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Verification of a Total
Lagrangian ANCF Solution
Procedure for Fluid–Structure
Interaction Problems
The objective of this investigation is to verify a new total Lagrangian continuum-based
fluid model that can be used to solve two- and three-dimensional fluid–structure interac-
tion problems. Large rotations and deformations experienced by the fluid can be captured
effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF).
ANCF elements can describe arbitrarily complex fluid shapes without imposing any
restriction on the amount of rotation and deformation within the finite element, ensure
continuity of the time-rate of position vector gradients at the nodal points, and lead to a
constant mass matrix regardless of the magnitude of the fluid displacement. Fluid inertia
forces are computed, considering the change in the fluid geometry as the result of the
large displacements. In order to verify the ANCF solution, the dam-break benchmark
problem is solved in the two- and three-dimensional cases. The motion of the fluid free
surface is recorded before and after the impact on a vertical wall placed at the end of the
dam dry deck. The results are in good agreement with those obtained by other numerical
methods. The results obtained in this investigation show that the number of degrees-of-
freedom (DOF) required for ANCF convergence is around one order of magnitude less
than what is required by other existing methods. Limitations and advantages of the veri-
fied ANCF fluid model are discussed. [DOI: 10.1115/1.4038904]

Keywords: fluid–structure interaction, liquid sloshing, absolute nodal coordinate formu-
lation, multibody system dynamics, dam-break problem

1 Introduction

Fluid–structure interaction is an important problem in many
engineering applications. It is important to predict at the design
stage the adverse effects of impact loads on maritime structures
and ships, liquid oscillations in storage tanks due to earthquakes,
liquid motion occurring in containers during sailing, and liquid
sloshing in freight trains and highway vehicles. Most of the tech-
niques, proposed to model fluid problems with free surface, are
mainly based on the Lagrangian or Eulerian approaches. In the
first approach, the fluid is represented by a finite element (FE) or
finite difference mesh which coincides with and moves with the
fluid material points. The governing Navier–Stokes equations of
motion are simpler when a Lagrangian scheme is used because of
the absence of nonlinear convection terms. Furthermore, accurate
prediction of the location of the free surface is straightforward
because the mesh points and nodes coincide with the fluid mate-
rial points. The main shortcoming of the Lagrangian approach,
however, is the loss in numerical accuracy in the case of severe
mesh distortions which may require the use of an automatic
remeshing algorithm, particularly in large-scale problems. In the
Eulerian schemes, on the other hand, the domain under investiga-
tion is subdivided into cells which remain fixed in space while the
fluid flows through them. For this reason, this formulation is more
suited for the analysis of turbulent flows [1]. However, since the
mapping between Eulerian mesh and fluid material points is lost,
additional effort is needed to accurately capture the location of the
free surface. The marker and cell method [2–6] and the volume of
fluid method [7–11] are the most popular techniques used to rec-
ognize the region occupied by the fluid. The marker and cell
method uses virtual particles to track the fluid position [2,3,12].

The volume of fluid method, proposed by Hirt and Nichols [7],
introduces an auxiliary function F which assumes the value 1 in
the fluid region and 0 anywhere else. An additional equation,
@F=@tþ v � rF ¼ 0, must be solved to study the time evolution
of F, where v is the fluid velocity vector.

To combine the advantages of Lagrangian and Eulerian
schemes, the arbitrary Lagrangian Eulerian (ALE) methods have
been proposed. In the ALE formulations, the motions of the mesh
and the material points are both described. A major feature of this
hybrid method is the appearance of convection terms in the
momentum and continuity equations. ALE methods have been
widely used in the solution of viscous, free surface problems
[13–17]. For additional details on the ALE method, the reader can
refer to Belytschko et al. [18].

In the last decades, a fully Lagrangian meshless technique
called smoothed particle hydrodynamics (SPH) was introduced to
study fluid dynamic problems [19–31]. In general, mesh-free
methods adopt scattered data interpolation techniques, among
which the moving least squares interpolation is the most popular
[32]. SPH techniques, similar to Eulerian methods, can describe
very complex fluid scenarios including turbulent and multiphase
flows.

The level of difficulty in the analysis of fluid dynamics prob-
lems increases considerably if liquid motion occurs inside con-
tainers which are components of complex mechanical systems,
such as vehicles, rockets, and aircrafts. The Federal Motor Carrier
Safety Administration (FMCSA) has recently conducted computer
simulations and driving experiments on single-unit trucks carrying
intermediate bulk containers (IBCs) half-filled with water [33].
For this investigation, the commercial software TRUCKSIM was
used. In case of moderate sloshing scenarios, the fluid motion in
the TRUCKSIM model was represented by discrete inertia models
used to account for the effect of the liquid sloshing oscillations.
However, the integration of the TRUCKSIM vehicle model with a
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computational fluid dynamics (CFD) continuum-based liquid
model was not achieved due to the high level of complexity of
this task. Cheli et al. [34] studied the interaction between fluid
sloshing and vehicle dynamics. The fluid/tank system was mod-
eled in the commercial CFD software FLUENT, and a simple 14
DOFs rigid vehicle model was introduced using a user subroutine.
However, this approach does not allow for the implementation of
complex vehicle models which include flexible and highly nonlin-
ear components like tires and leaf springs.

A possible solution for the integration of liquid and complex
mechanical system models is to use a cosimulation approach,
which requires two or more solvers to run at the same time and
exchange information at predefined time steps. Elliot et al. [35]
employed a cosimulation approach in which the explicit CFD
code Dytran and the implicit multibody system (MBS) dynamics
solver ADAMS are used, while Barton at al. [36] used a similar
approach by establishing a link between the CFD solver ACUSOLVE

and the MBS software MOTIONSOLVE. However, the development
of credible cosimulation models can be very challenging in some
applications because of the difficulty of establishing efficient com-
munications between different algorithms and software that are
based on fundamentally different approaches, the challenges in
capturing highly nonlinear effects including centrifugal and Cori-
olis forces that characterize the motion of mechanical systems
such as vehicles, and the very high computational cost as the
result of using some of the existing methods that require the use
of very large number of degrees-of-freedom (DOF).

