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Abstract—Interference alignment (IA) is widely regarded as
a promising interference management technique for wireless
networks and its potential is most profound in interference-
intensive environments. This motivates us to study IA for
multicast communications in multi-hop MIMO networks, which
are rich in interference by nature. We develop a set of linear
constraints that can characterize a feasible design space of
IA for multicast communications. The set of linear constraints
constitutes a simple mathematical model of IA that allows
us to conduct cross-layer multicast throughput optimization in
multi-hop MIMO networks, but without getting involved into
the onerous signal design at the physical layer. Based on the
mathematical model of IA, we formulate a multicast throughput
maximization problem and develop an approximation solution
that can achieve (1− ε)-optimality. Simulation results show that
the use of IA can significantly increase the multicast throughput
in multi-hop MIMO networks and the throughput gain increases
with the volume of multicast traffic and the number of antennas.

Index Terms—Multicast communications, interference align-
ment, MIMO, multi-hop wireless networks.

I. INTRODUCTION

Interference alignment (IA) is a promising technique to
manage mutual interference in wireless networks. Since its
inception, IA has received much attention in the information
theory community and has been widely applied to a wide range
of channels and networks (see, e.g., [1]–[3], [5], [10]). The
most significant theoretical result of IA so far was developed
by Cadambe and Jafar in [1], which showed that the K-
user interference channel can achieve K/2 degrees of freedom
(DoF). This indicates that the total DoFs of the interference
channel can increase linearly with the number of users and
the total throughput of a wireless network may not be limited
by interference. In addition to its theoretical advances, there
are also active efforts that are devoted to feasibility validation
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and performance evaluation of IA in practical networks. For
instance, Gollakotta et al. in [2] demonstrated that IA can be
applied to WLAN to help increase network throughput sig-
nificantly. El Ayach et al. in [3] demonstrated experimentally
that IA can achieve its theoretical throughput gain in MIMO-
OFDM systems.

To date, the benefits of IA has been successfully demon-
strated from both theoretical and practical perspectives. A
natural question to ask is: in what environment will the benefits
of IA be most significant? Based on our observation and
understanding, we believe that the potential of IA is most
profound in interference-intensive environments. One of such
environments is multicast communications, where there are
many concurrent multicast groups and each multicast group
has one source node and many destination nodes. A large
number of links are active simultaneously in this environment,
creating a large amount of interference in the network. In
addition to being a good environment for IA, multicast is also
an important form of communications as it encompasses both
unicast and broadcast as its special cases. This motivates us
to study IA for multicast communications.

Given that IA in the spatial domain (with MIMO) is most
practical, we will focus on the spatial-domain IA in MIMO
networks. Within this universe, although there is a large
volume of research efforts in the literature, little progress has
been made so far for IA for multicast communications in
multi-hop MIMO networks (see related work in Section II).
This is not surprising, as there exist several technical barriers,
which we describe as follows. First, ensuring feasibility of
IA for multicast at the physical (PHY) layer is not a trivial
problem. By feasibility, we mean that there exist precoding and
decoding vectors for each data stream in the network so that
it can be transported free of interference. As the construction
of precoding and decoding vectors requires complex matrix
manipulations, it is not an easy job to ensure IA feasibility,
especially in a multi-hop network environment. Second, main-
taining tractability (i.e., acceptable complexity) in addition to
feasibility brings in another level of challenge. The design of
precoding and decoding vectors for each data stream requires
complex matrix manipulations, which are notoriously difficult.
For networking research, what we need is a simple abstraction
of IA capabilities without getting distracted by onerous matrix
manipulations. This calls for a simple mathematical model that
is provably feasible at the PHY layer. So far such a simple
model for multicast IA does not exist. Last but not least, the
design of IA for multicast networks is always coupled with
MIMO’s interference cancellation (IC) and spatial multiplex-
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ing (SM), as well as link scheduling in the network. Such
a cross-layer design is necessary to maximize the network
throughput, but it also introduces significant complexity in
problem formulation and solution procedure.

To address these challenges, we propose to classify mutual
interferences in the network into two categories: Strong in-
terferences and weak interferences. Strong interferences will
be handled by MIMO’s IA and IC capabilities and link
scheduling, while weak interferences will be simply treated
as noise at each receiver. Based on the concept of strong
and weak interferences, the contributions of this paper can
be summarized as follows:
• We derive a set of linear constraints to characterize a fea-

sible design space of IA for multicast communications in
multi-hop MIMO networks. The set of linear constraints
constitutes a simple mathematical model of IA that allows
us to perform multicast throughput optimization from
a networking perspective but without getting involved
into onerous signal design at the PHY layer. We show
that as long as the set of linear constraints are satisfied,
there always exist precoding and decoding vectors at the
PHY layer that can support the transportation of all data
streams in the network free of strong interferences.

• Based on mathematical model of multicast IA, we de-
velop a set of cross-layer constraints to characterize
the interaction of IA, IC, SM, and link scheduling. We
formulate a multicast throughput maximization problem
to study the impact of IA. For the nonlinear constraints in
the formulation, we propose a linearization solution and
prove that our linearization solution can achieve (1− ε)-
optimality of the original problem.

• We use simulation to study the impact of IA on multicast
throughput in multi-hop MIMO networks. Numerical
results show that the use of IA can significantly increase
multicast throughput. Furthermore, the throughput gain
of IA increases with the size of multicast group and the
number of multicast sessions.

The remainder of the paper is organized as follows. In
Section II, we review related work. In Section III, we develop
the system model by presenting a motivating example and
characterizing a feasible design space of IA for multicast
communications. In Section IV, we formulate a multicast
throughput maximization problem to study IA in multi-hop
MIMO networks. Section V shows how to linearize the
nonlinear constraints in our optimization problem. Section VI
presents our simulation results. Section V-C offers discussions
and Section VII concludes the paper.

II. RELATED WORK

In the literature, there are an overwhelmingly large number
of papers on IA in wireless networks. As this paper studies IA
for multicast communications in multi-hop MIMO networks,
we focus our literature review on the following two thrusts:
(i) IA in multi-hop network, and (ii) multicast in MIMO
networks.
IA in multi-hop networks. The concept of IA was coined by
Jafar and Shamai for the two-user X channel [5]. The most

significant result was developed by Cadambe and Jafar in [1],
where they showed that the K-user interference channel could
achieve K/2 DoFs. Since then, the results of IA have been
developed for a variety of channels and networks, such as the
K-user MIMO interference channel [6], the X network with
arbitrary number of users [7], MIMO channel [3], [4], [8],
ergodic capacity in fading channel [9], cellular network [10]–
[13], and practical implementations [2], [14].

While there are many papers on IA for single-hop networks
from information-theoretic perspective, the advance of IA
for multi-hop networks remains scarce. In [15], Li et al.
described the idea of IA through several examples to illustrate
its benefits. However, the key concept of IA (i.e., aligning
the interfering signals from different unintended transmitters
to the same direction at each receiver) was not incorporated
into their algorithm and was absent in the final solution. In
[16], Abdel-Hadi and Vishwanath studied multicast IA for
“multihop” single-antenna networks, but “multihop” in their
work means two-hop only. It remains unclear how to extend
their multicast IA scheme to general multi-hop (more than two
hops) networks. In [17], Gou et al. studied IA in a two-hop
network, where each node (source, relay, and destination) has
two antennas. Due to the special setting, their results cannot
be extended to a general multi-hop network. In [18], Zeng
et al. developed an IA model for MIMO networks and used
the model to solve unicast throughput problem in a multi-hop
MIMO network. But their results are limited to unicast traffic.
[19] presents a comprehensive study of the challenges and
research directions on IA in multi-hop wireless networks.
Muticast in MIMO networks. There is a large body of efforts
in the literature that studied multicast communication in multi-
hop wireless networks. However, most of them focused on
multicast in single-antenna wireless networks. To date, results
on multicast in MIMO networks remain limited. In [20],
Ge et al. studied multicast communications in both single-
antenna and MIMO networks, with the objective of improving
multicast throughput and reliability. However, their analysis
and proposed multicast transmission scheme were limited to
single-hop networks. In [21], Xu et al. proposed an adaptive
resource allocation (ARA) scheme for multicast communica-
tion in MIMO-OFDM cellular networks. Their ARA scheme
was tailored for cellular networks with a base station and
multiple users and could not be applied to multi-hop MIMO
networks. In [22], Jiang et al. studied a multicast problem in ad
hoc MIMO network where a source node attempts to share a
streaming message with all nodes in the network via some pre-
defined multi-hop routing tree. They proposed an algorithm
to determine the interference-aware scheduling scheme for
a set of time slots, with the objective of optimizing the
network connectivity. In [23], Rao et al. studied IA in MIMO
interference multicast networks under partial channel state
information (CSI) feedback, with the aim of minimizing the
CSI feedback cost while satisfying IA feasibility constraints
with a given DoF requirements. Although these two papers
( [22] and [23]) considered interference in multicast MIMO
networks, their objectives are different from ours in this paper.
In [24], Gao et al. studied a multicast communication problem
in a multi-hop MIMO network where each node was equipped
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TABLE I: Notation.

Constant symbols
ε A given approximation error
B A large constant integer
Φ The range of strong interference
F The number of sessions in the network
N The number of nodes along multicast trees in the network
N The set of nodes along multicast trees with |N | = N
A The number of antennas at a node
T The number of time slots in a frame
W Network bandwidth
Ps The transmit power of an active transmitter
Pn The noise power at a receiver
Gij The gain of the channel between transmitter i and receiver j
Sf The source node of session f
Df The set of destination nodes for session f
Fi The set of multicast sessions that use node i as a root or an

internal node along their multicast tree
Ri The set of intended receivers of transmitter i
Tj The set of intended transmitters of receiver j
Pj The set of nodes that may strongly interfere with node j
Qi The set of nodes that may be strongly interfered by node i
Hji The channel matrix between node j and node i
uk
i The precoding vector of the kth stream at transmitter i

vk
ij The decoding vector at receiver j that is used to decode

the kth stream from transmitter i ∈ Tj
Optimization variables

xi(t) xi(t)=1 if node i is transmitter in time slot t and 0 otherwise
yi(t) yi(t)=1 if node i is receiver in time slot t and 0 otherwise
r(f) The end-to-end data rate of session f
ci(t) The achievable outgoing rate of node i in time slot t
cki (t) The achievable rate of stream k at node i in time slot t
pki (t) The transmit power for the kth stream at node i in time slot t
zi(t) The number of outgoing data streams at node i in time slot t
λki (t) The activity of the kth stream at node i in time slot t
αik(t) The number of interfering streams from node i that to be

aligned at node k in time slot t
γkij(t) The effective SINR at node j for receiving the kth stream

from node i in time slot t
rmin The minimum achievable rate among all multicast sessions

with a cognitive radio (CR). The objective was to minimize the
required bandwidth while meeting the throughput requirement
of each session. In their work, only MIMO’s IC capability was
considered while MIMO’s IA capability was not explored.

