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Topological kinematics of origami metamaterials

Bin Liu®'28* Jesse L. Silverberg
Thomas C. Hull” and Itai Cohen'

A variety of electronic phases in solid-state systems can
be understood by abstracting away microscopic details and
refocusing on how Fermi surface topology interacts with
band structure to define available electron states'. In fact,
topological concepts are broadly applicable to non-electronic
materials and can be used to understand a variety of seem-
ingly unrelated phenomena®®. Here, we apply topological
principles to origami-inspired mechanical metamaterials™,
and demonstrate how to guide bulk kinematics by tailoring
the crease configuration-space topology. Specifically, we
show that by simply changing the crease angles, we modify
the configuration-space topology, and drive origami struc-
tures to dramatically change their kinematics from being
smoothly and continuously deformable to mechanically
bistable and rigid. In addition, we examine how a topologi-
cally disjointed configuration space can be used to constrain
the locally accessible deformations of a single folded sheet.
While analyses of origami structures are typically dependent
on the energetics of constitutive relations'*, the topological
abstractions introduced here are a separate and independent
consideration that we use to analyse, understand and design
these metamaterials.

For our purposes, we define origami-inspired mechanical meta-
materials as materials constructed from a series of torsional creases
embedded within a thin sheet’. Each crease adds a degree of free-
dom (DOF) and increases the dimensionality of the configuration
space. Each crease intersection, or vertex, generates geometric con-
straints and limits the available portion of configuration space'®".
A folded structure then occupies a single point in this configura-
tion space, and in the same way the Fermi surface topology defines
nearby accessible electron states, the configuration space’s topology
defines nearby accessible folding configurations. By introducing
constraints on folding angles, the connectivity of the configuration-
space topology can be substantially altered. As such, this coupling
between folding angles and configuration-space topology allows for
unusual kinematic phenomena to emerge.

To understand the significance of this point, we should clearly
distinguish the roles played by energetics and configuration-space
topology in the context of origami-inspired metamaterials. We
examine these differences through the lens of bistability, which is
a common phenomenon to many origami structures'®'**' (Fig. 1a).
On the one hand, a purely energetic bistability appears when the
configuration space is simply connected and there are two distinct
local energy minima (Fig. 1a, left). Origami-inspired structures
assembled from rigid panels and torsional springs can exhibit
this type of energetic bistability (Fig. 1b)***. On the other hand,
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a purely topological bistability appears when the configuration
space is no longer simply connected, and there exist distinct con-
figurations that are inaccessible from one another (Fig. 1a, right).
Both energetic and topological bistabilities allow for multiple
configurations. However, the origins of these bistabilities are quite
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Fig. 1| Distinguishing the roles of topological and energetic
considerations in origami mechanics. a, Venn diagram illustrating the
differences and relationship between energetic and topological bistability.
An energetic bistability (left) arises when a simply connected configuration
space (coloured region; energetic landscape indicated by colouring,

with yellow being high-energy and blue being low-energy) contains two
energetic minima (blue areas indicated by arrows). A topological bistability
(right) arises when the configuration space is disconnected and no path
exists that connects these two regions (isolated grey shapes). Many
origami structures have their mechanics arising from both topological and
energetic considerations (middle). In particular, a topological bistability
defined by the crease geometry can be bridged by bending deformations
that cost energy (blue-to-yellow coloured region connecting topologically
isolated regions). b, An example of an origami-inspired pure-energetic
bistability with multiple stable states accessible through changes to the
folding angles in a simply connected configuration space. ¢, A common
example of an origami structure whose unfolded and folded configurations
are topologically disconnected when only considering crease DOFs'®.

