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Abstract

We prove that, for every ¢ € (0, 1), every two C 2+ _gmooth (a > 0) circle diffeomorphisms with a break point, i.e. circle
diffeomorphisms with a single singular point where the derivative has a jump discontinuity, with the same irrational rotation
number p € (0, 1) and the same size of the break ¢ € R4 \{1}, are conjugate to each other via a conjugacy which is (1 — ¢)-Holder
continuous at the break points. An analogous result does not hold for circle diffeomorphisms even when they are analytic.
© 2018 Published by Elsevier Masson SAS.
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1. Introduction

The rigidity theory of circle diffeomorphisms is a classic topic in dynamical systems, which started with the work
of Arnol’d [2] and was largely developed by Herman [8] and Yoccoz [23] (see also [9] and [15]). It concerns an
implied regularity (often smoothness) of conjugacies between maps that belong to the same topological conjugacy
class. Over the last twenty-five years a major focus has been put on understanding the rigidity properties of circle
diffeomorphisms with a single singular point where the derivative has a jump discontinuity (circle maps with a break)
or vanishes (critical circle maps). This paper presents the first rigidity result for circle maps with a break that holds for
all irrational rotation numbers. It concerns a phenomenon not previously seen and establishes a result whose analog
for circle diffeomorphisms does not hold.

The first result on the rigidity of circle diffeomorphisms concerns the smoothness of conjugations for analytic
diffeomorphisms of a circle T! = R/Z, close to a rotation Ry :x— x+p mod 1, with p € (0, 1)\Q. Arnol’d [2]
proved, using methods of Kolmogorov—Arnol’d-Moser theory, that any analytic circle diffeomorphism with a Dio-
phantine rotation number p, sufficiently close to the rotation R, is analytically conjugate to R,. He also made a
conjecture, proved almost two decades later by Herman [8], that the closeness to the rotation is not necessary for this
claim to hold true. In fact, Herman proved that any C°°-smooth (C®-smooth) circle diffeomorphism with a Diophan-
tine rotation number p is C*°-smoothly (C*-smoothly) conjugate to the rotation R,. The required smoothness of the
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maps was further weakened by Yoccoz [23], establishing generic C'*¢-rigidity, with € > 0, of C” smooth (r > 3) cir-
cle diffeomorphisms. A natural approach to Herman’s theory is based on renormalization. Renormalizations of circle
diffeomorphisms converge to linear maps with slope 1. A recent result [15] shows that C>*t®-smooth circle diffeo-
morphisms with a Diophantine rotation number p of class D(8), with 0 < § < o < 1, are C't*~%_smoothly conjugate
to R,. A number p is Diophantine of class D(3), for some § > 0, if there exists C > 0 such that |p — p/q]| > C/q*™s,
for every p € Z and g € N. On the other hand, robust rigidity, i.e., rigidity for all irrational rotation numbers, does
not hold even for analytic circle diffeomorphisms. In fact, Arnol’d constructed examples of analytic circle diffeomor-
phisms with the same Liouville (non-Diophantine) irrational rotation number for which the conjugacy is essentially
singular.

We recently proved a sequence of results on the rigidity of circle maps with breaks that can be considered an
extension of Herman’s theory of the linearization of circle diffeomorphisms. In [12,13], we proved that, for almost
all irrational p € (0, 1), any two C>**-smooth circle diffeomorphisms with a break, with the same rotation number p
and the same size of the break ¢ € R4 \{1} (i.e., the same square root of the ratio of the left and right derivatives at the
break point), are C'-smoothly conjugate to each other. This generic C!-rigidity result follows from the exponential
convergence of renormalizations of these maps that we proved in [12]. In fact, in [12], we proved that, for all irrational
p, renormalizations f,, and f,; of any two C?**-smooth circle diffeomorphisms with a break T and T, with the
same irrational rotation number p and the same size of the break ¢ approach each other exponentially fast (in the
Cz—topology), i.e., there exist A € (0, 1) and C > 0 such that

1fn = fall 21,0 < CA™. (1.1)

The exponential rate of convergence A is universal and depends only on the size of the break ¢ and « (for @ < 1,
A= %, with u € (0, 1) independent of «). Partial results concerning the convergence of renormalizations restricted to
sets of rotation numbers of zero Lebesgue measure, were previously obtained in [10,16]. A set Sy, of rotation numbers
p for which Cl-rigidity holds [12,13] can be characterized, using the continued fraction expansion p = [ky, k3, ... ],
as follows. Sy is the set of all p for which there exists a constant C; > 0 and A € (A, 1) such that k,,1 < Cl){"
for all n € 2N, if ¢ < 1, or for all n € 2N — 1, if ¢ > 1. The difference between n odd and n even comes from the
difference in the behavior of the corresponding subsequences of renormalizations. We also proved [11] that, although
generic, C'-rigidity does not hold for all irrational rotation numbers. These results are analogous to those for circle
diffeomorphisms. A recent result of one of us [19] shows that, for almost all irrational rotation numbers, C I+e -rigidity
of circle maps with breaks does not hold for any € > 0, contrary to the case of circle diffeomorphisms. The set Syon
of rotation numbers for which C 1Jre-rigidity does not hold includes all irrational numbers p € (0, 1), for which there
is subsequence of k41, with n € 2N, if ¢ < 1, or with n € 2N — 1, if ¢ > 1, which grows faster than linearly in n.
The smaller set of rotation numbers for which C!*¢-rigidity holds, for some € > 0, for circle maps with breaks, in
comparison to circle diffeomorphisms, is the consequence of the strongly unbounded geometry of these maps. While,
in the case of circle diffeomorphisms, the ratio of lengths of neighboring elements of dynamical partitions P, is at most
of the order of the partial quotient &, 1, in the case of circle maps with a break, this ratio can be exponentially large
in k; 1. This can also be compared with analytic critical circle maps whose bounded geometry, i.e., the property that
this ratio is bounded, is ultimately responsible for their robust C!-rigidity. Namely, Khanin and Teplinsky proved [14]
that any two analytic critical circle maps with the same irrational rotation number and the same order of the critical
point are C'-smoothly conjugate to each other. A critical point x. is said to be of order 8 > 1 if the derivative of the
map for x near x. behaves as |x — x.|#~!. The result is based on the exponential convergence of renormalizations
that was proved by de Faria and de Melo [7] for bounded type rotation numbers and extended to all irrational rotation
numbers by Yampolsky [22]. In fact, de Faria and de Melo proved that a stronger, C'*€-rigidity, of analytic critical
circle maps holds for generic irrational rotation numbers [7]. They also proved that such a result cannot be extended to
all irrational rotation numbers in the C°°-class of maps [6]. A local result of Khmelev and Yampolsky [18] suggested
that the analytic case might be different. Nevertheless, for any € > 0, Avila [3] constructed examples of analytic
critical circle maps, with the same irrational rotation number and the same order of the critical point, that are not
C!*¢-smoothly conjugate to each other. All positive rigidity results for critical circle maps with non-analytic critical
points are, at the moment, conditional, due to the lack of proof of the convergence of renormalization in this case.
Contrary to the case of critical circle maps, as already mentioned above, robust C!-rigidity does not hold even for
analytic circle maps with a break. In [11], we even constructed pairs of analytic circle maps with a break, with the
same irrational rotation number and the same size of the break, for which no conjugacy between them is Lipschitz
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continuous. The rotation numbers p of these maps have a rapidly growing (faster than some exponential function)
subsequence of odd-indexed digits in the continued fraction expansion k41 of p, if ¢ < 1, or even-indexed digits, if
c> 1. In [11], we also proved that the conjugacy that maps the break point of one map into the break point of the
other can be arbitrarily bad. More precisely, for any modulus of continuity, we constructed examples of analytic circle
maps with a break, with the same irrational rotation number and the same size of the break, such that the conjugacy
that maps the break point of one map into the break point of the other is not uniformly continuous with that modulus
of continuity.
The main result of this paper is given by the following theorem.