III. SYSTEM MODEL

A. A Motivating Example
In MIMO networks, through proper signal design at the

transmitter side, multiple interfering signals from different
transmitters can be aligned to the same direction at a receiver.
As a result, those multiple interfering signals can be canceled
by just one DoF. This idea has been demonstrated successfully
in a number of prior works (see, e.g., [1]–[3], [10]). We ob-
serve that the effectiveness of IA is most profound when (i) the
number of interfering signals at a receiver is significant, and
(ii) the interfering signals can be aligned into some common
directions. A natural question to ask is: in what environment
these two conditions are most likely to occur. An answer that
comes across naturally is multicast communications, where
there are multiple concurrent multicast groups, with each
group consisting of multiple users. In what follows, we use an
example to illustrate IA in multicast communications. Table I
lists the notation that we use in this paper.

Consider the network in Fig. 1, where each node has 2
antennas (DoFs). We use solid arrow line to represent an
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Fig. 1: An example that illustrates IA for multicast.

intended transmission and a dashed arrow line to represent
interference in all figures in this paper. In Fig. 1, we have
three multicast groups: from N1 to {N4, N5}, from N2 to
{N4, N6, N8}, from N3 to {N7, N8}. For each multicast
group, one data stream is sent from the source to its destination
nodes. We assume that the interference from N1 to N8 and
from N3 to N4 is negligible due to the long distance path
loss. Among the five receivers, N5, N6, and N7 receive one
desired data stream and two interfering streams as shown in
the figure. Without using IA, the desired data stream at N5,
N6, and N7 cannot be decoded free of interference, due to the
existence of two interfering streams.

To show how IA makes it possible to send three data streams
in the three multicast groups, we design precoding vectors for
the three transmitters (N1, N2, and N3) as follows:

u1
1 := eigvec(H−1

61 H63H
−1
53 H52H

−1
72 H71) ,

u1
2 := H−1

72 H71u
1
1 ,

u1
3 := H−1

63 H61u
1
1 ,

(1)

where uki is the precoding vector of the kth transmitted data
stream at node Ni (i = 1, 2, 3); Hji is the channel matrix
between node j and node i, which is assumed to have full rank
throughout the paper; eigvec(H) is an eigenvector of square
matrix H; and operation “:=” means that two nonzero vectors
are in the same direction, that is, u1 := u2 if and only if there
exists a nonzero complex number a such that u1 = au2.

By using the above precoding vectors at transmitters N1,
N2, and N3, we have the following observations on the
interference at receivers N5, N6, and N7. At receiver N5,
the interference from N2 is in the direction of H52u

1
2 and

the interference from N3 is in the direction of H53u
1
3. It is

easy to check that these two interferences now align to the
same direction (i.e., H52u

1
2 := H53u

1
3). Similarly, at receiver

N6, we can verify that the interferences from N1 and N3

are aligned to the same direction, i.e., H61u
1
1 := H63u

1
3.

Finally, at receiver N7, we can verify that the two interfering
streams from N1 and N2 are aligned to the same direction
(i.e., H72u

1
2 := H71u

1
1). In summary, Fig. 1 shows the IA

scheme resulting from the precoding vectors in (1), where
the two interfering streams at receivers N5, N6, and N7 are
successfully aligned to the same direction.
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With the precoding vectors in (1), we now show that the
desired data streams can be decoded free of interference at
each receiver (i.e., N4, N5, N6, N7, and N8). Denote vkij as the
decoding vector at node j to decode the kth data stream from
node i. In this example, receivers N5, N6, and N7 have one
decoding vector while receivers N4 and N8 have two decoding
vectors. To decode the desired data streams at each receiver,
we use the following decoding vectors:

(v1
14)T := [1 0][H41u

1
1 H42u

1
2]−1 ;

(v2
24)T := [0 1][H41u

1
1 H42u

1
2]−1 ;

(v1
15)T := [1 0][H51u

1
1 H52u

1
2]−1 ;

(v1
26)T := [0 1][H61u

1
1 H62u

1
2]−1 ;

(v1
37)T := [0 1][H71u

1
1 H73u

1
3]−1 ;

(v1
28)T := [1 0][H82u

1
2 H83u

1
3]−1 ;

(v2
38)T := [0 1][H82u

1
2 H83u

1
3]−1 .

(2)

We now characterize the relationship between the precoding
vectors in (1) and the decoding vectors in (2). Through simple
manipulation, it is easy to verify that the constructed precoding
and decoding vectors satisfy the zero-forcing IC requirements:

(vk
′

i′j)
THjiu

k
i =

 1 if vk
′

i′j is designed for the data stream,
of uki , i.e., (i′, k′) = (i, k),

0 otherwise.

Therefore, by using IA, three data streams can be sent to their
respective multicast groups free of interference.

B. Characterizing Feasible Design Space

In the motivating example, we demonstrated that a proper
design of precoding vectors at the transmitters can align the
interfering signals from different transmitters to the same
direction at each receiver. But we did not explain how to
design those precoding vectors. In what follows, we establish
the connection between the design of precoding vectors and a
feasible IA design space defined by a set of simple constraints.
We will show that as long as an IA scheme falls in the space
defined by a set of simple constraints, such an IA scheme is
always achievable at the PHY layer through a proper design
of precoding vectors.

Consider a multi-hop multicast network in Fig. 2(a). Each
node has the same number of antennas, which we denote as A.
Among the nodes, there are a set of multicast sessions. Each
session’s multicast tree is computed through some multicast
routing protocol (e.g., Open Shortest Path First protocol or
OSPF protocol [25]). Denote N as the set of nodes associated
with the multicast routing trees, with N being its cardinality
(i.e., N = |N |). Assuming transmission scheduling is done
within a time frame consisting of T time slots. Within one
time slot, only a subset of nodes may be active due to half-
duplex and interference constraints. Among the active nodes,
a transmit node may send its data to multiple receive nodes
(in one-hop multicast branch) simultaneously, as shown in
Fig. 2(b).
Strong Interference vs. Weak Interference. Referring to
Fig. 2(b), for a receiver in a time slot (see, e.g., N3), it
is being interfered by all its unintended transmit nodes in
the network. Interferences from different nodes have different
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Fig. 2: An example of multicast communications in a
multi-hop wireless network. In (a), there are 2 mul-
ticast sessions: from source N1 to multicast group
{N13, N17, N22, N23}, and from source N5 to multicast group
{N10, N13, N14, N19, N20, N21, N26, N27}. In (b), a set of
active transmitters and receivers in time slot t corresponding
to the two multicast sessions. The gray disk centered at N3 is
used to classify strong and weak interferences on node N3.

strengths at receive node N3. Those interfering nodes that are
closer to node N3 will have stronger interference on N3 than
those that are far away. To distinguish such difference, we
classify the interferences at a receiver into two groups: strong
interferences and weak interferences. For strong interferences,
we will nullify them using MIMO’s IA and IC capabilities
(zero-forcing). For weak interferences, we will simply treat
them as noise.

The next question is: how do we classify an interference
as strong or weak interference at a receive node? An accurate
approach is to classify an interference based on its strength
at its receiving node. However, the strength-based approach
requires both large-scale (path loss and shadow fading) and
small-scale (fast fading) channel information, which may not
be available at a receiver. Therefore, in this paper, we employ
a coarse approach by defining an interference range, which is
denoted as Φ. If the interfering transmitter is within a radius
of Φ from the receiver, then the interference is considered as a
strong interference. Otherwise, the interference is considered
as a weak interference. For example, for receive node N3 in
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i
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Fig. 3: An illustration of multicast IA constraints at transmit
node i. The intended transmitter of receive node k is not
shown.

Fig. 2(b), the interferences from the transmitters within the
shadowed area (e.g., N7, N9, and N12) are considered as
strong interferences, while the interferences from the transmit-
ters outside the disk (e.g., N14, N18, and N25) are considered
as weak interferences. Obviously, the setting of interference
range Φ is critical. A similar problem has been explored by
Shi et al. in [29], which gave a guideline on the optimal setting
of interference range. In Section VI, we will also explore the
optimal setting of Φ for multicast IA via numerical results.
Multicast IA Constraints: Transmitter Side. Consider a
transmit node in time slot t, say node i, in a multicast network
as shown in Fig. 2(a). For ease of explanation, we show
transmit node i and its neighboring nodes in Fig. 3. Denote
zi(t) as the number of outgoing data streams from transmit
node i. Denote Ri as the set of node i’s immediate next-hop
nodes along i’s downstream multicast tree(s). For example, for
node N2 in Fig. 2(a), we have R2 = {N3, N6}. For receive
nodes in Ri, we should ensure that all of them can receive the
data from transmit node i successfully.1 Based on interference
range Φ, denote Qi as the set of nodes that are strongly
interfered by transmit node i (see Fig. 3). Receive nodes
outside Qi are therefore considered to be weakly interfered
by transmit node i.

We now consider a receive node k ∈ Qi in Fig. 3. It
is interfered by zi(t) streams from transmit node i. It is
also interfered by the interfering streams from some other
unintended transmitters (e.g., transmitters h and l in Fig. 3). As
demonstrated in Section III-A, through a proper design of the
precoding vectors at transmit node i, we can align some (or all)
of these zi(t) interfering streams to other interfering streams
(e.g., from h and l) at receive node k. Among these zi(t)
interfering streams, denote αik(t) as the number of interfering
streams that can be successfully aligned to other interfering
streams (e.g., from h and l) at receive node k. Then, at
receive node k, the number of “effective” interfering streams
from transmit node i is reduced from zi(t) to zi(t)− αik(t).
Note that variable αik(t) characterizes the IA space for the
zi(t) interfering streams from transmit node i to receive
node k. A larger value of αik(t) means that more interfering
streams from transmit node i can be successfully aligned to

1Note that multicast communication differs from multi-user MIMO commu-
nication. In multicast communication, every receive node in Ri will receive
the same (all) outgoing data streams from transmit node i. In contrast, in
multi-user MIMO, each node in Ri will receive different subset of outgoing
data streams from node i and consider the rest as interference.
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Fig. 4: An illustration of multicast IA constraints and DoF
consumption constraints at receive node k.

other interfering streams at receive node k. Next, we derive
constraints for αik to characterize the design space of IA at
transmit node i.

