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Abstract. In this paper we study distributionally robust stochastic programming in a setting
where there is a specified reference probability measure and the uncertainty set of probability mea-
sures consists of measures in some sense close to the reference measure. We discuss law invariance of
the associated worst case functional and consider two basic constructions of such uncertainty sets.
Finally we illustrate some implications of the property of law invariance.
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1. Introduction. Consider the following minimax stochastic optimization
problem:

Min
x∈X

sup
Q∈M

EQ[G(x, ξ(ω))],(1.1)

where X ⊂ R
n, ξ : Ω → Ξ is a measurable mapping from Ω into Ξ ⊂ R

d, G : R
n×Ξ →

R and M is a nonempty set of probability measures (distributions), referred to as the
uncertainty set, defined on a sample space (Ω,F). Such a “worst case” (minimax)
approach to stochastic optimization has a long history. It originated in John von Neu-
mann’s game theory and was applied in decision theory, game theory, and statistics.
In stochastic programming it goes back at least to Žáčková [25]. Recently the worst
case approach attracted considerable attention and became known as distributionally
robust stochastic optimization (DRSO).

A wide range of the uncertainty sets was suggested and analyzed by various
authors. If the uncertainty set consists of all probability distributions on Ξ, then
the DRSO is reduced to a so-called robust optimization with respect to the worst
realization of ξ ∈ Ξ (we can refer to Ben-Tal, El Ghaoui, and Nemirovski [5] for a
thorough discussion of robust optimization). There are two natural, and somewhat
different, approaches to constructing the uncertainty set of probability measures. One
approach is to define M by moment constraints. This is going back to a pioneering
paper by Scarf [21] where it was applied to inventory modeling. In some, rather
specific cases, this leads to computationally tractable DRSO problems (cf. [7],[11]).

Another approach is to assume that there is a reference probability measure P
on (Ω,F) and the set M consists of probability measures Q on (Ω,F) in some sense
close to P . Of course this leaves a wide range of possible choices for quantifying the
concept of closeness between probability measures. It also raises questions of practical
relevance and computational tractability of obtained formulations. In that respect we
can mention recent paper by Esfahani and Kuhn [12] where it is shown that, under
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mild assumptions, the DRSO problems over Wasserstein balls can be reformulated as
finite convex programs—in some cases even as tractable linear programs.

In this paper we deal with the second approach assuming existence of a specified
reference probability measure P . The set M is associated with the functional

ρ(Z) := sup
Q∈M

EQ[Z] = sup
Q∈M

∫
Ω

Z(ω)dQ(ω),(1.2)

defined on an appropriate space Z of measurable functions Z : Ω → R. We assume
further that the probability measures Q are absolutely continuous with respect to P .
By the Radon–Nikodym theorem, probability measure Q is absolutely continuous with
respect to P iff dQ = ζdP for some probability density function (pdf) ζ : Ω → R+.
That is, the set M is associated with set of probability density functions

A := {ζ = dQ/dP : Q ∈ M}.(1.3)

We work with the space Z := Lp(Ω,F , P ), p ∈ [1,∞), of random variables Z : Ω → R

having finite pth-order moments, and its dual space Z∗ = Lq(Ω,F , P ), q ∈ (1,∞],
1/p + 1/q = 1. For Z ∈ Z and ζ ∈ Z∗ their scalar product is defined as

〈ζ, Z〉 :=
∫

Ω
ζZdP.

For p ∈ (1,∞) both spaces Z and Z∗ are reflexive, and the weak∗ topology of Z∗

coincides with its weak topology. We also consider space Z = L∞(Ω,F , P ) and pair
it with the space L1(Ω,F , P ) by equipping L1(Ω,F , P ) with its weak topology and
L∞(Ω,F , P ) with the weak∗ topology. We assume that Zx(ω) := G(x, ξ(ω)) belongs
to the space Z for all x ∈ X .

Suppose that A is a subset of the dual (paired) space Z∗. Then the corresponding
functional ρ can be written as

ρ(Z) = sup
ζ∈A

〈ζ, Z〉.(1.4)

This is the dual form of so-called coherent risk measures (Artzner et al. [3]). We will
refer to the set A as the uncertainty set associated with ρ, and use notation ρ = ρA

for the corresponding functional. In the terminology of convex analysis, ρA(·) is the
support function of the set A. If the set A ⊂ Z∗ is bounded (in the norm topology of
Z∗), then ρA : Z → R is finite valued.

This paper is organized as follows. In the next section we discuss the basic concept
of law invariance of risk functional ρ and its relation to the corresponding uncertainty
set A. Section 3 is devoted to study of two generic approaches to construction of the
uncertainty sets. In section 4 we consider applications of the law invariance to the
sample average approximation method and chance constrained problems.

We will use the following notation throughout the paper. By saying that Z is a
random variable we mean that Z : Ω → R is a measurable function. For a random
variable Z we denote by FZ(z) := P (Z ≤ z) its cumulative distribution function
(cdf), and by F−1

Z (τ) := inf{z : FZ(z) ≥ τ} the corresponding left-site τ -quantile.
The notation ζ 
 0 means that ζ(ω) ≥ 0 for a.e. ω ∈ Ω. By D we denote the
set of probability density functions; i.e., a measurable ζ : Ω → R+ belongs to D if∫
Ω ζdP = 1. Note that D ⊂ L1(Ω,F , P ). We also use

D∗ := Z∗ ∩ D(1.5)
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to denote the set of probability density functions in the dual space Z∗. By IA(·) we
denote the indicator function of set A, that is IA(x) = 0 if x ∈ A and IA(x) = +∞
otherwise. We also use characteristic function 1A(·), defined as 1A(x) = 1 if x ∈ A
and 1A(x) = 0 otherwise. By R = R ∪ {−∞} ∪ {+∞} we denote the extended real
line. The functional ρ : Z → R, defined in (1.4), can take value +∞, but not −∞
since the set A is assumed to be nonempty.