The introduction of mechanical bending adds additional DOFs at an
energetic cost that bridges the two configurations. d, An example structure
considered here with a tuneable topological bistability. Credit: courtesy of
S. Waitukaitis, P. Dieleman and M. van Hecke (b).
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Fig. 2 | Configuration-space topology of origami-inspired mechanical metamaterials is determined by the underlying crease pattern. a, A triangulated
Miura-ori vertex has four creases (three mountain folds in solid red and one valley fold in dashed blue) and two additional crease-like hinges that come
from the thin sheet'’s flexibility (grey lines). In this symmetric Miura-ori vertex, the plane angle « parameterizes the folding pattern. The photograph below
shows the folded structure colour-coded by the above crease pattern. b, Configuration spaces for varying plane angle a and fold angle 6,. In each (6, )/1)
configuration space, the allowed configurations are grey and the forbidden configurations are white, similar to Fig. 1. As a and 6, vary, the configuration-
space topology can change from one continuously connected region to two disconnected regions. The 3D diagram shows the configuration space of the
right-most column and indicates the three cuts with monostable, separable and disconnected domains. ¢, The real-space 3D structures for the bottom row
of the configuration spaces in b. The folding actuation varies from smooth (monostable) to rigid (bistable) as the configuration space goes from connected

to disconnected (Supplementary Movie 1).

different: an energetic bistability is rooted in the material proper-
ties that determine the cost of moving through configuration space,
while a topological bistability is rooted in the connectivity between
available configurations with no regard for material properties.
While this theoretical abstraction is quite precise, many experimen-
tal origami structures convolve these effects. As a result, we often
find topological bistabilities in crease patterns that are connected by
hidden DOFs such as facet bending (Fig. 1¢). In these cases, ener-
getics bridge a topological bistability through the interplay between
crease geometry and the mechanics of bending (Fig. la, middle).
Here, we broadly disregard energetic considerations relating to hid-
den DOFs, and instead focus strictly on the phenomena that emerge
from the dynamics of configuration space topology. While physi-
cal materials will always have some amount of hidden DOFs that
play into the bulk mechanical properties, the study of configuration
space itself uncovers a variety of new insights regarding vertex-ver-
tex coupling and its ability to mediate non-local influence through
dynamic constraints on the global configuration space.

Origami metamaterials are typically designed by tessellating
individual units'>***'. Before we address these more complex sys-
tems, we first analyse the configuration-space topology of a single
vertex (Fig. 1d). For example, we extract a single vertex from a
triangulated Miura-ori pattern® parametrized by folding angle a
and analyse its configuration space. The vertex has four prescribed
creases with non-zero preferred rest angles (three mountain folds
¢1> ¢y, 7,<0 rad, and one valley fold y,>0 rad) and two virtual
creases (6, 8,) with zero preferred rest angle (Fig. 2a). A Miura-ori
vertex without virtual creases has only one DOFE, which we choose
here to be y,. Triangulating the folding pattern introduces two extra
DOFs to the configuration space. For a range of a, we find the
three-dimensional (3D) configuration space of the vertex is simply

connected (Fig. 2b, left column), and the resulting kinematics dem-
onstrate smooth actuation (Fig. 2c, left column). As we decrease
a, the configuration-space topography narrows, with all pathways
between the initial and final configurations passing through a sin-
gle point in configuration space. This marginal actuation (Fig. 2b,
middle column) is smooth but tightly constrained (Fig. 2¢c, middle
column). As we continue to decrease a, the configuration topology
becomes disconnected for 6, larger than a critical value (Fig. 2b,
right column; see Supplementary Information). For fixed 6,, we find
that varying a breaks configuration-space homotopy*® (Fig. 2b, bot-
tom row), and the disconnection results in bistable systems (Fig. 2c,
right). As demonstrated by the isolated vertex, configuration-space
topology has both qualitative and quantitative effects for the real-
space kinematics (Supplementary Movie 1).