Referring to Fig. 3, let’s consider one of the outgoing stream
at transmit node i and its precoding vector, say u1

i . This
outgoing stream will strongly interfere all the receive nodes in
Qi. At receive node k ∈ Qi, the direction of this interfering
stream is Hkiu

1
i . By properly constructing u1

i , we can align
this interfering stream to any particular direction at receive
node k. Suppose that u1

i is constructed to align this interfering
stream to a particular direction at receive node k. Then, at
the receive nodes in Qi\{k}, the direction of this interfering
stream is also fixed and has no freedom for alignment. This
indicates that the construction of a precoding vector can only
guarantee one of its corresponding interfering streams to be
successfully aligned (at one receive node). Since there are
zi(t) precoding vectors at transmit node i, we can align zi(t)
interfering streams to any directions among the receive nodes
in Qi. That is, there are at least zi(t) interfering streams from
transmit node i that can be aligned to any particular directions.
Therefore, a sufficient condition of αik(t) for k ∈ Qi can be
written as:∑

k∈Qi

αik(t) ≤ zi(t), 1 ≤ i ≤ N, 1 ≤ t ≤ T. (3)

Multicast IA Constraints: Receiver Side. We now consider
a receive node in time slot t, say k, in a multicast network as
shown in Fig. 2(a). Similarly, for ease of explanation, we show
receive node k and its neighboring nodes in Fig. 4. Denote Pk
as the set of nodes that may strongly interfere receive node k
(e.g., nodes i, h, and l in Fig. 4). Transmit nodes outside Pk are
considered to be weak interferer and their interferences will be
treated as noise at receive node k. Among the zi(t) interfering
streams from transmit node i ∈ Pk, constraint (3) ensures that
αik interfering streams can be aligned to any directions at
receive node k. However, to ensure the resolvability of the
data streams at the receive nodes in Ri, any two interfering
streams from transmit node i cannot be aligned to the same
direction.2 The following lemma offers a sufficient condition
to ensure that any two interfering streams from transmit node
i will not be aligned to the same direction at receive node k:

2The details are explained in the proof of Theorem 1 in Appendix B.
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Lemma 1: For a receive node k, if

αik(t) ≤
h6=i∑
h∈Pk

[zh(t)−αhk(t)], 1≤k≤N, i∈Pk, 1≤ t≤T ,

(4)
then there exists an IA scheme where any two interfering
streams from transmit node i ∈ Pk are not aligned to the
same direction at receive node k.

In (4), the left hand side (LHS) is the number of “alignable”
interfering streams from transmit node i; and the right hand
side (RHS) is the number of directions occupied by the
interference from the transmit nodes in Pk other than transmit
node i. Lemma 1 says that, at receive node k, if the “alignable”
interfering streams from transmit node i are no more than the
directions occupied by the interference from the transmit nodes
in Pk\{i}, then every two interfering streams from transmit
node i ∈ Pk will not be aligned to the same direction. The
proof of this lemma is given in Appendix A.
DoF Consumption Constraints. Constraints (3) and (4)
characterize how many interfering streams can be successfully
aligned for each interfering node pair (i, k). Based on (3) and
(4), we derive the constraints to characterize how many data
streams at each transmitter can be successfully transported to
their receiver(s). In a time slot t, a node can be a transmitter,
a receiver, or idle. For a node k ∈ N , we define a binary
variable yk(t) to indicate whether or not node k is a receiver
in time slot t. Specifically, yk(t) = 1 if node k is a receiver
in time slot t and 0 otherwise. If node k is a receiver, then
it may have multiple incoming links (e.g., N3 in Fig. 2) as it
may be on multiple multicast trees. Denote Tk as the set of
node k’s one-hop upstream nodes along all the multicast trees.
For example, for N3 in Fig. 2(a), we have T3 = {N2, N4}.
Then we have the following observations on the desired data
streams and interfering streams at node k:
• Node k is a receiver in time slot t, i.e., yk(t) = 1. In

this case, as shown in Fig. 4, node k receives zm(t)
data streams from node m ∈ Tk and zi(t) interfering
streams from node i ∈ Pk. Based on (3) and (4), the
zi(t) interfering streams from node i ∈ Pk occupy
zi(t) − αik(t) new directions at node k because αik(t)
interfering streams have been successfully aligned to
other interfering streams at node k. Therefore, to ensure
the DoF consumption constraint at node k is satisfied, we
must have:

∑
m∈Tk zm(t) +

∑
i∈Pk

[zk(t)−αik(t)] ≤ A.
• Node k is not a receiver in time slot t, i.e., yk(t) =

0. In this case, node k does not have any desired data
streams from node m ∈ Tk. So there is no restriction
on the number of effective interfering directions at node
k. That is, we should not impose any upper bound on∑
i∈Pk

[zk(t)− αik(t)].
Combining these two cases, we have∑
m∈Tk

zm(t) +
∑
i∈Pk

[zi(t)− αik(t)] ≤ A+ [1− yk(t)] ·B,

1 ≤ k ≤ N, 1 ≤ t ≤ T,
(5)

where B is a large enough constant (e.g., B = N ·A) that can
be used as a loose upper bound for

∑
i∈Pk

[zi(t)−αik(t)]. In

(5), the first left-hand side (LHS) term
∑
m∈Tkzm(t) is the

number of data streams that need to be decoded at receiver k.
This term corresponds to MIMO’s spatial multiplexing (SM)
capability at receiver k. The second LHS term

∑
i∈Pk

[zi(t)−
αik(t)] is the number of interfering data streams that need to
be canceled at receiver k. This term corresponds to MIMO’s IC
capability at receiver k. Particularly, in this term, “αik(t)” is
the number of interfering streams that have been successfully
aligned, which reflects the effect of IA.
Summary. Collectively, constraints (3)–(5) characterize a fea-
sible IA space for a multicast network in a time slot. Note
that these three constraints are linear and only require simple
integer addition and subtraction operations. By using these
constraints, we can avoid computing those complex precoding
vectors at the PHY layer while still ensuring that our results
are feasible. This is a significant advantage, and lays the
foundation for our investigation of multicast IA in multi-hop
wireless networks. We summarize our discussions with the
following theorem:

Theorem 1: If constraints (3), (4), and (5) are satisfied, then
there exist precoding and decoding vectors at the PHY layer
such that each transmit node i can send zi(t) data streams
to its one-hop multicast receive nodes in Ri free of strong
interference.

The proof of Theorem 1 is presented in Appendix B.

IV. PROBLEM FORMULATION

Constraints (3), (4), and (5) in the previous section con-
stitute a simple mathematical model of IA that allows us to
study cross-layer multicast throughput optimization problem
in multi-hop MIMO networks, but without getting involved
into the onerous signal design at the PHY layer. Based on the
feasible space defined by (3), (4), and (5), we study a multicast
throughput maximization problem.

Consider a multi-hop MIMO network consisting of a set
of nodes as shown in Fig. 2(a). Each node in the network
has the same number of antennas, which we denote as A.
Among the nodes there are F multicast sessions. For each
session f , it has one source node (denoted as Sf ), a set of
intermediate nodes, and a group of destination nodes (denoted
as set Df ). We assume each multicast tree is computed based
on some multicast routing protocol (e.g., OSPF [25]). Denote
r(f) as the achievable end-to-end data rate of multicast session
f . Denote rmin as the minimum achievable end-to-end data
rate among all sessions, i.e., rmin = min1≤f≤F {r(f)}. Our
objective is to maximize the minimum achievable end-to-end
data rate (rmin) among all sessions.3 In what follows, we will
focus on the mathematical underpinning of maximizing the
minimum achievable end-to-end data rate.
Multicast Node Constraints. Denote xi(t) as a binary vari-
able to indicate whether or not node i ∈ N is a transmitter in
time slot t. Specifically, xi(t) = 1 if node i is a transmitter
in time slot t and 0 otherwise. Recall that yi(t) is a binary
variable to indicate whether or not node i is a receiver in time

3Problems with other objectives such as maximizing sum of weighted rates
or a proportional increase (scaling factor) of all session rates belongs to the
same category and can be solved following the same token.
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slot t. For each node, we assume that it has a half duplex
radio.4 That is, a node cannot be a transmitter and a receiver
in the same time slot. Then we have:

xi(t) + yi(t) ≤ 1, 1 ≤ i ≤ N, 1 ≤ t ≤ T. (6)

Consider a node i ∈ N in time slot t. If it is a transmitter
(i.e., xi(t) = 1), then there is at least one outgoing data stream
at node i, i.e., zi(t) ≥ 1. Otherwise (i.e., xi(t) = 0), there are
no outgoing data streams at node i, i.e., zi(t) = 0. Combining
these two cases, we have

xi(t) ≤ zi(t) ≤ A · xi(t), 1 ≤ i ≤ N, 1 ≤ t ≤ T . (7)

In time slot t, if xi(t) = 1 (i.e., node i ∈ N is a transmitter),
then each of its next-hop nodes in Ri (see Fig. 3) should be a
receiver, i.e., yj(t) = 1 for j ∈ Ri. Otherwise (i.e., xi(t) = 0),
yj(t) can be either 0 or 1 for j ∈ Ri, i.e., no restriction on
yj(t). Combining these two cases, we have

xi(t) ≤ yj(t), 1 ≤ i ≤ N, j ∈ Ri, 1 ≤ t ≤ T . (8)

One-Hop Multicast Rate Constraints. At node i, there are
zi(t) outgoing data streams. If node i is not a transmitter,
then zi(t) = 0. Denote Ps as the total transmit power of all
outgoing data streams at node i. We assume Ps is the same
for all transmit nodes. Among the zi(t) outgoing data streams
at node i, we denote pki as the transmit power that is allocated
to its kth outgoing data stream. Then we have

zi(t)∑
k=1

pki (t) = Ps · xi(t), 1 ≤ i ≤ N, 1 ≤ t ≤ T . (9)

Referring to Fig. 3, consider one-hop multicast data trans-
mission from transmit node i and the receive nodes in Ri. Due
to wireless multicast advantage, the transmitted data streams
from node i can be received by all the receive nodes in Ri
simultaneously. But the distances from node i to different
nodes in Ri are likely to be different. As a result, the received
signal strengths at different nodes in Ri are different, leading
to different achievable data rates. So the achievable data rate is
limited by the receive node in Ri that has the smallest SINR.
Denote cki (t) as the achievable data rate of transmit node i’s
kth outgoing data stream in a one-hop multicast. Then we have

cki (t) = min
j∈Ri

{
W ·log2

(
1+

Gij · pki (t)∑h6=i
h∈N\Pj

Ghj ·Ps ·xh(t) + Pn

)}
,

1 ≤ i ≤ N, 1≤k≤zi(t), 1≤ t≤T,
(10)

where W is the channel bandwidth, Gij is the gain of the
channel between transmit node i and receive node j, and
Pn is the noise power at the receiver. It should be noted
that when calculating the effective SINR at receive node
j in (10), we only need to consider the weak interference
from the unintended transmitters in N\Pj , because the strong
interference from the unintended transmitters in Pj has been
nullified in the spatial domain by IA and IC.

4Although there is significant research advance on full duplex in recent
year, practical design of full duplex for MIMO is still in its infant stage. If
we want to formulate the problem in a full-duplex network, we can simply
remove (6) and (8) in this optimization framework.

Denote ci(t) as the aggregate achievable data rate at transmit
node i over its zi(t) outgoing data streams in time slot t. Then
we have

ci(t) =

zi(t)∑
k=1

cki (t), 1 ≤ i ≤ N, 1 ≤ t ≤ T . (11)

Multicast Data Rate Constraints. For each multicast session,
its source node wants to send data to all its destination nodes
with the help from intermediate nodes. Multicast data rate
refers to the end-to-end data rate from its source node to all
its destination nodes. Consider the multicast tree of a session
f . It has a root node, a set of internal nodes, and a set of
leaves. The root node is the source node of the session and
each leaf is a destination node of the session. However, an
internal node can either be an intermediate node that helps
relay traffic or a destination node of the session. Based on
previous discussion of one-hop multicast rate constraints (9)–
(11), the data rate from a node i ∈ N will be received by all
of its next-hop nodes in Ri. Therefore, for a single multicast
tree f , in order to achieve its average end-to-end data rate
of r(f), its root node and each of its internal nodes should
be able to accommodate an average rate of r(f) over T time
slots.

