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Abstract
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minimization representation of the bPOE. We investigate convergence rates and asymptotic
properties of the suggested estimation procedures. Theoretical predictions are validated with
numerical experiments.
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1 Introduction

Buffered Probability of Exceedance (bPOE) for a random value is a counterpart to the Prob-
ability of Exceedance (POE). The bPOE notion was introduced and studied in Mafusalov and
Uryasev [7] and in Norton and Uryasev [8]. For a specified threshold, bPOE equals the proba-
bility of an upper tail of the distribution, such that the average of this tail coincides with the
threshold. The bPOE of a random value is similar to POE and it is an upper bound for POE
because it includes all outcomes exceeding the threshold, as well as some outcomes below the
threshold. The outcomes below the threshold form the so called buffer, therefore, bPOE is a
buffered POE.

The bPOE concept is an extension of the so called Buffered Probability of Failure (bPOF)
suggested by Rockafellar [9] and explored by Rockafellar and Royset [11]. The bPOF equals
one minus inverse at point zero of Conditional Value-at-Risk (CVaR) of a random value. See
definition and properties of CVaR at Rockafellar and Uryasev [12]. Similar, bPOE for some
random value, X, at a threshold x ∈ R equals 1− α, where

CVaRα(X) = x.

The standard POE is very popular in various engineering applications. For instance, nuclear
engineering considers probability that radiation release will exceed specified level and structural
reliability analysis considers probability that load exceeds some threshold. Although POE is
very popular and it is included in government regulations, it has some major shortcomings.
From conceptual point of view, the threshold in POE provides a low bound on tail outcomes
exceeding this threshold. The POE does not provide information of the magnitude of out-
comes exceeding the threshold. Also, POE has some troublesome mathematical properties for
discretely distributed random values, which are typically obtained from sample data. POE is
discontinuous with respect to the threshold, which prevents using standard sensitivity analysis
based on derivatives. Also, POE is difficult to optimize because optimization problems for POE
are usually reduced to difficult Mixed-Integer optimization involving many binary variables.

The bPOE is a nice mathematical function. It is continuous in threshold z (may be except
one point) and quasi-convex in X. Moreover, bPOE minimization problem can be reduced to
convex and even linear programming. Mafusalov and Uryasev [7] provide detail description of
mathematical properties of bPOE and various optimization problem statements.

This paper studies statistical properties of empirical (sample) estimates of bPOE. The esti-
mators are based on one-dimension minimization representation of bPOE suggested in Mafusalov
and Uryasev [7] and in Norton and Uryasev [8]. We also study asymptotic convergence of the
suggested estimation algorithms. The theoretical results are validated with numerical experi-
ments.

2 Statistical Properties of Buffered Probability Estimates

For α ∈ (0, 1) Conditional Value-at-Risk of a random variable X is defined as1

CVaRα(X) := inf
t∈R

{
t+ (1− α)−1E[X − t]+

}
. (2.1)

We assume that E|X| <∞, and hence the expectation in (2.1) is well defined and finite valued.
For α = 0, CVaR0(X) = E[X] and CVaRα(X) tends to the essential supremum2 of X as α ↑ 1, so

1We use notation [a]+ := max{0, a} for a ∈ R.
2The essential supremum ess sup(X) can be +∞ if the random variable X is unbounded.
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we define CVaR1(X) := ess sup(X). Let FX(x) = Prob(X ≤ x) be the cumulative distribution
function of X and

q−α (X) := inf{t : FX(x) ≥ α}, q+
α (X) := sup{t : FX(x) ≤ α},

be the left side and right side quantiles of X. If q−α (X) = q+
α (X) we simply denote it by qα(X).

It is well known that for α ∈ (0, 1) the minimum in the right hand side of (2.1) is attained for
any t ∈ [q−α (X), q+

α (X)].
Denote q̄α(X) := CVaRα(X). Consider the equation

x = CVaRα(X). (2.2)

It follows from the representation

CVaRα(X) =
1

1− α

∫ 1

α
q−τ (X)dτ, (2.3)

that CVaRα(X) is continuous and monotonically increasing in α ∈ [0, 1), i.e., CVaRα1(X) <
CVaRα2(X) for any 0 ≤ α1 < α2 < 1. Hence equation (2.2) has unique solution α = q̄−1

x (X)
for E[X] ≤ x < ess sup(X). The buffered probability of exceedance of a random variable X is
defined as

p̄x(X) :=


1− q̄−1

x (X) if E[X] < x < ess sup(X),
1 if x ≤ E[X],
0 if x ≥ ess sup(X).

(2.4)

That is,
CVaR1−p̄x(X)(X) = x, when E[X] ≤ x < ess sup(X).

Consider the following representation of the buffered probability of exceedance of a random
variable X (cf., [7, Proposition 1]):

p̄x(X) =

{
infa≥0 E[a(X − x) + 1]+ if x < ess sup(X),
0 if x ≥ ess sup(X).

(2.5)

Consider Ψ(a,X) := [a(X−x)+1]+ and ψ(a) := E[Ψ(a,X)]. Note that Ψ(a,X) and hence ψ(a)
are convex functions of a. For E[X] < x < ess sup(X) the set of minimizers arg mina≥0 ψ(a)
forms a closed interval [a1, a2], where

a1 = 1/(x− q−α (X)) and a2 = 1/(x− q+
α (X)), (2.6)

with α is defined by equation (2.2). In particular if the quantile qα(X) is unique, i.e., qα(X) =
q−α (X) = q+

α (X), then
ā = 1/(x− qα(X)) (2.7)

is the unique minimizer of the right hand side of (2.5). For α ∈ (0, 1) we have that CVaRα(X) >
q−α (X), and hence the numbers a1 and a2 are positive when E[X] < x. When x < E[X], the
minimizer in (2.5) is ā = 0, and p̄X(x) = 1. When x < ess sup(X) we have that X < x w.p.1,
and hence infa≥0 ψ(a) = 0 = p̄X(x). When x = ess sup(X),

inf
a≥0

ψ(a) = Prob(X = x), (2.8)

and hence infa≥0 ψ(a) > p̄x(X) if Prob(X = x) > 0.
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Let X1, ..., XN be an iid random sample of X. By X̄ := N−1(X1 + ... + XN ) we denote
average of the sample. Consider

ψ̂N (a) :=
1

N

N∑
j=1

Ψ(a,Xj) =
1

N

N∑
j=1

[a(Xj − x) + 1]+.