Compared to the Eulerian approach, the fluid dynamic commu-
nity has shown less interest in using the total Lagrangian
continuum-based methods for the analysis of fluid–structure inter-
action problems. A description of the fluid behavior using a total
Lagrangian approach allows for a systematic integration with
vehicle models developed using MBS algorithms, which are
widely used both in industry and academia for the analysis of
complex mechanical systems. Wei et al. [37] developed a total
Lagrangian nonincremental liquid sloshing model based on the FE
absolute nodal coordinate formulation (ANCF). This solution pro-
cedure was systematically integrated by Shi et al. [38] with a com-
plex railroad vehicle model and by Nicolsen at al. [39] with a
fully nonlinear truck model. Nonetheless, the ANCF fluid models
which can be effectively used to model liquid sloshing in very
complex vehicle motion scenarios have not been validated. ANCF
finite elements can describe an arbitrarily large displacement
including large rigid body translations and rotations, and there-
fore, such elements are ideally suited for the integration of fluid
models with complex mechanical system models.

The main goal of this paper is to verify the total Lagrangian
ANCF finite element liquid sloshing model presented by Wei
et al. [37] by comparing the results of this model with numerical
and experimental results published in the literature. The dam-
break is a benchmark problem widely used to assess the perform-
ance of numerical schemes in fluid–structure interaction problems
[8,20,40–48]. In this paper, the broken dam problem is solved
both in the two- and three-dimensional cases. This paper makes
the following specific contributions:

(1) It is explained how ANCF finite elements can be used to
develop a total Lagrangian continuum-based formulation
that is suited for the analysis of the dam-break problem.
Both two- and three-dimensional fluid motion scenarios
will be considered in this study. For the planar analysis, the
ANCF rectangular element is used, while the solid element
is used for the spatial analysis. Both ANCF finite elements
used in this investigation ensure the continuity of the gradi-
ent vectors and their time derivative at the nodal points.
Consequently, the time rate of the gradient vectors that
enter into the formulation of the Navier–Stokes equations
are continuous at the nodal points.

(2) The results obtained using the total Lagrangian formulation
based on the ANCF finite elements are verified by

comparing with experimental and numerical results pub-
lished in the literature. It is shown that, because ANCF
finite elements can describe complex geometric shapes,
models with significantly less number of degrees-of-
freedom can be developed. The verification of the ANCF
models using published results is necessary in order to be
able to use such a new approach with confidence in the
future to study liquid sloshing in complex motion scenarios
that are encountered in highway, rail, marine, and aero-
space applications.

(3) The advantages and limitations of the total Lagrangian for-
mulation based on ANCF finite elements in the analysis of
fluid–structure interaction problems are identified in order
to define the scope of the applicability of the new total
Lagrangian approach.

The paper is organized as follows. In Sec. 2, the dam-break
problem used in this investigation is described and a general over-
view of the solution procedure is outlined. The ANCF constitutive
equations are described in Sec. 3. Sections 4 and 5 describe the
governing equations and boundary conditions, while Secs. 6 and 7
present the numerical results of the broken dam problem for the
two- and three-dimensional cases. Section 8 discusses the advan-
tages and disadvantages of the total Lagrangian ANCF fluid
approach and compares it with the most popular numerical meth-
ods employed in the fluid dynamics research. Section 9 presents a
summary and the main conclusions drawn from this study.

2 Study Model

The fluid flow generated after the breaking of a dam is studied,
reproducing the experiment carried out by Martin and Moyce
[49]. In the experiment, the fluid is chosen as water which is
assumed to have mass density q ¼ 1000 kg=m3, and viscosity
�v ¼ 10�3 Pa�s. A diagram of the experimental apparatus which
was used is shown in Fig. 1. In the initial configuration, the fluid
is assumed to be in hydrostatic equilibrium, confined on three
sides by rigid walls and on the front side by a piece of wax paper.
The initial fluid geometric shape is a cube with sides that have
length H ¼ 0:05715 m. A short circuit in the system causes the
wax paper to melt and the column of water collapses over a dry
deck under the effect of gravity. In this investigation, the gravity
constant is g ¼ 9:81 m=s2.

Numerical simulations are performed to accurately capture the
fluid free surface shape and the position of the water front. The
problem is studied at the early stage after the dam break in order
to be able to compare the obtained results with the experimental
and numerical data available from the literature. The effect of aer-
odynamic forces and turbulence are neglected. The problem is
analyzed both in the two-dimensional and three-dimensional
cases. The Navier–Stokes equations are used to formulate the vis-
cosity forces and the fluid partial differential equations of motion
are reduced to a set of discrete second-order ordinary differential
equations by applying the principle of virtual work and approxi-
mating the displacement field using the ANCF finite element kine-
matic description. The initial nodal coordinates are known from
the problem geometry, and the initial nodal velocities are assumed
to be zeros. The dam is modeled as a rigid body, because it does
not undergo any deformation, and frictionless contact boundary
conditions are applied at the outer fluid surface. The fluid equa-
tions of motion are integrated numerically using the implicit
Hilber–Hughes–Taylor (HHT) algorithm. At each time-step, the
fluid stress tensor is computed using the fluid constitutive laws
and used with the Green–Lagrange strain tensor to formulate the
fluid viscous forces. The fluid incompressibility condition is
ensured by using a penalty method. When ANCF finite elements
are used, the mass matrix is always constant regardless of the
magnitude of the displacement. As a result, the inertia forces do
not have quadratic velocity terms as will be explained in this
paper. The change in the fluid accelerations due to the continuous
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deformation can then be accurately predicted and used to formu-
late the generalized fluid inertia forces. Penetration between the
fluid and the dam walls is prevented using a penalty contact algo-
rithm which efficiently detects the contact regions.