When there are multiple multicast sessions in the network
(see, e.g., Fig. 2(a)), a node i ∈ N may be a root node,
an internal node, or a leaf node on multiple trees. Only the
first two cases (root node and internal node) are included in
our discussions here. Denote Fi as the set of trees for which
node i is used either as a root or an internal node. Then the
aggregate data rate that node i needs to send out over T time
slots is

∑
f∈Fi

r(f). Since
∑
f∈Fi

r(f) is upper bounded by
the average achievable (outgoing) rate at node i, we have:∑

f∈Fi

r(f) ≤ 1

T

T∑
t=1

ci(t), 1 ≤ i ≤ N . (12)

Finally, since rmin is the minimum achievable data rate
among all the multicast trees, we have:

r(f) ≥ rmin, 1 ≤ f ≤ F . (13)

In summary, we have the following problem formulation for
multicast throughput maximization (MTM):

MTM1 max rmin

s.t. Multicast IA constraints: (3)–(5);
Multicast node constraints: (6)–(8);
One-hop multicast rate constraints: (9)–(11);
Multicast data rate constraints: (12)–(13);

where N , T , F , B, W , A, Pn, Ps, and Gij are constants;
xi(t) and yi(t) are binary optimization variables; zi(t) and
αij(t) are nonnegative integer optimization variables; r(f),
ci(t), pki (t), and cki (t) are continuous optimization variables.
In the formulation, (3)–(5) are constraints across PHY and
link layers. Specifically, (3) and (4) correspond to IA and (5)
corresponds to SM and IC as well as link scheduling. (6)–(8)
are link-layer constraints, which correspond to link scheduling.
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(9)–(11) are constraints across PHY and link layers. They
correspond to power allocation and link scheduling. (12)–
(13) are constraints across network and transport layers. In
particular, (12) corresponds to multi-hop data transmission.

This optimization problem is in the form of mixed integer
nonlinear program (MINLP), which is notoriously hard to
solve due to its involvement of nonlinear constraints. To reduce
the complexity in the pursuit of a near-optimal solution, we
show how to eliminate the nonlinear constraints in problem
MTM1 through reformulation and approximation in the next
section.

V. PROBLEM REFORMULATION AND APPROXIMATION

In problem MTM1, (3)–(5), (6)–(8), and (12)–(13) are linear
constraints. But (9)–(11) are nonlinear constraints. The goal of
this section is to perform reformulation and approximation so
that the optimization problem does not contain any nonlinear
constraints and is within (1−ε)-approximation of the original
problem (MTM1).

A. Problem Reformulation
In (9), (10), and (11), zi(t) is not a constant but rather an

optimization variable. This prevents all three constraints from
being linear. In addition to variable zi(t), constraint (10) also
has a nonlinear function.

To linearize these constraints at transmit node i, we first
reformulate zi(t) in (9), (10), and (11). To do so, we introduce
A − zi(t) dummy outgoing data streams at transmit node i
and add constraints to force the data rate of each dummy
stream to zero. To distinguish a dummy stream from a real
data stream, we define a new binary variable λki (t) to indicate
whether or not data stream k is dummy at node i in time slot
t. Specifically, λki (t) = 0 if data stream k is dummy and 1
otherwise. Therefore, we have

A∑
k=1

λki (t) = zi(t), 1 ≤ i ≤ N, 1 ≤ t ≤ T . (14)

Consider the kth outgoing data stream at transmit node i. If
λki (t) = 0 (i.e., the kth stream is dummy), then the transmit
power allocated for this stream should be 0. Otherwise (i.e.,
λki (t) = 1), the transmit power allocated for this data stream
is upper bounded by the total transmit power Ps. Therefore,
we have

0 ≤ pki (t) ≤ Ps ·λki (t), 1≤ i≤N, 1≤k≤A, 1≤ t≤T . (15)

Similarly, we use the following constraints to force the
achievable data rate of a dummy data stream to zero:

0 ≤ cki (t) ≤ B·λki (t), 1≤ i≤N, 1≤k≤A, 1≤ t≤T , (16)

where B is a sufficiently large constant number that we defined
earlier.

New constraints (14)–(16) ensure that a dummy data stream
has zero transmit power and zero data rate. With the notion
of dummy stream and constraints (14)–(16), constraint (9) can
be rewritten as:

A∑
k=1

pki (t) = Ps · xi(t), 1 ≤ i ≤ N, 1 ≤ t ≤ T . (17)

Constraint (11) can be rewritten as:

ci(t) =
A∑
k=1

cki (t), 1 ≤ i ≤ N, 1 ≤ t ≤ T . (18)

Constraint (10) can be rewritten as:

cki (t) = min
j∈Ri

{
W ·log2

(
1+

Gij · pki (t)∑h6=i
h∈N\Pj

Ghj ·Ps ·xh(t) + Pn

)}
,

1 ≤ i ≤ N, 1≤k≤A, 1≤ t≤T.
(19)

Since constraints (14)–(18) are linear, we now focus on the
only nonlinear constraint (19), which contains a fraction and
a log function. In what follows, we first linearize the fraction
and then address the log function in Section V-B.

Denote γkij(t) as:

γkij(t) =
Gij · pki (t)∑h6=i

h∈N\Pj
Ghj ·Ps ·xh(t) + Pn

,

1 ≤ i ≤ N, j ∈ Ri, 1 ≤ k ≤ A, 1 ≤ t ≤ T . (20)

Then (20) can be equivalently rewritten as:
h6=i∑

h∈N\Pj

Ghj ·Ps ·xh(t)·γkij(t) + Pn ·γkij(t) = Gij · pki (t),

1 ≤ i ≤ N, j ∈ Ri, 1 ≤ k ≤ A, 1 ≤ t ≤ T. (21)

Constraint (21) is still nonlinear since it has nonlinear
term xh(t) · γkij(t). To handle the product of variables, we
employ the Reformulation-Linearization Technique (RLT) [26,
Chapter 6]. Define a new variable whkij (t) = xh(t)·γkij(t). Then
(21) can be rewritten as:

h6=i∑
h∈N\Pj

Ghj · Ps · whkij (t) + Pn · γkij(t) = Gij · pki (t),

1 ≤ i ≤ N, j ∈ Ri, 1 ≤ k ≤ A, 1 ≤ t ≤ T. (22)

To ensure that whkij (t) = xh(t) · γkij(t) holds, we add the
following two sets of linear constraints to our new formulation:

0≤whkij (t)≤γkij(t),
1≤ i≤N, j∈Ri, 1≤k≤A, h∈N\Pj\{i}, 1≤ t≤T. (23)

γkij(t)− [1− xh(t)] ·B ≤ whkij (t) ≤ xh(t) ·B,
1≤ i≤N, j∈Ri, 1≤k≤A, h∈N\Pj\{i}, 1≤ t≤T, (24)

where B is a sufficiently large number that we defined earlier.
Now (21) can be replaced with constraints (22)–(24). Based
on the definition of γkij(t), nonlinear constraint (19) can be
rewritten as:

cki (t) = min
j∈Ri

{
W ·log2

(
1+γkij(t)

)}
,

1 ≤ i ≤ N, 1≤k≤A,
1≤ t≤T,

which is equivalent to:

cki (t) ≤W · log2

(
1 +γkij(t)

)
,

1 ≤ i ≤ N, j ∈ Ri,
1≤k≤A, 1≤ t≤T. (25)

By replacing (9)–(11) with (14)–(18) and (22)–(25), prob-
lem MTM1 is reformulated as:



0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2018.2817365, IEEE
Transactions on Vehicular Technology

9

lb m2 m+1 M M+1ub1

2( ) log (1 )c

( )
M M M

c D E

1 1 1( )c D E

( )
m m m

c D E

Fig. 5: A linear approximation for log function c1(γ) =
log2(1 + γ).

MTM2 max rmin

s.t. Multicast IA constraints: (3)–(5);
Multicast node constraints: (6)–(8);
Multicast data rate constraints: (12)–(13);
One-hop multicast rate constraints: (14)–(18),

(22)–(25).

Denote r∗min(MTM1) and r∗min(MTM2) as the optimal
objective values of MTM1 and MTM2, respectively. We have
the following lemma:

Lemma 2: Problems MTM1 and MTM2 have the same
optimal objective value, i.e., r∗min(MTM1) = r∗min(MTM2).

Lemma 2 can be proved by construction. Specifically, for an
optimal solution to problem MTM1, we can always construct a
feasible solution to problem MTM2 that achieves the optimal
objective value of MTM1, and vice versa. As the proof is
straightforward, we omit it to save space.

B. (1−ε)-Optimal Approximation

In problem MTM2, all constraints are linear except (25).
To linearize the log function in (25), we resort to linear
approximation. The goal is to replace the log function with
a minimum number of linear constraints while ensuring the
gap between the two never exceeds ε, a target performance
gap for the objective value.

In (25), γkij is the signal to interference plus noise ratio
(SINR) of a data stream from transmit node i to its intended
receive node j (see (20)). To linearize the log function, we first
characterize the range of its variable γkij . Note that the range
for each link may differ due to difference of link distance. So,
instead of finding the range for each individual link (i, j), we
use a universal lower bound γlb and a universal upper bound
γub for all links. The range of γkij for each link (i, j) will fall
in [γlb, γub]. Therefore, instead of designing a unique linear
approximation (for the log function) for each individual link
(i, j), we will use one (identical) linear approximation for the
log function, over the range of [γlb, γub], for all links. Note
that, as we will prove in Theorem 2, the use of an identical
linear approximation for all links will not induce any infeasible

Algorithm 1 Computing Dm, Em, and M .

// Initialization
γlb = maxi,j∈N {GijPs/Pn} ;
γub = mini,j∈N {GijPs/(

∑k 6=i,j
k∈N GkjPs + Pn)} ;

m = 0 ;
γ1 = γlb ;
// Main loop
while γm < γub do

m← m+ 1 ;
γm+1 = bm,1 +

√
b2m,1 − 4bm,2 − γm where

bm,1 = 2γm + ε(1 + γm) ln(1 + γm) and
bm,2 = γ2

m − ε(1 + γm) ln(1 + γm) ;
Dm = log2(1+γm+1)−log2(1+γm)

γm+1−γm ;

Em = log2(1 + γm)− γm[log2(1+γm+1)−log2(1+γm)]
γm+1−γm ;

end while
M = m ;

solution. For an upper bound γub, we can use the best possible
scenario where there is no interference at receive node j, i.e.,
γub = maxi,j∈N {GijPs/Pn}. For a lower bound γlb, we
can use the worst-case scenario where all other nodes in the
network are transmitters and interfering with receive node j,
i.e., γlb = mini,j∈N

{
GijPs/(

∑k 6=i,j
k∈N GkjPs + Pn)

}
.