In a multi-vertex folding pattern, the configuration-space
dimensionality is larger than the isolated vertex just considered.
As a result, the folding of a crease in one region of the structure
can change the global configuration-space topology, affecting the
folding behaviour in another region of the structure. This inter-
play allows for the potential to design multiple distinct mechanical
functionalities into the global behaviour of a single folding sheet. To
illustrate this principle, we connected vertices in a series of concen-
tric Miura-ori-like rings (Fig. 3a), which bears similarities to artis-
tic origami structures”-*. Here, we consider only the vertices along
the radial direction due to the azimuthal symmetry, and we permit
creases to fold only in the prescribed directions. When the struc-
ture begins to fold from a flat sheet, each vertex initially has a con-
tinuously connected configuration space. As long as the innermost
vertex remains unfolded, the entire structure remains only mod-
erately constrained and flexible. However, as the innermost ring
folds, it constrains the neighboring ring to a configuration space
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Fig. 3 | Coupling configuration-space topology with vertex-vertex
interactions. a, Folding diagram for a Miura-ori ring and definition of the fold
angles 6,,,,, and y,. The geometry consists of triangulated Miura-ori vertices
(Fig. 2a) connected such that a, and #,=n—a, vary as a function of indexed
position along the ring radius. The resulting configuration space includes pure-
crease DOFs (red, blue lines) as well as facet-bending DOFs (grey lines) all
operating at the same energy scale. b, For all 6,, <O, the configuration space
(y2, 0, 3) is topologically disconnected. Configurations in the larger region
(outlined green) lead to configurations at the next vertex (<y3, 63 4)) that are
topologically connected. Configurations in the smaller region (outlined red)
lead to configurations at the next vertex ((y3, 05 4)) that are topologically
disconnected. This pattern of coupling configuration-space topology
continues along the radial index n due to vertex-vertex interactions. ¢,d, An
experimentally fabricated Miura-ori ring (c) is compressed using a controlled
strain measurement device (d). The mechanical actuation drives the structure
through series of topologically disconnected configurations depicted in the
lower row of b. e, The compressive elastic modulus of the Miura-ori ring as

a function of normalized straine,, /e , where the critical straine =0.75 and
corresponds to the strain at which the entire sheet snaps into a cylindrical
wall, is obtained from the force-strain measurement (see Supplementary
Information). The modulus shows a sequence of drops in its value, each of
which corresponds to a bistability snap. The blue line is a ten-point boxcar
average of the measured modulus value and the shaded band is the ten-point
boxcar standard deviation. f, Quantitative image analysis measures the
folding angle ¢, ., which correlates with the configuration-space topology
of each vertex. At the lowest measured strain, vertices with n <4 have been
driven into the topologically disconnected configuration spaces, whereas
vertices with n> 4 still have topologically connected configuration spaces.
The solid line shows the boundary between the vertices with topologically
connected configuration spaces and the vertices with topologically
disconnected configuration spaces (see Supplementary Information).
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with a topological bistability (Fig. 3b, (y,,0, ), disconnected green
and red regions). As the structure is further folded, each vertex in
the second ring moves through configuration space, and ultimately
transitions across the topological bistability (Fig. 3b, moving from
the green region to red region). In the mathematical abstraction
of configuration space (Fig. la, right-most motif), this transition
is strictly forbidden. However, in experimental systems, the tran-
sition becomes possible when hidden DOFs are invoked to bridge
the topological gap (Fig. 1a, centre motif). When the second ring
crosses the bistability transition, this newly occupied region of con-
figuration space constrains the third ring so that its previously con-
nected configuration space (Fig. 3b, upper (ys, 05 ,) configuration
space) now exhibits a topological bistability (Fig. 3b, lower (y;,6; ,)
configuration space). This process repeats across the entire struc-
ture; as each ring crosses a topological bistability, it generates con-
straints that introduce topological bistability in the next ring of the
sequence (Fig. 3b, configuration-space diagrams read left-to-right).
In practice, we therefore expect that a physical Miura-ori ring that
contains hidden DOFs will undergo a sequential series of snaps as
the structure is folded and each ring transitions through its respec-
tive topological bistability via energetic deformations not described
by the configuration-space topology. We experimentally fabricated
this structure (Fig. 3¢c,d), measured its force-displacement relation
as the structure was folded (Methods), and confirmed the expected
bulk phenomenology (Fig. 3e). Coexistence of the topologically
connected and disconnected configuration spaces can be predicted
and quantitatively compared with the measurements, which are
most conveniently expressed by the crease angle ¢,,,, (Fig. 3f).
While the crease pattern of this structure has apparent similarities
with other cyclic origami designs*~*, the sequence of transitions
through topological bistabilities shown here is a significant differ-
ence that distinguishes the kinematic behaviour from related flat-
foldable and nearly single-DOF structures. As such, these seemingly
small differences in folding pattern demonstrate that vertex-vertex
coupling has consequential significance by propagating topologi-
cally prescribed mechanical effects across the entire structure dur-
ing folding actuation.