3 ANCF Fluid Constitutive Model

In this section, the general ANCF fluid constitutive model is
described. In the ANCF description, the vector of the element
nodal coordinates consists of absolute position and gradient vec-
tors. Using the gradient vectors as nodal coordinates, the ANCF
displacement field can describe an arbitrarily large displacement
as well as complex fluid geometry [50]. The fluid is assumed to be
Newtonian and incompressible, viscosity is assumed to be con-
stant, and the effect of temperature is neglected. In the most gen-
eral case, the fluid behavior can be described using three different
configurations, namely the straight, reference, and current config-
urations (see Fig. 2). The use of these configurations allows
describing systematically the initial fluid geometry that can
assume the shape of the container. Let V, V0, and v be the fluid
volumes in the three configurations and x, X, and r be the associ-
ated position vectors of an arbitrary point on the fluid. For a gen-
eral ANCF element j, the position vector of an arbitrary point
defined in the reference and current configurations are written,

respectively, as Xj ¼ ½Xj Yj Zj �T ¼ Sje
j
0 and rj ¼ Sjej, where

Sj is the shape function matrix, e
j
0 and ej are the element nodal

coordinates in the reference and current configurations, respec-
tively [50]. The relation between the volumes in the reference and

current configurations can be expressed as dvj ¼ JjdVj
0, where Jj

is the determinant of the matrix of position vector gradients

Jj ¼ @rj=@Xj. It is easier to perform the integration over the vol-
ume in the reference configuration instead of the volume in the
current configuration, because the geometry at the beginning of
the simulation is known. In general, the reference configuration
can be curved, therefore integration can be further simplified by
introducing a straight reference configuration, which can be sys-
tematically obtained from the reference configuration using the

relationship dVj
0 ¼ Jj

0dVj, where J
j
0 ¼ @Xj=@xj is a constant Jaco-

bian matrix. The mapping between the current and straight config-

uration is defined by Jj
e ¼ @rj=@xj and leads to the relation

dvj ¼ Jj
edVj. One can show that Jj ¼ @rj=@Xj ¼ ð@rj=@xjÞ

ð@xj=@XjÞ ¼ Jj
eJ

j�1

0 . In the problem considered in this investiga-
tion, the elements in the reference configuration are straight, and
consequently, the mapping between the reference and straight

configurations J
j
0 is the identity matrix.

The Cauchy stress tensor can be written as the sum of its iso-
tropic and deviatoric parts as r ¼ �pIþ Sr, where p is the fluid
hydrostatic pressure defined as p ¼ �1=3trðrÞ, and Sr ¼ ðSijÞ is
the symmetric stress deviator tensor which has zero trace and
accounts for shear effects. In case of a Newtonian fluid, the com-
ponents of the stress deviator tensor depend linearly on the veloc-
ity gradients, that is, Sij ¼ Aijklð@vk=@rlÞ, where Aijkl is a fourth-
order tensor. In case of an isotropic Newtonian fluid, it possible to

prove that Sr ¼ ktrðDÞIþ 2lD, where D ¼ ð1=2ÞðLþ LTÞ is the
rate of deformation tensor, L ¼ @v=@r is the tensor of velocity
vector gradients, k is the Lame’s constant, l is the coefficient of
dynamic viscosity, and ðkþ ð2l=3ÞÞ is the coefficient of Bulk
viscosity. The final fluid constitutive equation for a Newtonian
isotropic fluid can be written as r ¼ ½�pþ ktrðDÞ�Iþ 2lD. If
kþ ð2l=3Þ ¼ 0, one has the Stokes’ relation. In the most general
case k; l, and p are functions of both density and temperature.

4 Governing Equations

The fluid partial differential equations of equilibrium are given

by ðr � rTÞT þ fb � qa ¼ 0, where r is the Cauchy stress tensor,
fb is the vector of body forces, q is the mass density, and a is the
absolute acceleration vector. The fluid continuity equation
ð@qðr; tÞ=@tÞ þ r � ðqvÞ ¼ 0 is reduced to r � v ¼ 0 in the case of
incompressible materials. Substituting the expression of the stress
tensor defined in Sec. 3 and considering the incompressibility con-
dition, one obtains the incompressible Navier–Stokes formulation
defined by the two equations

qa¼ fbþf�r�ðpIÞþkr�ðtrðDÞIÞþ2lr�DgT; r�v¼ 0 (1)

Obtaining an accurate and stable solution of incompressible fluids
is a very challenging task. The most popular solution strategies in
the literature can be classified as the pressure stabilization techni-
ques, penalty methods, artificial compressibility methods, and
operator splitting techniques [51]. In an Eulerian description, a
common source of instability in the solution of the fluid equations
comes from the strong nonlinearity associated with the convective
term of the acceleration vector, defined as a ¼ Dvðr; tÞ=Dt ¼
ð@vðr; tÞ=@tÞ þ v � rv [52]. If a Lagrangian approach is used, the
velocity vector is directly a function of the material coordinates,
therefore, the acceleration vector can be written simply as a ¼
dvðX; tÞ=dt with v ¼ dr=dt, simplifying considerably the numeri-
cal calculations. In the case of ANCF elements, the absolute
velocity and acceleration vectors of an arbitrary point on an ele-

ment j are simply given by vj ¼ Sj _ej and aj ¼ Sj€ej, respectively.
In this paper, the principle of virtual work and the ANCF dis-

placement field are used to determine a set of discrete ordinary
differential equations that govern the dynamics of the continuum
as

Mj€ej ¼ Q
j
b þQj

t þQ
j
C �Q

j
P þQj

v (2)

Fig. 1 Experiment (H 5 0:05715 m) Fig. 2 The three general fluid configurations
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where Mj is the constant symmetric mass matrix of the element,

Q
j
b and Qj

t are the vectors of generalized body and surface traction

forces, Q
j
C is the vector of generalized contact forces, Qj

v is the

vector of generalized viscous forces, and Q
j
P is the vector of gen-

eralized penalty forces. A flowchart of the numerical solution pro-
cedure is shown in Fig. 3. The time-step and tolerance selected to
obtain convergence of the results are, respectively, Dt ¼
0:00015 s and tol ¼ 10�8.