As illustrated in Fig. 5, to approximate the log function
c(γ) = log2(1 + γ) over [γlb, γub], we need multiple lines.
Denote the set of lines as

{
c̃m(γ) = Dm · γ + Em : 1 ≤

m ≤ M
}

, where m is the line sequence number, Dm is the
slope, and Em is the vertical starting point of the line. M is
the minimum number of required lines for the approximation,
which will be calculated later. To start with, let’s consider the
first line c̃1(γ) = D1 · γ + E1. Denote γ1 and γ2 as the two
points on log2(1 + γ) where the line intersects (see Fig. 5).
Then γ1 = γlb. For γ2, we shall find the maximum value so
that the performance gap of this line approximation is upper
bounded by ε, i.e.,

0 ≤ c(γ)− c̃1(γ)

c(γ)
≤ ε, ∀γ ∈ [γ1, γ2] . (26)

Through some algebraic manipulations, we find that

γ2 = b1 +
√
b21 − 4b2 − γ1 ,

where b1 = 2γ1 + ε(1 + γ1) ln(1 + γ1) and b2 = γ2
1 − ε(1 +

γ1) ln(1 + γ1). Then we can find D1 and E1 in c̃1(γ) =
D1 · γ + E1 as:

D1 =
log2(1 + γ2)− log2(1 + γ1)

γ2 − γ1
,

E1 = log2(1 + γ1)−D1 · γ1 .

After obtaining the first line, we can compute the second by
following the same token, but starting from point (γ2, log2(1+
γ2). Subsequently, we can compute all the lines over range
[γlb, γub]. The procedure of computing the parameters of the
approximation lines is given in Alg. 1. Note that our procedure
yields the minimum number of lines to approximate the log
function.
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Fig. 6: Original and approximated feasible regions.

We now employ Alg. 1 to linearize the log function in (25)
in MTM2. For (25), its feasible region is within the shadowed
area beneath the log curve as shown in Fig. 6(a). We approx-
imate this area by a polygon defined by the lines generated in
Alg. 1 over [γlb, γub] as shown in Fig. 6(b). Therefore, (25)
can be approximated by the following constraint:

cki (t) ≤W ·
(
Dmγ

k
ij(t)+Em

)
,

1≤ i ≤ N, j∈Ri, 1≤k≤A,
1≤ t≤T, 1≤m≤M ,

(27)
where M , Dm, and Em are computed in Alg. 1.

By replacing (25) in MTM2 with (27), the resulting opti-
mization problem, which we denote as MTM3, can be written
as:

MTM3 max rmin

s.t. Multicast IA constraints: (3)–(5);
Multicast node constraints: (6)–(8);
Multicast data rate constraints: (12)–(13);
One-hop multicast rate constraints: (14)–(18),

(22)–(24), (27).

Denote r∗min(MTM3) as the optimal objective value of
MTM3. Then we have the following theorem:

Theorem 2: The optimal objective value of MTM3 is a (1−ε)
approximation of the optimal objective value of MTM2, i.e.,
(1−ε) · r∗min(MTM2) ≤ r∗min(MTM3) ≤ r∗min(MTM2).

The proof of Theorem 2 is given in Appendix C. Combining
Theorem 2 and Lemma 2, we have the following corollary:

Corollary 1: The optimal objective value of MTM3 is a (1−
ε) approximation of the optimal objective value of MTM1, i.e.,
(1−ε) · r∗min(MTM1) ≤ r∗min(MTM3) ≤ r∗min(MTM1).

This corollary is straightforward and we omit its proof to
conserve space.

In summary, we have successfully transformed MTM1 (a
MINLP) to MTM3, which is a mixed integer linear program
(MILP). Although the theoretical worst-case complexity of
solving a general MILP problem is exponential, there exist
highly efficient optimal algorithms (e.g., branch-and-bound
with cutting planes [27]) and heuristic algorithms (e.g., se-
quential fixing algorithm [26, Chapter 10]). For most of
practical-sized networks, an off-the-shelf optimization solver
such as IBM CPLEX [28] is also very effective. Since the goal
of this paper is to explore the throughput gain of multicast IA
in a multi-hop MIMO network, we will employ optimization
solver IBM CPLEX in our performance evaluation.

C. Discussions

Some discussions of the multicast IA model and the
throughput maximization problem are presented as follows.
Optimality of Multicast IA Model: For the multicast IA
scheme in Section III-B, we proved its feasibility but did
not provide any analysis on its optimality (i.e., tightness of
the feasibility constraints). As our IA scheme imposed a
special structure at the receiver side (to analytically prove its
feasibility), the resulting IA solution is an approximation to
the optimal solution. How to design an optimal multicast IA
scheme that can fully utilize the freedom in the transceiver
design remains open [30] and beyond the scope of this paper.
Fixed Interference Range: In our problem formulation, we
employed a fixed interference range to classify strong and
weak interferences. The classification method is simple but
does not take into account small-scale channel fading effect,
and therefore is not accurate. However, we want to point
out that our multicast IA model and optimization formulation
can easily adopt the strength-based interference classification
method, as the set of interfering transmitters for each receiver
is not a part of optimization problem but a part of network
setting.
Practical Implementation: This paper serves as a pioneer
exploration on IA for multicast communications in multi-hop
MIMO networks. It outlined a multicast IA scheme and de-
rived its feasible region by defining a set of simple constraints.
To employ this multicast IA scheme in practical systems, there
are many technical details that need to be addressed, such as
node coordination, CSI acquisition, transmission synchroniza-
tion, and management of error propagation. These issues are
not the main focus of this paper and we plan to address them
in our future work.

VI. PERFORMANCE EVALUATION

In this section, we conduct performance evaluation of IA
for multicast communications in multi-hop MIMO networks.
We will use IBM CPLEX [28] to solve problem MTM3 and
compare its optimal objective value against that when IA is
not used.

A. Simulation Setting

We consider a multi-hop MIMO network with 30 nodes
randomly deployed in a 1000m × 1000m square area. For each
node in the network, we assume that it has a transmit power
of 23 dBm when transmitting as this is the typical maximum
transmit power for many wireless devices. To compute the path
loss from a transmitter to a receiver, we adopt the formula
in LTE specification (3GPP TR 25.951 V10.0.0). Specifically,
the power attenuation from node i to node j is calculated by
Gij = 10−LPL/10 with LPL = 32.9 + 37.5 log10(dij), where
dij is the distance between them. The channel bandwidth is
10 MHz, which is a typical bandwidth in many broadband
wireless systems such as Wi-Fi and LTE. Empirically, we
assume the noise power at a receive node to be −104 dBm
and the transmission range of a node to be 300 m. We will
discuss interference range later.
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Fig. 7: A network instance for case study.

For each multicast session, its source and destination nodes
are randomly selected among all the nodes in the network. The
transmission scheduling is based on time slots and there are
four time slots in a frame. The routing tree for the multicast
session is computed by the OSPF protocol [25]. To tolerate
5% performance loss, we set the approximation error ε to 5%.

B. Impact of Interference Range Φ

In Section III-B, we use interference range Φ to classify
an interference as either a strong or a weak interference at a
receiver. The strong interferences will be handled by MIMO’s
IA and IC, while the weak interferences will be treated as
noise. Therefore, the setting of Φ is important in solving
problem MTM3.

To see the impact of Φ on the objective value of MTM3,
consider an example network instance shown in Fig. 7, where
each node has four antennas (i.e., A = 4). In this network, we
have one multicast session with one source node (denoted as
src[0] in the figure) and 15 destination nodes (denoted as dst[0]
in the figure). The multicast routing tree in Fig. 7 was found by
OSPF [25]. In Fig. 8(a), we present the normalized throughput
w.r.t. bandwidth (in bit/s/Hz) under different settings of Φ.
The normalized throughput is obtained by solving the problem
MTM3 using CPLEX. In Fig. 8(a), Φ = 0 represents the
special case where all interferences are treated as noise at each
receiver. In this case, neither IA nor IC will be used. Without
IA and IC, those strong interferences will be treated as noise
in the SINR calculation at each receiver, which will severely
reduce the achievable throughput. Not surprisingly, this point
(Φ = 0) represents the smallest throughput for all settings of
Φ.

When Φ > 0, the normalized throughput varies and depends
on the setting of Φ:
• When 0 ≤ Φ ≤ 600, the normalized throughput is

strictly increasing with the value of Φ. This is because
the increase of Φ allows more strong interferences to be
nullified through MIMO’s IA and IC. As a result, the
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Fig. 8: Impact of Φ on normalized throughput.

SINR at each receiver increases, so does the achievable
rate of a session.

• When 600 ≤ Φ ≤ 1414, the normalized throughput
decreases with Φ. This is because increase of Φ results
in the use of MIMO’s DoFs to cancel weak interferences,
leaving fewer DoFs available for data transmission.

• When Φ ≥ 1414, the normalized throughput flattens out.
Since 1414 is the farthest possible distance between any
two nodes in a 1000×1000 area, all the interferences at a
receiver are considered as strong interference and handled
by IA and IC. Further increase of Φ will no longer affect
the classification of strong or weak interference in the
network. Therefore, the normalized throughput will stay
flat.

In Fig. 8(b), we present the average throughput (normalized
w.r.t. bandwidth) over 100 network instances under different
settings of Φ. The results are in agreement with our findings
in Fig. 8(a). Note that, for this network setting, the peak
throughput occurs when the interference range (Φ = 600) is
twice the transmission range (300). This is not surprising, and
is consistent with the findings by Shi et al. in [29].

C. Throughput Performance

For the rest of this section, we set Φ = 600. We will com-
pare the multicast throughput of a network with IA (obtained
by solving MTM3) against the throughput of the same network
without IA. The formulation of the latter problem, denoted as
MTM-noIA, is given in Appendix D.
Impact of Antenna Number. We first study throughput
under different antenna configurations (i.e., the number of
antennas at each node). We consider 100 randomly generated
30-node network instances, each of which has one multicast
session with one source node and 15 destination nodes. For
each network instance, the source and destination nodes are
randomly selected. Fig. 9(a) presents the average multicast
throughput of the 100 network instances under different an-
tenna configurations. Fig. 9(b) presents the corresponding
multicast throughput gain of IA under different antenna con-
figurations. For example, when each node has 5 antennas, the
average multicast throughput of the 100 network instances is
2.06 (without IA) and 2.89 (with IA), as shown in Fig. 9(a).
Therefore, the throughput gain is (2.89− 2.06)/2.06 ≈ 40%,
as shown in Fig. 9(b).

Fig. 9 shows that the multicast throughput increases with
the number of antennas. Furthermore, the throughput gain of
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Fig. 9: Impact of antenna number on normalized average
throughput.

TABLE II: Average multicast throughput (normalized w.r.t.
bandwidth) over 100 network instances.

