2
μ). More generally, the multivariate central limit theorem implies that, for any collection

of design points (x1, . . . , xM)D, the vector z = (g(x1), . . . , g(xm))D has a limiting multivariate Gaussian

distribution

z ∝ Normal(0,Σ), Σi j = σ
2
μ Pr(xi ≈ x j), (as T ∝ ∈ ) ,

where [xi ≈ x j] is the event that xi and x j are associated to the same terminal node in X1 (the equality

Cov(g(xi), g(x j)) = σ
2
μ Pr(xi ≈ x j) is easily checked). This suggests the following result.

Theorem 1. (Heuristic) Consider the BART specification (2.3) with prior as described in Sec-
tion 2.2 with a fixed prior πX (which is not assumed to be a branching process prior). Then, as
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T ∝ ∈ , }μ(x) : x �Y| converges to a Gaussian process with mean function m(x) = 0 and covariance
function Σ(x, x∞) = σ2

μ Pr(x ≈ x∞).

“Theorem” 1 is heuristic because a formally correct statement requires technical conditions on the

prior πX . Theorem 1 is intuitively implied by the convergence of the finite dimensional joint distribu-

tions noted above, but giving a formal statement and proof is an exercise in empirical process theory

(Van der Vaart and Wellner, 1996) that we omit.

This connection to Gaussian processes is interesting from several standpoints. First, it provides

a link between BART and kernel-based methods such as Gaussian process regression and support

vector machines. Second, it formalizes several known connections between decision tree ensembling

methods and kernel-based methods. For example, Scornet (2016) provides connections between ran-

dom forests and kernel-methods, which were known also to Breiman (2000). Remarkably, kernels

corresponding the BART, random forests, and Mondrian forests are very similar and often coincide;

in particular, the kernels are similar to the exponential kernel described in the following proposition.

Proposition 1. Consider the BART model (2.3) constructed so that (i) for any η � Nt, D(η) ≈
Poisson(λ); (ii) for any η �Lt, j(η) ≈ Categorical(s); (iii) given j(η), Cη ≈ Uniform(0, 1) (allowing

for logically empty nodes); (iv) given X1, . . . ,XT , μη
iid
≈ Normal(0, σ2

μ). Then the associated kernel
function Σ(x, x∞) = σ2

μ Pr(x ≈ x∞) is given by

Σ(x, x∞) = σ2
μ exp

⎞⎟⎟⎟⎟⎟⎟⎠ λ P∏
j=1

s j

(((x j x∞j
(((⎧∑∑∑∑∑∑⎜ . (5.2)

A very similar result is obtained by Balog et al. (2016) in the context of their Mondrian forests

algorithm, giving some evidence that all of these methods are fundamentally making use of the same

information about the dissimilarity of the points (x, x∞) in Euclidean space. Balog et al. (2016) use

this connection to approximate inference under the “ideal” kernel (5.2). We note that samples from

the BART prior could also be used for such a purpose.

A natural question one might ask is “given this connection, why not use Gaussian process re-

gression directly?” First, Gaussian process regression does not scale favorably with the sample size;

without making any approximations, training a Gaussian process regression model requires Θ(n3)

computations. Furthermore, our experience is that the empirical performance of a minimally-tuned

implementation of BART is frequently better than Gaussian process regression using the equivalent

kernel Σ(x, x∞). That is, BART provides better performance using less computation. We conjecture

that the reason for BART outperforming Gaussian process regression is that limiting the number of

trees in the ensemble allows one to learn a data-adaptive notion of distance between points.

A natural question one might ask is “given this connection, why not use Gaussian process re-

gression directly?” First, Gaussian process regression does not scale favorably with the sample size;

without making any approximations, training a Gaussian process regression model requires Θ(n3)

computations. Furthermore, our experience is that the empirical performance of a minimally-tuned

implementation of BART is frequently better than Gaussian process regression using the equivalent

kernel Σ(x, x∞). That is, BART provides better performance using less computation. We conjecture

that the reason for BART outperforming Gaussian process regression is that limiting the number of

trees in the ensemble allows one to learn a data-adaptive notion of distance between points.
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5.3. Connections to boosting

The original motivation for the BART algorithm given by Chipman et al. (2010) was to provide a

Bayesian analog to boosted decision trees (Freund et al., 1999). Boosted decision tree methods take

essentially the same form as BART, setting μ̂(x) =
∏T

t=1 g(x;Xt,Θt) and, like BART, a preference is

given for the individual trees to be weak learners. Unlike random forests, ensembles of decision trees

obtained from boosting are typically such that (i) the individual decision trees are shallow and (ii) no

single decision tree is sufficient to provide an adequate fit to the data on its own.