4.1 Viscous Forces. In case of an incompressible fluid,
r � v ¼ trðDÞ ¼ 0, and the expression of the Cauchy stress tensor
derived in Sec. 3 reduces to

rj ¼ �pjIþ 2lDj (3)

The first term on the right-hand side of Eq. (3) is associated with
volumetric forces, while the second term is related to viscous
forces. The integration of the equations of motion over the refer-
ence domain requires using consistent stress and strain definitions,
namely the second Piola–Kirchhoff stress tensor rP2 and the
Green–Lagrange strain tensor e. The virtual work of the fluid vis-
cous forces can be written in the reference configuration as

dWj
v ¼ �

ð
vj

rj : ðdJjÞðJjÞ�1dv ¼ �
ð

Vj
0

rj
P2 : dejdVj

0 (4)

where ej ¼ ðJjTJj � IÞ=2 and rj
P2 ¼ JjðJjÞ�1

2lDjðJjÞ�1T

. Using

the kinematic relationship Dj ¼ ðJjÞ�1T

_ejðJjÞ�1
, one has

dWj
v ¼ �

ð
Vj

0

JjðJjÞ�1
2lðJjÞ�1T

_ejðJjÞ�1ðJjÞ�1T

: dejdVj
0

¼ �
ð

Vj
0

2lJjðCj
rÞ
�1 _eðCj

rÞ
�1 : dejdVj

0

(5)

where Cj
r ¼ ðJjÞTJj is the right Cauchy–Green deformation tensor.

Using the virtual change in the strains dej ¼ ð@ej=@ejÞdej, the
generalized viscous forces associated with the ANCF nodal coor-
dinates can be written as

Qj
v ¼ �

ð
Vj

0

2lJj Cj
r

� ��1
_e Cj

r

� ��1
h i

:
@ej

@ej
dVj

0 (6)

The viscosity forces of this equation are evaluated using numeri-
cal integration methods.

4.2 Incompressibility Condition. For an incompressible
material, dv ¼ JdV0, and the determinant of the matrix of position
vector gradients J is constant and equal to one. One method to
enforce the incompressibility condition is to add, to the system
differential equations of motion, the algebraic constraint equation
J ¼ 1, which must be satisfied at the position, velocity, and accel-
eration levels everywhere in the continuum. However, in the
numerical implementation, it is more efficient and simpler to use a
penalty approach to enforce the incompressibility condition. For a

finite element j, the constraint Jj ¼ 1 is enforced by introducing

the penalty strain energy function Uj
IC ¼ ð1=2Þkj

ICðJj � 1Þ2, where

kj
IC is a penalty coefficient selected to ensure that the condition

J ¼ 1 is satisfied to within acceptable tolerance. The correspond-
ing vector of generalized penalty forces associated with the

ANCF nodal coordinates is obtained by differentiating Uj
IC

with respect to the nodal coordinates of the element j as

Q
j
IC ¼ @Uj

IC=@ej ¼ kj
ICðJj � 1Þ@Jj=@ej. In order to satisfy the iso-

choric constraint at the velocity level, the dissipation function

Uj
TD ¼ ð1=2Þcj

TDð _J
jÞ2 is used, where cj

TD is a penalty damping
coefficient. The associated damping penalty forces can also

be written as Q
j
TD ¼ @Uj

TD=@ _ej ¼ cj
TD

_J
jð@ _J

j
=@ _ejÞ, where _J

j ¼
trðDjÞJj and @ _J

j
=@ _ej ¼ @Jj=@ej. In the two-dimensional case

Jj ¼ ðrj
XÞ1ðr

j
YÞ2 � ðr

j
YÞ1ðr

j
XÞ2, where r

j
X ¼ ½ ðrj

XÞ1 ðrj
XÞ2 �

T
and

r
j
Y ¼ ½ ðrj

YÞ1 ðrj
YÞ2 �

T
are the first and second columns of the

matrix Jj, respectively. One can show that

@Jj

@ej

� �
¼ @ _J

j

@ _ej

 !
¼ S

j
1X r

Yð Þ2 þ S
j
2Y r

Xð Þ1 � S
j
1Y r

Xð Þ2 � S
j
2X r

Yð Þ1
(7)

where S
j
1X, S

j
2X and S

j
1Y , S

j
2Y are the first and second rows of the

derivative of the shape function matrix Sj with respect to X and Y
coordinates, respectively. In the three-dimensional case, Jj

¼ r
j
X � ðr

j
Y � r

j
ZÞ ¼ r

j
Y � ðr

j
Z � r

j
XÞ ¼ r

j
Z � ðr

j
X � r

j
YÞ, and therefore,

@Jj=@ej can be written as

@Jj

@ej

� �
¼ @ _J

j

@ _ej

 !
¼ S

jT

X r
j
Y � r

j
Z

� �
þS

jT

Y r
j
Z� r

j
X

� �
þS

jT

Z r
j
X� r

j
Y

� �
(8)

This equation shows that if @Jj=@ej is known, there is no need for
the differentiation @ _J

j
=@ _ej.

The vector of generalized penalty forces of the fluid element j
can then be written as

Q
j
P ¼ Q

j
IC þQ

j
TD (9)

Fig. 3 Flowchart of the numerical solution procedure
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These generalized penalty forces, which are associated with the
ANCF nodal coordinates, are used in the fluid equations of motion
previously presented in this paper.

4.3 Inertia Forces. The use of the ANCF finite element for-
mulation allows to systematically account for the effect of the dis-

tributed fluid inertia. The ANCF acceleration vector aj can be

written as aj ¼ €rj ¼ Sj€ej, j ¼ 1; 2; 3;…; ne, where ne is the total
number of ANCF elements. The virtual work of the inertia forces

can be defined in the current configuration as dWj
i ¼

Ð
vjqjajT

drjdvj, where drj ¼ Sjdej. Using these two equations, the virtual
work of the inertia forces can be written as

dWj
i ¼ €ejT

ð
Vj

0

qj
0SjT SjdVj

0

8<
:

9=
;dej ¼ f€ejT Mjgdej ¼ Q

jT
i dej (10)

where Mj is the constant symmetric mass matrix of the ANCF

finite element j, and Q
j
i ¼Mj€ej is the generalized inertia forces

associated with the ANCF nodal coordinates.

