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Abstract

Recently, there has been focus on determining the conditions under which the data processing
inequality for quantum relative entropy is satisfied with approximate equality. The solution of
the exact equality case is due to Petz, who showed that the quantum relative entropy between
two quantum states stays the same after the action of a quantum channel if and only if there
is a reversal channel that recovers the original states after the channel acts. Furthermore, this
reversal channel can be constructed explicitly and is now called the Petz recovery map. Recent
developments have shown that a variation of the Petz recovery map works well for recovery in
the case of approximate equality of the data processing inequality. Our main contribution here is
a proof that bosonic Gaussian states and channels possess a particular closure property, namely,
that the Petz recovery map associated to a bosonic Gaussian state σ and a bosonic Gaussian
channel N is itself a bosonic Gaussian channel. We furthermore give an explicit construction of
the Petz recovery map in this case, in terms of the mean vector and covariance matrix of the
state σ and the Gaussian specification of the channel N .

1 Introduction

1.1 Introduction to recoverability in quantum information

Strong subadditivity of quantum entropy is one of the cornerstones of quantum information theory,
on which many fundamental results rely. Defining the conditional mutual information of a tripartite
state ρABC as

I(A;B|C)ρ := S(AC)ρ + S(BC)ρ − S(ABC)ρ − S(C)ρ, (1.1)

where S(G)σ ≡ −Tr[σG log σG] is the quantum entropy of a state σG of a system G, strong sub-
additivity is equivalent to the non-negativity of conditional mutual information: I(A;B|C)ρ ≥ 0.
Initially conjectured in 1967 [RR67, IR68], it was subsequently proven six years later [LR73a,
LR73b]. Afterward, its equivalence to the data processing inequality for the quantum relative
entropy [Ume62] was realized [Uhl73, Lin74, Lin75, Rus02]. This latter inequality has the form

D(ρ‖σ) ≥ D(N (ρ)‖N (σ)), (1.2)
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being valid for all states ρ, σ and all quantum channels N (completely positive, trace-preserving
maps). Here, the quantum relative entropy is defined for quantum states ρ and σ as

D(ρ‖σ) ≡ Tr[ρ(log ρ− log σ)], (1.3)

whenever the support of ρ is contained in the support of σ, and it is set to +∞ otherwise [Ume62].
The interest in strong subadditivity has not fallen over time, and many different proofs for

it have been proposed in the last four decades (see, for instance, [NP05]). At the same time,
new improvements of the original inequality have recently been found. Extending methods orig-
inally proposed in [Eff09], an operator generalization of strong subadditivity was recently proven
in [Kim12].

A line of research which is of particular interest to us focuses on investigating the conditions
under which strong subadditivity, or more generally the data processing inequality for relative
entropy, is satisfied with equality or approximate equality. The solution of the exact equality case
dates back to the 1980s: in [Pet86, Pet88, Pet03], it was shown that the relative entropy between
two states stays the same after the action of a quantum channel if and only if there is a recovery
channel bringing back both images to the original states. Furthermore, this reversing channel
can be constructed explicitly and now takes the name Petz recovery map. Afterward, [MP04,
Mos05] proved a structure theorem giving a form for states and a channel saturating the data-
processing inequality for relative entropy, and, related to this development, the form of tripartite
states satisfying strong subadditivity with equality was determined in [HJPW03].

Characterising the structure of states for which strong subadditivity is nearly saturated requires
different techniques, and progress was not made until more recently. In 2011, a lower bound on con-
ditional mutual information in terms of one-way LOCC norms [MWW09] was proven in [BCY11],
the motivation for [BCY11] lying in the question of faithfulness of an entanglement measure called
squashed entanglement [CW04] (see also [Tuc99, Tuc02] for discussions related to squashed entan-
glement). Later on, a conjecture put forward in [WL12] proposed another operationally meaningful
remainder term for the relative entropy decrease induced by a quantum channel, given by the rel-
ative entropy between the state ρ and a “recovered version” of N (ρ). The authors of [WL12]
proposed the following conjecture as a refinement of (1.2):

D(ρ‖σ)
?
≥ D(N (ρ)‖N (σ)) +D(ρ‖(Rσ,N ◦ N )(ρ)) , (1.4)

whereRσ,N should be a quantum channel depending only on σ andN and such that (Rσ,N ◦N )(σ) =
σ. The authors of [WL12] proved (1.4) in the classical case, when the states ρ and σ commute
and the channel is classical as well, and they showed how the recovery channel in this case can
be taken as the Petz recovery map. This conjecture has now been proven in a number of special,
yet physically relevant cases as well [AWWW15, BDW16, ML16, LW17, AW17]. Unfortunately,
the authors of [WL12] showed that in the general quantum case, Rσ,N in (1.4) cannot be taken as
the Petz recovery map, and most recently, a counterexample to (1.4) has been reported in [FF17],
so that (1.4) cannot hold generally. For further details, see also [Kim13, LW14], and for related
conjectures, see [BSW15a, SBW15].

While the general form of the conjecture in (1.4) is not true [FF17], in [FR15], it was shown
that if the conditional mutual information I(A;B|C)ρ is small, then the state ρABC can be very
well approximated by one of its “reconstructed” versions RC→BC(ρAC). That is, the authors of
[FR15] proved the following inequality:

I(A;B|C)ρ ≥ − logF (ρABC ,RC→BC(ρAC)) , (1.5)
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where F denotes the quantum fidelity [Uhl76], defined as F (ω, τ) := ‖√ω√τ‖21 for quantum states
ω and τ , and RC→BC is a recovery channel taking an input system C to output systems BC.
Furthermore, the channel RC→BC can be taken as the Petz recovery map up to some unitary
rotations preceding and following its action, but note that the unitary rotations given in [FR15]
generally depend on the full state ρABC .

After the result of [FR15] appeared, much activity surrounding entropy inequalities and recovery
channels occurred. An alternative and simpler proof of the faithfulness of squashed entanglement
following the lines of [WL12] immediately appeared [LW14], while an alternative proof of (1.5) that
makes use of quantum state redistribution [DY08, YD09] appeared in [BHOS15]. In [SFR16], an
important particular case of (1.5) was proven; that is, it was shown that the recovery map in (1.5)
can be chosen to depend only on ρBC and to obey RC→BC(ρC) = ρBC . A different approach was
delivered in [Wil15], based on the methods of complex interpolation [BL76] and generalized Rényi
entropies [BSW15a, SBW15]. The main result of [Wil15] states that a lower bound on the decrease
in relative entropy induced by a quantum channel is given by the negative logarithm of the fidelity
between the first state and its recovered version, which is a step closer to the proof of the conjecture
in (1.4). However, the recovery term in [Wil15] is weaker than the right-hand side of (1.4), and the
map appearing in it lacks one of the two properties that it is required to obey. Another step toward
the proof of the conjecture in (1.4) was performed in [JRS+15], where a more general tool from
complex analysis [Hir52] and the methods of [BSW15a, SBW15, Wil15] were exploited in order to
prove a statement similar to (1.4), with the relative entropy on the right-hand side substituted by
a negative log-fidelity, but with the recovery map depending only on σ and N and furthermore
satisfying Rσ,N (N (σ)) = σ. Meanwhile, a different proof approach based on pinching was delivered
in [STH16], and then a systematic method for deriving matrix inequalities by forcing the operators
to commute via the application of suitably chosen “pinching maps” was proposed in [SBT17]. This
method as well as the complex interpolation techniques in [DW16] can be also applied to prove
multioperator trace inequalities [DW16, SBT17, Wil16], which generalise the celebrated Golden-
Thompson inequality Tr[eX+Y ] ≤ Tr[eXeY ] (X,Y hermitian) and the stronger statements given
in [Lie73]. The results of [SBT17] also marked further progress toward establishing the conjecture
in (1.4).

1.2 Introduction to quantum Gaussian states and channels

A major platform for the application of quantum information theory to physical information pro-
cessing is constituted by quantum optics [GK04] with a finite number of electromagnetic modes or
quantum harmonic oscillators. From the mathematical perspective, this framework can be thought
of as quantum mechanics applied to separable Hilbert spaces endowed with a finite number of
operators obeying canonical commutation relations [Ser17].

A typical free Hamiltonian of such a system is quadratic in the canonical operators, and in
fact, a special role within this context is played by ground or thermal states of such Hamiltonians,
commonly called Gaussian states. These states define a useful operational framework for several
reasons, stemming from both physics and mathematics [ARL14, Ser17]. From the physical point of
view, they are easily produced and manipulated in the laboratory and can be used to implement
effective quantum protocols [BR04, WHTH07]. Mathematically convenient properties that qualify
them as defining a legitimate framework include

1. the closure under so-called Gaussian unitary evolutions, that is, unitaries induced by piecewise
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time evolution via quadratic Hamiltonians, as well as more generally

2. the closure under Gaussian channels, which can be understood as the operation of adding an
ancillary system in a vacuum state, applying a global Gaussian unitary, and tracing out one
of the subsystems [CEGH08].

Recently, more advanced “closure” properties have been established, such as the optimality of
Gaussian states for optimising the output entropy of one-mode, phase-covariant quantum channels,
even when a fixed value of the input entropy is prescribed [GHGP15, PTG17b, PTG17a, PTG16].
These facts have the striking implication that it suffices to select coding strategies according to
Gaussian states in order to achieve optimal rates in several quantum communication tasks [GGL+04,
WHG12, GGPCH14, QW17, WQ16, PTG16].

1.3 Summary of main result

The main contribution of our paper is a proof that Gaussian states and channels possess another
closure property: the Petz recovery map associated to a Gaussian state σ and a Gaussian channel
N is itself a Gaussian channel (see Theorem 1). Additionally, we achieve this result through an
explicit construction of the action of such a Gaussian Petz channel, which lends itself to multiple
applications. For instance, with the formulas we provide, it is possible to construct a counterexam-
ple to the inequality in (1.4), in which all the states and channels involved are Gaussian and Rσ,N
is the Petz recovery map.1 This is similar to what happens in the finite-dimensional case. Another
application of our main result is a more explicit form for an entropy inequality from [JRS+15],
whenever the states and channel involved are Gaussian.