Definition 1.1. Let xo € T'. A function ¢ : T! — T! is locally -Holder continuous or -Hélder continuous at xq or
¢ (xp) if there exists C > 0 such that, for all x € T!,

1
C7Mx — x0l% < lp(x) — o(x0)| < Clx — x0P. (1.2)

The conjugacy is 8-Holder continuous if it is 8-Holder continuous at each x € T'.

Theorem 1.2. Let ¢ € (0, 1), c € Ry\{1}, « € (0, 1) and let p be any irrational number in (0, 1). Then, for any two
C>_smooth circle diffeomorphisms T and T with break points at x. and X, respectively, with the same rotation
number p and the same size of the break c, there is a point xo € T' such that the conjugacy ¢ : T' — T! that satisfies
poTogp™l = T and @ (x0) =X, is (1 — &)-Holder continuous at the break points.

Remark 1. For any ¢ > 0, this result establishes robust local (1 — ¢)-Holder rigidity of C?T%-smooth circle diffeo-
morphisms with a break. This is the first rigidity result for such maps that holds for a/l irrational rotation numbers. An
analogous result does not hold for circle diffeomorphisms, even when they are analytic.

Remark 2. We emphasize that the construction of the (1 — ¢)-Holder continuous conjugacy in general requires a
non-trivial “shift” of the preimage of the break point, i.e., for some irrational rotation numbers, xo = <p_1 (Xe) # xe.
No previous rigidity result for circle maps with a break required such a “shift”. In fact, this is the first rigidity result
for circle diffeomorphisms with a singular point in general which involves conjugacy which does not map the singular
point of one map into the singular point of the other.

In addition to being part of the rigidity theory of circle homeomorphisms, rigidity results for circle maps with breaks
are also important for understanding properties of the generalized interval exchange transformations. Although quite
natural, these transformations were introduced only recently by Marmi, Moussa and Yoccoz [20]. They are obtained
by replacing linear branches with slope 1 of an interval exchange transformation by smooth diffeomorphisms. Just as
an interval exchange transformation of two intervals can be seen as a rigid rotation on a circle, a generalized interval
exchange transformation of two intervals is a circle map with two break points. As these two points lie on the same
orbit of the map, the map can be piecewise-smoothly conjugated to a circle map with one point of break. Marmi,
Moussa and Yoccoz considered the linearizable case of an arbitrary number of intervals [20], when there are no break
points. The special case of cyclic permutations, which corresponds to circle maps with more points of break, but with
product of the sizes of breaks equal to 1, was considered by Cunha and Smania [4,5]. In this case, renormalizations
approach piecewise linear maps. In the case of circle maps with breaks with the product of the sizes of breaks along
some orbit not equal to 1, the renormalizations are essentially non-linear and approach piecewise fractional linear
transformations.

This paper is organized as follows. In Section 2, we review basic facts about dynamical partitions and renormaliza-
tions of circle homeomorphisms — the main technical tools that we use in this paper. In Section 3, we give a criterion
of (local) Holder continuity of a conjugacy between two circle homeomorphisms. In Section 4, we obtain some gen-
eral estimates on the geometry of dynamical partitions. In particular, we show that the lengths of the corresponding
fundamental intervals are asymptotically the same on the logarithmic scale. In Section 5, we prove that, after an ap-
propriate shift of indexes, the renormalized intervals of the next level partition inside the fundamental intervals of
dynamical partitions are, in some sense, comparable. Finally, in Section 6, we construct a particular conjugacy and
prove Theorem 1.2.
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2. Preliminaries

For every orientation-preserving homeomorphism 7 : T! — T! of the circle T' := R/Z, there exists a (unique
up to an additive integer constant) continuous and strictly increasing function 7 : R — R, called a lift of T, that
satisfies 7 (x + 1) = T (x) + 1, for every x € R. Poincaré showed that, for every such T : T! — T!, there is a unique
rotation number p, given by the limit p := nll)ngo T"(x)/n mod 1, where T is any lift of T. Renormalizations of

an orientation-preserving homeomorphism of a circle 7', with a rotation number p € (0, 1) are defined using the
continued fraction expansion

P 1 2.1

= — .
kl + kot k’s%

that we also write as p = [k1, k2, k3, ... ]. The sequence of integers (k) eN, called partial quotients, is infinite if and
only if p is irrational. Every irrational p defines uniquely the sequence of partial quotients. Conversely, every infinite
sequence of partial quotients defines uniquely an irrational number p as the limit of the sequence of rational conver-
gents p,/qn = k1, k2, ..., k,]. It is well-known that this sequence forms a sequence of best rational approximations
of an irrational p, i.e., there are no rational numbers with denominators smaller or equal to g,, that are closer to p than
Pn/qn- The rational convergents can also be defined recursively by p, =k, pp,—1 + pn—2 and g, = k,gn—1 + gn—2,
starting with po=0,q90=1, p_1=1,9g-1 =0.

To define renormalizations of an orientation-preserving homeomorphism of a circle 7', with an irrational rotation
number p, we start with a marked point xg € T!, and consider the marked trajectory x; = Tixp, with i € N. The
subsequence (x4,)nen indexed by the denominators g, of the sequence of rational convergents of the rotation num-
ber p, will be called the sequence of dynamical convergents. It follows from the simple arithmetic properties of the
rational convergents that the sequence of dynamical convergents (x,,),eN for the rigid rotation R, has the property
that its subsequence with n odd approaches xo from the left monotonically and the subsequence with n even ap-
proaches xg from the right monotonically. Since all circle homeomorphisms with the same irrational rotation number
are combinatorially equivalent, the order of the dynamical convergents of T is the same.

The interval [x,,, xo], for n odd, and [xo, x4, ], for n even, will be denoted by A(()") and called the n-th renormaliza-
tion segment associated to xg. The n-th renormalization segment associated to x; will be denoted by Ag"). It follows

from the properties of the continued fractions that the only points of the orbit {x; : 0 <i < g, 41} that belong to A(()"_l)
are {xg,_;+ig, : 0 <i <kpt1}.

A certain number of images of A(()"_l) and A(()"), under the iterates of the map T, cover the whole circle without
overlapping beyond the end points and form the n-th dynamical partition of the circle

Pu={T'AY ™V :0<i<g) ULTIAYY :0<i < gu1). 2.2)
The intervals A"~ and A" will be called the fundamental intervals of P,.. We also define APD . A=D G AM
0 0 0 0 0
()
and the renormalization parameter a,, := %, characterizing the geometry of dynamical partitions.
0

The n-th renormalization of an orientation-preserving homeomorphism 7 : T! — T!, with a rotation number p,
with respect to the marked point xg € T!, is a function fa : [—1,0] = R obtained from the restriction of 79" to
Ag'fl), by rescaling the coordinates, in the following way. If 7, is the affine change of coordinates that maps x,,_,
into —1 and xg into O, then

foi=tpoTdor !, (2.3)

Definition (2.3) is valid for all n € Ny, where Ny := N U {0}, if and only if p is irrational; otherwise, n is less than
or equal to the length of the continued fraction expansion of p. If we identify xo with zero, then 1, is exactly the
multiplication by (—1)"/ |A(()”71) |. Here, and in what follows, || denotes the length of an interval I on the circle T'.
Notice that f,(0) = ay.