(a) Normalized throughput under different multicast group sizes

Multicast
group size 1 5 10 15 20 25 29

Throughput
without IA 6.28 2.81 2.06 1.78 1.50 1.33 1.23

Throughput
with IA 6.53 3.30 2.71 2.39 2.07 1.85 1.72

(b) Normalized throughput under different multicast session numbers

# of multicast
sessions 1 2 3 4 5 6 7

Throughput
without IA 3.56 1.80 1.07 0.72 0.55 0.41 0.28

Throughput
with IA 3.88 2.30 1.49 1.04 0.82 0.62 0.43

IA becomes more significant when the number of antennas
increases. This is because more antennas provide more spatial
DoFs to perform IA, thus offering a higher throughput gain of
IA. Since the throughput gain of IA increases with the number
of antennas on each node, an ideal application scenario of our
proposed IA solution is massive MIMO networks where each
node has a large number of antennas.
Impact of Multicast Group Size. We now study the impact
of multicast group size (i.e., the number of destination nodes
in a multicast session) on network throughput. We consider
100 randomly generated 30-node network instances, where
each node has four antennas. Each network instance has one
multicast session and its destination group size varies from 1
(unicast), 5, 10, · · · , to 29 (broadcast). Table II(a) presents the
average multicast throughput (over 100 network instances) for
different group sizes. Figure 10(a) presents the corresponding
multicast throughput gain of IA under different multicast group
sizes. For example, when the multicast group size is 15, the
average multicast throughput of the 100 network instances is
1.78 (without IA) and 2.39 (with IA), as shown in Table II(a).
Therefore, the percentage of multicast throughput gain by IA
is (2.39− 1.78)/1.78 ≈ 34%, as shown in Fig. 10(a).

From Table II(a) and Fig. 10(a), we can see that, although
the multicast throughput decreases as the multicast group size
increases (see Table II(a)), the throughput gain of IA becomes
more significant as the multicast group size increases (see
Fig. 10(a)). This can be explained by the fact that a larger
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Fig. 10: Multicast throughput performance of IA.

multicast group size leads to more interference in the network
and therefore offers more opportunities for IA.
Impact of Session Number. We now study throughput when
the number of multicast session increases. Again we consider
100 randomly generated 30-node network instances and each
node has four antennas. For each network instance, we vary
the number of multicast sessions. For each multicast session,
it has three destination nodes, again chosen randomly. Ta-
ble II(b) presents the average multicast throughput (over 100
network instances) when the networks have different numbers
of multicast sessions. Figure 10(b) presents the corresponding
multicast throughput gain of IA. For example, when the
number of sessions is 4, the average multicast throughput is
0.72 (without IA) and 1.04 (with IA), as shown in Table II(b).
Then the percentage of multicast throughput gain by IA is
(1.04− 0.72)/0.72 ≈ 44%, as shown in Fig. 10(b).

From Table II(b) we can see that the multicast throughput
of a network (with or without IA) decreases as the number
of sessions increases. If we keep increasing the number of
sessions in the network, the throughput (the optimal objective
value of MTM3) will eventually go to 0. This is because
if there are too many links on the multicast trees, some of
them cannot be active due to limited resources (MIMO’s
DoFs and time slots). But within the schedulable region
(nonzero throughput region) of the network, we can see from
Fig. 10(b) that the multicast throughput gain of IA becomes
more significant as the number of multicast sessions increases.
This is intuitive, as the more multicast sessions in the network,
the more interference among the links, thereby offering more
opportunities for IA among the interferences.

VII. CONCLUSIONS

The potential of IA is most profound when there are enough
opportunities to align interfering signals at a receiver. Multi-
cast communications offer a natural environment to exploit
IA’s potential. In this paper, we offer a systematic study of IA
for multicast communications in a multi-hop MIMO network.
Instead of dealing with complex design of precoding and
decoding vectors, we developed a set of linear constraints at
both transmitter and receiver to characterize a feasible design
space for multicast IA. We showed that, for a set of data
streams, as long as the set of linear constraints are satisfied,
there exist feasible precoding and decoding vectors at the
PHY layer. The set of proposed constraints renders a simple
mathematical abstraction to study multicast IA without being
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buried by the onerous signal design at the PHY layer. Based
on these constraints, we formulated a multicast throughput
maximization problem and employed (1− ε)-approximation
techniques to linearize the nonlinear constraints. Simulation
results showed significant throughput gain of IA for multicast
communications. Within the schedulable region (with non-zero
throughput), we find that the throughput gain of IA increases
with the number of antennas, the size of multicast group, and
the number of multicast sessions.

APPENDIX A
PROOF OF LEMMA 1

We show that the interfering streams from transmit node i
can be aligned successfully at receive node k by construction.
For the interfering streams from other transmit nodes in Pk
(e.g., h and l in Fig. 4), they can be successfully aligned in
the same way as transmit node i.

At receive node k, denote Zi as the set of its interfering
streams from transmit node i. Among the interfering streams in
Zi, denote Aik as the subset of interfering streams that should
be aligned (to other interfering streams) at receive node k. By
definition, we have |Zi| = zi(t) and |Aik| = αik(t). To align
the interfering streams in Aik at receive node k, we employ
the following IA scheme: for each interfering stream in Aik,
we align it to a unique interfering stream in ∪h6=ih∈Pk

Zh\Ahk.
By “unique” we mean that any two interfering streams in Aik
are not allowed to align to the same (a third) interfering stream
at receive node k. Based on the given constraint (4), we know
that the number of interfering streams in ∪h6=ih∈Pk

Zh\Ahk is
more than that in Aik. So every interfering stream in Akj can
be successfully aligned in this IA scheme. For this IA scheme,
it is not difficult to see that it meets the requirement (i.e., any
two interfering streams from transmit node i ∈ Pk are not to
be aligned to the same direction at receive node k). Therefore,
this lemma holds.

APPENDIX B
PROOF OF THEOREM 1

As IA in each time slot is independent, it suffices to prove
Theorem 1 for any one time slot. Consider the network in
time slot t ∈ [1, T ]. Denote NT as the number of transmitters
and index the transmitters from 1 to NT. Denote NR as the
number of receivers and index the receivers from 1 to NR.
Further, without loss of generality, we omit time slot index t
in (3), (4), and (5). Then, for constraint (3), it can be written
as: ∑

j∈Qi

αij ≤ zi, 1 ≤ i ≤ NT. (28)

For constraint (4), it can be written as:

αij ≤
h6=i∑
h∈Pj

[zh − αhj ], 1 ≤ j ≤ NR, i ∈ Pj . (29)

For constraint (4), when yj = 0 (i.e., node j is not a
receiver), this constraint is not effective as B is a sufficiently

...
...

...
...

...
...

Precoding vector set

Node i’s intended receivers

Node i’s unintended receiversNode

Fig. 11: At a transmitter: signal, interference, and precoding
vectors.

large number; when yj = 1 (i.e., node j is a receiver), (4) can
be equivalently written as:∑

i∈Tj

zi +
∑
i∈Pj

[zi − αij ] ≤ A, 1 ≤ j ≤ NR. (30)

Recall that uki , 1 ≤ k ≤ zi, is transmitter i’s kth precoding
vector and vkij , i ∈ Tj , 1 ≤ k ≤ zi, is receiver j’s decoding
vector used to decode transmit i’s kth data stream. We have
the following definition.

Definition 1: A DoF vector ϕ = (z1, z2, · · · , zNT
) is

feasible if each transmit node i can send zi data streams
to its one-hop multicast receive nodes in Ri free of strong
interference, i.e., for 1 ≤ i ≤ NT, j ∈ Ri, and 1 ≤ k ≤ zi,
there exist precoding vector uki and decoding vector vkij such
that

(vkij)
THjiu

k
i = 1, (31a)

(vkij)
THji′u

k′

i′ = 0, i′ ∈ Pj ∪ Tj , 1 ≤ k′ ≤ zi′ . (31b)

Simply put, to prove Theorem 1, we show that if DoF vector
ϕ = (z1, z2, · · · , zNT) satisfies (1), (2), and (3), then we can
always construct precoding and decoding vectors that meet
(4a) and (4b) for 1 ≤ i ≤ NT, j ∈ Ri, and 1 ≤ k ≤ zi.
It should be noted that (31a) and (31b) are bilinear equations
and a general solution to a set of bilinear equations remains
an open problem.

For receiver i as shown in Fig. 11, denote Ui as the set
of precoding vectors at transmitter i, i.e., Ui = {uki : 1 ≤
k ≤ zi}. Then, we consider a receiver j as shown in Fig. 12.
Denote DS

j as the set of data stream directions at receiver
j. Denote DI

j as the set of interfering stream directions at
receiver j. Mathematically, we have

DS
j =

⋃
i∈Tj

{
Hjiu

k
i : uki ∈ Ui

}
,

DI
j =

⋃
i∈Pj

{
Hjiu

k
i : uki ∈ Ui

}
.

The following lemma shows a sufficient condition for DoF
vector ϕ to be feasible.

Lemma 3: A DoF vector ϕ = (z1, z2, · · · , zNT
) is feasible

if (z1, z2, · · · , zNT) satisfies

dim(DS
j ∪ DI

j) =
∑
i∈Tj

zi + dim(DI
j), 1 ≤ j ≤ NR. (32)
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Fig. 12: At a receiver: signal and interference.

Proof. We show DoF vector ϕ is feasible by arguing that if
(32) is satisfied, then we can always construct decoding vectors
{vkij : i ∈ Tj , 1 ≤ k ≤ zi} at receiver j such that (31a) and
(31b) are satisfied. That is, we show that the following linear
system is consistent if (32) is satisfied.

(vkij)
THjiu

k
i = 1, (33a)

(vkij)
THji′u

k′

i′ = 0, i′ ∈ Pj ∪ Tj , 1 ≤ k′ ≤ zi′ . (33b)

Based on the definition of DS
j and DI

j , we know

DS
j ∪ DI

j =
⋃

i∈Tj∪Pj

{
Hji′u

k′

i′ : i′ ∈ Ui
}
.

It is easy to see that DS
j ∪ DI

j is the set of coefficient-
vectors of this linear system. Moreover, this system has A
free variables and at most A linearly independent equations.
If we can show that vector Hjiu

k
i is not a linear combination

of other vectors in DS
j ∪ DI

j , then this system is consistent.
We prove this point by contradiction.

Suppose that Hjiu
k
i is a linear combination of other vectors

in DS
j ∪ DI

j . Since Hjiu
k
i ∈ DS

j , we have

dim(DS
j ∪ DI

j) < |DS
j |+ dim(DI

j) =
∑
i∈Tj

zi + dim(DI
j).

But this contradicts (32). Thus, we conclude that the linear
system is consistent. �

Intuitively, Lemma 3 says that at receiver j, if a desired
data stream lies in an independent direction (i.e., not within
the subspace spanned by other data/interfering streams), then
this data stream is resolvable. Lemma 3 offers another way to
check the feasibility of a given DoF vector: Instead of con-
structing both precoding and decoding vectors to satisfy (31a)
and (31b) in Definition 1, it suffices to construct precoding
vectors only to satisfy (32) in Lemma 3.

A. Road-Map of Our Proof

The road-map for the rest of our proof is as follows.
• Step 1 (Precoding Vector Assignment and IA Scheme):

Based on the constraints in the IA model, we propose a
precoding vector assignment scheme at each transmitter
and an IA scheme at each receiver. The objective of our
precoding vector assignment is to ensure that for each
pair of interfering nodes (i, j), αij interfering streams
can be successfully aligned to any particular directions.
The objective of our IA scheme is to ensure the desired

data streams at each receiver are resolvable. Details of
Step 1 are given in Section B-B.