2. Law invariance. We say that two random variables Z, Z ′ : Ω → R are
distributionally equivalent, denoted Z

D∼Z ′, if they have the same distribution with
respect to the reference probability measure P , i.e., P (Z ≤ z) = P (Z ′ ≤ z) for all
z ∈ R. In other words two random variables are distributionally equivalent if their
cumulative distributions functions are equal to each other.

Definition 2.1. It is said that a functional ρ : Z → R is law invariant (with
respect to the reference probability measure P ) if for all Z, Z ′ ∈ Z the implication
Z

D∼Z ′ ⇒ ρ(Z) = ρ(Z ′) holds.

We discuss now a relation between law invariance of the functional ρ, given in
the form (1.4), and law invariance of the corresponding uncertainty set A of density
functions. Note that the uncertainty set A is not defined uniquely by the relation
(1.4). That is, the maximum in the right-hand side of (1.4) is not changed if the set
A is replaced by the weak∗ topological closure of the convex hull of A. Therefore it
is natural to assume that the uncertainty set A is convex and closed in the weak∗

topology of the space Z∗.

Definition 2.2. We say that the uncertainty set A is law invariant if ζ ∈ A and
ζ ′ D∼ ζ imply that ζ ′ ∈ A.

The relation “ D∼ ” defines an equivalence relation on the set of random variables.
That is, for any random variables X, Y, Z : Ω → R we have that (i) X

D∼X, (ii) if
X

D∼Y , then Y
D∼X, (iii) if X

D∼Y and Y
D∼Z, then X

D∼Z. It follows that the set of
random variables is the union of disjoint classes of distributionally equivalent random
variables. We denote by

O(Z) := {Y : Y
D∼Z}

the corresponding class of distributionally equivalent random variables, referred to as
the orbit of random variable Z. The set A is law invariant iff the following implication
holds: ζ ∈ A ⇒ O(ζ) ⊂ A. Consequently if the set A is law invariant, then it can be
represented as the union of disjoint classes O(ζ), ζ ∈ A.

Following is the main result of this section.

Theorem 2.3. (i) If the uncertainty set A is law invariant, then the corresponding
functional ρ = ρA is law invariant. (ii) Conversely, if the functional ρ = ρA is law
invariant and the set A is convex and weakly∗ closed, then A is law invariant.

We give a proof of this theorem in several steps. For ζ ∈ Z∗ consider the following
functional:

�ζ(Z) := sup
η∈O(ζ)

〈η, Z〉, Z ∈ Z.(2.1)

That is, �ζ = ρA for ζ ∈ D∗ and A = O(ζ). Note that there is a certain symmetry
between the paired spaces Z and Z∗. Therefore with some abuse of the notation for
Z ∈ Z we also consider the functional
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�Z(ζ) := sup
Y ∈O(Z)

〈ζ, Y 〉, ζ ∈ Z∗.(2.2)

Consider the following conditions.
(A(i)) For every ζ ∈ Z∗ the functional �ζ : Z → R is law invariant.
(A(ii)) For every Z ∈ Z the functional �Z : Z∗ → R is law invariant.
In Lemma 2.5 below we show that these conditions always hold.

Lemma 2.4. (i) If the uncertainty set A is law invariant and condition (A(i))
holds, then the corresponding functional ρ = ρA is law invariant. (ii) Conversely, if
the functional ρ = ρA is law invariant, the set A is convex and weakly∗ closed, and
condition (A(ii)) holds, then A is law invariant.

Proof.
(i) We have that

ρ(Z) = sup
ζ∈A

〈ζ, Z〉 = sup
ζ∈A, η∈O(ζ)

〈η, Z〉 = sup
ζ∈A

�ζ(Z),

where the second equality follows by the law invariance of A and the last
equality follows from the definition of �ζ . Hence law invariance of ρ follows
from law invariance of each �ζ . This completes the proof of (i).

(ii) Consider the conjugate of ρ:

ρ∗(ζ) := sup
Z∈Z

〈ζ, Z〉 − ρ(Z).

Let us observe that ρ∗(ζ) is law invariant. Indeed since ρ is law invariant, for
Y

D∼Z we have that ρ(Y ) = ρ(Z), and hence

ρ∗(ζ)= sup
Z∈Z, Y ∈O(Z)

〈ζ, Y 〉−ρ(Y )= sup
Z∈Z, Y ∈O(Z)

〈ζ, Y 〉−ρ(Z)= sup
Z∈Z

�Z(ζ)−ρ(Z).
(2.3)

If ζ ′ ∈ Z∗ is distributionally equivalent to ζ, then by assumption (A(ii)) we
have that �Z(ζ ′) = �Z(ζ), and hence it follows that ρ∗(ζ ′) = ρ∗(ζ).

Furthermore we have that the conjugate of ρ is the indicator function IA(ζ)
(e.g., [9, Example 2.115]). It is straightforward to see that IA is law invariant
iff the set A is law invariant. This completes the proof of (ii).

We show now that conditions (A(i)) and (A(ii)) always hold. Together with
Lemma 2.4 this will complete the proof of Theorem 2.3. It is said that the probability
measure P is nonatomic if for any measurable set A ∈ F with P (A) > 0 there exists
a measurable set B ⊂ A such that P (A) > P (B) > 0. If P is nonatomic, then the
space (Ω, F , P ) is also called nonatomic.

Lemma 2.5. Conditions (A(i)) and (A(ii)) hold for any probability space.