When necessary to state explicitly which marked point x( the quantities Al(”), A(()”*]), an, Pu, fn and T, are
associated to, they are denoted by A;”)(X()), A(()n_l)(xo), an(x0), Pn.xos fn.xo and 7, x,, respectively.
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This paper concerns circle diffeomorphisms (maps) with a break, i.e., homeomorphisms of a circle for which there
exists a point x, € T!, such that

(i) T € C"(T\fxc)),
(ii) T’(x) is bounded from below by a positive constant on Tl\{xc}, and
(iii) the one-sided derivatives 7" (x.) and T} (x.) at x. are such that the size of the break

T' (x¢)
— #1.
T.;. (xc) *

In this paper, we will reserve the notation A(") A(”_l) an, Pn, fn and t, for the quantities associated to the

=@n=1)
marked point xo = x.. The corresponding quantities, associated to the map T will be denoted by A(") A - , dn,

Pn, fn and T,.
Since for circle maps with a break V := Varpi InT’ < oo, we have |In(T9) (x)| < V, for all x € T!, by Denjoy’s
lemma [21]. Therefore, we have the uniform bound

|In f,(D)I =V, (2.4)

forall x € [—1,0].

It was proved in [17] that the renormalizations of circle maps with a break approach a particular family of fractional
linear transformations. Namely (see also [12]), for every ¢ € R;\{1} and « € (0, 1), there exists A € (0, 1) such that
the renormalizations f,, n € Ny, of a C2*+_gmooth circle map 7', with a break of size c, satisfy

I fu = Fullcap_1.0 < CA" 2.5)
for some C > 0, where F,, = Fy, p,.M,.c, : [—1,0] = R,
an + (ap + by My)z

F, = , 2.6
n(2) 1— (M, — 1)z (2.6)
with
(n) (n—1) (n) qn— "
Ao~ 1Ay 71— 14g,7,] Z T"(x)
a, = m, b}’l = |A(n 1)| s n = exp / 2T/(_x) dx | . (27)
0 0 an 1+

Further information on closeness of renormalizations for maps with the derivative in a Zygmund class (under suitable
arithmetic conditions) have been obtained in [1].

We end this section with a few more comments about the notation. For functions f, g : D — R, with a domain D,
we write f(x) = O(g(x)) if there is a constant K > 0, independent of x € D, such that | f (x)| < K|g(x)|. We write
f(x) = O(g(x)) if there is a constant K > 0, independent of x € D, such that K’lg(x) <f(x)<Kg).

3. A criterion of Holder continuity of the conjugacy
In this section, we state and prove a criterion of Holder regularity of the conjugacy.

Proposition 3.1 (Criterion of local Holder regularity). Let y € (0,1) and x € T'. Let T,7:T! - T! be two
orientation-preserving circle homeomorphisms and ¢ : TV — T' a homeomorphism satisfying

poTop ' =T. (3.1)

If there exist o > 0 and 8 > 0 such that, for all y € T' satisfying |x — y| < 8, there exist J € N and a finite sequence
of intervals Aj C[x,yl, j=1,...,J, such that

® Z lp(ApI=olex) =)l

j=1
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J
(i) X [Ajl=olx—yl,
j=1

(i) (Vj:1<j<JI)|Aj=alx =y
(iv) (Vj:1<j<0)lpAp]=alpE) — e
W) Vj:1<j<J)

Info(A )l
e et 2AL

2—y, 3.2
s, | < 14 (3.2)

1

then the conjugacy ¢ and its inverse ¢~ are 2y — 1-Hélder continuous at x and ¢(x), respectively.

Remark 3. In this paper, [x, y] denotes the shortest arc on T! with end points at x and y. |x — y| denotes the shortest
arc distance on T, i.e., the length of [x, y].

Proof. It follows from (3.2) that, for all x € T! and all A; C[x,y] wehave [p(A;)| <|A;]” and |A;| < |p(A)].
Using (i) and (iii), we have
J J
lp) —eMI <o D lp(ApI <o Y A <oV P —y[r T (33)
j=1 j=1

This proves that ¢ is 2 — 1-Holder continuous at x. The 2y — 1-Hélder continuity of ¢!

similarly, using (ii) and (iv),

at ¢(x) is established

J J
_ _ 1 1 - 2
=yl <o D A0 Y le(A)ITT =0T T lx—y[ T (3.4)
j=1 j=1

and the fact that ﬁ >y, fory €(0,1). O

It was shown in [11] that, for every ¢ € R4 \{1}, there are irrational numbers p € (0, 1) and pairs of circle diffeo-
morphisms 7 and T with breaks at x and X, respectively, with the same rotation number p and the same size of the
break c, such that the conjugacy ¢ that satisfies (3.1) and ¢(x.) = X, is not Holder continuous at x.. The main goal
of this paper is to determine a point x¢, for any such pairs of maps, such that the assumptions of Proposition 3.1 are
satisfied, with the intervals A ; chosen from among the intervals of dynamical partitions P, .

4. Estimates on the renormalization parameters

In the following, let 7 and T be two circle diffeomorphisms with breaks at x. and X, respectively, with the same
irrational rotation number p € (0, 1) and the same size of the break ¢ € R\{1}. In this section, we obtain some general
estimates on the renormalization parameters a, and @, and show that the logarithms of the lengths of the corresponding
fundamental intervals of T and 7T are asymptotically the same.

Proposition 4.1. Let A1 € (A, 1) and Ay € (/A/A1, 1). There exists Cy > 0 such that, if ¢, > 1 or if ¢, <1 and
kn+1 < C])»l_n, then

an
dap

< CoAl. 4.1

Remark 4. If ¢, > 1, (4.1) can actually be strengthened by replacing A, with A.

Proof. Let A3 € (A/Ap, A1A2). If ¢, < 1 and a;, > C3A%, for some C3 > 0, the claim follows directly from the expo-
nential closeness of renormalizations (1.1), since A > X/A3 and

(G@n — an| = | £2(0) — f2(0)| < CA". (4.2)
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If ¢, > 1, the claim follows from the same estimate since, in that case, a, is bounded from below by a positive constant
(see Proposition 3.3 of [12]).

Now, assume that ¢, < 1 and a, < C3A5. We assume that # is sufficiently large such that the renormalizations are
concave downwards (see Proposition 3.6 of [12]). If @, /a, > 1 + C2A%, then there is a constant C4 > 0 such that

(A )

> 14 Cqhj. (4.3)
[T (A )]

This follows from the fact that |rn(A;’;)1)| = f_ 1(;)|r,,(A(">)| = f!_(©)an, where ¢ € 7,1(AJY), and
|rn(A(") Dl = f,: l({)lrn(A("))| = f,; 1({)an, where { € T 1(A )) using again (1.1) and the Denjoy estimate
(2.4). Namely,
5 @g Dl 1Ol a,
(A D] Ol an

dn—1

> 1+ O00" +ap)(1+ Co2) > 14 Cahs. (4.4)

Here, we have also used that | — E| < Csa, < C3CsA%, for some Cs > 0.
Furthermore, there is a constant Cg > 0 such that

