Non-euclidean virtual reality I: explorations of H*

Vi Hart Andrea Hawksley Elisabetta A. Matsumoto Henry Segerman

eleVR eleVR School of Physics Department of Mathematics

HARC HARC Georgia Institute of Technology = Oklahoma State University
Abstract

‘We describe our initial explorations in simulating non-euclidean geometries in virtual reality. Our simulations of
three-dimensional hyperbolic space are available at h3.hypernom.com.'

Figure 1: A view from H?.

The properties of euclidean space seem natural and obvious to us, to the point that it took mathematicians

over two thousand years to see an alternative to Euclid’s parallel postulate. The eventual discovery of
hyperbolic geometry in the 19th century shook our assumptions, revealing just how strongly our native
experience of the world blinded us from consistent alternatives, even in a field that many see as purely
theoretical. Non-euclidean spaces are still seen as unintuitive and exotic, but we believe that with direct
immersive experience we can get a better “feel” for them. The latest wave of virtual reality hardware, in
particular the HTC Vive, tracks both the orientation and the position of the headset within a room-sized

volume, allowing for such an experience.

Most visualisations of hyperbolic space are seen from the outside, as in Escher’s Circle Limit series

of prints, which use the Poincaré disk model of two-dimensional hyperbolic space, H?. Three-dimensional

!The code is available at github.com/hawksley/hypVR.

http://h3.hypernom.com
https://github.com/hawksley/hypVR

(a) The three torus, giving the {4, 3, 4} honeycomb. (b) The {5, 3,4} honeycomb.
Figure 2: Screenshots from Curved spaces by Jeff Weeks.

hyperbolic space, H?, can also be visualised in a similar way, via the Poincaré ball model. In virtual reality,
we could simulate this ball model floating in the middle of the room. We would then generate graphics on
screen using the standard euclidean graphics pipeline, and motions in real life would translate directly to
motions of the virtual camera in the ambient three-dimensional euclidean space, E3, of the Poincaré ball
model. Even though you would be able to put your head inside of this virtual Poincaré ball model, it would
give an extrinsic experience of H> — you would experience the metric of the Poincaré model induced from E3,
and not directly experience the metric of H?. Such extrinsic visualisations provide a brief, compact snapshot
of infinite hyperbolic space, yet the viewer is left to their own imagination to remodel the space to see what
life might be like for an inhabitant living inside. Our goal is to make three-dimensional non-euclidean spaces
feel more natural by giving people experiences inside those spaces, including the ability to move through
those spaces with their bodies. Luckily, computers don’t know or care that people live in a mostly euclidean
world, a world where cubes fit together four around an edge because they have 90° angles. As long as we
program in the correct mathematics, a computer is perfectly happy simulating a hyperbolic space where cubes
pack neatly, six around an edge.

We took inspiration from Jeff Weeks’ Curved Spaces [5] software, a “flight simulator for multiconnected
universes”’, which allows the user to “fly” a spaceship through various three-dimensional manifolds, with
spherical, euclidean, and hyperbolic geometries (see Figure 2). The user controls the heading of the spaceship
using the mouse, and its speed using keyboard controls. With virtual reality technology however, the user
controls the direction in which they are looking by turning their head, and their position by moving their body.
Thus, we remove barriers between us and the space — it is easier and more natural to access the experience,
particularly for users who are not familiar with moving through space using “computer game” controls, and
this extra ease allows a user to discover some not-so-obvious properties of these spaces much more readily.

We are currently developing a virtual reality simulation of H?, using many of the same ideas as are
used in Weeks’ work. Weeks explains the implementation in detail in [6]; we give an overview in this paper.
Positional tracking in modern virtual reality headsets lets us experience features of hyperbolic space, such as
the effects of parallel transport, geodesic deviation and holonomy, in a very direct way.