More broadly, our result has implications for a resource theory of non-Gaussianity [BS02a,
BS02b, BESP03, BvL05, Gou17], which is not currently complete but for which there has been
notable progress. In particular, in such a theory, one takes the free states and free operations to
be quantum Gaussian states and channels, respectively, and the expensive or resourceful ones to
be non-Gaussian. Such an approach is motivated by concerns from quantum computation using
continuous variables, in which universal quantum computation is enabled only when non-Gaussian
operations are available [BS02a, BS02b, BSBN02], or from quantum communication theory, in which
non-Gaussian operations are needed for quantum error correction [NFC09], for enhancements over
classical communication strategies [TG14, LJPN16], for discrimination of coherent states [TS08], or
for effective quantum repeaters in quantum key distribution [NGGL14]. One might expect the Petz
recovery channel to play a critical role in a resource theory of non-Gaussianity as it has in other
resource theories [AWWW15, ML16, LW17]. As such, our result shows that, in such a resource
theory, the Petz recovery channel is a free operation if the state σ is free and the forward channel N
is free as well. One can quantify non-Gaussianity of a quantum state ρ via the following information
measure, known as the relative entropy of non-Gaussianity [GPB08, GP10]:

DG(ρ) ≡ min
σ∈G

D(ρ‖σ) = D(ρ‖ρG), (1.6)

where G denotes the set of Gaussian states and ρG denotes a quantum Gaussian state with the
same mean vector and covariance matrix as ρ (that ρG is indeed the minimizer was proven in

1For convenience of the reader, a Mathematica file demonstrating this numerical counterexample is included with
our arXiv post [LDW17].
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[MM13]). The relative entropy of non-Gaussianity has not been established as an operationally
meaningful quantifier in the resource-theoretic sense, but one might think it to be the case in light
of the prominence of relative-entropy quantifiers in other resource theories [BaG15]. However, if it
eventually is, our work combined with the main result of [JRS+15] would be relevant, given that
these results establish the following interesting inequality, holding for an arbitrary quantum state
ρ and quantum Gaussian channel NG:

DG(ρ) ≥ DG(NG(ρ)) −
∫

R

dt p(t) log F (ρ, (Pt/2
ρG,NG

◦ NG)(ρ)), (1.7)

where p(t) := π
2 (cosh(πt)+1)−1 is a probability distribution parametrized by t ∈ R and Pt

ρG,NG
is a

rotated Petz channel [Wil15]. A corollary of our main result is that Pt
ρG,NG

is a quantum Gaussian
channel (Corollary 2). The inequality in (1.7) has an interpretation similar to that in previous
works: if the relative entropy of non-Gaussianity does not decrease too much under the action of a
free operation NG (so that DG(ρ) ≈ D(NG(ρ))), then one can approximately reverse the action of

NG by employing a free operation Pt/2
ρG,NG

chosen randomly according to p(t). Note that one can
also write the inequality above as follows:

D(ρ‖ρG) ≥ D(NG(ρ)‖NG(ρG))−
∫

R

dt p(t) log F (ρ, (Pt/2
ρG,NG

◦ NG)(ρ)). (1.8)

We should note that the inequalities stated above are not in contradiction with the well known
no-go theorem for Gaussian quantum error correction [NFC09]. The main result of [NFC09] is the
following statement: if one is trying to use a Gaussian quantum channel to distill entanglement
between spatially separated parties, then Gaussian encodings combined with Gaussian decodings
are not helpful for this task, whenever performance is measured with respect to an entanglement
measure called logarithmic negativity. In the inequalities in (1.7)–(1.8), the recovery channel is
indeed a quantum Gaussian channel, but the only statement that these inequalities make is that
the performance of the Gaussian Petz recovery channel for recovery is limited by the relative entropy
difference D(ρ‖ρG)−D(NG(ρ)‖NG(ρG)).

Finally, we suspect that our main result about Gaussian Petz channels might be useful in
contexts beyond the traditional ones in quantum information theory. Indeed, Petz recovery maps
have recently been employed in the context of high-energy physics, quantum many-body physics,
and topological order [SM16, ZS16, Kim16], and so our result here could be useful if the states
involved in those contexts are Gaussian states.

This paper is structured as follows. In Section 2, we review some background material and
establish notation. In particular, we review the Petz recovery map (Section 2.1) and bosonic
Gaussian states and channels (Section 2.2). In Section 3, we state our main result, Theorem 1, which
establishes that the Petz recovery map for a Gaussian state σ and a Gaussian channel N is itself a
Gaussian channel, and we give an explicit form for it in terms of the parameters that characterize σ
and N . Corollary 2 establishes a similar result for the rotated Petz maps from [Wil15]. Our proof
of Theorem 1 is divided into four parts, given in Sections 3.1–3.4. We conclude in Section 4 with
a summary and some open questions. We point the interested reader to Appendix A, in which we
give a method for computing products of exponentials of inhomogeneous quadratic Hamiltonians,
building upon [BB69]. Although results of [Pet86, Pet88, OP93] establish that the Petz map is
completely positive and trace-preserving, Appendix B offers a different argument that the Gaussian
Petz map is completely positive.
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2 Background and notation

2.1 Petz recovery map

As discussed in Section 1.1, the Petz recovery map is a notable object playing a crucial role in the
theory of quantum recoverability. It has been interpreted in [LS13] as a quantum generalization of
the Bayes rule from probability theory. Given a state σ and a channel N , the associated Petz map
Pσ,N is defined as a linear map satisfying the following [Pet86, Pet88, OP93]:

〈A,N †(B)〉σ = 〈P†
σ,N (A), B〉N (σ), ∀A,B, (2.1)

where A and B are bounded operators and the weighted Hilbert–Schmidt inner product is defined
for bounded operators τ1 and τ2 and a trace-class operator ξ as

〈τ1, τ2〉ξ ≡ Tr[τ †1ξ
1/2τ2ξ

1/2]. (2.2)

The map Pσ,N is unique if N (σ) is a faithful operator [Pet86, Pet88, OP93], and otherwise, it is
unique on the support of this operator. If σ acts on a finite-dimensional Hilbert space and N is a
quantum channel with finite-dimensional inputs and outputs, then the Petz map takes the following
explicit form [HJPW03]:

Pσ,N (ω) ≡ σ1/2N †
(

N (σ)−1/2ωN (σ)−1/2
)

σ1/2 , (2.3)

where N (σ)−1/2 is understood as a generalized inverse (i.e., inverse on the support of N (σ)).
Sometimes we omit the dependence of P on σ and N for the sake of simplicity. A rotated Petz
map Pt

σ,N for t ∈ R, a state σ, and a channel N is defined as [Wil15]

Pt
σ,N (ω) ≡ σitPσ,N (N (σ)−itωN (σ)it)σ−it, (2.4)

with σit = exp(it log σ) being understood as a unitary evolution according to the Hamiltonian log σ.
Even if it is not a priori apparent, it can be shown that the Petz map (2.3) as well as its rotated
versions (2.4) are guaranteed to be completely positive and trace-preserving (i.e., valid quantum
channels) under the above hypotheses.

2.2 Quantum Gaussian states and channels

Here we provide some background on bosonic quantum Gaussian states and channels (see [CEGH08,
ARL14, Ser17] for reviews). An n-mode quantum system is described by a density operator acting
on a tensor-product Hilbert space. To the jth Hilbert space in the tensor product, for j ∈ {1, . . . , n},
we let xj and pj denote the position- and momentum-quadrature operator, respectively. These
operators satisfy the canonical commutation relations: [xj , pk] = iδj,k, where we have set ~ = 1. It
is convenient to form a vector r = (x1, . . . , xn, p1, . . . , pn)

T from these operators, and then we can
rewrite the canonical commutation relations in matrix form as follows:

[r, rT ] = iΩ, (2.5)

where

Ω ≡
[

0 1
−1 0

]

⊗ In, (2.6)
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and In denotes the n × n identity matrix. We often make use of the identities ΩTΩ = I and
ΩT = −Ω.

The displacement (Weyl) operatorDz plays an important role in Gaussian quantum information,
defined for z ∈ R

2n as
Dz ≡ exp(izTΩr). (2.7)

For z1, z2 ∈ R
2n, the displacement operators satisfy the following composition rule:

Dz1Dz2 = Dz1+z2e
− i

2
zT
1
Ωz2 . (2.8)

It can be shown that displacement operators form a complete, orthogonal set of operators, and
their Hilbert–Schmidt orthogonality relation is as follows:

Tr[Dz1D−z2 ] = (2π)nδ(z1 − z2). (2.9)

Moreover, due to their completeness, these operators allow for a Fourier-Weyl expansion of a
quantum state, in terms of a characteristic function. In more detail, a quantum state ρ has a
characteristic function χρ(w), defined as

χρ(w) ≡ Tr[ρD−w], (2.10)

and the original state ρ can be written in terms of χρ(w) as

ρ =

∫

d2nw

(2π)n
χρ(w) Dw. (2.11)

The mean vector sρ ∈ R
2n and 2n× 2n covariance matrix Vρ of a quantum state ρ are defined as

sρ ≡ 〈r〉ρ = Tr[rρ], (2.12)

Vρ ≡ 〈{r − sρ, r
T − sTρ }〉ρ = Tr[{r − sρ, r

T − sTρ }ρ]. (2.13)

It follows from the above definition that the covariance matrix Vρ is symmetric.
A quantum Gaussian state is a ground or thermal state of a Hamiltonian that is quadratic

in the position- and momentum-quadrature operators. In particular, up to an irrelevant additive
constant, any such Hamiltonian has the form 1

2 (r − s)T H (r − s), where s ∈ R
2n and H is a 2n×2n

positive definite matrix that we refer to as the Hamiltonian matrix. Then a quantum Gaussian
state ρ takes the form

ρ = Z−1
ρ exp

(

−1

2
(r − sρ)

THρ(r − sρ)

)

, (2.14)

where Zρ ≡ Tr
[

exp
(

−1
2(r − sρ)

THρ(r − sρ)
)]

and one can show that 〈r〉ρ = sρ ∈ R
2n (i.e., sρ is the

mean vector of ρ). Defining

Vρ ≡ coth

(

iΩHρ

2

)

iΩ, (2.15)

one can also show that Vρ is the covariance matrix of ρ [Che05, Kru06, Hol11a, Hol11b, Hol12],

whose matrix elements satisfy V j,k
ρ = 〈{rj − sjρ, rk − skρ}〉ρ and the Heisenberg uncertainty relation