5 Boundary Conditions

In the model considered in this study, the fluid is subjected to
boundary forces that prevent the fluid from penetrating the ground
and the dam walls. In order to model these forces, a contact for-
mulation based on the penalty approach is developed. In addition
to the fact that the contact forces change as a function of the fluid
displacement, the region of the boundary surface which is in con-
tact with the fluid must be determined; the resulting problem is
referred to as boundary nonlinearity [53]. In this study, the dam is
treated as a rigid body with no friction on the solid wall bounda-
ries; an assumption often made in the literature [6,46,54–57]. The
detection of the points of contact between the fluid and the bound-
ary and the definition of the contact forces are discussed in this
section.

The position of a potential contact point P on the outer surface

of an ANCF fluid element j can be written as r
j
P ¼ S

j
Pej, where S

j
P

is the shape function matrix evaluated at point P. The global posi-

tion of the dam reference point D is denoted as Rd . The relative
position and velocity vectors of a fluid particle with respect to the

dam reference point can be written, respectively, as u
fd
P ¼

S
j
Pej � Rd and _ufd

P ¼ S
j
P _ej � _R

d
, where _ej is the vector of element

nodal velocities. Because the dam is assumed to be fixed in space,

_R
d ¼ 0. The penetration d is defined as d ¼ ufd

Pn � xd , where

ufd
Pn ¼ u

fd
P � nd , nd is a unit vector normal to the contact surface,

and xd a distance that defines the dam geometric boundaries. Fig-
ure 4 shows a simple illustration of lateral interpenetration
between the fluid and a dam wall. If there is a penetration, the

penetration and its time-rate, _d ¼ _ufd
P � nd , are used to evaluate the

magnitude of the normal and tangential contact forces, which are

defined, respectively, as fn ¼ kPdþ CPjdj _d and ft ¼ lf fn, where
kP and CP are penalty stiffness and damping coefficients [58], and
lf is the friction coefficient between the fluid and the dam walls.
In general, the penalty force vector can be written as

FP ¼ fnnd � ftt
d, where td is a unit vector in the direction of the

tangential relative velocity vector vt ¼ _ufd
P � ð _u

fd
P � ndÞnd . The vir-

tual work of the penalty contact forces can be expressed as

dWP ¼ FT
Pðdr

j
P � drdÞ, where rd is the contact point on the dam.

Because the dam is assumed to be fixed, drd ¼ 0, and the vector
of generalized penalty forces associated with the fluid ANCF

coordinates is Q
j
C ¼ SjT FP. The reaction forces on the dam can

also be systematically calculated, and the vector of generalized

contact forces Q
j
C can be introduced to the right-hand side of the

equations of motion.

6 Two-Dimensional Broken-Dam Flow

In the planar analysis used in this study, rectangular ANCF ele-
ments that ensure the continuity of the time-rate of the position
vector gradients are used to model the broken dam problem. These
elements, introduced by Olshevskiy et al. [59], are of the isopara-
metric type. Each element has four nodes, 24 DOFs, and cubic
shape functions. As shown in Appendix A of this paper, the vector
of nodal coordinates of a finite element j at a node k can be written
as

ej ¼ ½ rjkT

r
jkT

x1 r
jkT

x2
�T; k ¼ 1;…; 4 (11)

where rjk is the absolute position vector of node k of element j,
and r

jk
xl is the position gradient vector obtained by differentiation

of the position vector with respect to the spatial coordinates xl,
l ¼ 1; 2, with x1¼ x and x2¼ y. Using gradients as nodal coordi-
nates and having a high order of interpolation in the shape func-
tions allows capturing complex fluid deformed shapes with a
small number of finite elements. Figure 5 shows the effect of
mesh refinement on the description of the fluid free surface at a
given time instant after the breaking of the dam.

6.1 Numerical Results. The broken dam problem was solved
using different numbers of elements; in this numerical investiga-
tion 9-, 16-, 64- and 100-element meshes are used. The location of
the water front is measured in the early stage of the dam break
problem in the case of the four models with different numbers of
elements. Numerical results and mesh convergence are presented
in Fig. 6 in terms of the dimensionless time and position coordi-
nates t� ¼ t

ffiffiffiffiffiffiffiffiffi
g=H

p
and x� ¼ x=H. The free surface profiles

obtained with a uniform 10� 10 element mesh are shown in Fig.
7. It is clear that a relatively small number of rectangular ANCF
elements is sufficient to accurately describe the free surface shape.
In this investigation, the broken dam problem is solved using a
uniform grid refinement. As an alternative, it is also possible to

Fig. 4 Example of lateral interpenetration between the fluid
and the dam wall (penetration is magnified)

Journal of Verification, Validation and Uncertainty Quantification DECEMBER 2017, Vol. 2 / 041001-5



adopt a nonuniform mesh refinement scheme by using more ele-
ments in the regions of the fluid where a large variation of the free
surface geometry occurs. An example of nonuniform 10� 10 ele-
ment mesh is shown in Fig. 8 where a wall is placed at a distance
A with respect to the water front, and the evolution of the fluid
deformed shape before and after the collision with the right wall
is recorded. Figure 8 shows a qualitative comparison between the
fluid free surface evolution determined using the ANCF analysis
and the experimental measurements of Lobovsk�y et al. [60].

6.2 Velocity Field. Accurate description of the fluid velocity
field is an essential part in the solution of the fluid dynamic prob-
lems. While Eulerian methods employ the velocity field vðr; tÞ as
the main kinematic variable, in the Lagrangian approach, the
focus is primarily on the displacement field uðr; tÞ and the expres-
sion of the absolute velocity at each point is obtained as the time
derivative of the displacement. In case of the ANCF finite ele-
ments, the velocity field of an element j is obtained as
vjðr; tÞ ¼ SjðXÞ _ejðtÞ, where Sj is the same shape function matrix
used for the displacement interpolation. The velocity field is plot-
ted at various time instants before the collision in Fig. 9 for the
uniform 10� 10 element mesh case. It is clear from the results
presented in this figure that the ANCF rectangular elements can
successfully capture the fluid velocity field and satisfy the velocity
continuity conditions at the element nodal points.