There are four ingredients that go into our virtual reality simulation of H? as outlined in this paper:
1. A way to describe the points of H? numerically, i.e. a model of H?
2. A way to convert points in the model into points in E? that we can then draw on screen,
3. A way to move around H? using the motion inputs from the virtual reality headset, and

4. A set of landmarks in H? to draw, to help the viewer navigate the space — we use a tiling of H?3.

1 The Model of H?

For the first ingredient, there are many different models of
hyperbolic space, including the Poincaré disk model, the
upper half plane model, the Klein model, and the hyper-
boloid model. Compared to the other commonly seen mod-
els, the hyperboloid model is less easy to use for direct
visualisation, but it turns out to be very useful for calcu-
lation. The hyperboloid model of H? is the set of points
{(z,y,w) € E¥' | 22 + y?> = w? — 1,w > 0}, where E*!
is Minkowski space with two space-like directions, z,y, and Figure 3: The hyperboloid and Klein models of
one time-like direction, w. Three-dimensional Minkowski H?. Projecting the hyperbolo'id towards' the origin
21 . . onto the plane w = 1 results in the Klein model.

space E=* has the same cartesian coordinate system as three-

dimensional euclidean space, I3, but comes equipped with a different metric. The metric gij 1s a function that
generalises the method of computing distances and angles (i.e. the dot product in euclidean space).

With the metric induced from the Minkowski space it lives in, the hyperboloid has constant gaussian
curvature —1, i.e. it is a model for the hyperbolic plane. For each point (x, y, w) of the hyperboloid, we can
divide the coordinates by w to obtain (x/w,y/w, 1). This maps the hyperboloid to the unit radius disk on the
w = 1 plane. The result is the Klein model of H? (see Figure 3). Geodesics in the hyperboloid model of H?
are intersections of the hyperboloid with planes in E>! that pass through (0, 0,0). These geodesics map to
the Klein model of H? as straight lines (in the euclidean sense).

Three-dimensional hyperbolic space H?, and indeed higher dimensional hyperbolic spaces, can be
modeled analogously to H?Z, but in higher dimensional ambient spaces. The generalised hyperboloid model
for d—dimensional hyperbolic space H is the set of points in Minkowski space with d space-like directions,
21, ..., 4, and one time-like direction w, given by {(z1, 2, ..., zg, w) € E&* | 9 _ 22 = w2 — 1,w > 0}.

2 Drawing points in H? on screen

In order to draw a point of H? on the screen, we need to understand the relationship between the location of
the point on the hyperboloid and us, the viewer, situated at the origin of the hyperboloid, (0,0,0,1) € E3!,
We are not actually viewing points in H?>, but we view their image in the tangent space at the origin — a copy
of E3 consisting of the tangent vectors of the hyperboloid at the origin. A point pys € H? is connected to
the origin by a parametrised geodesic ~y(t) that leaves the origin at t = 0 and intercepts pys at t = 1. Our
view of the same point pgs € E? should also be connected to us via a geodesic in E? (i.e. a straight line). The
velocity of the geodesic in H? at the origin 4(0), tells us where to find pgs — its direction is the direction in
which we must look to find pgs, and its magnitude indicates the distance between us (situated at the origin of
the hyperboloid) and pgs. The map we have described, taking points on the hyperboloid to points in R3, is
the inverse of the (riemannian geometry) exponential map. The exponential map goes in the other direction,
sending points in the tangent space of the hyperboloid at our location into the hyperboloid.

The correct thing to do is to use the inverse of the exponential map to draw points on screen, but we
don’t actually need to compute the absolute distance a point is from us. We merely need to know the relative
distance between two points in a given direction, so that nearer objects occlude those further away from
us. The Klein model is computationally cheaper to calculate — as it does not involve inverse hyperbolic
trigonometric functions — so we (and Weeks [5]) use it. Figure 4 shows a number of views of a honeycomb in
(i.e. a tiling of) H? drawn using this algorithm? [4].

Note, that virtual reality implementations use separate renderings for the left and right eyes to give a three-dimensional view of
the environment (see further Section 6 of Ref. [1]).

(a) Cubes.

(c) Only the triangular faces of the truncated (d) The view from inside the “polyhedron” in
cubes. the centre lower left of Figure 4c.

Figure 4: Views of the {4, 3,6} honeycomb. We draw the honeycomb out to a depth of six steps from the central cube.

3 Moving through H3

At each timestep of our simulation, the virtual reality headset (the HTC Vive) outputs both position and

orientation information corresponding to the location of your head in the room and the direction in which you

are looking. We can use this information in several ways, depending on what kind of experience we wish to
3

create.