[SMD94]:
Vρ + iΩ ≥ 0. (2.16)
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A quantum Gaussian state is faithful (having full support) if Vρ + iΩ > 0.
A quantum Gaussian state ρ with mean vector sρ and covariance matrix Vρ has the following

Gaussian characteristic function:

χρ(w) = exp

(

−1

4
(Ωw)T VρΩw + i (Ωw)T sρ

)

, (2.17)

so that it can be written in the following way:

ρ =

∫

d2nw

(2π)n
exp

(

−1

4
(Ωw)T VρΩw + i (Ωw)T sρ

)

Dw. (2.18)

After a change of variables (w → Ωw), this representation becomes

ρ =

∫

d2nw

(2π)n
exp

(

−1

4
wTVρw − iwT sρ

)

DΩw. (2.19)

A quantum Gaussian channel is a completely positive, trace-preserving map that takes Gaus-
sian input states to Gaussian output states. A quantum Gaussian channel N that takes n-mode
Gaussian input states to m-mode Gaussian output states is specified by a 2m× 2n transformation
matrix X, a 2m × 2m positive semi-definite, additive noise matrix Y , and a displacement vector
δ ∈ R

2n. The action of such a channel on a generic state ρ with characteristic function χρ(w) is to
output a state N (ρ) having the following characteristic function:

χN (ρ)(w) = χρ(Ω
TXTΩw) exp

(

−1

4
(Ωw)T Y Ωw + i (Ωw)T δ

)

. (2.20)

Then the channel N leads to the following transformation of the covariance matrix V and mean
vector s of an input quantum Gaussian state:

N :

{

V 7−→ XV XT + Y
s 7−→ Xs+ δ

. (2.21)

The matricesX and Y should satisfy the following condition in order for the mapN to be completely
positive:

Y + iΩ ≥ iXΩXT . (2.22)

The adjoint of a quantum channel N is defined as the unique linear map satisfying the following
for all A and B:

〈A,N (B)〉 = 〈N †(A), B〉, (2.23)

where B is an arbitrary trace-class operator, A is an arbitrary bounded operator, and the Hilbert–
Schmidt inner product is defined for operators A1 and A2 as 〈A1, A2〉 ≡ Tr[A†

1A2]. The adjoint map
N † is completely positive and unital if N is completely positive and trace-preserving. The action of
the adjoint N † of a quantum Gaussian channel N defined by (2.21) is as follows [CEGH08, GLS16],
when acting on a displacement operator DΩz:

N †(DΩz) = DΩXT z exp

(

−1

4
zTY z + izT δ

)

. (2.24)

8



The action of the adjoint N † on a quantum Gaussian state with covariance matrix V and mean vec-
tor s is then to output a quantum Gaussian operator described by covariance matrixX−1 (V + Y )X−T

and mean vector X−1(s− δ) whenever X is invertible [GLS16, Appendix B]. We summarize these
transformation rules as follows:

N † :
{

V 7−→ X−1 (V + Y )X−T

s 7−→ X−1(s− δ)
. (2.25)

Typically one thinks of the channel N as acting in the Schrödinger picture, taking input states to
output states, and one thinks of the adjoint N † as acting in the Heisenberg picture, taking input
bounded operators to output bounded operators. So this is why we have specified the channel N in
terms of its action on characteristic functions, which describe states, and the adjoint N † in terms
of its action on displacement operators, a natural choice of bounded operators in our context here.

Often we find it useful to write
σ = D†

sσσ0Dsσ , (2.26)

where σ0 is a Gaussian state with the same covariance matrix as σ but with vanishing mean vector.
Analogously, the channel N in (2.20) admits the following decomposition:

N (·) = D†
δN0(·)Dδ , (2.27)

where N0 is a zero-displacement Gaussian channel, acting as in (2.21) but with δ = 0. Taking the
adjoint gives

N †(·) = N †
0

(

Dδ(·)D†
δ

)

. (2.28)

Applying N to σ yields
N (σ) = D†

Xs+δN0(σ0)DXs+δ, (2.29)

which follows from (2.21). We also make use of the following channel covariance relations:

N (D†
γ(·)Dγ) = D†

Xγ+δN0(·)DXγ+δ , (2.30)

N †(D†
γ(·)Dγ) = D†

X−1(γ−δ)
N †

0 (·)DX−1(γ−δ), (2.31)

which follow from (2.20), (2.21), (2.24), and (2.25). Note that (2.31) holds whenever X is invertible.
Finally, given a Gaussian state σ with mean vector sσ and covariance matrix Vσ, we can consider

a unitary rotation of the form σit = exp(it log σ) for t ∈ R. By using the representation in (2.14)
with the Hamiltonian matrix Hσ, we can write the unitary σit as

σit = exp

(

− i

2
(r − sσ)

T Hσt (r − sσ)

)

exp(−it logZσ) (2.32)

= D−sσ

[

exp

(

i

2
rT (−Hσt) r

)

exp(−it logZσ)

]

Dsσ , (2.33)

where we have used the fact that (r − sσ)
T Hσ (r − sσ) = D−sσr

THσrDsσ and the operator identity
B exp(A)B−1 = exp(BAB−1). The unitary σit is a Gaussian unitary because it is generated by a
Hamiltonian no more than quadratic in the position- and momentum-quadrature operators. Let
us define the symplectic transformation corresponding to the unitary exp

(

i
2r

T (−Hσt) r
)

as

Sσ,t ≡ exp(ΩHσt), (2.34)
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so that
σitrσ−it = Sσ,−t (r − sσ) + sσ, (2.35)

where we used that DsσrD−sσ = r + sσ. The above formula implies that

Vσitωσ−it = Sσ,tVωS
T
σ,t, (2.36)

sσitωσ−it = Sσ,t(sω − sσ) + sσ. (2.37)

3 Main result: Petz map as a quantum Gaussian channel

Our main result is the following theorem:

Theorem 1 Let σ be a quantum Gaussian state with mean vector sσ and covariance matrix Vσ,
and let N be a quantum Gaussian channel with its action on an input state as described in (2.21).
Suppose furthermore that N (σ) is a faithful quantum state. Then the Petz recovery map Pσ,N is a
quantum Gaussian channel with the following action:

Pσ,N :

{

V 7−→ XPV XT
P + YP

s 7−→ XP s+ δP
, (3.1)

where

XP ≡
√

I + (VσΩ)
−2VσX

T
√

I +
(

ΩVN (σ)

)−2
−1

V −1
N (σ), (3.2)

YP ≡ Vσ −XPVN (σ)X
T
P , (3.3)

δP ≡ sσ −XP (Xsσ + δ) , (3.4)

VN (σ) = XVσX
T + Y. (3.5)

That is, Pσ,N in (3.1) is the unique linear map satisfying (2.1) for σ and N as described above.

It may not be obvious a priori, but the Gaussian map defined by (3.2) and (3.3) is indeed a
valid Gaussian channel; i.e., it meets the requirement given by (2.22). An explicit verification of
this fact is provided in Appendix B. The following corollary is a direct consequence of Theorem 1
and the discussion surrounding (2.32)–(2.35):

Corollary 2 For σ and N as given in Theorem 1, the rotated Petz map Pt
σ,N (defined in (2.4)) is

also a quantum Gaussian channel with the same action as the Petz recovery channel Pσ,N but with
the substitutions

XP → Xt
P ≡ Sσ,tXPSN (σ),−t, (3.6)

YP → Y t
P ≡ Sσ,tYPS

T
σ,t, (3.7)

δP → δtP ≡ sσ −Xt
P (Xsσ + δ) . (3.8)

That is, Pt
σ,N is a quantum Gaussian channel with the following action:

Pt
σ,N :

{

V 7−→ Xt
PV (Xt

P )
T + Y t

P

s 7−→ Xt
P s+ δtP

. (3.9)
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Remark 3 The following entropy inequality was proven to hold whenever ρ and σ are density
operators and N is a quantum channel [JRS+15]:

D(ρ‖σ) ≥ D(N (ρ)‖N (σ)) −
∫

R

dt p(t) log F (ρ, (Pt/2
σ,N ◦ N )(ρ)), (3.10)

where p(t) := π
2 (cosh(πt)+1)−1 is a probability distribution parametrized by t ∈ R. In the case that ρ

and σ are quantum Gaussian states and N is a quantum Gaussian channel, Corollary 2 allows us to

conclude that Pt/2
σ,N is a quantum Gaussian channel for all t ∈ R. Furthermore, there are explicit,

compact formulas for the relative entropy [SW01, Che05, Kru06, PLOB16] and fidelity [PS00,
WKO00, MM12, BBP15] of two quantum Gaussian states. In both cases, the formulas are given
exclusively in terms of the mean vectors and covariance matrices of the involved states. Thus,
when the states and channel involved are all Gaussian, the above inequality can be rewritten in a
simpler form involving only finite-dimensional matrices instead of trace-class operators acting on
infinite-dimensional Hilbert spaces.

The forthcoming subsections establish a proof of Theorem 1. Before delving into our proof, we
highlight our proof strategy, which proceeds according to the following steps:

1. Even though the explicit form of the Petz map in (2.3) is not generally valid in the infinite-
dimensional case because the inverse of a density operator may be unbounded, we work with
it anyway, as an ansatz (call this Ansatz 1). Under Ansatz 1, we first show that it suffices
to consider the case when the state σ is a zero-mean Gaussian state and the channel N does
not apply any displacement to the mean vector of its input, so that sσ = 0 and δ = 0, with δ
defined in (2.20) and (2.21).