That is, ψ̂N (a) is the empirical (sample average) estimate of the expectation ψ(a). Then a
natural estimator of p̄x(X) is obtained by replacing the probability distribution of X with its
empirical estimate. Hence we consider the following estimator of p̄x(X):

p̂N (x) =

{
infa≥0 ψ̂N (a) if x < max{X1, ..., XN},
0 if x ≥ max{X1, ..., XN}. (2.9)

By âN we denote a minimizer of the right hand side of (2.9). This minimizer can be computed
as above using the empirical distribution given by the considered sample. That is, âN can be
any number in the interval [â1N , â2N ], where â1N and â2N are obtained by replacing in equation
(2.6) the respective quantiles by their sample estimates. Note that p̂N (x) = 1 − α̂, where α̂ is
computed by using equation (2.2) with CVaRα(X) replaced by its empirical estimate. That is

x = ĈVaRα̂N (2.10)

where

ĈVaRαN = inf
t∈R

{
t+ (1− α)−1N−1

N∑
i=1

[Xi − t]+

}
. (2.11)

The minimizer in the right hand side of (2.11) is given by the empirical quantile t̄ = q̂α. Note
that if x ≤ X̄, then âN = 0 and p̂N (x) = 1.

We can view the right hand side of (2.9) as the Sample Average Approximation (SAA) of the
stochastic problem in the right hand side of (2.5). Hence some standard results of the statistical
inference of the SAA problems can be applied. In particular we have the following results.

Theorem 2.1 Suppose that E|X| < ∞ and let α = q̄−1
x (X) for E[X] ≤ x < ess sup(X). Then

the following holds. (i) The estimator p̂N (x) converges to p̄x(X) w.p.1 uniformly on any interval
[c, d] such that E[X] < c ≤ d < ess sup(X), i.e.,

lim
N→∞

sup
x∈[c,d]

∣∣p̂N (x)− p̄x(X)
∣∣ = 0, w.p.1. (2.12)

(ii) If E[X] ≤ x < ess sup(X), then the bias E [p̂N (x)]−p̄X(x) of the estimator p̂N (x) is negative,
and this bias is monotonically decreasing, i.e.,

E [p̂N (x)] ≤ E [p̂N+1(x)] ≤ p̄x(X). (2.13)

(iii) If E[X] < x < ess sup(X), the quantile qα(X) is unique and variance

σ2(x) := Var
{

[ā(X − x) + 1]+
}

(2.14)

is finite (ā is defined in (2.7)), then

p̂N (x) =
1

N

N∑
j=1

[ā(Xj − x) + 1]+ + op(N
−1/2), (2.15)

and N1/2 (p̂N (x)− p̄x(X)) converges in distribution to normal N (0, σ2(x)).
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Proof Let us observe that the empirical estimate ĈVaRαN converges to CVaRα(X) w.p.1
uniformly in α ∈ [γ1, γ2], where 0 < γ1 ≤ γ2 < 1. Indeed, by using a uniform Law of Large
Numbers (e.g., [13, Theorem 7.53]) we have that N−1

∑N
j=1[Xj − t]+ converges to E[X − t]+

w.p.1 uniformly in t on any finite interval. For α ∈ [γ1, γ2] we can restrict the minimization

in t in (2.1) and (2.11) to a finite interval, and hence the uniform convergence of ĈVaRαN to
CVaRα(X) follows. Since CVaRα(X) is continuous and monotonically increasing, this implies
uniform convergence w.p.1 in x ∈ [c, d] of the empirical estimate of the inverse function q̄−1

x (X),
and hence (2.12) follows.

For proof of assertions (ii) and (iii) we can refer to [13, Proposition 5.6] and [13, Theorem
5.7], respectively, by using representation (2.5).

Remark 1 Of course it follows from the assertion (i) of the above theorem that p̂N (x) converges
to p̄x(X) w.p.1 for any E[X] < x < ess sup(X). For x ≤ E[X] the set of minimizers in (2.5)
is bounded (unless X is constant), and includes ā = 0. Note that the corresponding function
Ψ(a,X) is convex in a. We can apply [13, Theorem 5.4] to conclude that p̂N (x) converges to
p̄x(X) w.p.1. If x ≥ ess sup(X) and Prob(X = x) = 0, then both p̄x(X) and p̂N (x) are zeros.
Finally consider the case of x = ess sup(X) and Prob(X = x) > 0. Then probability that at
least one of Xi is equal to x, and hence x = max{X1, ..., XN}, tends to one. In that case p̂N (x)
converges to p̄x(X) in probability rather than w.p.1.

Remark 2 Variance σ2(x) can be estimated by

σ̂2(x) :=
1

N − 1

N∑
j=1

(
[âN (Xj − x) + 1]+ − p̂N (x)

)2
. (2.16)

When the (true) α > 0 we have that x > E[X]. However if α is close to 0, and hence x is close
to E[X], it can happen that x ≤ X̄ in which case p̂N (x) = 1. Therefore for α close to 0, a
better approximation of the distribution of p̂N (x) will be the mixture3 of distributions δ(1) and
N (0, σ2(x)) with the respective weights ρ and 1− ρ, where ρ := Prob(x ≤ X̄). By the CLT the
distribution of X̄ can be approximated (under standard regularity conditions) by the normal
distribution N (µ, ν2/N), where µ := E[X] and ν2 := Var(X). Consequently the probability ρ
can be approximated by4 1− Φ

(√
N(x− µ)/ν

)
. In particular, if

√
N(x− µ)/ν is greater than,

say, three, then the probability ρ can be negligibly small and the normal distribution N (0, σ2(x))
could give a good approximation of the distribution of p̂N (x).

