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Abstract

We investigate constructions made from magnetic spheres. We give heuristic rules for making stable constructions of
polyhedra and planar tilings from loops and saddles of magnetic spheres, and give a theoretical restriction on possible
configurations, derived from the Poincaré-Hopf theorem. Based on our heuristic rules, we build relatively stable new
planar tilings, and, with the aid of a 3D printed scaffold, a construction of the buckyball. From our restriction, we
argue that the dodecahedron is probably impossible to construct. We finish with a simplified physical model, within
which we show that a hexagonal loop is in static equilibrium.

Introduction

Magnetic spheres are a popular desk toy that were often sold under the trade names Buckyballs, Neocube,
Nanodots or Zen Magnets, until their sale as a toy was banned in many countries for safety reasons. They are
often used to construct polyhedra and other geometric objects. See Figure 1.!

One could build a model of a polyhedron from, say, wooden spheres, glued together in such a way that
there is a sphere corresponding to each vertex of the polyhedron. However, our spheres are magnets, and we
want the magnetic forces to hold the structure together, with no glue required. Part of the aesthetic appeal of
these magnetic spheres is that no other methods of attachment are required to build beautiful sculptures. So,
in addition to the locations of the spheres, we also need to specify the orientation of the magnets — which way
the poles point. In this paper, we investigate the following question:

Which polyhedra are possible to construct from magnetic spheres?

Figure 1: The tetrahedron, octahedron, cube and icosahedron

To be precise about what we mean by “construct a polyhedron” we introduce the following definition.

Definition. To any configuration of magnetic spheres we associate the incidence graph, which is a graph
embedded in three-dimensional space with a vertex corresponding to each magnetic sphere, and an edge
between two vertices whose corresponding spheres are in contact. We say that we have a construction of a

"For many more examples, see http://www.flickr.com/groups/magnetspheres.


http://www.flickr.com/groups/magnetspheres

polyhedron from magnetic spheres when the polyhedron is the incidence graph of a stable configuration of
magnetic spheres.

In the sense of this definition, Figure 1 shows construc-
tions of all but one of the platonic solids. To the best of
our knowledge, nobody has been able to construct a dodec-
ahedron. Note that the construction in Figure 2 is not a
dodecahedron in our terminology; rather this is a cantellated
dodecahedron, also known as the rhombicosidodecahedron.
Cantellation shaves off every edge and vertex of a polyhedron,
producing a quadrilateral where each edge of the original poly-
hedron was, a new face where every vertex of the original
polyhedron was, and shrinking (but not eliminating) the faces
of the original polyhedron.

Some Basic Constructions Figure 2: A cantellated dodecahedron construc-
tion, and part of its incidence graph.

A line of magnets can be built, with the magnets all pointing in the same direction, sitting head to tail. Two
lines can be joined parallel to each other in two ways; pointing in the same direction, or in opposite directions.
See Figures 3a and 3b. Two lines are staggered if they have been joined parallel with their poles pointing in
the same direction, making a row of alternating triangles. Two lines are in step if they are joined with their
poles pointing in opposite directions, making a row of squares. A loop of magnets is a polygon in which each
magnet is aligned head to tail. A saddle of magnets is a polygon in which magnets alternate between pointing
into the polygon and out of it. A saddle must therefore have an even number of magnets in it.

Note that loops, and saddles in particular are somewhat fuzzy concepts: the directions of the magnetic
poles relative to a polygon can be altered to an extent, depending on the surrounding magnets, while still
playing a similar role in a structure.

(a) Staggered. (b) In-step. (c) Hexagonal loop. (d) Square sad-
dle.

Figure 3: Basic constructions.

Loops and Saddles

Generally, people combine staggered and in-step strips, and loops together to build larger constructions such
as those shown in Figure 4. In this paper we only consider structures where the centers of the magnets
lie on a sphere or a plane. The interactions between magnets in denser structures are more complicated.
Constructions involving staggered and in-step strips also seem to be difficult to analyse, so we put these aside,
and concentrate on constructions made from loops.



Figure 4: A selection of sculptures built from magnetic spheres.

The cantellated dodecahedron shown in Figure 2 is made from 12 pentagonal loops, both conceptually
and physically: an easy way to build it is to make the pentagonal loops first and then put them together. Note
that the cantellated dodecahedron also has 20 triangular loops, and 30 square saddles. In principle then, it
should be possible (but much more difficult) to build the cantellated dodecahedron by making the 20 triangular
loops first, then putting them together. Square saddles are not stable on their own: they immediately deform
to become square loops.