Proof. If the measure P is nonatomic, then (cf. [14, Lemma 4.55])

sup
η∈O(ζ)

∫
Ω

Zη dP =
∫ 1

0
F−1

Z (t)F−1
ζ dt.(2.4)

Since Z
D∼Z ′ means that FZ = FZ′ , it follows that, for any nonatomic probability

measure, condition (A(i)) is satisfied, and by the same argument condition (A(ii))
holds as well.
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When the reference space has atoms we use the following construction. Consider
a nonatomic probability space (Ξ,G, Q). For example we can use Ξ = [0, 1] equipped
with its Borel sigma algebra and uniform probability measure. Let (Ω̂, F̂ , P̂ ) be the
corresponding product space; i.e., P̂ := Q×P is the product measure on F̂ := G ×F .
Since Q is nonatomic, the product space is also nonatomic (e.g., [8]). In the product
space consider sigma algebra F ′ of sets of the form Ξ×A, A ∈ F . This sigma algebra
is a subalgebra of F̂ = G × F . With marginal measure P ′(Ξ × A) = P (A) on this
subalgebra, we obtain that the reference probability space is isomorphic to (Ω̂,F ′, P ′).
We then identify (Ω, F , P ) with (Ω̂,F ′, P ′), and with some abuse of the notation write
(Ω̂,F , P ) for the embedded space.

For F-measurable ζ : Ω̂ → R, consider orbit O(ζ) consisting of F-measurable
ζ ′ : Ω̂ → R distributionally equivalent to ζ. We also consider the orbit Ô(ζ) consisting
of F̂-measurable ζ ′ : Ω̂ → R distributionally equivalent to ζ. That is, O(ζ) is the orbit
of ζ in the reference space and Ô(ζ) is the orbit of ζ in the respective nonatomic space.
Note that O(ζ) is a subset of Ô(ζ).

For F-measurable Z ∈ Z and F̂-measurable ζ ′ ∈ Z∗ we have that
∫

Ω̂
Zζ ′dP = E[Zζ ′] = E

[
E|F [Zζ ′]

]
= E

[
Z E|F [ζ ′]

]
,(2.5)

where E|F denotes the conditional expectation and the last equality holds since Z is
F-measurable. That is ∫

Ω̂
Zζ ′ dP̂ =

∫
Ω̂

Zη dP,(2.6)

where η := E|F [ζ ′] is F-measurable. It follows that

sup
ζ′∈Ô(ζ)

∫
Ω̂

Zζ ′dP̂ = sup
η∈O(ζ)

∫
Ω̂

Zη dP.(2.7)

Since (Ω̂, F̂ , P̂ ) is nonatomic, we have that if Z ′ : Ω̂ → R is distributionally equivalent
to Z, then

sup
ζ′∈Ô(ζ)

∫
Ω̂

Zζ ′dP̂ = sup
ζ′∈Ô(ζ)

∫
Ω̂

Z ′ζ ′dP̂ .(2.8)

It follows from (2.7) and (2.8) that condition (A(i)) holds for the reference space
(Ω̂,F , P ). Condition (A(ii)) can be shown in a similar way.

Theorem 2.3 now follows from Lemmas 2.4 and 2.5.

Remark 2.6. Recall that we assume that the uncertainty set M consists of prob-
ability measures absolutely continuous with respect to P . For example let the proba-
bility measure P be discrete; i.e., there is a countable set Ω′ ⊂ Ω such that P (Ω′) = 1
and P ({ω}) > 0 for every ω ∈ Ω′. Then Q is absolutely continuous with respect to P
iff Q is supported on Ω′, i.e., Q(Ω′) = 1.

Remark 2.7. If the space (Ω,F , P ) is nonatomic and the set A is law invariant,
then the functional ρ = ρA is law invariant and hence ρ(Z) ≥ EP (Z) for all Z ∈ Z
(e.g., [24, Corollary 6.52]). It follows that if moreover the set A is convex and weakly∗

closed, then 1Ω ∈ A. Without the assumption that the space (Ω,F , P ) is nonatomic,
this may not hold. For example suppose that the reference probability measure P is
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discrete with Ω = {ω1, . . .} and respective probabilities pi > 0. Suppose further that∑
i∈I pi =

∑
i∈I′ pi iff the index sets I, I ′ ⊂ N are equal to each other. In such case

we say that probabilities pi are essentially different from each other. In case of the
discrete probability space two random variables Z, Z ′ : Ω → R are distributionally
equivalent iff P (Z = a) = P (Z ′ = a) for any a ∈ R. If the set {ω ∈ Ω : Z(ω) = a}
is empty, then P (Z = a) = 0. So suppose that sets I := {i ∈ N : Z(ωi) = a}
and I ′ := {i ∈ N : Z ′(ωi) = a} are nonempty. Then P (Z = a) = P (Z ′ = a) iff∑

i∈I pi =
∑

i∈I′ pi. By the above condition this happens iff I = I ′. That is, here
Z and Z ′ are distributionally equivalent iff their level sets do coincide. This means
that Z and Z ′ are distributionally equivalent iff Z = Z ′. In that case any set A
and functional ρ are law invariant. Of course for an arbitrary convex closed set A
(of densities) there is no guarantee that 1Ω ∈ A. In particular, the set A can be a
singleton.

3. Construction of the uncertainty sets of probability measures. In this
section we discuss some generic approaches to construction of the sets M of probability
measures used in (1.2), and consider examples. We assume existence of a reference
probability measure P on (Ω,F) and consider probability measures Q in some sense
close to P .

3.1. Distance approach. Consider the following construction. Let H be a non-
empty set of measurable functions h : Ω → R. For a probability measure Q on (Ω, F)
consider

d(Q, P ) := sup
h∈H

∫
Ω

hdQ −
∫

Ω
hdP.(3.1)

Of course the integrals and the difference in the right-hand sides of (3.1) should be
well defined. If the set H is symmetric, i.e., h ∈ H implies that −h ∈ H, then it follows
that

d(Q, P ) = sup
h∈H

∣∣∣∣
∫

Ω
hdQ −

∫
Ω

hdP

∣∣∣∣ .(3.2)

Formula (3.2) defines a semi-distance between probability measures Q and P (it could
happen that the right-hand side of (3.2) is zero even if Q �= P ), while d(Q, P ) defined
in (3.1) could be not symmetric.