When α is close to one, and hence x is close to5 ess sup(X) and FX(x) is close to one, it can
happen that x ≥ max{X1, ..., XN} in which case p̂N (x) = 0. The probability

% := Prob
(
x ≥ max{X1, ..., XN}

)
=

N∏
j=1

Prob(Xj ≤ x) = (1− p)N ≈ e−Np, (2.17)

where p := 1− FX(x) = Prob(X > x). Therefore we will need a sample size of order p−1 ln ε−1

to make this probability % less than ε > 0. If the probability % is not small, then we can use
the mixture of distributions δ(0) and N (0, σ2(x)), with the respective weights % and 1 − %, as
an approximation of the distribution of p̂N (x).

3 δ(y) denotes probability measure of mass 1 at the point y.
4Φ(·) denotes the cumulative distribution function of standard normal distribution.
5If ess sup(X) = +∞, this means that x is large.
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The right hand side of (2.15) gives a first order expansion of the estimator p̂N (x). Under
stronger assumptions it is possible to derive a second order term in the corresponding expansion
(cf., [13, p.338]). That is, under appropriate regularity conditions,

p̂N (x)− ψ̂N (ā) = N−1 inf
τ∈R

{
τV + 1

2τ
2ψ′′(ā)

}
+ op(N

−1) (2.18)

= − V 2

2Nψ′′(ā)
+ op(N

−1). (2.19)

where V ∼ N(0, γ2) with

γ2 = Var

(
∂Ψ(ā, X)

∂a

)
= E

[
∂Ψ(ā, X)

∂a

]2

. (2.20)

Note that ψ′(ā) = E
[
∂Ψ(ā,X)

∂a

]
= 0 by optimality of ā.

We have that
E[ψ̂N (ā)] = ψ(ā) = p̄x(X),

and hence the bias can be approximated as

E[p̂N (x)]− p̄x(X) = − γ2

2Nψ′′(ā)
+ o(N−1). (2.21)

Assuming that random variable X has continuous probability density function f(·), we have

ψ′(a) = E
[
∂Ψ(a,X)

∂a

]
=

∫ +∞

−1/a
tf(t+ x)dt,

and hence

ψ′′(ā) =
f(x− 1/ā)

ā3
= (x− qα(X))3f(qα(X)).

3 Rare events

Consider now the case where probability p := P (X ≥ x) is very small, say of order 10−5 or
smaller. In that case, given a sample X1, ..., XN , it will be difficult to employ the correspond-
ing estimator p̂N (x) in a straightforward way. Recall that p̂N (x) is zero if x is greater than
max{X1, ..., XN} (see (2.9)). The probability that at least one of the samples X1, ..., XN is
greater than x is 1 − (1 − p)N ≈ 1 − e−Np (see (2.17)). That is, in order to have a reasonable
probability for max{X1, ..., XN} to be less than x, i.e., for the estimator p̂N (x) to be greater
than zero, we will need a sample size of order of millions. This, of course, could be practically
infeasible.

Suppose that X has normal distribution N (µ, ν2) and x = µ + kν, where k ≥ 4, say. Then
the probability P (X ≥ x) = 1−Φ(x) is very small. For example for x = µ+ 4ν the probability
p = 1 − Φ(4) = 3 × 10−5. Nevertheless we can proceed as follows. It is known that in the case
of normal distribution,

CVaRα(X) = µ+
ν

(1− α)
√

2π
e−z

2
α/2, (3.1)

where zα = Φ−1(α). In that case first we can compute the estimates µ̂ = X̄ and ν̂2 =
1

N−1

∑N
i=1(Xi − X̄)2, and then to estimate p̄X(x) by solving (numerically) the equation

x = µ̂+
ν̂

(1− α)
√

2π
e−z

2
α/2, (3.2)
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and setting the estimate p̂X(x) = 1 − α̂. For the estimates µ̂ and ν̂ their confidence intervals
can be computed from the same sample. Consequently these confidence intervals can be used
to construct a confidence interval for p̄X(x).

Suppose now that the probability distribution of X is contaminated by another distribution.
That is, for some γ ∈ (0, 1) and cdfs F1 and F2, the cdf F of X is given as convex combination
F (·) = γF1(·) + (1− γ)F2(·). We have then

CVaRα(F ) = inf
t∈R

{
t+ (1− α)−1EF [X − t]+

}
= inf

t∈R

{
t+ (1− α)−1γEF1 [X − t]+ + (1− α)−1(1− γ)EF2 [X − t]+

}
≥ inf

t1,t2∈R

{
γt1 + (1− γ)t2 + (1− α)−1γEF1 [X − t]+ + (1− α)−1(1− γ)EF2 [X − t]+

}
= γ inf

t1∈R

{
t1 + (1− α)−1EF1 [X − t]+

}
+ (1− γ) inf

t2∈R

{
t2 + (1− α)−1EF2 [X − t]+

}
= γCVaRα(F1) + (1− γ)CVaRα(F2).

That is
CVaRα(F ) ≥ γCVaRα(F1) + (1− γ)CVaRα(F2). (3.3)

It follows that solution of equation (2.2) is smaller than solution of equation

x = γCVaRα(F1) + (1− γ)CVaRα(F2). (3.4)

Hence by computing solution α̃ of equation (3.4) we obtain p̄X(x) ≥ 1 − α̃, i.e., 1 − α̃ gives a
lower bound for p̄X(x). In particular, if F1 and F2 are respective normal distributions N (µ1, ν

2
1)

and N (µ2, ν
2
2), then equation (3.4) can be solved numerically using formula (3.1).