~ % (n+l ~
G @ T @ _

TS > 1+ O0M")(1+ Caa5) > 1+ Cehs. (4.5)
|77n(A0n )l Gntldn

Therefore, there is a constant C7 > 0 such that
B (Rg )| G (14 Tagr (1= FLE))
T (A ) an(L+ans1 (1= £7E)
_ (1 L @iy — a1 = [i@E) +an(£€) ~ ] (E/))) (4.6)
dap | +ap+1(1 _f/(g/))
> (1+O0M") +a, OL" +a,))(1+ CaA3) > 1+ C7A5,

where ¢’ € rn(A("H)) and 7' €%, (Z(()"'H)). Here, we have used that |¢’ — ¢/| < Csa, < C3CgA”, for some Cg > 0,
1 1 ~ o~ L~ 1
in addition to using |7, (Ag, ™) = £t (AT = £1(¢ansian and 7 (A5 = FIE@HIFAFT)] =
fn (; )dy,+1d,. We have also used (1.1) and the Denjoy estimate (2.4).
Since

() e
| n( qr,i 1+,qn)| |‘L’n(A(n)1)| 1—[ f/@/

A )l (A D] g Fa &) w
( ) kn -1 - :

BBy sig)) _ B I (fé(Cj))

T (AL Ol @ADL o \ i)

where ¢; € t,,(A( )1+]q ) and §j € t,,(A( )1+]q ), we can obtain that, for some Cy > 0,

X (n)

|Tu (A )|

n ?Z) 1+ign 14+ Cg)»n, 4.8)
1Tn Ay, 4ig)]

for all 0 <i < k,,4+1 such that the intervals ?n(zé'ill+iqn) C[—1, =1+ 251U [—A%, 0]. All but at most order n of the

intervals T, (A(") ) satisfy this condition. Starting with estimate (4.3) and using the first of the identities (4.7), we

+ign
obtain 1
1T (A ;’i)wiqn)l n\—C1A7"
— < > (1+Cardy))(1+0RS)) ", (4.9)
T (A o)
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and, thus, (4.8) follows for i such that tn(A(") " \+ign ) C[—1, =1+ A%]. Here, we have used that |f:§(zj) — f,;(g“j)| <
C ]0A3, where C1g > 0,and A < A3 < A1Ap. Slmﬂarly, starting with estimate (4.6) and using the second of the identities
(4.7), we obtain (4.8) for i such that 'l:n(A(") \+ign ) C [—A%,0].

Let & and &1 be the left and right endpoints of the interval rn(A(") ). Let, similarly, El and Em be the

—1+ign

left and right endpoints of the interval rn(A(") ). Let r; = Sl — &;. Estimates (4.8) imply that for i such that

Tn(A(n)

_1+ign

)C[=1, =141, ri = C11A”|rn(A(”) )|, for some Cq; > 0, and n large enough. Here, we have

1+ign 1tign
also used that, for all such i, |rn (A( ") "\ +ign )| is of the same order as Z i—0 |t,,(A "\ +ign )|. This follows from the
fact that for such i, f;(&) O(A") and fn ({l — O(A") and, therefore the length of the intervals
Tn( A(n) i ) increases exponentlally with i. Similarly, for i such that the intervals rn(A "\ +ign ) C [—AZ, 0], we

have r; < — C12A”|rn(A
X (n)

"\ +ign )|, for some Ci3 > 0, and n large enough. Let in;, be the 1ndex i of the longest of

the intervals Tn(A "\ +ign ) cl-1,-1+ A”] If such ipin does not exist we set imin := 0. Similarly, let imax be the

index i of the longest of the intervals rn(A n) ) C [—A%,0]. If such ipax does not exist, we set imax := kp+1.

Since |rn(A( n) )| and |1:,,(A( ")

~1+iqn
)| are at least of the order of A%, we obtain that r; ; > Ci3A5A% and

Tinae < —C1 3k I)::Zn F(()Ir some Ci3 > 0 E;I—:(limali]n large enough. We can now extend these estimates using the following
relation
rist = Ju@)ri + OGN, (4.10)
where Ei/ € (&, Ei). By iterating this relation, we obtain
i—imin—1 i—1
i 2 iy H FI@H = Cran Z [T 7@, @.11)
J=imin k=0 j=i—k

where C14 > 0. For any « > 0, there exists x > 0, such that if £/ € [—1, —1 + x], then | f1(¢)) — ¢, '| < « and if

;“ € [—x, 0], then |f ({ ) — ¢ | < k. Therefore, if « is small enough, and i is such that tn(A(") \+ign )yC[—1, =14 x],
the derivatives in (4.11) are larger than and bounded away from 1. Consequently, the sum of the products in (4.11) is
of the order of the maximal product. Therefore,

ri = Ci3AyAs5 — CisA” > Ciehy A, (4.12)
for some Cis, C16 > 0 and n large enough. Similarly, for i such that rn(A(n) \+ign ) C [—x, 0], we obtain that
ri < _C17)¥2)¥3, 4.13)

for some Cy7 > 0 and all n large enough. Using (4.10), each of the estimates (4.12) and (4.13) can be extended to i

such that r,,(A(") i (111) N (—1 4 »x, —x) # (. This leads to a contradiction. The claim follows. O

Proposition 4.2. There exist C1g, C19 > 0 such that, if c, < 1 and ky41 > C13, then

Ina,

Ink
—1 §C19max{ z "*1,,\"}. (4.14)
kn+1

1
jknJrl Incy,

Proof. Let us consider two subintervals of [-1,0], Ly :=[-1,—1 4+ 1/ky4+1] and L, := [fn”“( 1) — 1/kp+1,
fn"“( 1)], and the set of points S := {fn (=1):j=1,...,ky41}. Let m; and m, be the cardinalities of the sets
SN Ly and SN Ly, respectively. Then, there is C39 > 0 such that

kny1 — (m1+m2) < Cyolnky,qq, (4.15)

since the cardinality of the set S\(L| U L») is of the order of Ink, . This follows from the fact that, for ¢, < 1 and
sufficiently large n, the second derivative of the renormalizations f, is bounded away from zero and negative (see
Proposition 3.6 of [12]).
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If by,1 = (fu)p (=1) and by 2 = (f»)"(0), and M > apax | /7 (2)], then

C—lb—m1 Czlb_ml M —m
2l < fu=D 1 s (1 ) :

k k  buik
e n+1 n+1 s n,1Kn+1 . (4.16)
C21 bn,2 < |fr{(n+l(_l) _ f:n-#l_](_l)' < C21bn*2 ( 24M>
kn41 kn+1 bp,2kn+1

for some Cp; > 0. The last inequality is obtained under the assumption | f,f "(=1)| < 1/kyy1. It follows from the
Denjoy estimate (2.4) that

_ kn kpy1—1 kn knt1—1
VAT D = LT DI =D H =Y LD = ST (=D 4.17)
Since both m 1, my < ky 41, this implies that, for some C; > 0,
C3,'by3 <b, 1" < Cyb)). (4.18)

Using (4.15), for some C»3 > 0, we have

Inb, 2
my — ——————knq1| < Cozlnk, 1,
Inb, | +1nby»
o (4.19)
Inb,
m : kny1| < Cozlnk, .

2T T
Inb, | +1Inby>

It follows that |f,{<’“rl (=D)| < Coab ™ Jkyy1 < 1/kpy1, for some Caq > 0, if k,1 is large enough. Since, by (2.5),

n,l

|bp1 — F,(=1)| <CA" and F)(—1) = cn_1 + O(ay,) (due to Proposition 3.2 of [12]), the claim follows. O

Corollary 4.3. Let A4 € (A1/3, 1). There exist Cp5 > 0 and N1 € N such that, for all n > Ny such that ¢, < 1, we have

Ina,

-1 < C25)»2. 4.20)

Ina,

Proof. Let Ay = AV3 If knt1 <C 1A1_” , the claim follows from Proposition 4.1. If k41 > C 1A1_", the claim follows
from Proposition 4.2. We have also used the fact that, if ¢, < 1, then, forn > Ny and N; € N large enough, a, < ¢, < 1
(see Proposition 3.3 in [12]). O

Proposition 4.4.