2. Under the same Ansatz 1, we arrive at the hypothesis that (3.1) gives the explicit form for
the action of the Petz map on a Gaussian input state. Recall from (2.3) that the Petz map
is a serial concatenation of three completely positive maps:

(·)→ N (σ)−1/2(·)N (σ)−1/2, (3.11)

(·)→ N †(·), (3.12)

(·)→ σ1/2(·)σ1/2. (3.13)

To handle the first completely positive map in (3.11), we proceed with an additional ansatz
(Ansatz 2) that taking the inverse of a Gaussian state corresponds to negating its covariance
matrix. This is motivated by the representation in (2.14), in which inverting the density
operator has the effect of negating the Hamiltonian matrix, which in turn has the effect of
negating the covariance matrix due to the fact that arcoth is an odd function. Furthermore,
results of [PS00] allow us to conclude that sandwiching a Gaussian state by the square root
of another Gaussian state is a Gaussian map resulting in another unnormalized, Gaussian
state. To handle the second map in (3.12), we can directly apply a result given in [GLS16,
Appendix B], which gives an explicit form for the action of the adjoint of a Gaussian channel
on a Gaussian state (see also the review in (2.25)). We also work with a final Ansatz 3,
which is the assumption that the matrix X in (2.21) is invertible. Later, we show how this
assumption is not necessary. To handle the third completely positive map in (3.13), we again
apply the aforementioned result about sandwiching a Gaussian state by the square root of
another.
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3. After arriving at an explicit form for the Petz map by using Ansatzes 1–3, we verify that this
explicit form satisfies the equations in (2.1) whenever the operators A and B are Hilbert–
Schmidt operators.

4. We finally employ a limiting argument to conclude that if (2.1) is satisfied when A and B
are Hilbert–Schmidt operators, then the equations are satisfied when A and B are arbitrary
bounded operators. By a result of [Pet86, Pet88, OP93], we can finally conclude that the
Gaussian channel given in Theorem 1 is the unique quantum channel satisfying (2.1). This
step then concludes our proof of Theorem 1.

In the subsections that follow, we give detailed proofs for each step above.

3.1 Step 1: Sufficiency of focusing on zero-mean Gaussian states and zero-

displacement Gaussian channels

As mentioned above, we employ Ansatz 1 in this first step, in which we work with the explicit
form of the Petz map in (2.3), in spite of the fact that the inverse of a Gaussian density operator
is unbounded. Let σ be a quantum Gaussian state with mean vector sσ and covariance matrix Vσ,
and let N be a quantum Gaussian channel with the action on an input state as described in (2.21).

In this first step, we show how it suffices to consider the case sσ = δ = 0 in (2.3). To see this,
consider the action of the Petz map Pσ,N on an arbitrary input state ω:

Pσ,N (ω) = σ1/2N †
(

N (σ)−1/2ωN (σ)−1/2
)

σ1/2 (3.14)

=
(

D†
sσσ

1/2
0 Dsσ

)

N †
0

[

DδD
†
Xsσ+δN0(σ0)

−1/2DXsσ+δ ωD†
Xsσ+δN0(σ0)

−1/2DXsσ+δD
†
δ

]

×
(

D†
sσσ

1/2
0 Dsσ

)

(3.15)

=
(

D†
sσσ

1/2
0 Dsσ

)

N †
0

[

D†
Xsσ
N0(σ0)

−1/2DXsσ+δ ωD†
Xsσ+δN0(σ0)

−1/2DXsσ

]

×
(

D†
sσσ

1/2
0 Dsσ

)

(3.16)

= D†
sσσ

1/2
0 DsσD

†
X−1(Xsσ)

N †
0

[

N0(σ0)
−1/2DXsσ+δ ωD†

Xsσ+δN0(σ0)
−1/2

]

×DX−1(Xsσ)D
†
sσσ

1/2
0 Dsσ (3.17)

= D†
sσσ

1/2
0 N

†
0

[

N0(σ0)
−1/2DXsσ+δ ωD†

Xsσ+δN0(σ0)
−1/2

]

σ
1/2
0 Dsσ (3.18)

= D†
sσ Pσ0,N0

(

DXsσ+δ ωD†
Xsσ+δ

)

Dsσ . (3.19)

For the first equality, we use the definition of the Petz map and Ansatz 1. The second equality
follows from (2.26)–(2.29) and the fact that f(UAU †) = Uf(A)U † for a function f , a unitary

operator U , and a Hermitian operator A. The third equality follows because DδD
†
Xsσ+δ = D†

Xsσ
eiφ

for φ a phase. The fourth equality follows from the adjoint channel covariance relation in (2.31)

and Ansatz 3. The fifth equality follows because DsσD
†
X−1(Xsσ)

= eiϕI for some phase ϕ. The final

equality follows by recognizing the form of the Petz map Pσ0,N0
, corresponding to the zero-mean

state σ0 and the zero-displacement channel N0.
The above reasoning suggests that we should focus on determining an explicit form for Pσ0,N0

(ω).
That is, the above reasoning suggests that an arbitrary Petz map Pσ,N can be realized as a serial
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concatenation of the displacement DXsσ+δ, the Petz map Pσ0,N0
, and the displacement D†

sσ . After
we give an explicit form for Pσ0,N0

as a quantum Gaussian channel with matrices XP and YP , it
should become clear why the displacement δP in the Petz map Pσ,N has the form in (3.4).

3.2 Step 2: Deducing a hypothesis for an explicit form for the Petz map, by

considering Gaussian input states

In this step, we continue working with Ansatzes 1-3, with our main objective being to arrive at a
hypothesis for the action of the Petz recovery map Pσ0,N0

on the mean vector and covariance matrix
of an input Gaussian state. Here we consider the serial concatenation of the three completely posi-
tive maps in (3.11)–(3.13). We begin by considering the action of the last completely positive map
on a zero-mean Gaussian input state ω0. To this end, recall from [PS00] and [BBP15, Appendix C]
that if ω0 and σ0 are zero-mean Gaussian states, then

√
σ0ω0

√
σ0 is an (unnormalized) Gaussian

operator with zero mean vector and covariance matrix given by

V√
σ0ω0

√
σ0

= Vσ0
−
(

V√
σ0
− Vσ0

)

(Vω0
+ Vσ0

)−1
(

V√
σ0
− Vσ0

)

. (3.20)

Applying a formula from [Hol72, Lemma 2] and [PS00, Section III], we find that

V√
σ0

=

(
√

I + (Vσ0
Ω)−2 + I

)

Vσ0
, (3.21)

which is a symmetric matrix because Vσ0
is. Indeed, consider that

V T√
σ0

=

[(
√

I + (Vσ0
Ω)−2 + I

)

Vσ0

]T

= Vσ0

(
√

I + (ΩVσ0
)−2 + I

)

(3.22)

= Ω−1ΩVσ0

(
√

I + (ΩVσ0
)−2 + I

)

= Ω−1

(
√

I + (ΩVσ0
)−2 + I

)

ΩVσ0
(3.23)

=

(

√

Ω−1
[

I + (ΩVσ0
)−2
]

Ω+ I

)

Vσ0
=

(

√

[

I + (Ω−1ΩVσ0
Ω)−2

]

+ I

)

Vσ0
(3.24)

=

(
√

I + (Vσ0
Ω)−2 + I

)

Vσ0
= V√

σ0
. (3.25)

The equality in (3.21) implies that

V√
σ0
− Vσ0

=

√

I + (Vσ0
Ω)−2Vσ0

, (3.26)

and in turn, after substituting into (3.20), that

V√
σ0ω0

√
σ0

= Vσ0
−
√

I + (Vσ0
Ω)−2Vσ0

(Vω0
+ Vσ0

)−1 Vσ0

√

I + (ΩVσ0
)−2. (3.27)

Thus, (3.27) establishes the action of the completely positive map (·)→ √σ0(·)
√
σ0 on an arbitrary

zero-mean Gaussian state ω0.
From this discussion we already start seeing that the Petz map constructed out of a Gaussian

state σ and a Gaussian channel N should send normalized Gaussian states to normalized Gaussian
states, because (i) conjugation by the square root of a Gaussian state (or the inverse square root of
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a Gaussian state as we will see) preserves the Gaussian form; (ii) the adjoint of a Gaussian channel
is still Gaussian; and (iii) the Petz map is a priori known to be trace-preserving whenever N (σ) is
a faithful state [Pet86, Pet88, OP93]. Then, [PMGH15, Theorem III.1] ensures that P must act as
in (2.21), for some XP , YP , and δP to be determined.

With this preliminary identity in hand, we are ready to determine a hypothesis for the explicit
action of Pσ0,N0

. For the sake of simplicity, we consider the input Gaussian state to have vanishing
first moments. In any case, since we are working to deduce a hypothesis for an explicit form for
the Petz map, this is by no means a loss of generality. By applying (3.27) and Ansatz 2 (that the
following density operator transformation ω → ω−1 induces the transformation Vω → −Vω on the
level of covariance matrices), we can conclude that the completely positive map in (3.11) has the
following effect on covariance matrices:

V√N0(σ0)
−1

ω0

√
N0(σ0)

−1

= −VN (σ) −
√

I +
(

VN (σ)Ω
)−2

VN (σ)

(

Vω − VN (σ)

)−1
VN (σ)

√

I +
(

ΩVN (σ)

)−2
. (3.28)

In the above, we have also used the identities VN0(σ0) = VN (σ) and Vω0
= Vω. So now we consider

further concatenating with the completely positive map in (3.12), by applying (2.25) and Ansatz 3
(that X is invertible):

VN †
0
(
√

N0(σ0)
−1

ω0

√
N0(σ0)

−1

)
=

X−1

[

−VN (σ) −
√

I +
(

VN (σ)Ω
)−2

VN (σ)

(

Vω − VN (σ)

)−1
VN (σ)

√

I +
(

ΩVN (σ)

)−2
+ Y

]

X−T .