Assume further that H ⊂ Z and Q is absolutely continuous with respect to P ,
with the corresponding density ζ = dQ/dP ∈ Z∗. Then

d(Q, P ) = sup
h∈H

∫
Ω

hdQ −
∫

Ω
hdP = sup

h∈H

∫
Ω

h(ζ − 1)dP = sup
h∈H

〈h, ζ − 1〉.(3.3)

Since H ⊂ Z and ζ ∈ Z∗ it follows that the scalar product 〈h, ζ−1〉 is well defined and
finite valued for every h ∈ H. Moreover if the set H ⊂ Z is bounded, then d(Q, P ) is
finite valued. With the set H ⊂ Z and ε > 0 we associate the following set of density
functions1 in the dual Z∗ of the space Z:

Aε(H) := {ζ ∈ D∗ : d(Q, P ) ≤ ε} = {ζ ∈ D∗ : 〈h, ζ − 1〉 ≤ ε, ∀h ∈ H} .(3.4)

For ε = 1 we drop the subscript ε and simply write A(H). Note that

Aε(H) = A(ε−1H),(3.5)

and that 1Ω ∈ Aε(H), where 1Ω(ω) = 1 for all ω ∈ Ω.

1Recall that D∗ = Z∗ ∩ D is the set of probability density functions in the dual space Z∗.
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Definition 3.1. A (one-sided) polar of a nonempty set S ⊂ Z is the set

S◦ := {ζ ∈ Z∗ : 〈ζ, Z〉 ≤ 1, ∀Z ∈ S}.
Similarly, a (one-sided) polar of a set C ⊂ Z∗ is

C◦ := {Z ∈ Z : 〈ζ, Z〉 ≤ 1, ∀ζ ∈ C}.
Note that the set S◦ ⊂ Z∗ is convex weakly∗ closed, and the set C◦ ⊂ Z is convex
weakly closed.

We have the following duality result (e.g., [2, Theorem 5.103]).

Theorem 3.2. If C is a convex weakly∗ closed subset of Z∗ and 0 ∈ C, then it
follows that (C◦)◦ = C.

This has the following implications for our analysis. Consider a convex weakly∗

closed set A ⊂ D∗ of probability densities and define

H := {h ∈ Z : 〈h, ζ − 1〉 ≤ 1, ∀ζ ∈ A}.(3.6)

That is, H = (A − 1Ω)◦ is the (one-sided) polar of the set A − 1Ω. Suppose that
1Ω ∈ A. Then by Theorem 3.2 we have that A − 1Ω is the (one-sided) polar of the
set H, i.e.,

A =
{

ζ ∈ Z∗ : sup
h∈H

〈h, ζ − 1〉 ≤ 1
}

.(3.7)

We obtain the following result.

Proposition 3.3. For any convex weakly∗ closed set A ⊂ D∗ containing the
constant density function 1Ω, there exists a convex weakly closed set H ⊂ Z such that
A = A(H).

For a given uncertainty set A ⊂ D∗, the equation A = A(H) does not define the
(convex weakly closed) set H uniquely. This is because of the additional constraint
for the set A ⊂ Z∗ to be a set of probability densities. In particular for any h ∈ Z,
λ ∈ R, and ζ ∈ D∗ we have that 〈h + λ, ζ − 1〉 = 〈h, ζ − 1〉.

We discuss now law invariance of the set A(H). A function h ∈ H is assumed to
be measurable and hence can be viewed as a random variable defined on the reference
probability space (Ω,F , P ). Therefore we can apply derivations of section 2.

Proposition 3.4. Suppose that the set H ⊂ Z is law invariant. Then the set
A := Aε(H) is law invariant. Conversely, if the set A ⊂ Z∗ is law invariant, then the
set H := (A − 1Ω)◦ is law invariant.

Proof. Consider the functional

ψ(ζ) := sup
h∈H

〈h, ζ − 1〉, ζ ∈ Z∗.

Note that if ζ ∈ Z∗, then ζ − 1Ω ∈ Z∗, and hence the functional ψ : Z∗ → R is well
defined. Note also ζ

D∼ ζ ′ iff ζ − 1Ω
D∼ ζ ′ − 1Ω. Since H is law invariant, it follows that

ψ is law invariant. This can be shown in the same way as in the proof of Theorem
2.3. Since Aε(H) = {ζ ∈ D∗ : ψ(ζ) ≤ ε}, it follows that Aε(H) is law invariant.

For the converse implication recall that H = (A−1Ω)◦ can be defined as in (3.6).
By law invariance of A − 1Ω, it follows that H is law invariant.
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Example 3.5 (expectation). Let H := L1(Ω,F , P ). Then d(Q, P ) = +∞ for any
Q �= P , and hence Aε(H) = {1Ω} and the corresponding functional ρ(Z) = EP [Z],
Z ∈ L1(Ω,F , P ). Of course, the sets H, Aε(H) and the corresponding functional ρ(Z)
are law invariant here.

Example 3.6 (total variation distance). Consider the set

H := {h : |h(ω)| ≤ 1, ω ∈ Ω}.(3.8)

The set H ⊂ L∞(Ω,F , P ) is symmetric and is law invariant. The total variation norm
of a finite signed measure μ on (Ω, F) is defined as

‖μ‖TV := sup
A∈F

μ(A) − inf
B∈F

μ(B).(3.9)

In this example d(Q, P ) = ‖Q − P‖TV (e.g., [19, p. 44]). If we assume further that
measures Q are absolutely continuous with respect to P , then for dQ = ζdP we have

d(Q, P ) = sup
h∈H

∫
Ω

h(ζ − 1)dP =
∫

Ω
|ζ − 1|dP = ‖ζ − 1‖1.

The corresponding set

Aε(H) = {ζ ∈ D : ‖ζ − 1‖1 ≤ ε} ⊂ L1(Ω,F , P )

is law invariant. Law invariance of Aε(H) can be verified directly by noting that
if ζ, ζ ′ ∈ L1(Ω,F , P ) and ζ

D∼ ζ ′, then ‖ζ‖1 = ‖ζ ′‖1. The corresponding functional
ρ(Z) is defined (finite valued) on L∞(Ω,F , P ) and is law invariant (see Example 3.12
below).