We can also approach estimation of p̄X(x) by using the importance sampling method. That
is, suppose that we have a reasonable estimate F (·) of the distribution of X, with respective
density f(·) = F ′(·). Consider the transformation Y j := Xj + c, i = 1, ..., N , of the sample,
where c is a chosen constant. Then CVaRα(X) can be estimated by

ĈVaR
c

α,N := inf
t∈R

t+ (1− α̂)−1N−1
N∑
j=1

L(Y j)
[
Y j − t

]
+

 , (3.5)

where L(y) := f(y)/f(y − c) is the corresponding likelihood ratio. By computing solution α̃N
of equation

x = ĈVaR
c

α,N ,

we obtain an estimate 1− α̃N of p̄X(x). Intuitively “good choice” of constant c should be such
that Y j − t∗ is positive for many of Y j values (here t∗ is the minimizer in the right hand side of
(3.5)). This would require a further investigation.

4 Numerical illustration for exponentially distributed variables

Consider an exponentially distributed random variable X with distribution parameter λ > 0,
and pdf f(x) = λe−λx for x ≥ 0 and f(x) = 0 for x < 0. Note that E[X] = λ−1. The respective
quantile function is qα(X) = −λ−1 ln(1− α), and the Conditional Value-at-Risk is

q̄α(X) = −λ−1
[

ln(1− α)− 1
]
, α ∈ [0, 1).
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Figure 1: Asymptotic CDF and empirical CDF of N1/2 (p̂N (x)− p̄x(X)) for an estimator p̂N (x)
for x = 2.

It is easy to see that the solution of equation −λ−1[ln(1− α)− 1] = x yields

p̄x(X) = 1− α = e−λ(x−λ−1) = 1− FX(x− λ−1), for x > E[X],

while for x ≤ E[X] the bPOE value is p̄x(X) = 1. For the further calculations let us assume
that x ≥ E[X]. Denote α = 1− p̄x(X), then

ā =
1

x− qα(X)
=

1

x+ λ−1(−λx+ 1)
= λ,

i.e., the optimal value of a is independent of x for exponential distributions. Let us calculate
the asymptotic variance of the bPOE estimator p̂N (x). Since ā = λ we have that asymptotic
variance σ2(x), given in (2.14), can be written as

σ2(x) = E
(
[λ(X − x) + 1]+

)2 − p̄x(X)2.

Denote b := −λx+ 1, then p̄x(X) = eb, and

σ2(x) =

∫ ∞
−b/λ

(λξ + b)2f(ξ)dξ − e2b = eb
∫ ∞

0
ζ2e−ζdζ − e2b = e−λx+1(2− e−λx+1).

Let us illustrate Theorem 2.1. Namely, that N1/2 (p̂N (x)− p̄x(X)) converges in distribution
to normal N (0, σ2(x)). For λ = 1 and x = 2 the bPOE value is p̄2(X) ≈ 0.368, while the asymp-
totic variance is σ2(2) ≈ 0.6. The weak convergence of N1/2 (p̂N (2)− 0.368) to the asymptotic
distribution N (0, 0.6) is illustrated in Figure 1. For x = 5 the bPOE value is p̄5(X) ≈ 0.018 and
the asymptotic variance is σ2(5) ≈ 0.036. It is expected that convergence will be slower for the
larger x, see Figure 2 illustrating N1/2 (p̂N (5)− 0.018) converges in distribution to N (0, 0.036).
Similarly to the case of large x, convergence to asymptotically normal distribution can be slower
for the values x close to E[X], see Figure 3 for an illustration. Figures 1–3 show that for con-
sidered example and reasonably large N , theoretical asymptotics were in reasonable agreement
with experimental data.

Let us illustrate bias estimate (2.21). Since γ2 = E
[
∂Ψ(ā,X)

∂a

]2
and

∂Ψ(ā, X)

∂a
=

{
X − x, if X ≥ x− 1

a ;

0, otherwise,
,
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Figure 2: Asymptotic CDF and empirical CDF of N1/2 (p̂N (x)− p̄x(X)) for an estimator p̂N (x)
for x = 5.
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Figure 3: Asymptotic CDF and empirical CDF of N1/2 (p̂N (x)− p̄x(X)) for an estimator p̂N (x)
for x = 1.1.
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we have

γ2 =

∫ ∞
x−1/λ

(ξ − x)2λe−λξdξ =
1

λ2
e−λx

∫ ∞
x−1/λ

(λ(ξ − x))2e−λ(ξ−x)dλ(ξ − x) =

=
1

λ2
e−λx

∫ ∞
−1

ζ2e−ζdζ =
1

λ2
e−λx+1.

Note further that ψ′′(ā) = f(x−1/ā)
ā3

= λe−λx+1

λ3
= γ2. Therefore,

E[p̂N (x)]− p̄x(X) = − 1

2N
+ o(N−1).

Remark 3 It could be noted that for larger N the theoretical asymptotic cdf is consistently
below the corresponding estimated cdf. This behavior is consistent with the fact that the second
order term (2.19), in the respective asymptotic expansion, is negative.

Now following the method of Section 3 aimed at rare events, denote L :=
∑N

j=1 L(Y j) and
rewrite (3.5) as

x = inf
t∈R

t+
N−1L

(1− α̂)

N∑
j=1

L(Y j)

L
[Y j − t]+

 .

Denote by p̃cN (x) the importance sampling estimate, namely, 1 − α̂. If
∑N

j=1
L(Y j)
L Y j < x <

maxj Y
j , then, following bPOE calculation formula,

p̃cN (x) = N−1Lmin
a≥0

N∑
j=1

L(Y j)

L
[a(Y j − x) + 1]+ = N−1Lp̂N |L(X+c)(x− c),

where N |L(X + c) implies that the empirical distribution has probabilities L(Xj + c)/L instead
of equal probabilities N−1. That is, the importance sampling estimate equals to a scaled regular
estimate calculated under modified sample weights.

Note further that for an exponential variable the value f(Y )/f(Y − c) = e−λc, therefore,
new weights are still uniform, and

p̃cN (x) = e−λcp̂N (x− c).

If p̂N (x− c) estimates p̄x−c(X) = e−λ(x−c)+1, then p̃cN (x) estimates e−λce−λ(x−c)+1 = e−λx+1 =
p̄x(X), the true bPOE value. Note that this will only work when x−c > E[X], that is, c < x− 1

λ .