(3.29)

But consider that VN (σ) = XVσX
T + Y , so that (3.29) simplifies as follows:

VN †
0
(
√

N0(σ0)
−1

ω0

√
N0(σ0)

−1

)

= X−1

[

−
(

XVσX
T + Y

)

−
√

I +
(

VN (σ)Ω
)−2

VN (σ)

(

Vω − VN (σ)

)−1
VN (σ)

√

I +
(

ΩVN (σ)

)−2
+ Y

]

X−T

= X−1

[

−XVσX
T −

√

I +
(

VN (σ)Ω
)−2

VN (σ)

(

Vω − VN (σ)

)−1
VN (σ)

√

I +
(

ΩVN (σ)

)−2
]

X−T

(3.30)

= −Vσ −X−1
√

I +
(

VN (σ)Ω
)−2

VN (σ)

(

Vω − VN (σ)

)−1
VN (σ)

√

I +
(

ΩVN (σ)

)−2
X−T . (3.31)

So then we can finally consider the serial concatenation of the three completely positive maps
in (3.11)–(3.13):

V√
σ0N †

0
(
√

N0(σ0)
−1

ω0

√
N0(σ0)

−1

)
√
σ0

= Vσ −
√

I + (VσΩ)
−2Vσ

×
(

−Vσ −X−1
√

I +
(

VN (σ)Ω
)−2

VN (σ)

(

Vω − VN (σ)

)−1
VN (σ)

√

I +
(

ΩVN (σ)

)−2
X−T + Vσ

)−1

× Vσ

√

I + (ΩVσ)
−2 (3.32)
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= Vσ −
√

I + (VσΩ)
−2Vσ

×
(

−X−1
√

I +
(

VN (σ)Ω
)−2

VN (σ)

(

Vω − VN (σ)

)−1
VN (σ)

√

I +
(

ΩVN (σ)

)−2
X−T

)−1

× Vσ

√

I + (ΩVσ)
−2 (3.33)

= Vσ +

√

I + (VσΩ)
−2VσX

T
√

I +
(

ΩVN (σ)

)−2
−1

V −1
N (σ)

(

Vω − VN (σ)

)

× V −1
N (σ)

√

I +
(

VN (σ)Ω
)−2

−1

XVσ

√

I + (VσΩ)
−2. (3.34)

An inspection of (3.34) above suggests that the Petz map Pσ0,N0
is a quantum Gaussian channel

with the following action on an input covariance matrix Vω:

VPσ0,N0
(ω0) = XPVωX

T
P + YP , (3.35)

where

XP ≡
√

I + (VσΩ)
−2VσX

T
√

I +
(

ΩVN (σ)

)−2
−1

V −1
N (σ), (3.36)

YP ≡ Vσ −XPVN (σ)X
T
P . (3.37)

Combining with the development in Section 3.1, the results in (3.35), (3.19) and [PMGH15, Theo-
rem III.1] imply that in general

Pσ,N :

{

V 7−→ XPV XT
P + YP

s 7−→ XP s+ δP
, (3.38)

where
δP ≡ sσ −XP (Xsσ + δ) , (3.39)

and δ is the vector appearing in (2.21); it follows because

Pσ,N (ω) = D†
sσPσ0,N0

(

DXsσ+δωD
†
Xsσ+δ

)

Dsσ , (3.40)

which implies that
sPσ,N (ω) = XP (sω −Xsσ − δ) + sσ. (3.41)

So by using Ansatzes 1-3, we have arrived at our hypothesis (3.38) for the Gaussian form of the Petz
map Pσ,N . In the next two sections, we give a detailed proof that the Gaussian channel specified
in (3.38) is indeed equal to the Petz map Pσ,N .

3.3 Step 3: The Gaussian Petz map satisfies the Petz equations for all Hilbert–

Schmidt operators

In this section, we prove that the hypothesis (3.38) for the Petz map satisfies the equations in (2.1)
for all Hilbert–Schmidt operators. Recall that an operator T is Hilbert–Schmidt if

‖T‖2 ≡
√

Tr[T †T ] <∞. (3.42)
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It can be shown that the Hilbert-Schmidt operators defined on a given Hilbert space form a Hilbert
space themselves, once equipped with the product 〈T1, T2〉 ≡ Tr[T †

1T2] [Hol11c]. Let T act on a
tensor product of n separable Hilbert spaces (i.e., n modes). Its characteristic function is defined
by

χT (w) = Tr[TD−w], (3.43)

where w ∈ R
2n. Thus, we can write T in terms of its characteristic function as

T =

∫

d2nw

(2π)n
χT (w) Dw. (3.44)

In fact, the above one-to-one mapping between operators and characteristic functions can be viewed
as an isometry between two a priori very different Hilbert spaces, namely that formed by all Hilbert-
Schmidt operators on n modes, and that formed by all complex-valued, square-integrable functions
R2n → C, customarily denoted by L2

(

R2n
)

[Hol11c, Theorem 5.3.3].
Suppose that T1 and T2 are Hilbert–Schmidt operators. In order to demonstrate that our

hypothesis (3.38) for Pσ,N is in fact correct, we first show that the following equation is satisfied
for this choice and for all Hilbert–Schmidt T1 and T2:

〈T2,N †(T1)〉σ = 〈P†
σ,N (T2), T1〉N (σ). (3.45)

Using definitions and an expansion of T1 and T2 in terms of their characteristic functions χT1
(w1)

and χT2
(w2), respectively, where w1, w2 ∈ R

2n, we find that (3.45) is equivalent to

∫ ∫

d2nw1 d2nw2

(2π)2n
χ∗
T2
(w2)χT1

(w1)Tr[σ
1/2D−w2

σ1/2N †(Dw1
)]

=

∫ ∫

d2nw1 d2nw2

(2π)2n
χ∗
T2
(w2)χT1

(w1)Tr[P†
σ,N (D−w2

)N (σ)1/2Dw1
N (σ)1/2]. (3.46)

Thus, if we show that the following holds for all w1, w2 ∈ R
2n

Tr[σ1/2D−w2
σ1/2N †(Dw1

)] = Tr[P†
σ,N (D−w2

)N (σ)1/2Dw1
N (σ)1/2], (3.47)

then the statement in (3.45) is shown for all Hilbert–Schmidt operators. So we proceed with
proving (3.47).

We first show that it suffices to verify (3.47) when σ is a zero-mean Gaussian state and N is a
zero-displacement Gaussian channel. Here we make use of (2.26), (2.27), and (2.29). Consider that

σ1/2 = D†
sσσ

1/2
0 Dsσ , (3.48)

N (σ) = D†
Xsσ+δN0(σ0)DXsσ+δ, (3.49)

N (·) = D†
δN0(·)Dδ , (3.50)

Pσ,N (·) = D†
δP
Pσ0,N0

(·)DδP , (3.51)
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where δP is defined as in (3.4). We can then rewrite the left-hand side of (3.47) as

Tr[σ1/2D−w2
σ1/2N †(Dw1

)]

= Tr[N (σ1/2D−w2
σ1/2)Dw1

] (3.52)

= Tr[D†
δN0(D

†
sσσ

1/2
0 DsσD−w2

D†
sσσ

1/2
0 Dsσ)DδDw1

] (3.53)

= Tr[D†
Xsσ+δN0(σ

1/2
0 DsσD−w2

D†
sσσ

1/2
0 )DXsσ+δDw1

] (3.54)

= Tr[N0(σ
1/2
0 DsσD−w2

D†
sσσ

1/2
0 )DXsσ+δDw1

D†
Xsσ+δ] (3.55)

= exp(−i (Xsσ + δ)T Ωw1 + isTσΩw2)Tr[N0(σ
1/2
0 D−w2

σ
1/2
0 )Dw1

] (3.56)

= exp(−i (Xsσ + δ)T Ωw1 + isTσΩw2)Tr[σ
1/2
0 D−w2

σ
1/2
0 N

†
0 (Dw1

)]. (3.57)

We can rewrite the right-hand side of (3.47) as

Tr[P†
σ,N (D−w2

)N (σ)1/2Dw1
N (σ)1/2]

= Tr[D−w2
Pσ,N (N (σ)1/2Dw1

N (σ)1/2)] (3.58)

= Tr[D−w2
D†

δP
Pσ0,N0

(D†
Xsσ+δN0(σ0)

1/2DXsσ+δDw1
D†

Xsσ+δN0(σ0)
1/2DXsσ+δ)DδP ] (3.59)

= Tr[D−w2
D†

δP
D†

XP [Xsσ+δ]Pσ0,N0
(N0(σ0)

1/2DXsσ+δDw1
D†

Xsσ+δN0(σ0)
1/2)DXP [Xsσ+δ]DδP ].

(3.60)

Considering that
DXP [Xsσ+δ]DδP = DδP+XP [Xsσ+δ]e

iφ = Dsσe
iφ, (3.61)

which follows from (3.4) and (2.8), we find that (3.60) is equal to

Tr[D−w2
D†

sσPσ0,N0
(N0(σ0)

1/2DXsσ+δDw1
D†

Xsσ+δN0(σ0)
1/2)Dsσ ]

= Tr[DsσD−w2
D†

sσPσ0,N0
(N0(σ0)

1/2DXsσ+δDw1
D†

Xsσ+δN0(σ0)
1/2)] (3.62)

= exp(−i (Xsσ + δ)T Ωw1 + isTσΩw2)Tr[D−w2
Pσ0,N0

(N0(σ0)
1/2Dw1

N0(σ0)
1/2)] (3.63)

= exp(−i (Xsσ + δ)T Ωw1 + isTσΩw2)Tr[P†
σ0,N0

(D−w2
)N0(σ0)

1/2Dw1
N0(σ0)

1/2]. (3.64)

Observe that the phases in (3.57) and (3.64) are equal. Thus, if the goal is to show the equality
in (3.47), then our above development proves that it suffices to establish the following equality:

Tr[σ
1/2
0 D−w2

σ
1/2
0 N †

0 (Dw1
)] = Tr[P†

σ0,N0
(D−w2

)N0(σ0)
1/2Dw1

N0(σ0)
1/2]. (3.65)

So now we focus on establishing (3.65).
To begin with, consider from (2.24) that

N †
0 (Dw1

) = DΩXTΩTw1
exp

(

−1

4
(ΩTw1)

TY ΩTw1

)

. (3.66)

Thus, the left-hand side of (3.65) reduces to

Tr[σ
1/2
0 D−w2

σ
1/2
0 DΩXTΩTw1

] exp

(

−1

4
(ΩTw1)

TY ΩTw1

)

. (3.67)
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Similarly, from (2.24) and (3.38), we have that

P†
σ0,N0

(D−w2
) = D−ΩXT

P
ΩTw2

exp

(

−1

4
(ΩTw2)

TYPΩ
Tw2

)

, (3.68)

so that the right-hand side of (3.65) reduces to

Tr[D−ΩXT
P
ΩTw2

N0(σ0)
1/2Dw1

N0(σ0)
1/2] exp

(

−1

4
(ΩTw2)

TYPΩ
Tw2

)

. (3.69)

So we should show the equality of (3.67) and (3.69), in order to establish the equality in (3.65).
To this end, Lemma 5 below is helpful for us. Invoking it, we find that the left-most expression

in (3.67) reduces as

Tr[σ
1/2
0 D−w2

σ
1/2
0 DΩXTΩTw1

]

= exp

(

− 1

4

(

ΩXTΩTw1

)T
ΩTVσΩΩX

TΩTw1 −
1

4
wT
2 Ω

TVσΩw2

+
1

2

(

ΩXTΩTw1

)T
ΩT
√

I + (VσΩ)−2VσΩw2

)

(3.70)

= exp

(

−1

4

(

ΩTw1

)T
XVσX

TΩTw1 −
1

4
wT
2 Ω

TVσΩw2 −
1

2

(

ΩTw1

)T
X
√

I + (VσΩ)−2VσΩw2

)

.