In the Miura-ori ring structure, we showed how folding on one
crease can alter the configuration-space topology elsewhere in the
structure. Next, we consider the opposite scenario where the global
configuration space is disjointed and actuation of a family of creases
in one region has no effect in another. For this two-DOF actua-
tion to occur, the configuration-space topology will be separated
into two domains that touch only at a single point. One domain in
configuration space corresponds to half of the physical structure,
while the other domain in configuration space corresponds to the
other half of the physical structure. Thus, an actuation in one half of
the structure is dimensionally reduced at the interface between the
two structures; as the topology of configuration space involves two
domains that touch at a single point, the beginning and end points
of the path are collapsed onto this point in configuration space.
This collapse of the path to a point creates a degeneracy that places
no constraints on the allowed configurations within the other half
of the structure. As such, any other simply connected path in the
other domain is freely realizable, since it too will be dimensionally
reduced to the same point in configuration space.

To illustrate this principle in a non-trivial tessellation, we con-
nect a series of vertices such that the parameter « varies in a pre-
scribed fashion for each column (Fig. 4a). If each vertex were
isolated from the overall structure, there would be a set of inde-
pendent configuration spaces (Fig. 4b, grey region in each configu-
ration space diagram). However, vertex-vertex coupling imposes
topological constraints (Fig. 4b, shaded pink region) on the accessi-
ble configuration space. If we actuate folding at the vertex described
by the (0_5_0_4_3) configuration space (Fig. 4b, arbitrary trace
within the topologically allowed region from the red circle to the
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Fig. 4 | Decoupling configuration-space topology with vertex-vertex interactions. a, Folding diagram for a two-DOF Miura-ori-like structure and
definition of the fold angles 6,,,,,. The geometry consists of triangulated Miura-ori vertices (Fig. 2a) connected such that a, vary as a function of indexed
position along the x axis. The resulting configuration space includes pure-crease DOFs (red, blue lines) as well as facet-bending DOFs (grey lines) all

operating at the same energy scale. b, Isolated vertices have allowed configuration spaces (6,

10 On i) (grey shaded regions); however, when connected,

regions of configuration space become topologically forbidden (red shaded regions). Nevertheless, deformations between n<0 and n> O are decoupled.
For example, a path between two points in the (6.5 4,0, 3) configuration space has a corresponding path in the configuration spaces (6, 3,0 3 _,)
(03 2,0, 1 and (0, 4 0 0). This path collapses to a single point in the (6., 5, ;) configuration space, which permits a variety of configurations for
the vertices with increasing index (green isolated regions). As n increases, the constraints on configuration space rapidly vanish, decoupling deformations
between n<0 and n> 0. ¢,d, The experimentally fabricated structure is pinched at two points (¢) and four points (d) on either side of n=0 (top), leading

to strain fields (bottom) that are decoupled by the crease pattern at n=0.

blue cross), then the neighbouring vertices to the right will undergo
an actuation within their own topologically allowed configuration
space. In the configuration space (0_, .6, ,), the end points of
these paths collapse onto a single point that allows for a range of
configurations for the vertices further to the right (Fig. 4b, regions
of configuration spaces within the green dashed lines). In fact, the
configuration space (04,0, ) is essentially unconstrained by the
path in the (0_, ;,0,,) configuration space, and any effects from
actuation in the left half of the tessellation are suppressed in the
right half of the tessellation. In essence, the configuration spaces
on the left and right portions of this structure are disconnected.
We experimentally fabricated this tessellation and found that we
could independently actuate the left and right halves as expected