Remark 3.7. Consider the set H defined in (3.8) and the corresponding distance
d(Q, P ). Without assuming that Q is absolutely continuous with respect to P , the
structure of the set of probability measures Q satisfying d(Q, P ) ≤ ε is more involved.
By the Lebesgue decomposition theorem we have that any probability measure Q on
(Ω,F) can be represented as a convex combination Q = γQ1 + (1 − γ)Q2, γ ∈ [0, 1],
of probability measure Q1 that is absolutely continuous with respect to P that is and
probability measure Q2 supported on a set S ∈ F of P -measure zero, i.e., Q2(S) = 1
and P (S) = 0. By (3.9) we have that d(Q2, P ) = 2.

Example 3.8. Consider the set

H := {h : h(ω) ∈ [0, 1], ω ∈ Ω}

and probability measures dQ = ζdP absolutely continuous with respect to P . This
set H is law invariant, but is not symmetric, and

d(Q, P ) =
∫

Ω
[ζ − 1]+dP.

The corresponding set A = Aε(H) and functional ρ(Z) are law invariant (see Example
3.13 below).

Example 3.9 (Wasserstein distance). Let Ω be a closed subset of R
d equipped

with its Borel sigma algebra. Consider the set of Lipschitz continuous functions of
modulus one,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright  by SIAM. Unauthorized reproduction of this article is prohibited. 

2266 ALEXANDER SHAPIRO

H := {h : h(ω) − h(ω′) ≤ ‖ω − ω′‖,∀ω, ω′ ∈ Ω},(3.10)

where ‖·‖ is the standard Euclidean norm on R
d. The corresponding distance d(Q, P )

is called the Wasserstein (also called Kantorovich) distance between probability mea-
sures Q and P (see, e.g., [15],[19] for a discussion of properties of this metric). It
is not difficult to see that if h ∈ H and h′ D∼h, then h′ is not necessarily Lipschitz
continuous with modulus one. Hence the set H is not necessarily law invariant.

Consider for example finite set Ω = {ω1, . . . , ωm} ⊂ R
d and the reference probabil-

ity measure P assigns to each point ωi ∈ R
d equal probability pi = 1/m, i = 1, . . . , m.

A function h : Ω → R can be identified with vector (h(ω1), . . . , h(ωm)). Therefore we
can view H as a subset of R

m, and thus

H = {h ∈ R
m : hi − hj ≤ ‖ωi − ωj‖, i, j = 1, . . . , m} .(3.11)

By adding the constraint
∑m

i=1 hi = 0 to the right-hand side of (3.11) we do not
change the corresponding uncertainty set A = A(H). With this additional constraint
the set H ⊂ R

m becomes a bounded polytope. The uncertainty set A = A(H) is also
a bounded polytope in R

m.
We have here that two variables h, h′ : Ω → R are distributionally equivalent iff

there exists a permutation π : Ω → Ω such that h′ = h ◦ π, where the notation h ◦ π
stands for the composition h(π(·)) . For a permutation π : Ω → Ω and uncertainty
set A = A(H) we have that A ◦ π = A(H ◦ π−1), and

H ◦ π−1 =
{
h ∈ R

m : hi − hj ≤ ‖ωπ(i) − ωπ(j)‖, i, j = 1, . . . , m
}

.

Unless the respective distances ‖ωi − ωj‖ are equal to each other, the set H ◦ π−1 is
different from the set H and the uncertainty set A is not necessarily equal to the set
A ◦ π. That is, by changing order of the points ω1, . . . , ωm we may change the corre-
sponding uncertainty set and the associated functional ρ(Z) = supq∈A

∑m
i=1 qiZ(ωi).

Of course, making such permutation does not change the corresponding expectation
EP [Z] = 1

m

∑m
i=1 Z(ωi).

That is, for the uncertainty set defined by the Wasserstein distance we are not
guaranteed that the uncertainty set A = A(H) and the corresponding functional
ρ = ρA are law invariant.

3.2. Approach of φ-divergence. In this section we consider the φ-divergence
approach to construction of the uncertainty sets. The concept of φ-divergence orig-
inated in Csiszár [10] and Morimoto [18], and was extensively discussed in Ben-Tal
and Teboulle [6]. We also can refer to Bayraksan and Love [4] for a recent survey of
this approach. Consider a convex lower semicontinuous function φ : R → R+ ∪{+∞}
such that φ(1) = 0. For x < 0 we set φ(x) = +∞. Let (cf. [1])

A :=
{

ζ ∈ D :
∫

Ω
φ(ζ(ω))dP (ω) ≤ c

}
(3.12)

for some c > 0. If ζ
D∼ ζ ′, then

∫
Ω φ(ζ(ω))dP (ω) =

∫
Ω φ(ζ ′(ω))dP (ω), and hence it

follows that the set A is law invariant.
We view A as a subset of an appropriate dual space Z∗. Consider functional

ν(ζ) :=
∫

Ω
φ(ζ(ω))dP (ω), ζ ∈ Z∗.(3.13)
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By the Fenchel–Moreau theorem we have that

φ(x) = sup
y∈R

{yx − φ∗(y)} ,(3.14)

where φ∗(y) := supx≥0{yx−φ(x)} is the conjugate of φ. Note that, since φ(x) = +∞
for x < 0, it suffices to take maximum in calculation of the conjugate with respect
to x ≥ 0. Note also that φ∗(y) can be +∞ for some y ∈ R, and since φ(x) ≥ 0 and
φ(1) = 0 it follows that φ∗(0) = 0 and φ∗(y) ≥ y for all y ∈ R.