• Step 2 (Constructing Precoding Vectors): Based on the
precoding vector assignment and the IA scheme in Step
1, we propose an approach to construct the precoding
vectors at the transmitters. Specifically, we divide the
precoding vectors into two groups: Ubasis and Ualgn. For
a precoding vector in Ubasis, we let uki := ek. For the
precoding vectors in Ualgn, we construct them based on
the IA scheme in Step 1. Details of Step 2 are given in
Section B-C.

• Step 3 (Existence of decoding vectors): We show that
the constructed precoding vectors in Step 2 satisfy (32)
in Lemma 3. So we can conclude that DoF vector ϕ =
(z1, z2, · · · , zNT

) is feasible. Details of Step 3 are given
in Section B-D.

B. Step 1: Precoding Vector Assignment and IA Scheme
Precoding Vector Assignment at a Transmitter. Consider
transmitter i and one of its interfering receivers, say j ∈ Qi, as
shown in Fig. 11. Receiver j is interfered with by zi streams
from transmitter i. Among these zi interfering streams, our
IA scheme must align αij interfering streams onto other in-
terfering streams at receiver j.5 As illustrated in the motivating
example in Section III, in order to align αij interfering streams
at receiver j, αij precoding vectors at transmitter i should
be constructed to achieve this alignment. Denote Ualgn

ij as
the set of precoding vectors in Ui that are used for aligning
αij interfering streams at receiver j ∈ Qi. Then we have
|Ualgn
ij | = αij for j ∈ Qi. In other words, the precoding

vectors in Ualgn
ij are constructed to align its corresponding

αij interfering streams onto some other directions at receiver
j ∈ Qi.

Based on (28), we have
∑
j∈Qi

αij ≤ zi, indicating that
transmitter i has enough precoding vectors for IA at the
receivers inQi (i.e., Ualgn

ij1
∩Ualgn

ij2
= ∅ for j1, j2 ∈ Qi). Denote

Ubasis
i as the set of precoding vectors in Ui that are not used

for alignment at any receiver, i.e., Ubasis
i = Ui\(∪j∈QiU

algn
ij ).

Then we have |Ubasis
i | = zi−

∑
j∈Qi

αij . The precoding vector
assignment for Ualgn

ij and Ubasis
i are shown in Fig. 11.

An IA Scheme at a Receiver. We now consider receiver j
and its unintended transmitters in Pj as shown in Fig. 12.
Our precoding vector assignment scheme ensures that αij
interfering streams from transmitter i ∈ Pj can always
be aligned to any directions (by constructing the precoding
vectors in Ualgn

ij ). Now the question to ask is: For i ∈ Pj ,
how do we align those αij interfering streams at receiver
j? This question was answered in the proof of Lemma 1.
We recap the IA scheme as follows. Recall Zi is the set of
interfering streams from transmitter i and Aij consists of those
αij interfering streams to be aligned. The IA scheme is to align
each interfering stream in Aij to a unique interfering stream
in ∪i

′ 6=i
i′∈Pj

Zi′\Ai′j . Based on (29), each interfering stream in
Aij can be successfully aligned to another interfering stream
in this IA scheme.

5Receiver j in Fig. 11 is also interfered with by other unintended transmit-
ters, which are not shown in the figure.
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Per our notation, the set of precoding vectors for the interfer-
ing streams in Aij is Ualgn

ij and the set of precoding vectors for
the interfering streams in ∪i

′ 6=i
i′∈Pj

Zi′\Ai′j is ∪i
′ 6=i
i′∈Pj

Ui′\Ualgn
i′j .

To achieve our IA scheme, uki ∈ U
algn
ij should be constructed

by uki := H−1
ji Hji′u

k′

i′ , where uk
′

i′ ∈ ∪
i′ 6=i
i′∈Pj

Ui′\Ualgn
i′j . For

simplicity, we denote uki := H−1
ji Hji′u

k′

i′ as uki
j−→ uk

′

i′ .
Denoting Ualgn

i = ∪j∈Qi
Ualgn
ij , we have the following

lemma for transmitter i = 1, 2, · · · , NT.
Lemma 4: For each uki ∈ U

algn
i , there exist a unique j and

a unique uk
′

i′ , such that uki
j−→ uk

′

i′ with i′ 6= i.
Lemma 4 is straightforward based on our precoding vector

design and IA scheme. We omit the proof to conserve the
space.

C. Step 2: Constructing Precoding Vectors

We now show how to construct the precoding vectors at
each transmitter based on the IA scheme in Section B. Denote
U as the set of all precoding vectors in the network, i.e., U =⋃NT

i=1 Ui. Denote Ualgn as the set of the precoding vectors
used for alignment, i.e., Ualgn =

⋃NT

i=1 U
algn
i . Denote Ubasis

as the set of the precoding vectors not used for alignment, i.e.,
Ubasis =

⋃NT

i=1 Ubasis
i . It should be noted that Ualgn and Ubasis

are two disjoint sets and U = Ualgn ∪ Ubasis.
To construct the precoding vectors in U , we first construct

the precoding vectors in Ubasis and then construct the precod-
ing vectors in Ualgn. For each precoding vector in Ubasis, we
let:

uki := ek, for uki ∈ Ubasis, (34)

where ek is a vector with 1 for the k-th element and 0 for all
the others.

For the precoding vectors in Ualgn, their construction is
more complicated, as we describe as follows. Based on
Lemma 4, we know that if uk1i1 ∈ U

algn, then there ex-

ists a precoding vector uk2i2 such that uk1i1
j1−→ uk2i2 (i.e.,

uk1i1 := H−1
j1i1

Hj1i2u
k2
i2

). To construct uk1i1 , we first need to
construct uk2i2 . If uk2i2 ∈ U

basis, we know that uk2i2 has already
been constructed by (34). Otherwise (i.e., uk2i2 ∈ U

algn), we
construct uk2i2 in the same way as uk1i1 , i.e., there exists a

precoding vector uk3i3 such that uk2i2
j2−→ uk3i3 . Following the

same token, we can establish a chain as follows:

C : uk1i1
j1−→ uk2i2

j2−→ · · · · · · jM−2−−−→ u
kM−1
iM−1

jM−1−−−→ ukMiM , (35)

where im 6= im+1 for m = 1, 2, · · · ,M − 1.
Chain C terminates if any of the following two cases occurs.
• Case I: ukMiM has already been constructed.
• Case II: ukMiM appears twice in chain C.
It is easy to see that chain C will terminate, either by case

I or case II. We now show how to construct the precoding
vectors in chain C in each case, respectively.

Case I. In this case, chain C terminates because ukMiM
has already been constructed. We can conclude: (i) all other
precoding vectors in chain C have not been constructed; (ii)
all precoding vectors in this chain are unique. Thus, we can

construct the precoding vectors in chain C sequentially in the
backward direction as follows:

u
kM−1
iM−1

:= H−1
jM−1iM−1

HjM−1iMukMiM .

After obtaining u
kM−1
iM−1

, we then construct ukM−2iM−2
by

u
kM−2
iM−2

:= H−1
jM−2iM−2

HjM−2iM−1u
kM−1
iM−1

.

Following the same token, we construct all the precoding
vectors in chain C.

Case II. In this case, chain C terminates because ukMiM
appears twice. We can conclude: (i) all precoding vectors in
chain C have not been constructed; (ii) all precoding vectors
in chain C are unique except ukMiM ; (iii) there exists m̂ such
that (im̂, km̂) = (iM , kM ) and 1 ≤ m̂ < M .

To construct the precoding vectors in chain C, we divide
chain C into two sub-chains C1 and C2:

C1 : uk1i1
j1−→ uk2i2

j2−→ · · · jm̂−2−−−→ u
km̂−1
im̂−1

jm̂−1−−−→ ukm̂im̂ ,

C2 : ukm̂im̂
jm̂−−→ u

km̂+1

im̂+1

jm̂+1−−−→ · · · jM−2−−−→ u
kM−1
iM−1

jM−1−−−→ ukMiM ,

where (im̂, km̂) = (iM , kM ).
For these two sub-chains, we first construct the precoding

vectors in C2 and then construct the precoding vectors in C1.
Based on the relationships among the vectors in chain C2, we
have:

ukm̂im̂ := H−1
jm̂im̂

Hjm̂im̂+1
u
km̂+1

im̂+1
,

u
km̂+1

im̂+1
:= H−1

jm̂+1im̂+1
Hjm̂+1im̂+2

u
km̂+2

im̂+2
,

... (36)

u
kM−2
iM−2

:= H−1
jM−2iM−2

HjM−2iM−1u
kM−1
iM−1

,

u
kM−1
iM−1

:= H−1
jM−1iM−1

HjM−1iMukMiM .

Given that (im̂, km̂) = (iM , kM ), we have

ukm̂im̂ = ukMiM . (37)

(36) and (37) form a system of linear equations, where H’s
are given matricies and u’s are variables. It can be verified
that a solution to ukMiM in the system is

ukMiM := eigvec

(
M−1∏
m=m̂

(H−1
jmim

Hjmim+1)

)
, (38)

where eigvec(·) is an eigenvector of the square matrix. Once
we obtain ukMiM , we can sequentially construct all the other
precoding vectors in sub-chain C2 by (36).

After constructing the precoding vectors in sub-chain C2, we
construct the precoding vectors in sub-chain C1. Since ukm̂im̂ has
already been constructed, we can construct the other precoding
vectors in sub-chain C1 following the same token in Case I.

It is easy to see that all precoding vectors in Ualgn are
constructed at the end of the above procedure.
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D. Step 3: Existence of Decoding Vectors

We now show that the constructed precoding vectors in
Step 2 satisfy (32) in Lemma 3. First, we present the following
lemma.

Lemma 5: The constructed precoding vectors at each
transmitter are linearly independent, i.e., dim(Ui) = zi for
1 ≤ i ≤ NT.

Proof. Consider transmitter i in Fig. 11. Recall that set
Ui is divided into two disjoint subsets: Ualgn

i and Ubasis
i .