We propose the following heuristic rules for making stable polyhedral structures and planar tilings:

1. Loops of any size are stable.
2. Square saddles are stable when supported by neighbouring loops.

3. Hexagonal saddles are less stable, and higher order saddles even less so. (In fact, we have no examples
of stable structures with higher order saddles!)

The construction method of combining pre-made loops is a simple and reliable method to build surface-
like constructions, but it precludes other interesting possibilities. We introduce a number of apparently new
planar designs which use loops and saddles, but which cannot be made entirely from pre-made loops. See
Figure 5.

The hexagonal tiling in Figure 5a has hexagonal loops in both directions, and hexagonal saddles. This
structure is quite fragile — in fact it seems difficult to build the tiling any further out than as shown in the



(a) Hexagonal tiling. (b) (4,8,8) tiling. (c) (4,6,12) tiling.

Figure 5: New planar designs. The red arrows show the directions of the poles of the magnets, blue dots are
anticlockwise loops, green dots are clockwise loops, and yellow dots are saddles.

figure. The tiling of octagons and squares in Figure 5b is more stable, but is still challenging to build. The
tiling in Figure 5c can be made from loops alone, although the section of the pattern shown, as opposed to the
infinite tiling, cannot. We’ll return to a non-planar, polyhedral design (the buckyball) in a later section, after
developing some theory.

A Theoretical Restriction on Loops and Saddles

Let’s say we wish to build a polyhedron by first selecting the polygons we wish to use (which will be either
loops or saddles), and degree of the vertices. We know that the Euler Characteristic equation

xX=v—e+f=2 (1

must hold, where v, e and f are the numbers of vertices, edges and faces respectively. There is however
another general rule that must be satisfied, coming from considering the magnetic field over the surface of the
polyhedron.

Definition. Let a vector field V' be defined on a differentiable surface M. Let x be an isolated zero of V', and

D a closed disk centred at x, such that z is the only zero of V' in D. The index of V at x, index,,(V), is the

degree of the map u : D — S! from the boundary of D to the circle given by u(z) = I“;Eg\ .

In other words, one walks around the zero of the vector field, keeping track of which way the vector field
is pointing. The index is the count of the number of times (with sign) that the vector field turns in the same
direction as we are walking around the zero. Figure 6 shows examples of vector fields in the plane, that have
zeroes with various index values.

Theorem (Poincaré-Hopf [3, p134]). Let M be a compact orientable differentiable surface. Let V be a vector
field on M with isolated zeroes (at) x;. If M has boundary, then M points in the outward normal direction
along the boundary. Let x (M) be the Euler Characteristic of M. Then

Zindex$i(V) = x(M).

From the Poincaré-Hopf theorem we can add another general restriction on what kinds of loops and
saddles can be used to tile a polyhedron made from magnetic spheres. The magnets induce a vector field on a
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(a) A zero with index 1. (b) A zero with index —1. (c) A zero with index —2.

Figure 6: Example indices of zeroes of vector fields.

surface that passes through their centers. In practice, this vector field is very complicated — in the appendix
we look at a simplified physical model. However, under certain conditions we may consider an even simpler
vector field that helps us understand the possibilities. We construct our simplified vector field guided by
Figure 6: in each loop of magnets we put a zero of index +1 at its center, in each square saddle a zero of
index —1 at its center, in each hexagonal saddle a zero of index —2 at its center, and in general in each 2n-gon
saddle a zero of index 1 — n at its center. We extend our vector field to cover the surface our polyhedron is
built on with no further zeroes. Then the Poincaré-Hopf theorem gives a further restriction on the number and
kinds of loops and saddles that we can use.

For example, the cantellated dodecahedron in Figure 2 has 12 pentag-
onal loops, 20 triangular loops, and 30 square saddles, so the indices add
up to (12 4 20)(+1) 4+ 30(—1) = 2, which is the Euler characteristic of the
sphere. In general any polyhedron with unit edge lengths can be cantellated
to produce a new polyhedron that can be made from spherical magnets: the
faces and vertices of the original polyhedron become loops (in opposite direc-
tions), and the edges become square saddles. The Poincaré-Hopf condition
for the cantellated polyhedron is satisfied because it is the same equation as
the Euler characteristic for the original polyhedron.