By using representation (3.14) and interchanging the sup and integral operators,2

we can write functional ν(·) in the form3

ν(ζ) = sup
Y ∈Z

{
〈Y, ζ〉 −

∫
Ω

φ∗(Y (ω))dP (ω)
}

.(3.15)

That is, the functional ν(·) is given by maximum of convex and weakly∗ continuous
(affine) functions, and hence ν(·) is convex and weakly∗ lower semicontinuous. It
follows that the set A ⊂ Z∗ is convex and weakly∗ closed.

The corresponding functional ρ = ρA is given by the optimal value of the problem:

sup
ζ∈Z∗

+

∫
Ω Z(ω)ζ(ω)dP (ω)

s.t.
∫
Ω φ(ζ(ω))dP (ω) ≤ c,

∫
Ω ζ(ω)dP (ω) = 1,

(3.16)

where Z∗
+ := {ζ ∈ Z∗ : ζ 
 0}. The Lagrangian of problem (3.16) is

LZ(ζ, λ, μ) =
∫

Ω
[ζ(ω)Z(ω) − λφ(ζ(ω)) − μζ(ω)] dP (ω) + λc + μ.

The Lagrangian dual of problem (3.16) is the problem

inf
λ≥0,μ

sup
ζ	0

LZ(ζ, λ, μ).(3.17)

Since the Slater condition holds for problem (3.16) (for example take ζ(·) ≡ 1) and
the functional ν(·) is lower semicontinuous, there is no duality gap between (3.16)
and its dual problem (3.17), and the dual problem has a nonempty set of optimal
solutions (e.g., [9, Theorem 2.165]).

Since the space Lq(Ω,F , P ) is decomposable, the maximum in (3.17) can be taken
inside the integral (cf. [20, Theorem 14.60]), that is

sup
ζ	0

∫
Ω

[ζ(ω)Z(ω) − μζ(ω) − λφ(ζ(ω))] dP (ω) =
∫

Ω
sup
z≥0

{z(Z(ω) − μ) − λφ(z)}dP (ω).

We obtain (cf. [1, Theorem 5.1],[6])

ρ(Z) = inf
λ≥0,μ

{λc + μ + EP [(λφ)∗(Z − μ)]} ,(3.18)

where (λφ)∗ is the conjugate of λφ. It follows directly from the representation (3.18)
that ρ(·) is law invariant.

2This is justified since the space Lq(Ω, F , P ) is decomposable (cf. [20, Theorem 14.60]).
3Of course, it suffices to take maximum in (3.15) for such Y ∈ Z that

∫
φ∗(Y )dP < +∞. Note

that, since φ∗(y) ≥ y and
∫

Y dP is finite for every Y ∈ Z, the integral
∫

φ∗(Y )dP is well defined.
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Note that it suffices in (3.17) and (3.18) to take the “inf” with respect to λ > 0
rather than λ ≥ 0, and that (λφ)∗(y) = λφ∗(y/λ) for λ > 0. Hence ρ(Z) can be
written in the following equivalent form:

ρ(Z) = inf
λ>0,μ

{
λc + μ + λEP

[
φ∗((Z − μ)/λ

)]}
.(3.19)

Consider the uncertainty set A = Ac, defined in (3.12), and the corresponding
functional ρ = ρc as a function of the constant c. Suppose that φ(x) > 0 for all
x �= 1. Then, for any density ζ ∈ D different from the constant density 1Ω, φ(ζ(·)) is
positive on a set of positive measure and hence

∫
Ω φ(ζ(ω))dP (ω) > 0. Thus in that

case A0 = ∩c>0Ac = {1Ω} and ρ0(·) = EP [ · ].
Example 3.10. For α ∈ (0, 1] let φ(·) := IA(·) be the indicator function of the

interval A = [0, α−1], i.e., φ(x) = 0 for x ∈ [0, α−1] and φ(x) = +∞ otherwise. Then
for any c ≥ 0 the corresponding uncertainty set

A = {ζ ∈ D : ζ(ω) ∈ [0, α−1], a.e. ω ∈ Ω}.(3.20)

(For α > 1 the set in the right-hand side of (3.20) is empty.) Note that, for any
λ > 0, λφ = φ. The conjugate of φ is φ∗(y) = max{0, α−1y} = [α−1y]+. In that case
(cf. [1],[4])

ρ(Z) = inf
μ,λ≥0

{
λc + μ + α−1

EP [Z − μ]+
}

= inf
μ

{
μ + α−1

EP [Z − μ]+
}

.(3.21)

That is, here ρ(Z) = AV@Rα(Z) is the so-called average value-at-risk functional (also
called conditional value-at-risk, expected shortfall, and expected tail loss).

Example 3.11. Consider φ(x) := x lnx − x + 1, x ≥ 0. Here
∫

φ(ζ)dP defines the
Kullback–Leibler divergence, denoted DKL(ζ‖P ). For λ > 0 the conjugate of λψ is
(λφ)∗(y) = λ(ey/λ −1). In this case it is natural to take Z = L∞(Ω,F , P ) and to pair
it with L1(Ω,F , P ).

By (3.18) we have

ρ(Z) = inf
λ≥0,μ

{
λc + μ + λe−μ/λ

EP

[
eZ/λ

]
− λ

}
.(3.22)

Minimization with respect to μ in the right-hand side of (3.22) gives μ̄ = λ ln EP [eZ/λ].
By substituting this into (3.22) we obtain (cf. [1],[13],[16])

ρ(Z) = inf
λ>0

{
λc + λ ln EP [eZ/λ]

}
.(3.23)

For c = 0 the functional ρ = ρ0 is given by the minimum of entropic risk measures
λ ln EP [eZ/λ]. Here φ(x) > 0 for any x �= 0, and hence for c = 0 the corresponding
functional ρ0(·) = EP [ · ].