(3.71)

So this implies that (3.67) is equal to

exp

(

− 1

4

(

ΩTw1

)T
XVσX

TΩTw1 −
1

4
wT
2 Ω

TVσΩw2

− 1

2

(

ΩTw1

)T
X
√

I + (VσΩ)−2VσΩw2 −
1

4
(ΩTw1)

TY ΩTw1

)

= exp

(

−1

4

(

ΩTw1

)T
VN (σ)Ω

Tw1 −
1

4
wT
2 Ω

TVσΩw2 −
1

2

(

ΩTw1

)T
X
√

I + (VσΩ)−2VσΩw2

)

.

(3.72)

Invoking Lemma 5 again, we find that the left-most expression in (3.69) reduces as

Tr[D−ΩXT
P
ΩTw2

N0(σ0)
1/2Dw1

N0(σ0)
1/2]

= exp

(

− 1

4
wT
1 Ω

TVN (σ)Ωw1 −
1

4

(

ΩXT
PΩ

Tw2

)T
ΩTVN (σ)ΩΩX

T
PΩ

Tw2

+
1

2
wT
1 Ω

T
√

I + (VN (σ)Ω)−2VN (σ)ΩΩX
T
PΩ

Tw2

)

(3.73)

= exp

(

− 1

4
wT
1 Ω

TVN (σ)Ωw1 −
1

4

(

ΩTw2

)T
XPVN (σ)X

T
PΩ

Tw2

− 1

2
wT
1 Ω

T
√

I + (VN (σ)Ω)−2VN (σ)X
T
PΩ

Tw2

)

. (3.74)
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So this implies that (3.69) is equal to

exp

(

− 1

4
wT
1 Ω

TVN (σ)Ωw1 −
1

4

(

ΩTw2

)T
XPVN (σ)X

T
PΩ

Tw2

− 1

2
wT
1 Ω

T
√

I + (VN (σ)Ω)−2VN (σ)X
T
PΩ

Tw2 −
1

4
(ΩTw2)

TYPΩ
Tw2

)

= exp

(

−1

4
wT
1 Ω

TVN (σ)Ωw1 −
1

4

(

ΩTw2

)T
VσΩ

Tw2 −
1

2
wT
1 Ω

T
√

I + (VN (σ)Ω)−2VN (σ)X
T
PΩ

Tw2

)

.

(3.75)

Consider that
√

I + (VN (σ)Ω)−2VN (σ)X
T
P

=
√

I + (VN (σ)Ω)−2VN (σ)

(
√

I + (VσΩ)
−2VσX

T
√

I +
(

ΩVN (σ)

)−2
−1

V −1
N (σ)

)T

(3.76)

=
√

I + (VN (σ)Ω)−2VN (σ)V
−1
N (σ)

√

I +
(

VN (σ)Ω
)−2

−1

X

√

I + (VσΩ)
−2Vσ (3.77)

= X

√

I + (VσΩ)
−2Vσ, (3.78)

which finally implies that (3.75) is equal to

exp

(

−1

4
wT
1 Ω

TVN (σ)Ωw1 −
1

4

(

ΩTw2

)T
VσΩ

Tw2 −
1

2
wT
1 Ω

TX

√

I + (VσΩ)
−2VσΩ

Tw2

)

= exp

(

−1

4

(

ΩTw
)T

VN (σ)Ω
Tw1 −

1

4
wT
2 Ω

TVσΩw2 −
1

2

(

ΩTw1

)T
X

√

I + (VσΩ)
−2VσΩw2

)

. (3.79)

Comparing (3.79) with (3.72), we see that we have shown the equality in (3.65), which concludes
the proof once Lemma 5 is established.

Before proving Lemma 5, we recall the following result. Although an analogous formula was
already established by [Hol72, Lemma 2] and [PS00, Section III], we provide a self-contained proof
for the sake of completeness.

Lemma 4 (Square root of Gaussian states [Hol72, PS00]) Let σ0 be a Gaussian state with
vanishing first moments, i.e., sσ0

= 0. Then its uniquely defined square root
√
σ0 is a trace class

operator given by
√
σ0 =

(

detV√
σ0

)1/4
∫

d2nw

(2π)n
e−

1

4
wTV√

σ0
wDΩw, (3.80)

where V√
σ0

is given by (3.21).

Proof. Call K the right hand side of (3.80). Since the square root is uniquely defined, it suffices
to show that K2 = σ0. In the following we will use the shorthand U ≡ V√

σ0
> 0, where the strict

positivity can be readily verified using (3.21), and is also a consequence of U being a legitimate
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quantum covariance matrix. We obtain

K2 =

(

(detU)1/4
∫

d2nw

(2π)n
e−

1

4
wTUwDΩw

)2

(3.81)

= (detU)1/2
∫

d2nw d2nz

(2π)2n
e−

1

4
wTUw− 1

4
zTUzDΩwDΩz (3.82)

= (detU)1/2
∫

d2nw d2nz

(2π)2n
e−

1

4
wTUw− 1

4
zTUz− i

2
wTΩzDΩ(w+z). (3.83)

Let us introduce the new variables x ≡ w + z and y ≡ w−z
2 , in terms of which we obtain

K2 = (detU)1/2
∫

d2nx d2ny

(2π)2n
e−

1

8
xTUx− 1

2
(y+ i

2
U−1Ωx)

T
U(y+ i

2
U−1Ωx)− 1

8
xTΩTU−1ΩxDΩx (3.84)

= (detU)1/2
∫

d2nx

(2π)n
e−

1

8
xT (U+ΩTU−1Ω)x

(
∫

d2ny

(2π)n
e−

1

2
(y+ i

2
U−1Ωx)

T
U(y+ i

2
U−1Ωx)

)

DΩx (3.85)

= (detU)1/2
∫

d2nx

(2π)n
e−

1

4
xTV x

(
∫

d2nỹ

(2π)n
e−

1

2
ỹTUỹ

)

DΩx (3.86)

=

∫

d2nx

(2π)n
e−

1

4
xTV xDΩx (3.87)

= σ0, (3.88)

where we defined the shifted variable ỹ ≡ y + i
2U

−1Ωx to perform the internal Gaussian integral
and in the last step we appealed to the representation (2.19). Moreover, in the above calculation
we observed that

ΩTU−1Ω = ΩU−1ΩT = (UΩ)−1 Ω (3.89)

=
(

√

I + (VσΩ)−2VσΩ+ VσΩ
)−1

Ω (3.90)

=
(

√

I + (VσΩ)−2VσΩ− VσΩ
)

Ω (3.91)

= Vσ −
√

I + (VσΩ)−2Vσ (3.92)

and hence
U +ΩTU−1Ω = 2Vσ . (3.93)

This concludes the proof of Lemma 4.

Lemma 5 Let σ0 be a Gaussian state with vanishing first moments sσ0
= 0. Then for all x, y ∈ R2n

we have

χ√
σ0Dx

√
σ0
(y) = Tr [D−y

√
σ0Dx

√
σ0] (3.94)

= exp

(

−1

4
xTΩTVσΩx−

1

4
yTΩTVσΩy +

1

2
xTΩT

√

I + (VσΩ)−2VσΩy

)

. (3.95)

Proof. To perform the computation, we just need to employ: (i) the representation (3.80) for
the square root of a Gaussian state with zero mean, (ii) the composition identity (2.8), (iii) the
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orthogonality relation (2.9); and (iv) the standard formula for a Gaussian integral, i.e.

∫

d2nz

(2π)n
e−

1

2
zTUz+ 1

2
aTUz =

e
1

8
aTUa

√
detU

, (3.96)

valid for U > 0. Defining again U ≡ V√
σ0
, we obtain

χ√
σ0Dx

√
σ0
(y) = Tr [D−y

√
σ0Dx

√
σ0] (3.97)

= (detU)1/2
∫

d2nw d2nz

(2π)2n
exp

(

−1

4
wTUw − 1

4
zTUz

)

Tr [D−yDΩwDxDΩz] (3.98)

= (detU)1/2
∫

d2nw d2nz

(2π)2n
exp

(

−1

4
wTUw − 1

4
zTUz +

i

2
xT z − i

2
yTw

)

× Tr [DΩw−yDΩz+x] (3.99)

= (detU)1/2
∫

d2nw d2nz

(2π)2n
exp

(

−1

4
wTUw − 1

4
zTUz +

i

2
xT z − i

2
yTw

)

× (2π)nδ (Ωw − y +Ωz + x) (3.100)

= (detU)1/2
∫

d2nw d2nz

(2π)2n
exp

(

−1

4
wTUw − 1

4
zTUz +

i

2
xT z − i

2
yTw

)

× (2π)nδ (w − Ω(x− y) + z) (3.101)

= (detU)1/2
∫

d2nz

(2π)n
exp

(

−1

4
(Ω(x− y)− z)TU(Ω(x− y)− z)

−1

4
zTUz +

i

2
xT z − i

2
yT (Ω(x− y)− z)

)

(3.102)

= (detU)1/2 exp

(

−1

4
(x− y)TΩTUΩ(x− y) +

i

2
xTΩy

)

×
∫

d2nz

(2π)n
exp

(

−1

2
zTUz +

1

2

(

Ω(x− y) + iU−1(x+ y)
)T

Uz

)

(3.103)

= exp

(

−1

4
(x− y)TΩTUΩ(x− y) +

i

2
xTΩy

)

× exp

(

1

8

(

Ω(x− y) + iU−1(x+ y)
)T

U
(

Ω(x− y) + iU−1(x+ y)
)

)

(3.104)

= exp

(

−1

4
xTΩT U +ΩU−1ΩT

2
Ωx− 1

4
yTΩT U +ΩU−1ΩT

2
Ωy

+
1

2
xTΩT U − ΩU−1ΩT

2
Ωy

)

(3.105)

= exp

(

−1

4
xTΩTVσΩx−

1

4
yTΩTVσΩy +

1

2
xTΩT

√

I + (VσΩ)−2VσΩy

)

. (3.106)

In the last step, we used (3.93) and the analogous relation U − ΩU−1ΩT = 2
√

I + (VσΩ)−2Vσ,
deduced again with the help of (3.92).
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3.4 Step 4: The Gaussian Petz map satisfies the Petz equations for all bounded

operators

Throughout Section 3.3, we showed that the Petz equation in (2.1) is satisfied by the Gaussian
channel in (3.38) for all Hilbert–Schmidt operators. In this section we complete the argument by
showing that the same is true for all bounded operators A,B in (2.1). Thus, as a consequence of
the development in this section, we can conclude from a result of [Pet86, Pet88, OP93] that the
Gaussian channel in (3.38) is in fact the Petz map for σ and N .