Each precoding vector in Ubasis
i was constructed by letting

uki := ek and each precoding vector in Ualgn
i was constructed

by uki := H−1
ji Hji′u

k′

i′ (with i 6= i′). This indicates that the
precoding vectors in Ubasis

i are independent of the channel
matrices and the precoding vectors in Ualgn

i are dependent
on the channel matrices. Given that the channel matrices are
independent Gaussian random matrices, we have

dim(Ui) = dim(Ualgn
i ∪ Ubasis

i )

= dim(Ualgn
i ) + dim(Ubasis

i )

= dim(Ualgn
i ) + |Ubasis

i | (39)

almost surely.
Now we analyze the dimension of Ualgn

i . Consider two
precoding vectors uki ∈ U

algn
ij1

and uk
′

i ∈ U
algn
ij2

with j1 6= j2.
In our precoding vector construction, uki was constructed by
letting uki := H−1

j1i
Hj1i1u

k1
i1

and uk
′

i was constructed by
letting uk

′

i := H−1
j2i

Hj2i2u
k2
i2

for some i1, k1, i2, and k2.
Hence, uki is dependent on Hj1i, but uk

′

i is dependent on
Hj2i. Given that Hj1i and Hj2i are two independent Gaussian
random matrices, we have

dim(Ualgn
i ) = dim(

⋃
j∈Qi

Ualgn
ij ) =

∑
j∈Qi

dim(Ualgn
ij ) (40)

almost surely.
We now analyze the dimension of Ualgn

ij . Based on (35), a
precoding vector in Ualgn

ij is constructed in the following form:

uki =

(
M−1∏
m=1

(H−1
jmim

Hjmim+1)

)
ukMiM ,

where (i1, k1) = (i, k), M ≥ 2, and ukMiM is constructed either
by (34) or (38). Let Gk

i =
∏M−1
m=1 (H−1

jmim
Hjmim+1

). We call
Gk
i the “effective channel” for uki . We divide the precoding

vectors in Ualgn
ij into subsets such that the precoding vectors in

the same subset have the same “effective channel”. Denote the
subsets as Ualgn

ijn , 1 ≤ n ≤ Nij . Since Hij’s are independent
Gaussian random matrices, any two “effective channels” are
independent random matrices. Thus, we have

dim(Ualgn
ij ) =

Nij∑
n=1

dim(Ualgn
ijn ). (41)

For each uki ∈ U
algn
ijn , it is determined by its corresponding

precoding vector ukMiM and ukMiM is constructed either by (34)
or (38). Denote Ũalgn

ijn as the set of precoding vectors ukMiM
corresponding to the precoding vectors in Ualgn

ijn . Then we have
dim(Ũalign

ijn ) = |Ũalign
ijn | based on three facts: (i) the precoding

vectors in Ũalign
ijn are at the same transmitter; (ii) the precoding

vectors constructed by (34) are linearly independent; (iii) there
are A linearly independent solutions (eigenvectors) to (38).
Thus, we have

dim(Ualign
ijn ) = dim(Ũalign

ijn ) = |Ũalign
ijn | = |U

align
ijn |, (42)

where the first equation follows from the fact that the “effective
channel” has full rank.

Based on (41) and (42), we have

dim(Ualign
ij ) =

Nij∑
n=1

dim(Ualign
ijn ) =

Nij∑
n=1

|Ualign
ijn | = |U

align
ij |.

(43)
Based on (39), (40), and (43), we have

dim(Ui) = dim(Ualgn
i ) + |Ubasis

i |

=
∑
j∈Qi

dim(Ualgn
ij ) + |Ubasis

i |

=
∑
j∈Qi

|Ualgn
ij |+ |U

basis
i |

= |Ualgn
i |+ |Ubasis

i |
= |Ui|
= zi .

Therefore, Lemma 5 is proved. �

Denote DI,eff
j as the set of “effective” interfering stream di-

rections at receiver Rj . Denote DI,algn
j as the set of interfering

stream directions for alignment at receiver Rj . Mathematically,
we have

DI,eff
j =

⋃
i∈Pj

{
Hjiu

k
i : uki ∈ Ui\U

algn
ij

}
,

DI,algn
j =

⋃
i∈Pj

{
Hjiu

k
i : uki ∈ U

algn
ij

}
.

Based on our procedure to construct the precoding vector
construction procedure, we know that for each Hjiu

k
i ∈

DI,algn
j , there exists a Hji′u

k′

i′ ∈ D
I,eff
j such that Hjiu

k
i :=

Hji′u
k′

i′ . Thus we have

span(DI,algn
j ) ⊆ span(DI,eff

j ). (44)

For the number of vectors in DS
j ∪ D

I,eff
j , we have

|DS
j ∪ D

I,eff
j | ≤

∑
i∈Tj

zi +
∑
i∈Pj

(zi − αij) ≤ A, (45)

where the first inequality follows from our definitions and the
second inequality follows from (30).
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The dimension of signal and interference space at receiver
j can be written as:

dim(DS
j ∪ DI

j)
(a)
= dim(DS

j ∪ D
I,eff
j )

(b)
= dim(DS

j ) + dim(DI,eff
j )

(c)
= dim ∪i∈Tj {Hjiu

k
i : uki ∈ Ui}+

dim ∪i∈Pj
{Hjiu

k
i : uki ∈ Ui\U

algn
ij }

(d)
= dim ∪i∈Tj {Ui}+ dim ∪i∈Pj

{Ui\Ualgn
ij }

(e)
=
∑
i∈Tj

dim{Ui}+
∑
i∈Pj

dim{Ui\Ualgn
ij }

(f)
=
∑
i∈Tj

|Ui|+
∑
i∈Pj

|Ui\Ualgn
ij |

(g)
=
∑
i∈Tj

zi +
∑
i∈Pj

(zi − αij), (46)

where (a) follows from (44); (b) follows since (i) Tj and Pj
are disjoint sets (i.e., Tj∩Pj = ∅), (ii) the number of elements
in DS

j ∪D
I,eff
j is upper bounded by A as shown in (45), and (iii)

Hji is independent Gaussian random matrix for each channel;
(c) follows from our definitions of DS

j and DI,eff
j ; (d) follows

from our assumption that Hji has full rank; (e) follows since
Hji is independent Gaussian random matrix for each channel;
(f) follows from Lemma 5; (g) follows from the definitions
of Ui and Ualgn

i .
Similarly, the dimension of interference subspace at receiver

j can be written as:

dim(DI
j) = dim(DI,eff

j ) =
∑
i∈Pj

(zi − αij). (47)

Based on (46) and (47), we have

dim(DS
j ∪ DI

j) =
∑
i∈Tj

zi + dim(DI
j), (48)

which indicates that the constructed precoding vectors meet
(32) in Lemma 3. This completes our proof.

APPENDIX C
PROOF OF THEOREM 2

We prove this theorem in two steps.
Step 1. We prove (1−ε) ·r∗min(MTM2) ≤ r∗min(MTM3) by

showing that if rmin is the optimal objective value of MTM2,
then (1−ε)rmin is an achievable objective value of MTM3.
Suppose that rmin is the optimal objective value of MTM2, i.e.,
rmin = r∗min(MTM2). Then its corresponding solution ϕ =
[rmin, r(f), ci(t), c

k
i (t), γkij(t), other variables] is obviously

feasible and satisfies all the constraints in MTM2. Based on
ϕ, we construct a solution ϕ̂ to MTM3 as follows:

ϕ̂ =
[
(1−ε)rmin, (1−ε)r(f), (1−ε)ci(t), (1−ε)cki (t),

γkij(t), other variables
]
.

We now show that ϕ̂ is a feasible solution to MTM3. Since
ϕ satisfies (3)–(8), (12)–(18), and (22)–(24), it is not difficult
to verify that ϕ̂ also satisfies these constraints. Since ϕ satisfies
(25) in MTM2, we have W log2

(
1+γkij(t)

)
≥ cki (t). Based on

Alg. 1, we know that Dmγ
k
ij(t)+Em ≥ (1−ε) log2(1+γkij(t))

holds for m = 1, 2, · · · ,M . So we have W
(
Dmγ

k
ij(t) +

Em
)
≥ (1−ε)cki (t) for m = 1, 2, · · · ,M . This shows that ϕ̂

satisfies (27). Since ϕ̂ satisfies all the constraints in MTM3, ϕ̂
is a feasible solution to MTM3 and its corresponding objective
value is (1−ε)rmin. So (1−ε)rmin is an achievable objective
value of MTM3 and (1−ε) · r∗min(MTM2) ≤ r∗min(MTM3)
holds.

Step 2. We prove r∗min(MTM3) ≤ r∗min(MTM2) by
showing that if rmin is the optimal objective value of MTM3,
then rmin is an achievable objective value of MTM2. Suppose
that rmin is the optimal objective value of MTM3, i.e.,
rmin = r∗min(MTM3). Then its corresponding solution ϕ =
[rmin, r(f), ci(t), c

k
i (t), γkij(t), other variables] is obviously

feasible and satisfies all the constraints in MTM3.
We now show that ϕ is a feasible solution to MTM2. Since

ϕ is a feasible solution to MTM3, then ϕ satisfies (3)–(8),
(12)–(18), (22)–(24), and (27). Since ϕ satisfies (27), we have
cki (t) ≤W

(
Dmγ

k
ij(t) +Em

)
for m = 1, 2, · · · ,M . Based on

Alg. 1, we know that Dmγ
k
ij(t)+Em ≤ log2(1+γkij(t)) holds

for some m. We have cki (t) ≤W · log2

(
1+γkij(t)

)
. This indi-

cates that ϕ satisfies (25). Since ϕ satisfies all the constraints in
MTM2, ϕ is a feasible solution to MTM2 and its correspond-
ing objective value is rmin. So rmin is an achievable objective
value of MTM2. Therefore, r∗min(MTM3) ≤ r∗min(MTM2)
holds.

APPENDIX D
PROBLEM FORMULATION WITHOUT IA

We formulate the same network throughput optimization
problem without IA (but still with IC) as follows.
IC Constraints. Referring to Fig. 4, consider a node k ∈ N .
If yk(t) = 1 (i.e., node j is a receiver), then the number
of its desired data streams is

∑
m∈Tk zm(t) and the num-

ber of its interfering directions is
∑
i∈Pk

zi(t). To ensure
resolvability of its desired data streams at node k, we must
have:

∑
m∈Tk zm(t) +

∑
i∈Pk

zi(t) ≤ A. Otherwise (i.e.
yk(t) = 0), there is no restriction on the number of the
interfering directions at node k. Combining the two cases, we
have: ∑

m∈Tk

zm(t) +
∑
i∈Pk

zi(t) ≤ A+ [1− yk(t)] ·B,

1 ≤ k ≤ N, 1 ≤ t ≤ T . (49)

Following the same token of formulating MTM1 in Sec-
tion IV, we can formulate the multicast throughput maxi-
mization problem without IA, denoted as MTM-noIAraw, as
follows:

MTM-noIAraw

max rmin

s.t. Multicast IC constraints: (49);
Multicast node constraints: (6)–(8);
One-hop multicast rate constraints: (9)–(11);
Multicast capacity constraints: (12)–(13).
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MTM-noIAraw includes nonlinear constraints and thus falls
in the category of MINLP. By following the linearization
techniques in Section V, MTM-noIAraw can be linearized to
MTM-noIA:

MTM-noIA
max rmin

s.t. Multicast IC constraints: (49);
Multicast node constraints: (6)–(8);
Multicast capacity constraints: (12)–(13);
One-hop multicast rate constraints: (14)–(18),

(22)–(24), (27).

All the constraints in MTM-noIA are linear and thus MTM-
noIA falls in the category of MILP. Based on the analysis
in Section V, the optimal objective value of MTM-noIA is
within (1−ε)-optimal of the objective value of MTM-noIAraw,
i.e., (1− ε) · r∗min(MTM-noIAraw) ≤ r∗min(MTM-noIA) ≤
r∗min(MTM-noIAraw).
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