Fig. 5 Fluid deformed shape at t 5 0:08s for different mesh
refinements: (a) 1, (b) 16, (c) 64, and (d) 100 elements

Fig. 6 Water front evolution in time predicted using rectangu-
lar ANCF elements ( 9 Elements, 16 Ele-
ments, 64 Elements, 100 Elements)

Fig. 7 Free surface profiles for the broken dam problem pre-
dicted using 100 planar elements: (a) 0.04 s, (b) 0.08 s, (c) 0.10 s,
and (d) 0.13 s
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6.3 Verification of the Results. The numerical results obtained
in this paper are verified against experimental measurements and
simulation results obtained using other methods published in the
literature. The most popular methods used in the literature for the
solution of the broken dam problem are the level-set methods,
boundary element methods (BEM), SPH, finite volume methods
(FVM), and Eulerian finite element methods (FEM). The level-set
methods are computational techniques introduced by Osher and
Sethian [61] to address complex problems related to fluid interface
motion. The boundary element methods are widely used numeri-
cal methods for partial differential equations. Compared to the
FEM and the finite difference method, BEM has the main advant-
age of making the discretization on a reduced domain; for a three-
dimensional problem, only the surface is discretized, and in the
two-dimensional case, the discretization is performed only on the
boundary contour [62]. The SPH method is a fully Lagrangian
mesh-less technique successfully used in a variety of fluid-dynamic
problems involving complex flow fields. The finite volume scheme
is an Eulerian-based method introduced in the beginning of the sev-
enties [63,64]. The spatial domain is decomposed into control vol-
umes, and unknown values and derivatives are obtained by
interpolating nodal values. An Eulerian FVM is implemented in
FLUENT, a CFD solver widely used in industry and academia [65].

An interesting comparison between the existing numerical
methods and the experimental results for the broken dam problem
is presented by Abdolmaleki et al. [40] and Colagrossi and
Landrini [20]. The solution obtained with the two-dimensional

ANCF analysis is compared to the published numerical and exper-
imental results in Fig. 10. It is clear that all the numerical results
agree well. However, in the experimental results, the motion of
the water front is slightly slower. The deviation from the experi-
mental results is related in part to experimental uncertainties and
partly to some physical effects which are not accounted for in the
numerical analysis. At the beginning of the simulation, the depar-
ture from the experimental data can be related to imperfections in
the initial experimental conditions. In the description of the exper-
imental method, it was reported that it was not possible to record
the exact time of the onset of motion, causing the experimental
curve to be slightly shifted to the right (further in time) with
respect to the numerical solutions. Another shortcoming of the
experimental method which causes a delay in the water front
motion is the nonuniform breaking of the wax paper. A physical
phenomenon, which is not captured by the numerical models and
which slows down the fluid front motion, is the turbulence devel-
oped at the contact interface between the fluid and the dam (dry
deck and side walls). In Fig. 11, the position of the water front
obtained with the planar ANCF analysis when a wall is placed at
the end of the dam dry deck is compared to the experimental meas-
urements of Martin and Moyce [49] and Lobovsk�y et al. [60].
Overall, a good agreement between the experimental data and the
numerical results can be observed. The difference between the
experimental results reported in the literature is mainly due to the
use of different techniques in the experiments to remove the dam
gate [60]. According to the results shown in Fig. 10, neglecting the

Fig. 8 Comparison between the ANCF planar solution (left) and the experimental results of
Lobovsk�y et al. [60] (right). Free surface evolution is measured at times t�5 0; t�5 1:27;
t�5 1:67; t�5 1:87 (H 5 600 mm, A 5 1010 mm).
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Fig. 9 Velocity field at different times for the broken dam problem using uniform 10310 rec-
tangular element mesh; velocity is in m/s. (a) t 5 0:04 s, (b) t 5 0:08 s, and (c) t 5 0:13 s.

Fig. 10 Water front motion, comparison between two-
dimensional ANCF analysis and existing results ( Level Set,
BEM, SPH, FLUENT, Experimental, ANCF
(100 elements))

Fig. 11 Surge in the water front motion in case of impact with
a wall placed at the end of the dam dry deck ( Martin and
Moyce [49], from Lobovsk�y et al. [60],
ANCF (100 elements))

041001-8 / Vol. 2, DECEMBER 2017 Transactions of the ASME



friction between the fluid and the dam results in a higher velocity
of the water front and an earlier impact with the front wall.

7 Three-Dimensional Broken-Dam Flow

For the three-dimensional analysis of the broken dam problem,
ANCF brick (solid) elements are used. Each ANCF brick element
has eight nodes and is based on an incomplete polynomial repre-
sentation [66]. These isoparametric high-order elements have
been recently used in the analysis of liquid sloshing applications
[37–39]. The ANCF brick elements also ensure the continuity of
the time-rate of the position vector gradients at the nodal points.
Additional continuity conditions can be systematically enforced if
desired in order to increase the degree of smoothness and reduce
the model dimension. As shown in Appendix B of this paper, the
nodal coordinates of element j at node k are defined as

ej ¼ rjkT

r
jkT

x1 r
jkT

x2 r
jkT

x3

h iT

; k ¼ 1;…; 8 (12)

where rjk is the absolute position vector of node k of finite element
j, and r

jk
xl is the gradient vector obtained by differentiation with

respect to the spatial coordinates xl, l ¼ 1; 2; 3, with x1¼ x, x2¼ y,
and x3¼ z. The broken dam problem was solved using uniform
8� 8� 2 and 10� 10� 2 element mesh models. Only two ele-
ments are used to describe the water width, because the fluid
deformation in the out-of-plane direction is negligible. Figure 12
shows the progressive collapse of the fluid column as function of
time. From the analysis of the results, it is clear that ANCF brick
elements can accurately describe the fluid free surface. The posi-
tion of the water front as function of time and the corresponding
velocity field are plotted in Figs. 13 and 14, respectively. Similar
to what observed for the two-dimensional case, there is a good
agreement between the ANCF solution and the published numeri-
cal results.