The argument given here is standard, but we provide it here for completeness. Proceeding, we
have to show that the following Petz equation

〈A,N †(B)〉σ = 〈P†(A), B〉N (σ) (3.107)

is satisfied for all bounded A,B, supposing that we can verify it only for a restricted class of A,B,
for instance, those which are finite-rank (note that finite-rank operators are Hilbert–Schmidt).
Recall that a sequence (Tn)n∈N of operators on a Hilbert space H is said to be weakly convergent
to T , and we write Tn

w−→ T , if

lim
n→∞

〈α, Tnβ〉 = 〈α, Tβ〉 ∀ α, β ∈ H . (3.108)

We start by recalling the well-known fact that finite-rank operators are weakly dense in the set
of bounded operators. It is straightforward to show this for all bounded A: one has ΠnAΠn

w−→ A,
with Πn denoting the projector onto the first n vectors of the canonical basis. Indeed, taking
arbitrary vectors α, β ∈ H, we have that

∣

∣〈Πnα,AΠnβ〉 − 〈α,Aβ〉
∣

∣ =
∣

∣〈Πnα− α,Aβ〉 + 〈Πnα,A(Πnβ − β)〉
∣

∣ (3.109)

≤
∣

∣〈Πnα− α,Aβ〉
∣

∣ +
∣

∣〈Πnα,A(Πnβ − β)〉
∣

∣ (3.110)

≤ ‖A‖∞
(

‖α‖ ‖Πnβ − β‖+ ‖β‖ ‖Πnα− α‖
)

−−−→
n→∞

0 . (3.111)

An important tool in our discussion will be the uniform boundedness principle [Bou87], which
states that if a sequence of operators (Tn)n∈N is such that the sequence of norms (‖Tnα‖)n∈N is
bounded for all α ∈ H, then the sequence of operator norms ‖Tn‖∞ is itself bounded.

Lemma 6 Let (An)n∈N be a weakly convergent sequence of operators. Then the sequence of oper-
ator norms (‖An‖∞)n∈N is bounded.

Proof. Pick an arbitrary α ∈ H, and consider the sequence of functionals f
(α)
n : H → C acting as

f
(α)
n (β) = 〈Anα, β〉. Since (An)n∈N is weakly convergent, f

(α)
n (β) has a limit in C, and in particular

it is bounded. Since this holds for all β, the uniform boundedness principle states that the norms

‖f (α)
n ‖∞ = ‖Anα‖ must be bounded as well. Since this holds for an arbitrary α, another application

of the uniform boundedness principle guarantees that also (‖An‖∞)n∈N is bounded.

Now we discuss some alternative definitions of weak convergence.

Lemma 7 Given a sequence (An)n∈N of operators on a Hilbert space, the following are equivalent:

1. An
w−→ A;
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2. Tr[ρAn]→ Tr[ρA] for all states ρ;

3. Tr[ZAn]→ Tr[ZA] for all trace-class Z.

Proof.

1.⇒2. Since An − A
w−→ 0, Lemma 6 ensures that there is a constant M such that for sufficiently

large n ‖An−A‖∞ ≤M <∞. Since ρ is a state, for all ε > 0 we can fix a projector Π onto a
finite-dimensional subspace such that ‖ρ−ΠρΠ‖1 ≤ ε

2M . Moreover, the weak convergence of
An and the fact that ΠρΠ has finite support imply that Tr[ΠρΠ(An −A)] < ε

2 for sufficiently
large n. Then

∣

∣Tr[ρ(An −A)]
∣

∣ ≤
∣

∣Tr[ΠρΠ(An −A)]
∣

∣ +
∣

∣Tr[(ρ−ΠρΠ)(An −A)]
∣

∣ (3.112)

≤ ε

2
+ ‖ρ−ΠρΠ‖1‖An −A‖∞ ≤

ε

2
+

ε

2M
M = ε , (3.113)

for sufficiently large n. This shows that Tr[ρAn]→ Tr[ρA].

2.⇒3. This follows directly because all trace-class operators can be written as a complex linear
combination of four states.

3.⇒1. This implication becomes clear once we choose Z to be the rank-one operator Zx ≡ (α, x)β
and apply the definition of weak convergence (3.108).

This concludes the proof.

Corollary 8 Let N be a quantum channel. If a sequence of bounded operators An satisfies An
w−→

A, then N †(An)
w−→ N †(A).

Proof. We verify condition 2 of Lemma 7. Pick a state ρ. One has

Tr[ρN †(An)] = Tr[N (ρ)An]→ Tr[N (ρ)A] = Tr[ρN †(A)] , (3.114)

where we used again condition 2 of Lemma 7 in order to take the limit.

Now we come to our decisive tool:

Corollary 9 Let An
w−→ A be a weakly convergent sequence of operators. Then the following holds

for an arbitrary state ω and bounded operator B:

〈An, B〉ω −−−→
n→∞

〈A,B〉ω. (3.115)

Proof. It suffices to note that ω1/2Bω1/2 is a trace-class operator. Applying condition 3 of Lemma 7
yields the statement.

Theorem 10 If the Petz equation in (3.107) is satisfied for all finite-rank operators A,B, then the
same is true for all bounded A,B.
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Proof. For bounded A,B, consider sequences of finite-rank operators (An)n∈N and (Bm)m∈N such
that An

w−→ A and Bm
w−→ B. Then we have

〈An,N †(Bm)〉σ = 〈P†(An), Bm〉N (σ) . (3.116)

Since Corollary 8 implies that N †(Bm)
w−→ N †(B), we can safely use Corollary 9 to take the limit

m→∞ on both sides, which yields

〈An,N †(B)〉σ = 〈P†(An), B〉N (σ) . (3.117)

With the same argument we can now take the limit n→∞, and this concludes the proof.

4 Conclusion

The main result of this paper is Theorem 1, which establishes an explicit form for the Petz map
as a bosonic Gaussian channel whenever the state σ and the channel N are bosonic Gaussian.
Our proof approach was first to consider three ansatzes in order to arrive at a hypothesis for the
Gaussian form of the Petz map. These ansatzes included 1) working with the form of the Petz map
in (2.3) in spite of the fact that [N (σ)]−1 is an unbounded operator, 2) negating the covariance
matrix of the Gaussian state σ if σ is inverted, and 3) assuming that the X matrix in (2.20),
corresponding to a Gaussian channel, is invertible. After deducing a hypothesis for an explicit
form, we proved that this hypothesis is in fact correct, by demonstrating that the Gaussian Petz
channel satisfies the equations in (3.107) for all bounded operators A and B. Additionally, our
Appendix A, building on [BB69, Equation (30)], offers a powerful tool for computing products
of exponentials of inhomogeneous quadratic Hamiltonians. We suspect that the ideas and tools
presented in this paper will be useful for making future progress in Gaussian quantum information.

As an immediate application of our results, we can consider whether the strongest form of the
conjecture in (1.4) holds for all Gaussian states and channels, with the recovery channel taken to be
the Petz recovery map. This question stems from an intuition that these Gaussian objects behave
somewhat more classically than arbitrary quantum states or channels, and it is known that the
conjecture in (1.4) holds for classical probability distributions. However, this intuition turns out
to be fallacious: simple numerical searches yield plenty of counterexamples. A Mathematica file to
generate and check such counterexamples is included in our arXiv post [LDW17]. We stress that
these numerical tests have been made possible by the fact that we exhibited an explicit formula for
the action of the Petz recovery map.

In future work, it would be interesting to determine whether the following inequality, considered
in [BSW15a, SBW15], could be satisfied whenever all of the objects involved are Gaussian:

D(ρ‖σ) ≥ D(N (ρ)‖N (σ)) − logF (ρ, (Pσ,N ◦ N )(ρ)). (4.1)

More generally, one could consider the various inequalities proposed in [BSW15b] for the Gaussian
case.

Note: Our results originally appeared on the arXiv as [LDW17]. We remark here that another
work presented the Gaussian Petz recovery map built from zero-mean states and channels [Bén18],
by making use of methods discussed in [Bén15].

We thank Gerardo Adesso, Prabha Mandayam, Alessio Serafini, Kaushik Seshadreesan, and
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A Golden rule to handle exponentials of inhomogeneous quadratic

Hamiltonians

Very often in quantum optics one has to manipulate products of exponentials of (inhomogeneous)
quadratic Hamiltonians, i.e., operators of the following form:

H =
i

2
rTΩXr + isTΩr +

i

2
a. (A.1)

For instance, a typical task consists in turning such a product into a single exponential of another
quadratic operator of the same form. In the above equation, r = (x1, . . . , xn, p1, . . . , pn)

T denotes
the column vector of canonical coordinates, [r, rT ] = iΩ and ΩX can be assumed to be symmetric.
Within the context of quantum optics, several methods have been developed to deal with such
calculations, which can be very involved otherwise. In particular, a general formula for converting
product of exponentials of quadratic operators into a single exponential has been found in [BB69,
Equation (30)].

The main idea behind the approach we discuss here is not particularly novel and has been
already successfully exploited in quantum optics. For a thorough review with many examples, we
refer the reader to [Pur01, Chapter 2]. However, the particular example we present does not seem
to have been considered before, and we believe it is of practical importance to make the kind of
computations we performed in this paper much easier and more intuitive. To demonstrate the
convenience of our method, we conclude this appendix with an alternative proof of Lemma 5.