There is freedom in how to map the headset data of the user’s motion in the room into the hyperboloid
model. One possibility would be to map the position and orientation data onto the Poincaré ball model, and
show the in-space view of H? from that position and orientation. Although, this might not be the most obvious
choice, it would allow us to map an infinite space into the finite confines of a room in E3. Unfortunately, this
sort of mapping violates a property of movement that humans are quite attached to, which is consistency in
distance. The user would find that two motions of their head of the same magnitude would correspond to

3In the vast majority of virtual reality experiences, the position and orientation of the headset are mapped directly to the position
and orientation of a virtual camera in euclidean space. In our geometry simulations, we map orientation directly but treat position
differently. In our previous work Hypernom [2], there is no position tracking, but we map the headset’s orientation to both the
orientation and the position of the virtual camera in the three-dimensional sphere, S°.

vastly different translations within the simulation, depending on where in the room they are standing.

The approach we take here is to look at the relative motion of the headset, and move the virtual camera
in a corresponding way. Every timestep, we compare the headset’s current position to its previous position,
compute the difference, and move the virtual position by that vector. This has the advantage that your head’s
motions behave the same way no matter where you are. The disadvantage is that depending on your previous
movements, a location in real life might map to any location in the virtual space.

Although the trick of implementing graphics using the Klein model as we have described it only works
at the origin, it turns out that we can still use it as we move through the space. As in many computer graphics
implementations, we leave the viewer at the origin and translate the world around them to simulate the
viewer’s movement. The appropriate “translations” for us are isometries of H?. Infinitesimal translations are
given by the generators of the Lie group of the space and finite transformations are given by the (Lie theory)
exponential map®. The isometries of H? are isometries of E3! which preserve the hyperboloid and its metric.
These are elements of the group SO(3, 1). The translation by a vector dr = (dx, dy, dz) in the tangent space

o0

is given by the exponential exp(M) = > > %M" of the matrix

0 0 0 dr

_ 0 0 0 dy

M= 0 0 0 dz
de dy dz 0

Calculation of the series for the matrix exponential exp(IM) can be vastly simplified due to a trick pointed out
by Jeff Weeks. Note that M? = |dr|2M, and M* = |dr|?M?2, where |dr| = \/dx? + dy? + dz2. Then the
matrix exponential can be split into two sums:

2. |dr|?n2 sinh(|dr| |dr[2" 9 cosh(|dr|) — 1
— M= dr|"M = ——————M.
Z (2n —1)! o de| Z ‘ | |dr|?

n=1

Thus, the exponential map is given by

sinh(|dr|)M N cosh(|dr|) —

1
M?2.
|dr| |dr|?

expM =1Id +

When the user moves their head, the virtual reality headset detects this movement in the three-dimensional

euclidean space in which they live. The difference in position between two subsequent frames is some vector,

which gives us the translation of the user —dr.> We then generate the isometry exp(M), and apply it to all

the points of our simulated world before rendering the next frame. This moves the points of the world in the
hyperboloid by isometries, giving the correct sense in which the user moves through the world.

4 Decoration: the {4, 3,6} honeycomb and its colouring

Any three-dimensional manifold can be made by taking a polyhedron and gluing its sides together in some
way. Jeff Weeks’ Curved Spaces shows such a polyhedron for each manifold. For example, Figure 2a shows
the view from inside the three-torus, whose geometry is E3. In this case, the polyhedron is a cube with
opposite sides glued. We see a tiling (or honeycomb) of E? by cubes — which we get by “unwrapping” the
three-torus into space. This tiling has Schldifli symbol {4, 3,4}, meaning that the faces are squares (with 4

“This is similar to the riemannian geometry version of the exponential map, except that instead of converting a tangent vector (an
infinitesimal movement in some direction) into a point at the end of a geodesic segment, it converts a more general infinitesimal
motion into an isometry.

SNote that the sign of —dr is due to the fact that the sensors detect the displacement of the virtual reality headset as —dr, which
corresponds to moving the entire world by a vector with the same magnitude, but in the opposite direction, dr.

sides), the cells are made out of
these faces, with 3 around each ver-
tex, and there are 4 cells arranged
around each edge. Figure 2b shows
a different manifold with a hon-
eycomb in which four dodecahe-
dra meet around each edge. The
corresponding Schlidfli symbol is
{5, 3,4}, meaning that the cells are
made out of pentagons (5 sides),
with 3 around each vertex, and with
4 cells arranged around each edge.