The variable N1/2(p̃cN (x) − p̄x(X)) = e−λcN1/2(p̂N (x − c) − p̄x−c(X)), therefore, converges in
distribution to N (0, σ2

c (x)), where

σ2
c (x) = (e−λc)2σ2(x− c) = 2e−2λc−λ(x−c)+1 − e−2λc−2λ(x−c)+2 = 2e−λ(x+c)+1 − e2(−λx+1),

i.e., the variance decreases with increase of c and is minimal when c → x − 1
λ ≡ c∗, then

σ2
c (x)→ (e−λx+1)2 as opposed to N1/2(p̂N (x)− p̄x(X)) converging to N (0, σ2(x)) with σ2(x) =
e−λx+1(2− e−λx+1). The larger x, the smaller the ratio

σ2
c∗(x)

σ2(x)
=

e−λx+1

2− e−λx+1
.
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5 Optimization of bPOE

Consider the following optimization problem

min
y∈Y

p̄x(G(y, ξ)). (5.1)

Here Y is a nonempty closed subset of Rn, ξ ∈ Rd is a random vector and G : Rn × Rd → R
is a Carathéodory function, i.e., G(y, ·) is measurable for every y and G(·, ξ) is continuous for
a.e. ξ (cf., [10, Example 14.29]). We assume that E|G(y, ξ)| < ∞ for every y ∈ Y, and hence
the function p̄x(G(y, ξ)) is well defined and finite valued on Y. We also assume that the set Y
is convex and G(·, ξ) is convex for a.e. ξ. In particular we consider piecewise affine functions of
the form6

G(y, ξ) := max
1≤i≤m

〈
bi(ξ), y

〉
+ ci(ξ), (5.2)

with bi : Rd → Rn and ci : Rd → R, i = 1, ...,m, being measurable. Note that by (2.4) we have
that if x ≥ G(ȳ, ξ) for some ȳ ∈ Y and a.e. ξ, then p̄x(G(ȳ, ξ)) = 0 and hence ȳ is an optimal
solution of problem (5.1).

By (2.5) we can write problem (5.1) in the form

min
a≥0, y∈Y

ψ(a, y), (5.3)

where Ψ(a, y, ξ) := [a(G(y, ξ) − x) + 1]+ and ψ(a, y) := E[Ψ(a, y, ξ)]. The Sample Average
Approximation (SAA) of problem (5.3) is the problem

min
a≥0, y∈Y

ψ̂N (a, y), (5.4)

where ψ̂N (a, y) := N−1
∑N

j=1 Ψ(a, y, ξj) with ξ1, ..., ξN being an iid sample of the random vector
ξ. That is, the SAA problem is obtained by replacing the probability distribution of ξ with its
empirical estimate based on the generated random sample.

Let us consider the following reformulation of problems (5.3) and (5.4) (cf., [7]). By Fenchel-
Moreau Theorem we have

G(y, ξ) = sup
y∗∈Rn

〈y∗, y〉 −G∗(y∗, ξ), (5.5)

where G∗(y∗, ξ) is the conjugate of G(y, ξ) given by

G∗(y∗, ξ) = sup
y∈Rn
〈y∗, y〉 −G(y, ξ). (5.6)

Note that G∗(y∗, ξ) can take value +∞ and the maximization in (5.5) is performed over domain

D(ξ) := {y∗ ∈ Rn : G∗(y∗, ξ) < +∞} (5.7)

of G∗(·, ξ).
By replacing y ∈ Rn with (y, 1) ∈ Rn+1 in (5.5), we can write

G(y, ξ)− x = sup
y∗∈D(ξ)

〈(
y∗,−G∗(y∗, ξ)− x

)
, (y, 1)

〉
. (5.8)

6By 〈x, y〉 we denote the standard scalar product of vectors x, y ∈ Rn.
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Consequently we can formulate problem (5.3) in the following equivalent form

min
z∈Z

E[Ḡ(z, ξ) + 1]+, (5.9)

where
Z :=

{
z ∈ Rn+1 : z = (ay, a), y ∈ Y, a ≥ 0

}
(5.10)

and
Ḡ(z, ξ) := sup

y∗∈D(ξ)

〈(
y∗,−G∗(y∗, ξ)− x

)
, z
〉
. (5.11)

In particular, if G(y, ξ) is of the form (5.2), then

Ḡ(z, ξ) = max
1≤i≤m

〈(
bi(ξ), ci(ξ)− x

)
, z)
〉
. (5.12)

The corresponding SAA problem is

min
z∈Z

1

N

N∑
j=1

[
Ḡ(z, ξj) + 1

]
+
. (5.13)

Convexity of Y implies that the set (cone) Z is convex. If the set Y is polyhedral, defined by
a finite number of linear constraints, then the cone Z is also polyhedral. If, moreover, G(x, ξ)
is of the form (5.2), and hence Ḡ(x, ξ) is of the form (5.12), then the SAA problem (5.13) can
be written as a linear programming problem (cf., [7]). In general closedness of the set Y does
not imply that the cone Z is closed. The cone Z is closed in two important cases, namely when
Y is polyhedral or compact. Anyway by continuity arguments the optimal values of problems
(5.9) and (5.13) are not changed if the set Z is replaced by its topological closure cl(Z).

Denote by ϑ∗ and ϑ̂N the optimal values of problems (5.9) and (5.13), respectively. Note
again that ϑ∗ is the optimal value of the “true” problem (5.1) and ϑ̂N is the optimal value of
its SAA counterpart. Also let Z∗ be the set of optimal solutions of problem (5.9), and ẐN be
the set of optimal solutions of the SAA problem (5.13) with Z replaced by its closure cl(Z). It
could be noted that (ā, ȳ) is an optimal solution of problem (5.3) iff z̄ = ā(ȳ, 1) is an optimal
solution of problem (5.9), and similarly for the corresponding SAA problems. Hence if the cone
Z is closed, then the set Z∗ consists of points z̄ = ā(ȳ, 1) with ā, ȳ being an optimal solution of
problem (5.3).