The starting point is the observation that quadratic operators of the form (A.1) form a Lie
algebra, a fact which is easily seen to be a consequence of the canonical commutation relations (2.5).
Namely, it is easy to see that
[

i

2
rTΩXr + isTΩr +

i

2
a,

i

2
rTΩY r + itTΩr +

i

2
b

]

=
i

2
rTΩ[X,Y ]r + i(Xt− Y s)TΩr − isTΩt.

(A.2)

As is well-known, given H1,H2 of the form (A.1), the operator H3 satisfying

eH1eH2 = eH3 (A.3)

depends only on the Lie algebra generated by H1 and H2. Therefore, if we could construct an
isomorphism turning the Lie algebra of quadratic Hamiltonians into a (low-dimensional) matrix
algebra, we would be able to compute H3 as follows:

(i) associate matrices M1,M2 to H1,H2 through the above isomorphism;

(ii) compute the Lie algebra element M3 such that eM1eM2 = eM3 ;
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(iii) use one last time the isomorphism to translate M3 back to a quadratic Hamiltonian H3.

It turns out that such an isomorphism can be found. An explicit example is as follows:

i

2
rTΩXr + isTΩr +

i

2
a ←→





0 sTΩT a
0 X s
0 0 0



 . (A.4)

The matrix Lie algebra we will be concerned about is thus formed by matrices of the above form,
with the only restriction that ΩX is symmetric. As expected, the commutator between two such
matrices takes the form









0 sTΩT a
0 X s
0 0 0



 ,





0 tTΩT b
0 Y s
0 0 0







 =





0 (Xt− Y s)TΩT −2sTΩt
0 [X,Y ] Xt− Y s
0 0 0



 , (A.5)

mimicking (A.2). In order to apply our strategy, we need to compute the exponential of a matrix
belonging to our Lie algebra. It is an elementary exercise to show that

exp









0 sTΩT a
0 X s
0 0 0







 =







1
(

I−e−X

X s
)T

ΩT a+ sTΩX−sinhX
X2 s

0 eX eX−I
X s

0 0 1






. (A.6)

We conclude this appendix by presenting an alternative and perhaps more intuitive derivation
of Lemma 5 that makes use of the Lie algebra isomorphism (A.4). The advantage of this proof is
basically that it turns the cumbersome sequence of Gaussian integrals we performed in the main
body into a sequence of 3× 3 block-matrix multiplications.

Alternative proof of Lemma 5. As a preliminary step, we deduce from (2.15) the expression

for sinh
(

iΩHσ

2

)

. Since iΩHσ has real eigenvalues, we can apply the identity sinhx = coth(x)−1√
1−coth(x)2

(valid for real x) and (2.15) to obtain

sinh

(

iΩHσ

2

)

=
(iV Ω)−1

√

I + (V Ω)−2
. (A.7)

Now, let us show how to compute
√
σ0Dx

√
σ0 for any given x. We can employ the exponential

form of σ0 as given in (2.14), which in our case becomes σ0 = Zσe
− 1

2
rTHσr. For the sake of

simplicity, we ignore the normalisation constant Zσ for the moment. Also, let us omit the subscripts
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σ throughout the calculation. We find

√
σ0Dx

√
σ0 ∝ e

i
4
rTΩ(−iΩH)reix

TΩre
i
4
rTΩ(−iΩH)r (A.8)

(i)−→ exp





0 0 0
0 −iΩH/2 0
0 0 0



 exp





0 xTΩT 0
0 0 x
0 0 0



 exp





0 0 0
0 −iΩH/2 0
0 0 0



 (A.9)

(ii)
=





1 0 0

0 e−iΩH/2 0
0 0 1









1 xTΩT 0
0 I x
0 0 1









1 0 0

0 e−iΩH/2 0
0 0 1



 (A.10)

=





1 xTΩT e−iΩH/2 0

0 e−iΩH e−iΩH/2x
0 0 1



 (A.11)

(iii)
=











1

(

1
2 sinh( iΩH

2
)
x

)T

ΩT 0

0 I 1
2 sinh( iΩH

2
)
x

0 0 1

















1 0 1
4x

TΩ e−iΩH

sinh( iΩH
2
)
2x

0 e−iΩH 0
0 0 1







×











1

(

− 1
2 sinh( iΩH

2
)
x

)T

ΩT 0

0 I − 1
2 sinh( iΩH

2
)
x

0 0 1











(A.12)

(iv)−→ exp



i

(

1

2 sinh
(

iΩH
2

)x

)T

Ωr



 exp

(

i

2
rTΩ(−iΩH)r +

i

8
xTΩ

e−iΩH

sinh
(

iΩH
2

)2x

)

× exp



i

(

− 1

2 sinh
(

iΩH
2

)x

)T

Ωr



 (A.13)

= exp

(

i

8
xTΩ

e−iΩH

sinh
(

iΩH
2

)2x

)

D 1

2 sinh( iΩH
2 )

x e−
1

2
rTHr D− 1

2 sinh( iΩH
2 )

x (A.14)

(v)
= exp

(

− i

8
xTΩ

sinh(iΩH)

sinh
(

iΩH
2

)2x

)

D 1

2 sinh( iΩH
2 )

x e−
1

2
rTHr D− 1

2 sinh( iΩH
2 )

x (A.15)

(vi)
= exp

(

−1

4
xTΩTV Ωx

)

D i
2

√
I+(V Ω)−2V Ωx

e−
1

2
rTHr D− i

2

√
I+(V Ω)−2V Ωx

. (A.16)

The justification of these steps is as follows: (i) forward application of the isomorphism (A.4); (ii)
exponential formula (A.6); (iii) direct verification; (iv) backward application of the isomorphism
(A.4); (v) we use xTAx = 1

2x
T (A+AT )x to symmetrise the matrix inside the first exponential; (vi)

we employ (A.7), the hyperbolic trigonometric identity sinh y
sinh(y/2)2

= 2coth(y/2) and (2.15). Once

we reintroduce the normalisation Zσ, the above calculation shows that

√
σ0Dx

√
σ0 = e−

1

4
xTΩTVσΩxD i

2

√
I+(VσΩ)−2VσΩx

σ0 D− i
2

√
I+(VσΩ)−2VσΩx

. (A.17)
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Then, using (2.8) and (2.17) we see that

χ√
σ0Dx

√
σ0
(y) = Tr[D−y

√
σ0Dx

√
σ0] (A.18)

= e−
1

4
xTΩT VσΩxTr

[

D−yD i
2

√
I+(VσΩ)−2VσΩx

σ0D− i
2

√
I+(VσΩ)−2VσΩx

]

(A.19)

= e−
1

4
xTΩT VσΩxTr

[

D− i
2

√
I+(VσΩ)−2VσΩx

D−yD i
2

√
I+(VσΩ)−2VσΩx

σ0

]

(A.20)

= e−
1

4
xTΩT VσΩxe

1

2
xTΩT

√
I+(VσΩ)−2VσΩy Tr [D−yσ0] (A.21)

= e−
1

4
xTΩT VσΩxe

1

2
xTΩT

√
I+(VσΩ)−2VσΩyχσ0

(y) (A.22)

= exp

(

−1

4
xTΩTVσΩx+

1

2
xTΩT

√

I + (VσΩ)−2VσΩy −
1

4
yTΩTVσΩy

)

, (A.23)

which concludes the proof.

B Verifying complete positivity of the Gaussian Petz channel

One might want to verify explicitly the complete positivity condition for the Petz map stated in
Theorem 1, even if we know from [Pet86, Pet88, OP93] that (2.3) has to be completely positive by
construction. Recall that a Gaussian channel defined by (2.21) is completely positive if and only if
the inequality (2.22) is met: i.e., if and only if [ARL14, Ser17]

Y + iΩ− iXΩXT ≥ 0. (B.1)

We start with the following lemma:

Lemma 11 For all V such that V + iΩ > 0, the following identity holds

(

I + (ΩV −2
)−1/2

V −1(V + iΩ)V −1
(

I + (V Ω)−2
)−1/2

=
1

V − iΩ
. (B.2)

Proof. This is a straightforward calculation after decomposing V in the Williamson form as
V = S(D⊕D)ST , where S is a symplectic matrix satisfying SΩST = Ω and D is a diagonal matrix
of symplectic eigenvalues (note that all entries of D are larger than or equal to one).

With the above result in hand, we can write

YP + iΩ− iXPΩX
T
P = Vσ + iΩ−XP

(

VN (σ) + iΩ
)

XT
P

=
(

I + (VσΩ)
−2
)1/2

Vσ
1

Vσ − iΩ
Vσ

(

I + (ΩV )−2
)1/2

−
(

I + (VσΩ)
−2
)1/2

VσX
T
(

I +
(

ΩVN (σ)

)−2
)−1/2

V −1
N (σ)

(

VN (σ) + iΩ
)

× V −1
N (σ)

(

I +
(

VN (σ)Ω
)−2
)−1/2

XVσ

(

I + (ΩVσ)
−2
)1/2

(B.3)

=
(

I + (VσΩ)
−2
)1/2

Vσ
1

Vσ − iΩ
Vσ

(

I + (ΩV )−2
)1/2

−
(

I + (VσΩ)
−2
)1/2

VσX
T 1

VN (σ) − iΩ
XVσ

(

I + (ΩVσ)
−2
)1/2

(B.4)

=
(

I + (VσΩ)
−2
)1/2

Vσ

(

1

Vσ − iΩ
− XT 1

VN (σ) − iΩ
X

)

Vσ

(

I + (ΩVσ)
−2
)1/2

. (B.5)
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Now, from VN (σ) − iΩ = XVσX
T + Y − iΩ ≥ X(Vσ − iΩ)XT we obtain

1

Vσ − iΩ
− XT 1

VN (σ) − iΩ
X ≥ 1

Vσ − iΩ
− XT 1

X(Vσ − iΩ)XT
X ≥ 0 , (B.6)

as it follows from the inequality A−1 ≥ XT (XAXT )−1X, which is in turn valid for all invertible A
and all matrices X with no more rows than columns and maximum rank. Plugging (B.6) into (B.5),
we conclude the condition in (B.1) for XP and YP , as desired.
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