In|AY|

n—o0o 1n|A87)| -

421

n

n
Proof. Lete > 0. Since A(()") =[Ti—; ax, we have ln|A(()")| =In [] a+In J] a.IfN,eNandN,> Ny,

k=1:c¢c>1 k=1:cr<l
using Proposition 4.1 and Corollary 4.3, we obtain
n i Ny—1 i n X
~) In J[ A+005)+ >  InaO@Ry) Y InaO(y)
1H|A0 | _ k=1:c¢>1 k=1 :cr<l k=N> : cx <1
(m)) () (n)
In|A;"| In|A;"| ) In|Ay”| 4.22)
o In l_[ ay
1)+ ¥ (N k=Ny : cx <1
=1+ (D (nl)( 2) +(9()»in) 2 EZ)
In|Ay7| In|Ay7]
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where W1 (N,) is a constant that depends on N3, but does not depend on n. Since |Aé")| decrease at least exponentially

with n and since, for sufficiently large k and cx > 1, a; are bounded both from above and from below by positive
constants (see Proposition 3.3 of [12]), we have

Il i Il
In ai In arp In ai
k=Ny : cp <1 k=1:c; <l k=1:c;>1 Wy (N3)
o) =1- ™ — o) =001) — o (4.23)
In|Ay"| In|Ay"| In|Ay"| In|Ay"|

where W, (N>) is a constant that depends on N only. It follows from (4.22) that if N> has been chosen large enough,
there exists N3 > N, such that, for all n > N3, we have

Ay

— 0 _ql<e (4.24)
In|AY|

The claim follows. O
5. Estimates on the renormalized intervals of the next level partition and the shift of indexes

The following proposition was proved in [13].

(1+a)a
Proposition 5.1. ([13]) Let A5 = max{i,, A3CFa) }. There exists Co¢ > 0 such that, for all n € N such that either ¢, > 1
orc, <1landk,i1 < CiA{", we have
~ X
|T”(Aqn71+iqn)|

T (A )]

— 1] < Cy25, (5.1

foralli suchthat 0 <i <ky41.
Let x; := T (x,).

Proposition 5.2. For every a € (0,1), p € (0, )D\Q and ¢ € Ry \{1}, there exists ). € (0,1) and, for every
CZ _smooth circle map T with a break of size ¢ and rotation number p, there exists Co7 > 0, such that, if ¢, < 1
then, for everyi =1, ..., qn, we have

1 forxicgy — B le2p1.0p < Cor (W + ap), (5.2)
where

CnZ

FO@=—"" .
L T

(5.3)

Proof. The proof of the claim is similar to the proof of (2.5), using Proposition 3.2 of [12] and the fact that

AP (x;_ . . . NG .
W = 0O(ay), fori =1,...,g, — 1, due to the bounded distortion of the ratio ||A<"0_1|)| under the action
0o Yi-an 0
of T7'. O

Let Sy i={fi v (=) :j=1,... kns1}.

Proposition 5.3. Let €1 > 0 and let n1 = n1(n, i) be the cardinality of S, x, N M1, where M :=[—1, —1 +€1]. There
exists Cpg > 0 such that, if ¢, < 1 and ky41 > Cogn, then, fori =0,...,q, — 1,

1
1= Skt + 00 g1 + k). >4

Please cite this article in press as: K. Khanin, S. Koci¢, Robust local Holder rigidity of circle maps with breaks, Ann. I. H. Poincaré — AN
(2018), https://doi.org/10.1016/j.anihpc.2018.03.003




ANIHPC:2898
K. Khanin, S. Koci¢ / Ann. I. H. Poincaré — AN eee (eeee) eoe—eee 11

(n)
Proof. Since the distortion of the ratio % under 797" is bounded, |A§"_l)| = |Af’i;:)|(l + O(ay)), for i =

I=4n

1,...,qn — 1. It follows that, for sufficiently large n, the cardinality of the set S, x, N M, that we will denote by
ny, can differ from n; by at most 2. Here, we have used Proposition 5.2 and, therefore, that the distance between
successive points f;; xi_q, (—1) grows exponentially with j. Using Proposition 5.2 again, in particular that the second
derivative of f, x;_, 1s bounded both from below and above by negative constants and that the derivatives f;, Xign (-1

and f, Yig (0) can be made arbitrary close to ¢;; and c,, respectively, by choosing 7 and k, 1| sufficiently large, one
can prove, completely analogously to the proof of the first inequality in (4.19) (see the proof of Proposition 4.2), that

_ Inb a2
np=— T kny1 + O(nk,41), (3.5)
Inb 1 +Inb, Xi—gp 2

nx,

where bn,x,-fqn,l =( fn’xiﬂm ) +(—1) and bn,x,-fqn 2= f"»Xi—qn )" (0). Here, we have also used the fact that the cardinal-
ity of the set Sn,xifq,, N (M1\L) (see the proof of Proposition 4.2) is of the order of Ink;, 1.
Since it follows from Proposition 4.2 and Proposition 5.2 that (fn,x,'_q,, )fi_(— 1H)— cn_1 =O(\") and (f,,,x,,_qn )g_(O) —
=0OW"), for k41 > Cogn and Cpg > 0 sufficiently large, the claim follows from (5.5). O

Let X; := T! (X.) and gn,)?,- = {fnjf, (=D :j=1,...,ky41}. An immediate corollary of Proposition 5.3 is the
following.

Corollary 5.4. Let Ag € (A1, 1). Let €] > 0 and let n| and i1} be the cardinalities of Sp.x; N My and Sn 5 N My, where
My :=[—1, -1+ €1]. There exists K1 > 0, depending on T and T only, such that, if c, < 1 and ky41 > C])\.l , then,

fori=0,...,q,—1,
In1 —n1| < Kie(mkny1, (5.6)

where €(n) = A" + lnk"“ < O(p).

The following proposition shows that, after a proper shift of indexes, i,, the lengths of the intervals 7, (an_l_an)
and 7, (Ag,_;+(i+iyg,) are of the same order.

To simplify the notation, let J; := rn(A(") \+Hidn ) and J, = r,,(A(") \+ign

for c, < 1, kyy1 = C1A]" and n large enough the renormalizations f, and f, are uniformly concave downwards
with derivatives at —1 and 0 close to ¢, !"and ¢,, respectively. Therefore, there are unique points 75 and Z; such that
f (z*) =1 and fn @) =1.Let i and 7™ be the indexes of two intervals J;m and f*<n> such that z}* € J;» and
e hn) We define

). It follows from Proposition 5.2 that,

iy =i 7, (5.7)

If i™ or 7™ is not defined uniquely, we choose i, to take the value that maximizes |i,|.
It follows from Corollary 5.4 that |i,,| < Cy9€(n)ky+1, for some Cag > 0.