(@) Truncated octahedron. Figures 7a and 7b show the truncated octahedron (8 hexagonal loops
and 6 square saddles) and the truncated cuboctahedron (6 octagonal loops, 8
hexagonal loops and 12 square saddles). Neither of these are cantellations of
simpler polyhedra, although they are closely related to cantellated polyhedra.

]

The platonic solids, as shown in Figure 1, don’t fit into our system
of loops and saddles very well; rather they are made from staggered and
in-step strips, with the exception of the tetrahedron, which is too small for
any of these two-dimensional analyses to apply. The cube can be made
from a rolled up four-long and two-high in-step strip, and the octahedron
can be made from a rolled up three-long and two-high staggered strip. The
icosahedron can be made by rolling up a five-long and two-high staggered
Figure 7: Polyhedra made from Strip into a cylinder, forming ten of the twelve vertices, then putting the two
loops and saddles. polar magnetic spheres in place with no real thought as to their orientations.
All of these are stable because they are made from the very stable staggered and in-step strips. In contrast, the
dodecahedron has pentagonal faces so cannot be made from staggered or in-step strips, and it also cannot be

(b) Truncated cuboctahedron.



built from loops and saddles: there can be no saddles at all since no face has an even number of sides. By the
Poincaré-Hopf theorem, if we have no saddles then we can only have two loops, not the 12 that are needed
for the dodecahedron. One could try having two loops forming opposite faces of the dodecahedron, with the
remaining ten equatorial pentagons having magnets aligned so that they all point in the same direction around
the sphere. (If the loop pentagons are near the north and south poles of the sphere, then we would have all
magnets pointing east, say.) However, these equatorial pentagons are not stable, and the structure collapses.
This leads us to suspect that a dodecahedron is impossible to build.

Note that the Poincaré-Hopf theorem can be made to apply to planar tilings, even though the plane is not
a compact surface. If we take a repeating unit of a planar tiling, then we can (abstractly) roll it up to form a
torus, which then has Euler characteristic zero, and we can apply the same analysis as for the spherical case.

The Buckyball

We spent a significant amount of time trying to build a truncated icosahedron (also known as a buckyball)
from spherical magnets. Here the faces of the polyhedron consist of 12 pentagons and 20 hexagons. The
pentagons must be loops since they cannot be saddles, and then this determines the orientation of all 60
magnetic spheres, up to deciding whether the pentagons are oriented clockwise or anticlockwise on the sphere.
However, neighbouring loops that have opposite orientation meet at chains of magnets that are in staggered
formation, whereas loops that have the same orientation meet at chains of magnets that are in-step (see Figures
3a and 3b). That is, locally two pentagonal loops with opposite orientations will not stably touch at only one
point, as required in the buckyball. So, all loops must have the same orientation.

In the Poincaré-Hopf theorem, the pentagons contribute 12(+1) to the sum. This suggests that half of
the hexagons should be saddles, contributing 10(—2) and half of the hexagons should be loops, contributing
10(+1). This is similar to the hexagonal tiling in Figure 5a, where a third of the hexagons are clockwise
loops, a third are anticlockwise loops, and the remaining third are saddles. However, on the buckyball, there
is no similar symmetric way to split the hexagons into two subsets.

Figure 8: A 3D printed scaffold, and a buckyball of buckyballs arranged upon it.

Nevertheless, with a 3D printed scaffold on which to build the buckyball, we were able to place 12
pentagonal loops and form a somewhat stable structure, see Figure 8. Given our experiences with how fragile



the structure is, we don’t think it would survive without the scaffold.” This example doesn’t fit terribly well
into our loops and saddles model. Perhaps one could accommodate it by positing that in addition to a saddle
at the center of each hexagon, there is a loop at the midpoint of each edge between two hexagons. Then we
get 12(+1) 4+ 20(—2) + 30(+1) = 2. However, it might be better to see the buckyball as an edge case, on the
boundary of the set of tilings well described by our model.
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A Physical Model

In this appendix, we describe a model of the physical interactions between the magnets, and work out some
details for a planar example. This model is itself a simplified approximation of the full physical definition.

Definition. The moment, mi, of a magnet is a vector whose magnitude represents the strength of the magnet,
and whose direction points from pole to pole (conventionally, south to north).