Denote D(A,B) := supy∈A dist(y,B) the deviation of set A ⊂ Rn from set B ⊂ Rn.

Theorem 5.1 Suppose that the optimal set Z∗ is nonempty and bounded. Then ϑ̂N converges
w.p.1 to ϑ∗ and D(ẐN ,Z∗) converges w.p.1 to 0 as N →∞.

Proof The function [Ḡ(·, ξ) + 1]+ is convex and the set cl(Z) is convex. Therefore we can
apply [13, Theorem 5.4] to conclude the proof.

By using [13, Theorem 5.7], together with representation (5.9), we can write the following
asymptotics of the SAA estimator ϑ̂N .

Theorem 5.2 Suppose that: (i) the optimal set Z∗ = {z̄} is a singleton, (ii) variance

σ2 = Var
(
[Ḡ(z̄, ξ) + 1]+

)
is finite, (iii) there exists a measurable function C(ξ) such that E[C(ξ)2] <∞ and

|Ḡ(z, ξ)− Ḡ(z′, ξ)| ≤ C(ξ)‖z − z′‖

for all z, z′ ∈ Z and a.e. ξ.
Then N1/2(ϑ̂N − ϑ∗) converges in distribution to normal N (0, σ2).
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6 Minimum Volume Ellipsoid Problem: modification with bPOE

The Minimum Volume Ellipsoid (MVE) problem is a problem of covering K out of N data points
ξ1, ..., ξN with an ellipsoid while minimizing the volume of such ellipsoid. If K = N , then the
problem is called minimum covering ellipsoid problem, since all data points must lie inside the
ellipsoid. This problem can be formulated as a convex problem and solved very efficiently [15].
The general MVE problem, with K < N , is a hard non-convex problem. A lot of efforts were
directed towards finding an approximate solutions, or towards finding good heuristics to solve a
similar problem and achieve a similar solution.

Minimum volume ellipsoid problems were studied extensively from perspectives of optimiza-
tion [3, 6, 15], statistics [16, 4], and machine learning [5, 1, 14, 17, 2]. Current results include
various optimization algorithms and applications, primarily in machine learning, as well as sta-
tistical properties of the MVE estimator. The general MVE is known for its high resistance to
outliers and high (up to 0.5) breakdown value [4]. Below we present a new bPOE-MVE estima-
tor. Similar to covering-MVE estimator, it can be computed efficiently as a convex optimization
problem. Unlike covering-MVE and similar to MVE, the bPOE-MVE allows data points to
lie outside the ellipsoid, but, unlike MVE, it accounts for actual positions of data points lying
outside. This is why bPOE-MVE might not be as good as MVE in identifying outliers. Rather
than that, we position this new estimator as a good tool to treat “problematic” rare points,
which, even if may seem like outliers, appear in datasets on a regular basis.

Suppose that ξ is a random vector of dimension n. Let us parameterize an ellipsoid in Rn
with its center c ∈ Rn and its positive definite shape matrix7 Q ∈ Sn×n++ , such that the set
{z ∈ Rn : (z − c)TQ(z − c) = 1} corresponds to the surface of the ellipsoid. Then covering
the distribution ξ with an ellipsoid means satisfying the inequality (ξ − c)TQ(ξ − c) ≤ 1 almost
surely. Note that this problem has a solution only when the support Ξ ⊂ Rn, of the distribution
of random vector ξ, is bounded.

In order to make the corresponding problem convex let us introduce the following change
of variables, A := Q1/2 and b := Ac. Then, (ξ − c)TQ(ξ − c) = ‖Aξ − b‖2. Volume of the
ellipsoid, parameterized by Q, equals V = det(Q−1) and minimization of ellipsoid volume is
equivalent to maximization of V −1/2 = det(A), or to minimization of −V −1/2n = −(detA)1/n,
which is a convex function of A8. Note that ellipsoid covering of points ξ1, . . . , ξN means that
‖Aξi− b‖2 ≤ 1 for 1 ≤ i ≤ N , and the covering-MVE problem is reduced to a finite-dimensional
convex programming problem. General MVE problem for the random vector ξ can be written
as the following chance constrained problem

min
A∈Sn×n++ , b∈Rn

−(detA)1/n

s.t. Prob
(
‖Aξ − b‖2 ≥ 1

)
≤ α.

(6.14)

Note that if random vector ξ has finite support Ξ = {ξ1, . . . , ξN}, with assigned equal
probabilities, and α = (N −K)/N , then problem (6.14) corresponds to the problem of covering
at least K points from the set {ξ1, . . . , ξN} with an ellipsoid, while minimizing volume of this
ellipsoid. If α = 0, then MVE problem becomes covering-MVE and convex. The considered

7By Sn×n we denote the linear space of n× n symmetric matrices, and by Sn×n++ its subset of positive definite
matrices.

8To minimize volume, we minimize a convex function −(detA)1/n rather than a commonly used and also convex
function − ln detA, mostly for the convenience of numerical experiments, since our optimization program code
has started from http://cvxr.com/cvx/examples/cvxbook/Ch08_geometric_probs/html/min_vol_elp_finite_

set.html.
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MVE problem has two parameters, the ellipsoid volume V and a measure of the area outside the
ellipsoid parameterized by α. The problem (6.14) constraints a measure outside of ellipsoid with
parameter α and minimizes volume. It is clear that if value of parameter α increases from 0 to
1, then the optimal volume decreases from +∞ to 0. An alternative problem statement would
require the volume to be no greater than V , and minimize the measure of the outside area. That
is, another view of the problem (6.14) is obtained when the objective and the constraint switch
places:

min
A�0,b

p1(‖Aξ − b‖2)

s.t. (detA)1/n ≥ V −1/2n,
(6.15)

where
p1(‖Aξ − b‖2) := Prob

(
‖Aξ − b‖2 ≥ 1

)
.