BART differs from boosting in a number of ways. First, boosting algorithms are greedy, and do

not update trees once they are included in the model. By contrast, BART makes use of a Bayesian

backfitting which continuously updates all trees in the model. Second, boosting algorithms run the risk

of overfitting the data as more trees are added, while BART is shielded from overfitting as more trees

are added due to its link with Gaussian processes noted in Section 5.2. Third, the Bayesian paradigm

also allows for automatic tuning of hyperparameters through the use of priors, while boosting is

typically tuned by cross-validation.

6. Frequentist properties of trees and tree ensembles

Beyond consistency, one may be interested in the convergence rate of the posterior. A natural target

to aim for is the minimax rate for a particular estimation problem. For the semiparametric regression

problem Yi = μ0(Xi) + εi, εi
iid
≈ Normal(0, σ2

0), the optimal rate of convergence is εn = n d/(2d+Q0)

whenever f0(x) is d-times differentiable and depends on Q0 ← P predictors (more precisely, the

assumption is that f0(x) is a d-Hölder function; see, e.g., Yang and Tokdar, 2015) where, for simplicity,

P and Q0 are regarded as fixed. This problem was considered by Linero and Yang (2017), whose

results imply that the BART posterior concentrates at the rate εn (up-to logarithmic factors), d � (0, 1].

Independently, Rockova and van der Pas (2017), using a specifically chosen prior πX , established

contraction of the posterior BART and BCART priors at the rate εn (up-to logarithmic factors) under

essentially the same assumptions.

The limitation d � (0, 1] described above is informative. When d = 1, μ0(x) is a Lipschitz-

continuous function; d < 1 corresponds to fractionally smooth μ0(x); and d > 1 corresponds to

functions which are smoother than Lipschitz-continuous. This suggests that BART and BCART can

adapt to rough functions (d ≥ 1) but cannot take advantage of high-order smoothness in μ0(x). Linero

and Yang (2017) show that this barrier can be overcome by smoothing the decision trees in BART,

leading to the SBART model.

In view of Rockova and van der Pas (2017), there is no difference in convergence rate between

BART and BCART for the problem of estimating a sparse function μ0(x); hence, the results described

above do not fully account for the improved performance of BART relative to BCART. There are sev-

eral practical reasons for expecting BART to outperform BCART. In particular, BART may outper-

form BCART for the following reasons: (i) BART uses shallow trees, so the mixing of the associated

Markov chain is much better; (ii) realizations of BART are smoother, so that BART is better able to

borrow information from neighboring points; and (iii) functions μ0(x) which arise in practice are more

structured than merely being sparse, and BART takes advantage of this structure. We focus on (iii)

here. Yang and Tokdar (2015) establish additional minimax rates of convergence when μ0(x) admits

a sparse additive structure μ0(x) =
∏V

v=1 μ0v(x). In particular, if μ0v(x) is αv-smooth and Q0v sparse,

the minimax rate of convergence is simply obtained by summing the squared component-specific con-

vergence rates, i.e., the rate is ε�n = }
∏V

v=1 n 2αv/(2αv+Q0v)| 1/2. Comparing ε�n to εn, note that ε�n can be

substantially smaller than εn as long as the number of interactions between the predictors is small.
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if the true model is additive, for example, the ε�n is limited only by the number V of additive com-

ponents. Linero and Yang (2017) and Rockova and van der Pas (2017) independently show that the

BART posterior concentrates at the rate ε�n up-to logarithmic factors (assuming αv � (0, 1] for BART

and αv > 0 for SBART). This fact hinges crucially on the fact that BART decomposes additively;

hence, the BCART posterior is not thought to concentrate at the rate ε�n .

7. Discussion

In this paper we have reviewed Bayesian tree-based models, focusing on recent developments in com-

putation and modeling. We also outlined connections to more traditional machine learning algorithms

and reviewed some exciting results on posterior consistency which fill a previously long-standing gap

between theory and practice. Much work remains to be done; in particular, further improvements

in computation would make these methods more feasible in structured regression problems where

boosting algorithms currently dominate (Nielsen, 2016).

Also important to the dissemination of these methods is the development of software, and cur-

rently there are many options. The fits in this paper were obtained using the CRAN packages tgp for

treed Gaussian processes, dbarts for BART, and dynaTree for dynamic trees, and the non-CRAN

package SoftBart available at www.github.com/theodds/SoftBART. Other packages of note include

bartMachine and BART for fitting BART models.
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