Example 3.12. Consider φ(x) := |x − 1|, x ≥ 0, and φ(x) := +∞ for x < 0.
This gives the same uncertainty set A as in Example 3.6. It is natural to take here
Z := L∞(Ω,F , P ) and to pair it with L1(Ω,F , P ). We have that

(λφ)∗(y) =
{ −λ + [y + λ]+ if y ≤ λ,

+∞ if y > λ.
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Hence

ρ(Z) = inf
λ≥0,μ

ess sup(Z−μ)≤λ

{λc + μ − λ + EP [Z − μ + λ]+}

= inf
λ≥0,μ

ess sup(Z)≤μ+2λ

{λc + μ + EP [Z − μ]+} .
(3.24)

The minimum in μ in the right-hand side of (3.24) is attained at μ̄ = ess sup(Z)− 2λ.
Suppose that c ∈ (0, 2). Then

ρ(Z) = ess sup(Z) + inf
λ>0

{λ(c − 2) + EP [Z − ess sup(Z) + 2λ]+}
= ess sup(Z) + inf

t<0
{t(1 − c/2) + EP [Z − ess sup(Z) − t]+}

= ess sup(Z) + (1 − c/2) inf
t∈R

{
t + (1 − c/2)−1

EP [Z − ess sup(Z) − t]+
}

.

Note that since Z − ess sup(Z) � 0 the minimum in the last equation is attained at
some t ≤ 0, and this minimum is equal to

AV@R1−c/2[Z − ess sup(Z)] = AV@R1−c/2[Z] − ess sup(Z).

Hence we obtain (cf. [17])

ρ(Z) = (c/2)ess sup(Z) + (1 − c/2)AV@R1−c/2[Z].(3.25)

Example 3.13. Consider φ(x) := [x − 1]+, x ≥ 0, and φ(x) := +∞ for x < 0.
This gives the same uncertainty set A as in Example 3.8. It is natural to take here
Z := L∞(Ω,F , P ) and to pair it with L1(Ω,F , P ). We have that

(λφ)∗(y) =
{

[y]+ if y ≤ λ,
+∞ if y > λ.

Hence

ρ(Z) = inf
λ≥0,μ

ess sup(Z−μ)≤λ

{λc + μ + EP [Z − μ]+} .(3.26)

Similar to the previous example, the minimum in the right-hand side of (3.26) is
attained at μ̄ = ess sup(Z) − λ. Suppose that c ∈ (0, 1). Then

ρ(Z) = ess sup(Z) + inf
λ>0

{λ(c − 1) + EP [Z − ess sup(Z) + λ]+}
= ess sup(Z) + inf

t<0
{t(1 − c) + EP [Z − ess sup(Z) − t]+}

= ess sup(Z) + (1 − c) inf
t∈R

{
t + (1 − c)−1

EP [Z − ess sup(Z) − t]+
}

.

Hence

ρ(Z) = c ess sup(Z) + (1 − c)AV@R1−c[Z].(3.27)

4. Implications of law invariance. In this section we discuss some implica-
tions of the property of law invariance. Unless stated otherwise we assume that the
uncertainty set A and the respective functional ρ = ρA are law invariant. As discussed
in section 2, there is a close relation between law invariance of A and ρ.

Consider the set

C(Z) := {F : F (z) = P (Z ≤ z), Z ∈ Z}(4.1)

of cdfs associated with the space Z. Since the functional ρ is law invariant, it can be
considered as a function of the cdf F = FZ , and we sometimes write ρ(F ), F ∈ C(Z),
for a law invariant functional.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright  by SIAM. Unauthorized reproduction of this article is prohibited. 

2270 ALEXANDER SHAPIRO

4.1. Sample average approximation method. Given a sample Z1, . . . , ZN of
the random variable Z, we can approximate the corresponding cdf F (z) = P (Z ≤ z)
by the empirical cdf

F̂N (z) :=
1
N

N∑
j=1

1(−∞,z](Zj).(4.2)

Consequently we can approximate ρ(F ) by ρ(F̂N ). In case of φ-divergence, when the
uncertainty set A is of the form (3.12), we can use (3.18) to write

ρ(F̂N ) = inf
λ≥0,μ

⎧⎨
⎩λc + μ +

1
N

N∑
j=1

(λφ)∗(Zj − μ)

⎫⎬
⎭ .(4.3)

In general we can proceed as follows. We can write the functional ρ(F ) as (e.g.,
[14, section 4.5])

ρ(F ) = sup
σ∈Υ

∫ 1

0
σ(t)F−1(t)dt,(4.4)

where Υ is a set of monotonically nondecreasing functions σ : [0, 1) → R+ such that∫ 1
0 σ(t)dt = 1 (referred to as spectral functions). Consequently

ρ(F̂N ) = sup
σ∈Υ

∫ 1

0
σ(t)F̂−1

N (t)dt = sup
σ∈Υ

⎧⎨
⎩

N∑
j=1

Z(j)

∫ γj

γj−1

σ(t)dt

⎫⎬
⎭ ,(4.5)

where Z(1) ≤ · · · ≤ Z(N) are the sample values arranged in increasing order and
γ0 = 0, γj = j/N , j = 1, . . . , N . Note that

∑N
j=1

∫ γj

γj−1
σ(t)dt =

∫ 1
0 σ(t)dt = 1 for any

σ ∈ Υ.
Consider now the distributionally robust stochastic programming problem (1.1).

Suppose that for every x ∈ X the random variable G(x, ξ(ω)) belongs to Z. Let
ξ1, . . . , ξN be a sample of the random vector ξ = ξ(ω). The sample average approxi-
mation (SAA) of problem (1.1) is obtained by replacing the cdf of the random variable
G(x, ξ) by the corresponding empirical cdf based on the sample G(x, ξj), j = 1, . . . , N .
It is possible to show that, under mild regularity conditions, the optimal value and
optimal solutions of the SAA problem converge with probability one (w.p.1) to their
true counterparts as the sample size N tends to infinity (cf. [23]).