Proposition 5.5. For sufficiently small €y > 0, there exists C3o > 0, such that if ¢, <1 and k41 > C 1A1_” then, for
every i satisfying 0 <i <kpy1 and |i — i(")| < &)™ we have

X (n)
|7 (A, )|
In g i < Co. (5.8)

|Tn(Aql ]+(l+1n)qn)|

Proof. Itis easy to see that the lengths of the intervals J;») and 7;(,1) are of order 1. It follows that, for every x» > 0,
there exists C31 > 0, such that for all i such that (J;y;, U J;) N Mo # ¥, where Mo = (=1 4+ », —»x), we have

<Cjzg. 5.9
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We will now extend this estimate for i such that 0 <i <k, and |i —7n| < €ky+1, using the recursion relation
ivtl 1l (&)
ivigr1l  Wigiy| f1(Givi,)’

where ¢; € J; and ;, € J, If lI(nnlil and z,(l?a)x are the smallest and largest values of i such that (J;4;, U J~,~) N My # 0, we
have

(5.10)

.(n)

i~ lmin_1 Yy -1
il _ 'J,ﬂﬁi,l I Ja(&)) (5.11)
Vitisl Vw150 \ @i )
fori <i®, and
min’
A= O (5.12)
|J[+i" | |Ji1§flla)x+i | .(n) fn (CJ*H,,

=imax

fori > l,(mfx, as long as 0 < l < kpt+1 and 0 <i + i, < k,41. It follows from Proposition 5.2 that for any k > 0, there

ex1sts »x > 0, such that if ¢;, ;, € My, where M| =[—1, —1+ x], then | fi(&i) — c_1| < k and |f (;,) — cn_1| <k and
1f§,,§,eM2,whereM2—[ x, O] then|f(§, cn|</<and|f(§, —cpl <k.
Since the second derivatives f, and f, 7 are bounded, it follows from (5.11) that
.(n)
|7 | |J(n)| ’mﬁl o _ .
= ——min (I 4+ O@max{|Jj, 1, /1) +A"))
[isial i, | S

'min J=l

)
|J(n) | fmin !

= | 14 ) Omax(|J, | T | © (1427 (5.13)
| %*n' Jj=i
1T |

= —mn (] 4+ OG))O(1).
| ;|

min

(") —1i 5?(") —i < ezkf", for » small enough. We have also used the fact that, for

Jjtins J C M. This follows from the fact that [{® —i,| > CA(", for some C3; > 0,
- (n)

min”*

In the last step, we have used thati
(n)
min?

all j satisfyingi < j <i

and, therefore, |z(") —i| < el "< Iz(”) — i/, for €2 > 0 small enough. This proves the claim for i < i
Using (5.12), one can s1m11arly obtain

i )
= (1+00G))O(), (5.14)
i +iy, | |J(n> |

fori > i, satisfyingi —7™ < e21]", and €2 > 0 small enough. The claim follows. O

An immediate corollary of the previous proposition is the following.

Corollary 5.6. Under the assumptions of Proposition 5.5, we have

1n|tn(A( n)
o)
lnlrn(A

—1+iqn )l —1 < C30

(5.15)
|In [z, (AL

1+(l+’n)qn)| l+(l+ln)qn)||

Proposition 5.7. Let A¢ € (A1, 1) and €3 > 0. There exists C33 > 0 such that, if ¢, < 1 and k,1 > C1A;", for all i
such that 0 <i < ky41 and |i — M| > ezkl_", we have
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In|7, (A )|
n o ) —1tign —1| < C33)Lg. (516)
In |Tn(Aqn ]+(l+1n)qn)|
Proof. Let z(”) and i, ™ be the smallest and largest values of i for which (5.8) holds. Since 7 1( and t(") i

are at least of the order of A " it follows from Proposition 5.2 that there is C34 > 0 such that | In |Jl.<n> [, [ 1In |Jl.(n) [| >
1 r

C342;". Corollary 5.6 then implies that there exists C35 > 0 such that

In| Tl In|Jw
1 Iy

In |Ji,En)+i” |

— 1| < C3sA. (5.17)

In |Ji[(n)+in|

- (1)

We will now extend this estimate for 0 <i < i' / " and i iy <1i < ky41, using the following relation

|7l |+ W@ G)
In|Jjprei, | In|Jj, |+ (T2 (Gj4,)

(5.18)

(n) X ()
where 3; € A 1+ idn and3; € A PR

We will ﬁrst extend the estimate (5.17) to l(
(5.18), we obtain

"<i< kni1; for 0 <i <, @ , the analysis is similar. By iterating

~ - ~
In |Z| In |Ji§”) | + le:i,{") ln(T%)/G‘j)
= = / . (5.19)
n|Ji+i,| In |Ji§”>+in| + Zj:if") In(T9) (3 +i,)
For i < j < imax := min{kp1, knt1 — in}, the derivatives satisfy
T‘]n ee
( /) G) < Ca, (5.20)
(T9Y 3 j+iy)

for some C36 > 0, since (T%)'(3;) = f,(¢;) and (fq")’(;;j) = f,:(zj) and, for sufficiently large n, all the points
§j+in»Ej belong to an interval L; :=[—d, 0], where 0 < d < cf‘”x' , for some C37 > 0. Here, we have also used
that, by Proposition 5.2, for i < j < imax | f1(Cj4i,) — cal = OO and | f1(Z;) — cul = O(A™). Therefore, for

n . . .
lr( ) i< Imax, We obtain

T _ (n) n _ (n) n
sl 1= G- HO0T )+O(/\'f) ¢ & )ORD +OM]) =O0Y). (5.21)
In|J4i,| In|J, | OUT™ + 03 —i™)

If i, > 0, then ipax < ky+1. To extend estimate (5.17) to i satisfying imax < i < ky41, we use the following estimate,
similar to (5.19), which was also obtained from (5.18),

7 Wt X0 o TG
I ii | 10 [ Jiptig |+ 20 In(T9Y G 44,)

(5.22)

For imax < j < knt1, however, the derivatives (T9") ;) and (T9)(3j4i,) can differ by (at most) a constant, as
follows from Proposition 5.2. The number of these terms, however, is bounded by i,, and is, therefore, of the order of
€(n)ky+1, which is small in comparison to k1. For ipmax <i < k41, we, therefore, obtain

In|J; kns 1O + kyy1 O Ink
n|J;| 1= n+1 ( ]) + Kn+1 (e(n)) _ (9()»") +O< n n+l> ’ (5.23)
In|Jiyi, | In|Jiti,] kn+1

taking into account that |In|J; ®(kp+1). The claim follows. O

max|| -

Please cite this article in press as: K. Khanin, S. Koci¢, Robust local Holder rigidity of circle maps with breaks, Ann. I. H. Poincaré — AN
(2018), https://doi.org/10.1016/j.anihpc.2018.03.003




ANIHPC:2898

14 K. Khanin, S. Koci¢ / Ann. I. H. Poincaré — AN eee (eeee) eoe—see

6. Choice of the conjugacy and proof of the main result

In the previous section, we considered intervals of dynamical partitions 7, and P, of circle diffeomorphisms with
a break 7 and T, constructed with the corresponding marked points x. and X, respectively. For the map T, we will
now consider intervals of dynamical partitions P, ,,, constructed with al marked point xg that will be defined below.

We will assume that the rotation number p € (0, 1)\Q of T and T is such that there is an infinite i increasing
sequence of positive integers (£;);cn such that, for all n € N for which ¢, < 1, we have:

(i) kny1 > Ci1A]",if n = ¢;, for some i € N;
(i) kpp1 <CiA7",if n#¢;, forany i € N.

If this is not the case, i.e., if the sequence (¢;);cn is finite or empty, the claim of Theorem 1.2 follows directly from
the fact that T and T are conjugate to each other via a C'-smooth conjugacy ¢ that satisfies ¢(x.) = X [12,13].

For all n € N such that n = ¢;, for some i € N, let i, := i,,, where i,, is the integer defined by (5.7). For all n ¢ N
such that n # ¢;, for any i € N, we define i, := 0.

Let x(n) = T2 =1 indmx.., forn € N, and x(o) = Xc.

) (5 )]

Notice that |x, | is of the order of the length of i,, consecutive “long” intervals of partition Py, 1,

nearest to the point x( - ‘) . Since the number of such intervals is small compared to k¢, 41, they all belong either to

A(lZ _1)(x(e‘ 1)) or to A(lZ 1) L (xg - 1)) The following proposition gives an estimate on this distance.