The moment of a magnet determines how that magnetin- _ ~_w w
teracts with other magnetic fields. In our case, we assume that w‘\\ NANAY
each magnet is identical, and therefore of equal strength. Since
each sphere is a permanent magnet, we assume that the mag- === >
netisation is independent of applied magnetic fields. Outside of ~ {x2= =
the sphere, the magnetic field can be treated as that of a dipole Y
and inside it is in the direction of the moment [4, p70]. //

Definition. Let ;4o be the permeability of free space (a physical \\E\\\i\\\
constant), 7 the position vector (relative to the dipole), 17 the NN =
moment. Then the magnetic field, B,ofa dipole is given by = ff -
iy = o (1) _ === NS S=

w PP 2, NN
AP

(See [1, p149].) Note that the field dies off quickly with Figure 9: A horizontal slice of the external field
|71, which allows us to view configurations as a local problem; ¢ one magnet with moment 1w = (0, 1).

generally one can consider adjacent magnets as affecting each
other, while more distant magnets are insignificant. The magnetic fields add with simple vector addition.

Example (Hexagonal loop). The magnetic field for a hexagonal loop (or rather, a planar slice of the field)
is shown in Figure 10. Note that there is not a zero of index +1 at the center, as we might have predicted.
Instead, there is a zero of index —b5, but there also seems to be six zeroes of index +1 near the equators of the
magnets. The sum of the indices within the loop is then 41, the same as in our simplified model.

2Also see https://www.youtube.com/watch?v=DXnEbyo77wI for a video of this structure.
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A magnet in a magnetic field will experience a rotational
force (i.e. torque) that attempts to align it with the field. We
assume that the magnet is acted on by the magnetic field as if
the magnet were a single dipole.

Definition. The torque, T, exerted by a field §2 on a dipole
moment 177 18
7= 777L1 X B2 (3)

The torque vector gives the axis about which the magnet
will rotate, in the direction given by the right hand rule. Hence
the torque is zero if the moment is aligned with the field, and
nonzero otherwise. In our case, ]§2 is the net magnetic field
from all other dipole moments except 7731. A magnet’s own
field does not act on itself.

Assuming that the positions of the magnets are fixed, we
say that a configuration is in rotational equilibrium if the torque
on each magnet induced by the net magnetic field of the other
magnets is zero. In our hexagonal loop example, we see that
the red arrows of the moments of the individual magnets are
aligned with the field from the other magnets, so there is no
torque on the magnets, and, assuming that the positions of the
magnets are fixed, the configuration is in rotational equilibrium.

For any set of positions of n magnets, there is at least
one configuration with these positions which is in rotational
equilibrium. We imagine the magnets held in place, but free
to rotate. The space of possible configurations with the given
magnet directions is (52)", which is a compact space. The
potential energy of the system is a continuous function on this
Figure 10: Magnetic field from a hexagonal —Space, which is therefore bounded and so has a minimum, at
loop on the plane of the loop. Inside each mag- which the configuration will be in rotational equilibrium.

net, only the total of the contributions to the . ~ R .
magnetic field from all other magnets is shown. Definition. The force F exerted by a field B on a dipole mo-

Outside of the circles, the total contribution ment my is . .
from all magnets is shown. Figure 10b shows a F =V(my - Bs) 4)
closeup view of the center of the loop.

A configuration is in static equilibrium if the external
torques and the external forces acting on each magnet both sum to zero. To fully understand which con-
figurations of magnets can be built as sculptures, we would additionally need stable equilibrium. That is,
that the arrangement of magnets returns to the configuration after small disturbances. Earnshaw’s Theorem
[2] rules out stable equilibria considering only the magnetic forces, so we must at minimum also consider
normal contact forces. The normal contact force acts on any two spheres in contact and prevents them from
interpenetrating. In general, we would also need to pay attention to the effects of friction and gravity, and
their strengths relative to each other and the magnetic forces.

When we calculate the magnetic forces on the magnets in the hexagonal loop in Figure 10, we find that
they all point towards the center of the loop. In this case, the normal contact forces between the spheres
counteract the magnetic forces, so we conclude that the hexagonal loop is in static equilibrium, without
requiring friction forces. Showing that the configuration is in stable equilibrium is however beyond the scope
of this work.