It is easy to see that the two parametric problem families with parameters α and V share
the same frontier of optimal solutions. Consider set S = {(V, α) : V = detA−1/2, α = p1(‖Aξ −
b‖2), A � 0}, and suppose that a certain pair (V0, α0) ∈ S is dominant, i.e. S ∩ [0, V0]× [0, α0] =
(V0, α0). Then problem (6.14) with parameter α0 and problem (6.15) with parameter V0 will
have the same optimal solutions. Furthermore, the probability of exceedance p1(‖Aξ − b‖2) can
be changed to the bPOE p̄1(‖Aξ − b‖2), which is the smallest quasi-convex upper bound for
POE, and allows for the following formulation:

min
A�0,b

p̄1(‖Aξ − b‖2)

s.t. (detA)1/n ≥ V −1/2n.
(6.16)

This problem, as the previous one, has an upper bound on an ellipsoid volume and minimizes a
measure of the furthest from the ellipsoid center points such that “on average” these points lie
on the surface, i.e., conditionally expected value of ‖Aξ − b‖2 for these points is 1.

An alternative way to convexify the chance constrained problem (6.14) is to substitute
the constraint with CVaRα(‖Aξ − b‖2) ≤ 1. Note here that CVaR constraint is equivalent
to p̄x(‖Aξ − b‖2) ≤ α. Therefore, the correspondence between CVaR-MVE problem family
and (6.16) bPOE-MVE problem family is exactly the same as the one between (6.14) and (6.15).
The formulation (6.16) allows for a convex reformulation, as shown in Section 5. It is easy to
see that the function G(y, ξ) := ‖Aξ − b‖2, where y = (A, b) ∈ Y := {(A, b) : A ∈ Sn×n++ , b ∈ Rn},
is a Caratheodory function. Since G(·, ξ) is positive homogeneous, i.e., G(λy, ξ) = λG(y, ξ) for
λ ≥ 0, its convex conjugate G∗(y∗, ξ), defined in (5.6), is the indicator function of its domain
D(ξ) (see (5.7) for definition of D(ξ)). Rewriting (5.10) we get

Z = {z = (ay, a) : y ∈ Y, a ≥ 0} =

= {z = (aA, ab, a) : A ∈ Sn×n++ , b ∈ Rn, a ≥ 0} =

= {z = (B, d, a) : B ∈ Sn×n++ , d ∈ Rn, a ≥ 0}.

When optimal z is obtained, optimal solution to the original problem (6.16) can be obtained
from z = (B, d, a) and equations B = aA and d = ab. Using G∗(y∗, ξ) = 0 for y∗ ∈ D(ξ), we
rewrite (5.11):

Ḡ(z, ξ) = Ḡ((B, d, a), ξ) = sup
y∗∈D(ξ)

〈(y∗,−G∗(y∗, ξ)− 1), (B, d, a)〉 =

= −a+ sup
y∗∈D(ξ)

〈y∗, (B, d)〉 −G∗(y∗, ξ) =

= G((B, d), ξ)− a = ‖Bξ − d‖2 − a.
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Therefore, rewriting (5.13), we can write the corresponding SAA problem:

min
B,d,a

∑N
i=1

[
‖Bξi − d‖2 − a+ 1

]
+

s.t. (detB)1/n ≥ aV −1/2n,
B � 0, a ≥ 0.

(6.17)

The MVE problems are suited perfectly for multidimensional distributions coming from
the elliptical class, that is, when probability density function (pdf) has the form f(x) =
g
(√

(x− µ)TΣ−1(x− µ)
)
, where g is a one-dimensional density function. For bPOE-MVE prob-

lem, we show below that the solution for arbitrary Σ and µ may be obtained from the solution
to the problem with identity shape matrix Σ = I and zero mean µ = 0. Suppose that random
vector ξ has pdf g

(√
(x− µ)TΣ−1(x− µ)

)
, and the function g is decreasing on [0,+∞), then

ν := Σ−1/2(ξ − µ) ∝ g(
√
yT y). Denote by BΣ, dΣ, aΣ the optimal solution to the problem for

the original random vector ξ with volume constraint parameter VΣ:

min
B,d,a

E
[
‖Bξ − d‖2 − a+ 1

]
+

s.t. (detB)1/n ≥ aV −1/2n
Σ ,

B � 0, a ≥ 0.

(6.18)

For the “standardized” random vector ν, take parameter value VI and denote the optimal
solution by BI , dI , aI , and apply ν = Σ−1/2(ξ − µ):

min
B,d,a

E[‖Bν − d‖2 − a+ 1]+ = E[‖BΣ−1/2ξ − (BΣ−1/2µ+ d)‖2 − a+ 1]+

s.t. (detB)1/n ≥ aV −1/2n
I ⇔

(
det(BΣ−1/2)

)1/n
≥ a(det Σ)−1/2nV

−1/2n
I ,

B � 0, a ≥ 0.

Assume that VΣ = VI det Σ, then optimal solutions are connected as follows: BΣ = BIΣ
−1/2,

dΣ = dI+BΣµ, aΣ = aI . Therefore, for our purposes, it can be assumed without loss of generality
that the elliptical distribution is “standard”: it has a zero mean and an identity shape matrix.
Further on, because of a symmetry of such distribution, which is a spherical distribution, the

optimal ellipsoid is a sphere with a center at zero. Hence dI = 0 and BI = aIV
−1/2n
I I. Noting

that B = aA and d = ab, we get that in the original problem AI = V
−1/2n
I I and bI = 0.

Note also that the same calculations are valid for probability of exceedance minimization with
a volume constraint. Therefore, for a class of elliptical distributions, POE minimization and
bPOE minimization provide the same optimal solution, but different objective values.