Figure 5: Any colouring of the hypercube can be mapped onto a colouring of As our fourth ingredient, we
the {4, 3, 6} hyperbolic honeycomb.

(a) Colouring of the hypercube, view 1. (b) Colouring of the hypercube, view 2.

decorate H? with another honey-
comb of cubes, this time with Schléfli symbol {4, 3,6} (see Figure 4a). Here we have six cubes around each
edge, rather than four. A surprising feature of this honeycomb is that the cubes are no longer of finite size — it
turns out that the vertices must be infinitely far away. See [4] for more on this phenomenon.

For the euclidean honeycomb {4, 3,4} — with four cubes around each edge, if we truncate each of the
cubes by cutting off the corners, the revealed triangular faces form an octahedron arranged around each vertex
of the original honeycomb. If we do the same thing for our hyperbolic honeycomb, as in Figure 4b, the
triangular faces form an infinite tiling — the tiling of the euclidean plane with six triangles around each vertex.
In our visualisation, we can experience this directly. This is easiest to see if we remove the edges of the cubes,
leaving only the triangular faces, as in Figure 4c. These form strange-looking polyhedra at first sight: one
could believe that they are icosahedra, except that the vertex degree is six. If you put your head “into” one
of these polyhedra and look back out from the inside, the polyhedron becomes the tiling of the euclidean
plane, as we see in Figure 4d. In fact, these polyhedra correspond to horospheres in H>. These are “spheres”
centered on points on the boundary of H?, whose induced metric is the same as that of the euclidean plane —
which allows us to draw the regular tiling by equilateral triangles on them seen in Figure 4d.

In Figure 4, we colour the cells
using eight colours, in an interesting
pattern very special to the {4, 3,6}
honeycomb. This comes from the
observation that {4,3,6} is a kind
of branched cover of the {4, 3, 3}
honeycomb, in which three cubes
are arranged around each edge. The
honeycomb {4, 3,3} does not tile
hyperbolic space; rather it is a hon-
eycomb that tiles spherical space: it
is the same as the honeycomb we
get by radially projecting the cubi-
cal cells of the hypercube onto a
circumscribing three-sphere in four-
dimensional space. To be more precise, there is a continuous map, F’ say, from {4,3,6} to {4, 3, 3}, that
maps each cube of {4, 3,6} to one of the eight cubes of {4, 3, 3}. We assign a different colour to each of the
eight cubes of {4, 3, 3}, as in Figure 5, then colour each cube c of {4, 3,6} by the colour of F'(c). Patterns
in the colouring can be seen in Figures 4b and 4c: first that cubes opposite each other around an edge have

778

Figure 6: A monkey in each cube of the {4, 3,6} honeycomb. Note the ring
of six monkeys connected together around each edge of the honeycomb.

the same colour, and second that going in a straight line, from face to opposite face of each cube, we get
back to the same colour after four cubes. Any pattern drawn on the hypercube can be lifted to the {4,3,6}
honeycomb. For example, our sculpture, More fun than a hypercube of monkeys [3], puts a monkey in each
cubical cell of the hypercube. The lift of this sculpture is shown in Figure 6.

5 Virtual reality and the consequences of parallel transport

The physicality of a virtual reality system with positional tracking gives
us a visceral sense of some otherwise abstract phenomena. In a curved
space, for example, two neighbouring geodesics that start with parallel
velocities (tangent vectors) end up diverging if the space is negatively
curved, a phenomenon known as geodesic deviation. Suppose that in the
simulation, the user is standing on a floor consisting of a geodesic plane
in H®. When they walk forward in real life, in the simulation their head
follows a geodesic that starts out with velocity parallel to the floor, which
therefore diverges from the floor. This leads to the sensation that the floor
is falling out from under your feet (see Figure 7). Figure 7: The floor falls out from

When a vector is parallel transported along a curve, it moves through ~under your feet as you travel along
space along the curve staying parallel to itself while maintaining a constant 2 geodesic.
magnitude. To move along a manifold following a path in a given direction, we must know how the velocity
changes as we move parallel to the path. More formally, this is given by a directional derivative V x along
the vector X in the tangent space of the manifold. How might we go about constructing geodesic from this
notion? The answer is that a geodesic is a curve that parallel transports its own tangent vector.