8 Analysis of the Results

In this section, the total Lagrangian ANCF fluid model verified
in this paper is evaluated by comparing with the most popular
numerical fluid dynamics methods, outlining advantages and limi-
tations. As previously mentioned, fluid–structure interaction prob-
lems are currently solved using two main methods: Eulerian and
Lagrangian methods. These methods can solve very complex fluid
dynamics problems, including turbulent and multiphase flows.
Continuum-based total Lagrangian formulations cannot describe
the effects of turbulence and air entrapment that characterize mul-
tiphase flow problems. Moreover, wave-breaking phenomena and
motion of solid bodies through fluids cannot be easily or effi-
ciently analyzed with a continuum-based total Lagrangian
approach because of the element distortion. In fluid–structure
interaction problems, the fluid dynamic behavior, characterized by
large rotations and large deformations, is highly nonlinear. The
level of complexity increases considerably if the fluid interacts
with multibody systems that represent complex mechanical sys-
tems which consist of interconnected rigid and deformable com-
ponents. In many MBS applications, including liquid sloshing in
tanker trucks and freight trains, splashing and turbulence effects
can be neglected, because they do not have a significant effect on
the overall vehicle dynamics. The main goal in these types of
applications is to correctly capture the fluid nominal motion and

Fig. 12 Free surface profiles for the broken dam problem in
three dimensions (1031032 elements): (a) 0.04 s, (b) 0.08 s, and
(c) 0.10 s

Fig. 13 Water front motion, comparison between three-
dimensional ANCF analysis and existing results. ( Level Set,

BEM, SPH, FLUENT, Experimental, ANCF
(1031032 elements)).
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the highly deformed fluid shape in order to be able to have an
accurate estimate of the fluid inertia forces. In these MBS applica-
tions, the use of Eulerian-based CFD methods is not straightfor-
ward, because most general MBS algorithms are based on total
Lagrangian formulations. Using a Lagrangian formulation in the
analysis of fluid–structure interaction problems allows using
the same field variables for both solids and fluids, thus facilitating
the integration with MBS algorithms.

Despite the increase in computing power of modern computers,
the high computational cost of mesh-free methods makes them
still impractical in many MBS applications. Furthermore, a total
Lagrangian continuum-based finite element method employing
conventional finite elements cannot be integrated with MBS algo-
rithms since it requires the use of an incremental solution proce-
dure in large rotation problems. This is in addition to the fact that
conventional finite elements do not ensure continuity of the strain
and stress fields. The ANCF method is a general nonincremental

large-rotation and large-deformation finite element formulation
which does not impose any restriction on the amount of rotation
and deformation within the finite element. This formulation can
be systematically integrated with MBS solvers, allowing for the
analysis of the interaction between very complex mechanical sys-
tems and fluids and for the efficient solution of the liquid sloshing
problems in which the turbulence effect on the vehicle dynamics
is not significant. Nonetheless, the verification of the results
obtained using ANCF finite elements is necessary, and it is the
objective of this investigation.

An interesting observation can be made by looking at the data
presented in Table 1. This table shows a list of recent papers pub-
lished on fluid–structure interaction problems, where validation
and verification of the numerical solutions is achieved by solving
the broken dam problem. In the fluid dynamics literature, different
models of the broken dam problem can be found. For this reason,
the listed papers have been carefully selected to make sure that

Fig. 14 Velocity field at different time points for the broken dam problem using 1031032
solid element mesh: (a) t 5 0:04 s, (b) t 5 0:08 s, and (c) t 5 0:13 s
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they all consider the same dam dimensions and same amount of
water. The table also shows the solution method and element type
used in each paper listed. The number of degrees-of-freedom
required to obtain a convergent solution in the case of different
methods is presented. It is clear that the number of degrees-of-
freedom required for convergence in case of the total Lagrangian
ANCF formulation, is around one order of magnitude smaller than
what is required by other existing methods. The possibility of
reducing the number of degrees-of-freedom allows using a coarser
mesh, thus reducing the number of dynamic equations to be
solved.

9 Conclusions

This paper is focused on verifying a total Lagrangian
continuum-based ANCF fluid dynamics approach for fluid–
structure interaction problems. To this end, the results obtained
using ANCF finite elements are compared with experimental and
numerical results published in the literature for the dam break
benchmark problem. The principle of virtual work allows for con-
verting the partial differential equations of motion to a set of
second-order ordinary differential equations, which are solved
numerically using the HHT numerical integration method. The
incompressibility constraint is enforced using a penalty method,
and the contact forces between the fluid and the rigid dam are also
formulated using a penalty contact formulation. The results of the
dam break problem, obtained for two- and three-dimensional
cases, are compared with experimental data and with results of
other numerical methods, showing a good agreement. The com-
parison shows that the total Lagrangian formulation that employs
ANCF finite elements can accurately capture the fluid free surface
large displacement and change in geometry. The fluid deformation
resulting from the impact against a wall, placed at the end of the
dam dry deck, has also been investigated. The advantages and
limitations of the ANCF total Lagrangian approach are discussed.
The comparative study presented in this paper shows that the
number of degrees-of-freedom required to achieve convergence in
the case of the ANCF model is significantly less than the number
of degrees-of-freedom required by other methods. Furthermore,
the ANCF total Lagrangian fluid approach used in this investiga-
tion can be systematically integrated with computational MBS
algorithms in order to study sloshing problems in which the effect
of turbulence can be neglected.
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Appendix A