Proposition 6.1. Let €3 > 0. There exist Ny € N and C3g > 0 such that, for all n > N4, we have

6.1)

1
i) (3 —€3)ke;+1
ag (xy ") = C3gcy; !

and

¢ 0 (3 —e3)ke; =), (ti_
e = xg V] < Cage, 2T ATV (). (6.2)

Tke; 1 FOOD ke, 41

. Since

Proof. Since k¢, 1 > C 1)L1_Z" , Proposition 5.3 implies that ay, (x(e’ ])) = 61

2 0 O(emke;+1) (. 0i—1), (i
|x(() )_x(() 1)|=(/)<c€i 4i+1 ) ( ( l))lA( )( ( 1))|7 (63)
the claim follows. 0O
Let £9:=0. Let s, :=max{i € Ng: {; <n}.

Proposition 6.2.
xo:= lim x{” eT". (6.4)

n—oo

Proof. Let n > m. It follows from Proposition 6.1 that

Sn Sn
(bsy) (53,,, ) 4 4 4 Lsm
e = ) = 1 = > g —xg =G0 Y AT < Caor" (6.5)
i=sm+1 i=sp+1

where C39, C49 > 0, and, therefore, (xé”))neN is a Cauchy sequence on T! and, thus, convergent. [

Lemma 6.3. There exists C41 > 0 such that the following holds for 0 < j < ky41. For all n € N such that n # ¢;, for
alli e N, we have

X (n)
K ”(Aqn 1+jqn)|

T (AY 0 (60

In <Cy4j. (6.6)
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If n =¢;, for some i € N, we have

Am
|Tn( qn 1+jqn)|

(AL o))

In

< Carmax{l, A In |7 o (AL . (o)} 6.7)

Proof. Consider first the case n # ¢;, for any i € N. We would like to estimate the ratio

(Lsn) (n) (Ci—1)
l+]‘]n)| ( NI sn |Tn x(()' l)(A —1+J4n ()C DI

4
oA o)l |rn,x0(A;’;)_,+,.qn(xo)>| i It a)(A(”)lﬂq @)l

n)
Ta(AY T e (AW

(6.8)

Notice that x(()(") = T4 x((f"‘l). The ratio in the product is the reciprocal of the distortion of the ratio

(x(()e"’l)))l under the action of 7% %% and can be estimated as

()
|Tn,x(()zi_l)(A‘1n71+j‘Iil
(n) &i-1) ir.qp —
[T, o (A, G D) g6, =1
bi— Jan _ ; Cia
—1+0| Y UV =1+ 0 (2 e ), (6.9)
w0 B, 1t jg, j=0
since n > £, .
To estimate the ratio in front of product in (6.8), notice that Proposition 6.1 implies
<) GmenCin M =1, (£
lxo — | =00, . A, ( )l (6.10)

Due to the Denjoy estimate (2.4), the distances | 7% (xg) — T4~ I(x“‘"))| and |an—1+qn (xg) — Tn-1+an ()|

. Y 1 S &y
are of the same order. Since, £,,+1 > n, we have that |A(()Z'"+' )( (()l "< e”Af]y’ll (Eon) ))| and, therefore, using

(6.10), we obtain

(C5) )
1862, 00 D= 182 Gl _ o (e

6.11)
(€s) bsy ) (
|A;',?,l )] -
and
(n=1),_(sy) (n—1) Lop+1
[Ag o " DI— 14y 7 (xo))l = 0! (J—eCia, ™ ) (6.12)
IA(" Dyl o ‘ |
Let £ 4, := T9-1+/nx, and gj o = an—1+j4nxé€sn). Let rj ==&, — Sj xézsn>|. Since the distortion of the

ratio ro/ |A(") 1()c(é“‘” ))| under the action of T/ for j=1,..., kyy1,is bounded, we obtain that the ratio in front of
the product in (6.8) can be estimated as

) (Zén
7, o (g g, () (I encra

=1+ O(C& " ). (6.13)
|Tn xo( 1+jl] (x0))] o
Therefore, the ratio in (6.8) can be estimated as
(n) sn+1
[T (A "l u
=1 (1 T+ oYM >> — 1o, (6.14)
Tag (A oDl i

The first claim, (6.6), follows from this estimate and Proposition 5.1. To prove the second claim, (6.7) (for n = ¢;, for
some i € N), we similarly have
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(n) (n) (s A sy —1)
(A iring)] o Baumitia, G0 " DITT, 00 (B, 1+(/+zn)qn( o DI
( ) (n) (€s,)
0 B g GO T B0 g Gl e (A, ()

o (6.15)
i—1
snl |T x(' l)(Aqn 1+(./+ln)qn( ))|

i=1

(£:)
|Tn, (Z)(Aqn 1+(]+1n)qn( ))|

Using the same arguments as above, we can estimate the first ratio and the product of the ratios. To estimate the second

. . (lsp—1) (Lsy) .
ratio, notice that n = £;, and A((]"l) g @ Yy = A<") " tia (o ). We, therefore, obtain
(n) sntl
lTa (4, )| u c c
n 1+(]+ln)4n | | <1+O( (2 €) ])‘1 )) 1+O( (2 €3) I)Ll ). (6.16)
|Tn xo(A w1+ i dn (x0))] i=1

The claim (6.7) follows from identity (6.16), Proposition 5.5 and Proposition 5.7. O

Proposition 6.4.
In|AY|

"= In | Ag" (x0)]

Proof. Let ¢4 > 0. We will estimate first

—1 -1 Sn 1 4
a0l 1Ay )l Z 1Ay () 618
PTAD T T A () NI PRUSING (6.18)
0 PN RO I BV N Gl ]

We use the same notation as in the proof of Lemma 6.3. Since x(()

and (6.10), we have

= T4 x( i1 , using the Denjoy estimate (2.4)

-1
1ASY (xo)
—1
1Ay

1_ c )L’Z.vn-%—] on .
<Cpe VT VY i), (6.19)

i=1

In

where C4p > 0. Therefore,

185" o)l (—epeyptont
’ AT C42C/Zszn+13 e VY i
—1 =
Ay ! Ing| o0
—L
(G—eCia, ! .
Cacyl " VO X €Uk

S S, ’
Caz )% ke
for some C43 > 0. The last quantity can be made arbitrarily small for n > Ns, by choosing N5 € N and C; large
enough (such that ¢; is sufficiently large).
The claim now follows from

In|A"] In|ASY
In |A(n71)(x )l = (n—1) 1AMD (o)) (6.21)
0 0 In |A0 | =+ In ()(’1771)
[Ag ]
and Proposition 4.4 since, for n > N5,
Ay Y]
— 9% 1| <e. O (6.22)
(n—1)
In|Ay" 7 (x0)]

Let ¢ be the conjugacy between T and T that satisfies (3.1) and @(x9) = X,.
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Lemma 6.5.
~(n) X (1)
lim 4 max tn |j)q”’l+jq” | =1, lim o mi]l(l o lj)q”’lﬂq” | =1. (6.23)
n—>o000<j< n—-oo0<j<
=t in]Ag Ty g, (Fo)l =t In|Ag " 4 g, (o)

Proof. The claim follows from Lemma 6.3 and Proposition 6.4, taking into account that

|:E”(Zfin> 1+f¢i)l)| |Z(()n—l)‘
X (n) n (n’)17 - n (n—1)
A +ja! L [0 B G 185" (o)l 625
(n) - (n) ’ .
In |AQn—1 +Jj4n ()C())| In |A(1n—1 +Jj4n ()C())l

and that maxo<; <, |Ag,_1+jg, (x0)| decreases at least exponentially with n. O

Proposition 6.6.