Another, unexpected phenomenon we encounter in
the virtual reality experience stems from holonomy result-
ing from the parallel transport of other vectors. When we
experience the world, we are aware not only of the vector
that points in the direction we are looking but also of the
vectors that point up and down, left and right. Moving
along a path in the virtual reality H? space, these vectors
get transported as well. We have a fixed sense of which
direction “up” is, but this direction can rotate with respect
(a) Parallel transport (b) Parallel transport rotates the to the world (see Figures 8 and 9). In particular, this means

4
_TL}

in E%. frame in H?, shown in the that certain movements in E® produce a rotation of the
Poincaré disk model. floor of a room drawn in H?, so that it no longer appears
Figure 8: Walking around an edge. to coincide with the real-life floor the user is walking on.

These phenomena make H? a somewhat confusing place to live in, at least as a visitor from E. There
may be ways to “hack” the simulation to solve the problems of the virtual floor falling away or rotating away
from the real-life floor. To “fix” the angle of the floor changing, we could artificially rotate the virtual view
so that the orientation of the virtual camera relative to the virtual floor always agrees with the orientation of
the headset relative to the real-life floor. Alternatively, we could avoid both problems by tracking the point
directly between the user’s feet rather than their head as it moves through space, and for every frame offset
the position of the camera up from the feet to the head. These are both somewhat artificial fixes however, and
would preclude the user from experiencing the effects of parallel transport, geodesic deviation and holonomy.

A more natural way to have the floor stay where it should be is to switch from H?3 geometry to the

product space H? x E — the cartesian product of the hyperbolic plane with the euclidean line. We discuss our
simulation of this geometry in our second paper in this volume [1].

(b) H? after moving right 0.5 hyperbolic units.

(e) H? after moving down 0.5 hyperbolic units.

Figure 9: Holonomy is the rotation of a ref-
erence frame after traversing a loop in curved
space.

6 Future directions: seeing your hands

Moving objects in non-euclidean spaces presents several inter-
esting challenges. In addition to the headset, the HTC Vive can
also track the position and orientation of hand-held controllers.
In most applications that use the controller, a virtual version of
the controller is visible in the virtual space. This helps greatly
with the user’s sense of embodiment in the space, since they can
see the positions of their hands. The controller also has various
buttons and triggers for other forms of interaction, for example
grabbing on to a virtual object near to the virtual position of the
controller, allowing the object to be moved in space. We plan
to add this kind of interactive element to our simulations.

An obvious way to try to implement a controller would be
to track the change in its position from frame to frame, convert
that into an isometry, and move the virtual controller by that
isometry. However, this would run into problems with geodesic
deviation, similar to the floor falling away from the user: as you
walk forward, your hand would appear to diverge from your
path, sliding off into the distance. Instead, we plan to update the
position of the controller each frame as an offset isometry from
the position of the headset. With the correct choice of scaling
between real life euclidean space and our virtual space, this
should mean that the controller appears in a location consistent
with the user’s sense of proprioception.

References

[1] Vi Hart, Andrea Hawksley, Elisabetta A. Matsumoto, and
Henry Segerman. Non-euclidean virtual reality II: explo-
rations of H? x E. In Proc. Bridges 2017. Tessellations
Publishing, 2017.

[2] Vi Hart, Andrea Hawksley, Henry Segerman, and Marc ten
Bosch. Hypernom: Mapping VR headset orientation to
S3. In Proc. Bridges 2015, pages 387-390. Tessellations
Publishing, 2015.

[3] Vi Hart and Henry Segerman. The quaternion group as a
symmetry group. In Proc. Bridges 2014, pages 143—150.
Tessellations Publishing, 2014.

[4] Roice Nelson and Henry Segerman. Visualizing hyperbolic
honeycombs. Journal of Mathematics and the Arts, 11(1):4—
39, 2017.

[5] Jeff Weeks. Curved Spaces. a flight simulator for
multiconnected universes, available from http:/www.
geometrygames.org/CurvedSpaces/.

[6] Jeff Weeks. Real-time rendering in curved spaces. IEEE
Computer Graphics and Applications, 22(6):90-99, 2002.

http://www.geometrygames.org/CurvedSpaces/
http://www.geometrygames.org/CurvedSpaces/

	The Model of H3
	Drawing points in H3 on screen
	Moving through H3
	Decoration: the {4,3,6} honeycomb and its colouring
	Virtual reality and the consequences of parallel transport
	Future directions: seeing your hands