The two-dimensional ANCF rectangular element, is a four-
node element. The nodal coordinates ejk at the node k of the finite
element j can be defined as

ejk ¼ rjkT

rjkT

x rjkT

y

h iT

k ¼ 1;…; 4 (A1)

where rjk is the absolute position vector at the node k of the ele-
ment j, and rjk

x , rjk
y are the position vector gradients obtained by

differentiation with respect to the spatial coordinates x and y,
respectively. The shape functions of the ANCF rectangular ele-
ment can be derived as follows:

S1;1 ¼ �ðn� 1Þðg� 1Þð2g2 � gþ 2n2 � n� 1Þ;

S1;2 ¼ �lnðn� 1Þ2ðg� 1Þ; S1;3 ¼ �wgðg� 1Þ2ðn� 1Þ;

S2;1 ¼ nð2g2 � g� 3nþ 2n2Þðg� 1Þ;

S2;2 ¼ �ln2ðn� 1Þðg� 1Þ; S2;3 ¼ wngðg� 1Þ2

S3;1 ¼ �ngð1� 3n� 3gþ 2g2 þ 2n2Þ;

S3;2 ¼ ln2gðn� 1Þ; S3;3 ¼ wng2ðg� 1Þ;

S4;1 ¼ gðn� 1Þð2n2 � n� 3gþ 2g2Þ;

S4;2 ¼ lngðn� 1Þ2; S4;3 ¼ �wg2ðn� 1Þðg� 1Þ

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;
(A2)

where l and w are, respectively, the dimensions of the element
along the axes x and y,n ¼ x=l; g ¼ y=w; and n; and g 2 ½0; 1�.
The position vector of an arbitrary material point on element j can
be written as

rj ¼
X4

k¼1

½Sk;1I Sk;2I Sk;3I �ejk ¼ Sjej (A3)

where I is the 2� 2 identity matrix, Sj and ej are, respectively, the
element shape function matrix and the vector of nodal coordinates
which can be written as

Sj ¼ ½S1;1I S1;2I S1;3I � � � S4;1I S4;2I S4;3I�
ej ¼ ½ej1T

ej2T

ej3T

ej4T �T

)
(A4)

Appendix B

The three-dimensional ANCF solid element, with an incom-
plete polynomial representation, used in this investigation is an
eight-node element. The nodal coordinates ejk at the node k of the
finite element j can be defined as

ejk ¼ rjkT

rjkT

x rjkT

y rjkT

z

h iT

k ¼ 1;…; 8 (B1)

where rjk is the absolute position vector at the node k of the ele-
ment j, and rjk

x , rjk
y , and rjk

z are the position vector gradients
obtained by differentiation with respect to the spatial coordinates

Table 1 Comparison between different methods

Author Method Element DOF

ANCF (10� 10 mesh) Lagrangian FEM Quadrilateral ANCF elements 726
Ketabdari and Roozbahani [67] SPH — 11,103
Colagrossi and Landrini [20] SPH — 12,640
Pathak and Raessi [68] Eulerian FEM Quadrilateral element 10,658
Ahn et al. [69] Eulerian FEM Quadrilateral element 20,000
Nikseresht et al. [70] Eulerian FEM Quadrilateral element 10,302
Ransing et al. [71] Eulerian FEM Six-node element 11,940
Cruchaga et al. [72] Eulerian FEM Quadrilateral element 11,132
Abdomaleki et al. [40] Eulerian FVM Quadrilateral cells 19,642
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x; y, and z, respectively. The displacement field of each position
coordinate of the solid fluid element can be defined using an
incomplete polynomial with 32 coefficients as

/ðx; y; zÞ ¼ a1 þ a2xþ a3yþ a4zþ a5x2

þ a6y2 þ a7z2 þ a8xyþ a9yzþ a10xz

þa11x3 þ a12y3 þ a13z3 þ a14x2y

þ a15x2zþ a16y2zþ a17xy2 þ a18xz2 þ a19yz2

þa20xyzþ a21x3yþ a22x3zþ a23xy3

þ a24y3zþ a25xz3 þ a26yz3 þ a27x2yz

þa28xy2zþ a29xyz2 þ a30x3yzþ a31xy3zþ a32xyz3

(B2)

In this equation, ak; k ¼ 1; 2;…; 32, are the polynomial coeffi-
cients. Using this polynomial description, the shape functions of
the ANCF brick element can be derived as follows:

Sk;1 ¼ ð�1Þ1þnkþgkþfk ðnþ nk � 1Þðgþ gk � 1Þðfþ fk � 1Þ�

ð1þ ðn� nkÞð1� 2nÞ þ ðg� gkÞð1� 2gÞ þ ðf� fkÞð1� 2fÞÞ

Sk;2 ¼ ð�1Þgkþfk annkþ1ðn� 1Þ2�nk ggk ðg� 1Þ1�gk ffk ðf� 1Þ1�fk

Sk;3 ¼ ð�1Þnkþfk bnnk ðn� 1Þ1�nk ggkþ1ðg� 1Þ2�gk ffk ðf� 1Þ1�fk

Sk;4 ¼ ð�1Þnkþgk cnnk ðn� 1Þ1�nk ggk ðg� 1Þ1�gk ffkþ1ðf� 1Þ2�fk

9>>>>>>>>>>>=
>>>>>>>>>>>;

k ¼ 1; 2;…; 8

(B3)

where a; b, and c are, respectively, the dimensions of the element
along the axes x; y, and z directions, n ¼ x=a; g ¼ y=b; f ¼ z=c,
n; g; f 2 ½0; 1�, and nk; gk; fk are the dimensionless nodal locations
for node k. The position vector of an arbitrary material point on
element j can be written as

rj ¼
X8

k¼1

Sk;1I Sk;2I Sk;3I Sk;4I½ �ejk ¼ Sjej (B4)

where I is the 3� 3 identity matrix, Sj and ej are, respectively, the
element shape function matrix and the vector of nodal coordinates
which can be written as

Sj ¼ ½S1;1I S1;2I S1;3I S1;4I � � � S8;1I S8;2I S8;3I S8;4I�

ej ¼ ½ej1T

ej2T

ej3T

ej4T

ej5T

ej6T

ej7T

ej8T �T

)
(B5)
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