To test the new covering ellipsoid problem behavior, we are varying the tail fatness. One
of the ways to do that is to consider a function g from exponential power distribution, g(x) =

C ·e−
|x|β
α , see Figure 4 for an illustration. Normal distribution is a special case of the exponential

power distribution with β = 2.
We generate samples from elliptical exponential power distribution in a following way. We

generate a uniformly distributed on a unit sphere random vector U = X/‖X‖2, where X ∝
N (0, I) is a standard normal vector. We generate variable R ≥ 0 from radial distribution, such

that variable UR has a density proportional to g(‖x‖2) = C · e−‖x‖
β
2 /α. Hence, density for R

must be proportional to xn−1e−x
β/α, therefore, CDF for R is proportional to∫ x

0
ζn−1e−ζ

β/αdζ = C ·
∫ xβ/α

0
tn/β−1e−tdt = C · γ(n/β, xβ/α),
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Figure 4: Probability density functions of exponential power distributions for power β ∈
{0.5, 2, 8} and scale α = 1.
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Figure 5: Optimal bPOE value ϑ∗ (vertical axis) for the problem (6.18) as a function of the
volume constraint parameter V (horizontal axis), for elliptical exponential power distribution
with power values β ∈ {0.5, 2, 8} and scale values α such that all covariation matrices are equal
to identity matrix.

where γ(a, x) ≡
∫ x

0 t
a−1e−tdt is an incomplete Gamma-function. Note that CDF of Gamma

distribution with parameters k, θ is C · γ(k, θx). Therefore, if G ∝ Gamma(n/β, 1) and R =
αY 1/β, then R has the required distribution. Finally, ξ = RUΣ−1/2 + µ has the requested
elliptical exponential power distribution.

To compare how the optimal bPOE value decreases for distributions with different power, we
fit scaling factors to make covariance matrices equal to identity matrix. Then we vary the upper
bound V for the ellipsoid volume and measure optimal bPOE, see Figure 5 for an illustration.
It can be seen that the optimal objective value ϑ∗ decreases slower for the distributions with
heavier tails.

Further on, we will compare convergence of solutions to the true optimum, as Theorem 5.1
predicts. Since convergence to the true optimal solution and to the asymptotic distribution is
slower for both large and small values of bPOE, we take such values of volume constraints for
different power values that true optimal bPOE values are equal to 1/2. For the large enough
sample size N = 106 we estimate the true optimal solution z̄ = (B̄, d̄, ā) to (6.18). First, we
test convergence almost surely for optimal to (6.17) solutions ẑN = (B̂N , d̂N , âN ) by measuring
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Figure 6: Euclidean norm of error d2(ẑN , z̄) ≡ ‖ẑN − z̄‖2 for optimal to (6.17) solution ẑN =
(B̂N , d̂N , âN ) by the sample size N for elliptical exponential power distribution with power
β ∈ {0.5, 2, 8}. It can be seen that errors converge to 0 with N increasing for all power values.

‖z̄− ẑN‖2 and varying N , see Figure 6. We also measure error ϑ̂N −ϑ∗ of optimal values, where
ϑ̂N is an optimal value to (6.17), and ϑ∗ = 1/2 is an optimal value to (6.18). See Figure 7 for an
illustration. It can be noted that both optimal solutions and optimal values converge to the true
ones, and that the fluctuations from the true optimum are higher for the lower power values,
i.e., for distributions with heavier tails.

Theorem 5.2 shows that the scaled optimal objective values N1/2(ϑ̂N − ϑ∗) converge in
distribution to the normal distribution N (0, σ2), where σ2 = Var([Ḡ(z̄, ξ) + 1]+). With a large
sample (106 observations) we get estimates for σ2. For the values of N = 50 and N = 500
we generate M = 1000 samples of size N to estimate an empirical distribution of ϑ̂N . We
denote ηN = N1/2(ϑ̂N −ϑ∗), and by ÊηN and σ̂2(ηN ) we denote average and standard deviation
of ηN among M generated samples. Table 1 contains experiment setup and measurements.
Note that distributions with heavier tails have larger value of asymptotic variance, but smaller
bias. That is, distributions can not be easily ranked on their convergence speed based on their
tail heaviness. Note also that with N increasing both bias and estimated variance converge
to theoretically predicted values, which supports the result of the theorem. While absolute
values of variance are smaller for distributions with lighter tails, values of variance relative to
corresponding asymptotic variance are approximately the same among the distributions. For
empirical CDFs of η50, η500, and the asymptotic normal distribution, see Figure 8.
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Figure 7: Error ϑ̂N − ϑ∗ = ϑ̂N − 1/2 of the optimal to (6.17) bPOE value ϑ̂N by the sample
size N for elliptical exponential power distribution with β ∈ {0.5, 2, 8}. It can be noted, see left
figure presenting interval N ∈ [1, 1000], that errors converge to 0 with N increasing for all power
values. Right figure presents interval N ∈ [500, 4000]. Note that the scale required to plot error
values (< 0.05) for N ∈ [500, 4000] is much smaller than the one required for N ∈ [1, 1000], with
error values ≤ 0.5.

power, β scale, α V ϑ∗ σ2 Êη50 σ̂2(η50) Êη500 σ̂2(η500)

0.5 1 1.2 · 106 0.5 0.9 -0.26 1 -0.07 0.83

2 1 2.5 0.5 0.57 -0.33 0.64 -0.09 0.54

8 1 0.54 0.5 0.46 -0.44 0.51 -0.17 0.44

Table 1: Setup of the experiment on weak convergence to the asymptotic normal distribution
and obtained estimates. Values β, α are the power and the scale parameters of the power
distribution; V is the upper volume constraint; ϑ∗ is the optimal value of (6.18); σ2 is the
asymptotic variance for the estimator ϑ̂N ; ηN = N1/2(ϑ̂N − ϑ∗); Ê is an average taken over
M = 1000 generated samples; σ̂2 is an empirical variance calculated over M generated samples.
Note that 0 > ÊηN → 0 and σ̂2(ηN )→ σ2 as N →∞, as predicted.
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(c) β = 8

Figure 8: Asymptotic normalN (0, σ2) CDF and empirical CDFs of N1/2
(
ϑ̂N − ϑ∗

)
for elliptical

power distribution with power β.
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