(Fig. 4c,d). Hence, vertex-vertex coupling in this structure allows
us to decouple the configuration-space topology in a manner that
allows for localization of real-space kinematics. Importantly, this
design can be treated as a modular structure and combined with
the Miura-ori ring to create larger composite structures where the
configuration-space constraints act locally on each module.
Origami-inspired metamaterials have a number of desirable
features including single-sheet fabrication, compatibility with well-
established self-assembly methods, and an essentially infinite design
space associated with the rich variety of folding patterns. Here, we
have added to this list the capacity to design kinematic proper-
ties from the configuration-space topology that can be modularly
assembled as constituents of a larger structure. This approach to
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metamaterial design produces structures with regions that are phys-
ically attached to one another but kinematically isolated through
constraints on their configuration space. In applications, the ben-
efits of our findings allow for the design of structures insensitive
to real-world manufacturing defects and tolerances*****. This flex-
ibility can be potentially achieved by incorporating known imper-
fections as added volume into the analysis of configuration-space
topology, ensuring the folding actuations are as intended. From this
perspective, monostability and bistability can be robustly designed
even in the presence of parasitic compliance. With the results pre-
sented here, it becomes possible to design topologically constrained
metamaterials with well-defined properties even in the presence
of irregular or unpredictable forces. Such devices are particularly
exciting at the meso- and microscale for applications in biological
fluid flow and tissue engineering.

Methods

Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0150-8.
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Methods

3D model of origami structures. A mathematical model of each experimentally
generated origami structure is formulated for numerical simulation and 3D
reconstruction. The model is composed of the vertex coordinates and the
constraints imposed by the crease length between neighbouring vertices.

Given a 2D projection of all the vertex positions (x;, y,), the z; coordinates

in the third dimension are obtained by minimizing a penalty function

V() =~ z;‘j [,/ (=) + (=) "+ (z-2) =11, where I, is the length of the

crease between two connected vertices of indices i and j on the triangular crease
lattice. The z coordinates can thus be obtained by solving the associated ordinary

differential equation array as z;=—k E) [,J (xi—x)) 24 (yi—yj) 24 (zi-z) ’ =1

A A . A ~ A S
T2 where the unit vector 1= ((xi—xj)x + (yi—yj)z + (zi—zj) 2)

/ J (xi=x)) 24 0-y) 24 (z-z) ? and k is the virtual spring constant for perturbing
the crease lengths. The ambiguity due to mountain-valley crease alignments is
avoided by shifting the vertices up or down by a small amount in the z direction as
the initial condition.

Configuration-space analysis. The configuration space of each vertex is described
by the accessible folding angles of the connected creases. In the case of a degree-6
vertex, the configuration space is 3D. Any potentially foldable structure is
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realized by rotating the creases through those three independent folding angles.
The foldability is validated by the criterion that the distance between any pair
of transformed vertices cannot be greater than that in the flat unfolded state for
any inextensible sheet. Self-intersections of the structures are also identified and
excluded from the configuration space (see Supplementary Information). The
numeric code for the configuration-space analysis is made available for sharing
through Mathematica (https://www.wolframcloud.com/objects/6a35243a-e7ba-
479f-af5d-0d77e13f467b).

Experiments. The origami structures described in the main text were made from

a flat paper sheet (Stardream Metallics 811b) with measured thickness 7=0.16 mm
and flexural rigidity D=4.0x10~*Nm (ref.'°). The crease lines were perforated

by a laser cutter and weakened manually by flat-folding along the perforation

lines in both directions. Folding kinematics and vertex locations were recorded

by a USB digital camera (Imaging Source DFK), which was calibrated to remove
perspective and lens distortions. The (x, y) coordinates of the vertices were fed into
the aforementioned mathematical model to extract the z positions of the vertices.
3D configurations of the folded origami sheets were then reconstructed and plotted
using MATLAB.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.
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