1n|Z57;+1)| 1n|Z§l’lq+1)|
lim  max Tl;“ =1, lim min TI;H = (6.25)
R0 Al ol TR0 T o)
. 1 . .
Proof. Notice that A;’;;l)(xo) - Af;)ﬂ_qn (xp), for 0 < j < k,4>. Since
X (n+1) ~(n+1)
|Aj(1n+l | _ |A(1n+]"1n+l | (an)/(j) (6 26)
(n+1) - (n+1) TV () :
|Aan+l ()C())| |Aqn+.jqn+l (.X'())| (T ) @
(n+1) ~ _ X(n+1)
where 3 € qun“ (x0) and 3 € qun+1’ we have
1n|z<1"jj>1 ! (n+1) Tany
~ %+l 1) InIA : In &™)
In |A5’;+:|)| (lnlAt(I’erilj')‘In+| (xo) 018y, +jgu (XO) +1n Ty (6.27)
S L 12 B | . .
1 1
In AT, o)l In Ay o)l
The claim follows from the latter identity by using Denjoy bound (2.4) and Lemma 6.5 since |A(l.';:r+ll)(x0)| <
VA (D) '
¢ 18,1 g, KDl O
Proposition 6.7. [f n #£ ¢;, for any i € N, then
an(x0) = O(an). (6.28)
Proof. Similar to (6.8), we have
n) ,_(ls,) (n) . (Li—1)
a A T B Go TN 1T, 0 (B 0T (6.29)
= = 4 . :
S L ) | R G ) [ AN AT EY R )]
The ratio in the product is the reciprocal of the distortion of the ratio |t x(ei,l>(A6")(x(()E"*l)))| under the action of
X
T'9% and, since n > £, it can be estimated, similar to (6.9), as
(n) . (i-1) i _
IT @Ay (xg NI ;94 ~1 | -4
. - ; 1_e)Cpn
" =140 Y AT | =10, (6.30)
), (£;) J i
|fn x(()@i)(Ao (xg NI j=0
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To estimate the ratio in front of product in (6.29), notice that, due to (6.10) and Denjoy estimate (2.4), we obtain

(n) -t
|A (X()))| (l_ YCIA sp+1
|A(n)( (zsn)))l =1+ 0(65353 e ) 6.31)
and
(n—1) )
A Xi sn+1
| = O(e éfnf)m )- (6.32)

|A<" RE
Therefore, the ratio in (6.29) can be estimated as

sp+1

=11 (1“9( drencity >)—1+0< et (633)

ap (XO)

The claim follows. O

Proof of Theorem 1.1. To prove the claim we will verify that the assumptions of Proposition 3.1 are satisfied with
x = xo and the intervals A; chosen among the intervals of partitions P, x,, for n € N. Proposition 6.4, Lemma 6.5
and lfroposition 6.6 give us that, for every ¢ > 0, there exists Ng € N such that, for all n > Ng, 0 < j < k,, 11 and
0< ,] =< kn+2:

~ +1
€ In |A‘(;:t) 1+]‘h| In |A(()n_1)| In |A§r;n+l)| &
1-2< , TP o 1+ =, (6.34)
2 ma" - o)l AT o)l InfAY ) (x)) 2
qn—17J4qn Jqn+1

Let us choose § > 0 small enough such that the interval [xo — 8, xo + 8] is contained inside the interval A(()Nﬁ). For
every y € (—§, 8), there exists n > Ng, such that the interval [xg, y] C A("fl)(xo) and [xg, y] & A(”H)(xo). Consider
the following partitions of A(()n_l)(xo): Qutlx =1{A (") i (x0) 10 < j <knp1}U {A(n+1)(x0)} and

Gnttoxo 7= Quatag (AL, (x0)} U {AE,’;I?) W@V (AT N (0) 10 < ] < k). (6.35)
Denote the corresponding partitions of Z(()"_l) by én+l and .C'7n+1, respectively.

Recall that if ¢, > 1, a,, and @, are bounded from below by a positive constant (see Proposition 3.3 in [12]). Due
to Proposition 6.7, a, (xg) is also bounded from below by a positive constant.

Consider first the case ¢, < 1. It follows from the discussion above and the Denjoy estimate (2.4) that the lengths
of the intervals A; 11 —a (x0), A(()")(xo) and A(()nH)(xo) are of the same order. Due to the Denjoy estimate (2.4), for
every Cyqq > 0, there exists €5 > 0, such that if k| < Cu4, then a,(xg) > €5. For every € > 0, there exist x| > 0,

N7 > Ng, and Cyqq > 0 such that if n > Ny and k41 > C44, then | f;, x0(@) — enl S €6, for z € [—ax1, Ty xy (T ™" x0)].

Therefore, the length of the intervals A;") (xo) C Ty xo L ([=x1,0]) decreases exponentially with J Consequently,
n—1+

ifye A;") g (xo) for some j_ there is an 1nterva1 of partition Q1 x, whose length is of the same order as |xo — y|:

if j <kppr — 1 then there is j such that j < j < k,,1 and |A( ")
IAY Y (x0)| = O(Ixo — yl). Similarly, if j < k41 — 1, then |A(”)

(x0)| = O(|x0 — y|); if j = kn1 — 1, then
e, = OUex0) — (D3 if j = kn1 = 1,

then |A(()n+l)| = O(|@(xp) — ¢(y)]). This interval satisfies condmons (1)—(iv) of Proposition 3.1. By (6.34), condition
(v) of Proposition 3.1 is also satisfied with y =1 — %

—1+Jjqn

Ifc, > 1, |A(”+1) (x0)| can actually be much smaller than |A(") g0 (X0)1, 1f kp i 1s very large. In this case, we need
to consider the extended partition G, 11 x, of A(" 1)(xo) Since the lengths of the intervals Aq o 1—dn (x0), A(()”)(xo)

and AJ"" (xo) are of the same order, if y € A( ) , (x0) and J < kg1 — 1, then [AY _ (x0)| = O(lxo — )

. 1
and |X . (x0)] = O(lp(x0) — 9. If y € Af;”+l _,, (x0), then cither y € A"T2 (xp) or y € A;’;:H)(xo) for
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some f satisfying 0 < f < ky42. Since ¢,4+1 < 1, for every €7 > 0, there exist »; > 0, Ng > Ng and C45 > 0 such that

|f,;+1’xq e () —cn_1| <e7,forze[—14x, Tnt1.xg, 4 1 —gn (T%n+1xp)], for n > Ng and kn+2 > Cyas. Similar analysis
as before gives us that if y € A((I"ilzlq (xp) ory e A}';H)(xo) for some f < k42, there is j satisfying f < j <kpy2,
n " n+1

1 x 1 . 1 1
1A%V (x0) = ©(Ixo — y]) and [A%FD] = ©(lg(x0) — p()D; if y € AL (x0), then |AF™ (x0)| = ©(Ix0 — yI)

and |Z(()"+1)| = O(|e(x0) — ¢(¥)]). Therefore, conditions (i)—(iv) of Proposition 3.1 are satisfied. By (6.34), condition
(v) of Proposition 3.1 is also satisfied with y =1 — 5.

Proposition 3.1 shows that ¢ and ¢! are (1 — &)-Holder continuous at xo and X, respectively. By exchanging the
roles of T and f, due to the symmetry in the definition (5.7), we can easily see that ¢! and ¢ are (1 — ¢)-Holder
continuous at ¢(x.) and x., respectively. The claim follows. O
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