In particular, in the setting of φ-divergence the distributionally robust stochastic
program (1.1) can be written in the form

Min
x∈X ,λ≥0,μ

EP [Ψ(x, λ, μ, ξ)],(4.6)

and the corresponding SAA problem as

Min
x∈X ,λ≥0,μ

1
N

N∑
j=1

Ψ(x, λ, μ, ξj),(4.7)

where
Ψ(x, λ, μ, ξ) := λc + μ + (λφ)∗(G(x, ξ) − μ).

Note that

(λφ)∗(G(x, ξ) − μ) = sup
z≥0

{
z(G(x, ξ) − μ) − λφ(z)

}
.(4.8)
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Suppose that the set X is convex and for every ξ ∈ Ξ the function G(·, ξ) is convex.
Then the right-hand side of (4.8) is the maximum of a family of convex in (λ, μ, x)
functions. Consequently the function Ψ(·, ·, ·, ξ) is convex for all ξ ∈ Ξ, and hence
problems (4.6) and (4.7) are convex.

Let ϑ and ϑ̂N be the optimal values of problems (4.6) and (4.7), respectively.

Theorem 4.1. Suppose that (i) the sample ξ1, . . . , ξN is iid (independent iden-
tically distributed) from the reference distribution P ; (ii) the set X and function
G(·, ξ), for all ξ ∈ Ξ, are convex; (iii) problem (4.6) has a nonempty and bounded
set S ⊂ R

n × R+ × R of optimal solutions; (iv) there is a (bounded) neighborhood
V ⊂ R

n × R+ × R of the set S and a measurable function C : Ξ → R+ such that
EP [C(ξ)2] is finite and

|Ψ(x, λ, μ, ξ) − Ψ(x′, λ′, μ′, ξ)| ≤ C(ξ)(‖x − x′‖ + |λ − λ′| + |μ − μ′|)

for all (x, λ, μ), (x′, λ′, μ′) ∈ V and ξ ∈ Ξ; and (v) for some point (x, λ, μ) ∈ V the
expectation EP

[
Ψ(x, λ, μ, ξ)2

]
is finite.

Then

ϑ̂N = inf
(x,λ,μ)∈S

1
N

N∑
j=1

Ψ(x, λ, μ, ξj) + op(N−1/2).(4.9)

Moreover, if problem (4.6) has unique optimal solution, i.e., the set S = {(x̄, λ̄, μ̄)} is
a singleton, then N1/2(ϑ̂N − ϑ) converges in distribution to normal N (0, σ2) with

σ2 = VarP [Ψ(x̄, λ̄, μ̄, ξ)].

Proof. Since the set S, of optimal solutions, is nonempty and bounded and the
problem is convex, an optimal solution of the SAA problem (4.7) converges w.p.1 to
the set S (e.g., [24, Theorem 5.4]). Let V ⊂ R

n ×R+ ×R be a compact neighborhood
of the set S. Then it suffices to perform the optimization in the neighborhood V. That
is, restricting minimization in problem (4.6) to the set V clearly does not change its
optimal value ϑ; and for N large enough w.p.1 ϑ̂N = ϑ̂′

N , where ϑ̂′
N is the optimal

solution of the restricted problem

Min
(x,λ,μ)∈V

1
N

N∑
j=1

Ψ(x, λ, μ, ξj).(4.10)

The results then follow from a general theory of asymptotics of SAA problems applied
to the restricted problem (cf. [22], [24, section 5.1.2]).

For iid sample the rate of convergence of the SAA estimates typically is of order
Op(N−1/2), provided that Z = Lp(Ω,F , P ), p ∈ [1,∞) (e.g., [24, section 6.6]). It
is interesting to note that in Examples 3.12 and 3.13 the space Z = L∞(Ω,F , P ),
and the corresponding functional ρ is a convex combination of the average value-at-
risk and the essential sup operators. In that case statistical properties of the SAA
estimates are different, we elaborate on this in Example 4.2 below. In Examples 3.12
and 3.13 the conjugate function φ∗ is discontinuous and condition (iv) of Theorem
4.1 does not hold.

Example 4.2. Let us consider the essential sup operator ρ(·) := ess sup(·) and
Z := U1 + · · ·+Um, where U1, . . . , Um are random variables independent of each other
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and each having uniform distribution on the interval [0,1]. We have that ρ(Z) = m.
On the other hand, for large m, by the central limit theorem, Z has approximately
normal distribution with mean μ = m/2 and variance σ2 = m/12. The probability
that Z > 0.9m, say, is given by the probability that Z > μ + 1.38

√
m σ and is very

small. More accurately, by the Hoeffding inequality

P
{
Z ≥ (0.5 + τ)m

} ≤ e−2τ2m, 0 < τ < 0.5.

For example for m = 100 and τ = 0.4 it follows that P (Z ≥ 0.9m) ≤ e−32 ≈ 1
6×1013 .

That is, one would need the sample size N of order 1014 to ensure that probability
of the event “ρ(F̂N ) ≥ 0.9m”; i.e., that the sample estimate is within 10% accuracy
of the true value, to be close to 1. This is in a sharp contrast with ρ := AV@Rα and,
say, α = 0.05. In that case ρ(F̂N ) will converge to ρ(F ) at a rate of Op(N−1/2).

4.2. Ambiguous chance constraints. Consider the following so-called am-
biguous chance constraint

Q{C(x, ω) ≤ 0} ≥ 1 − ε ∀Q ∈ M,(4.11)

where C : X × Ω → R and ε ∈ (0, 1). It is assumed that for every x ∈ X the function
C(x, ·) is measurable. For a measurable set A ∈ F we have

sup
Q∈M

Q(A) = sup
Q∈M

EQ[1A] = sup
ζ∈A

∫
A

ζ(ω)dP (ω) = ρ(1A),(4.12)

where the last equality follows by the definition of the functional ρ. Therefore we can
write (4.11) in the form

ρ(1Ax) ≤ ε,(4.13)

where
Ax := {ω ∈ Ω : C(x, ω) > 0}.

Note that for two measurable sets A, A′ ∈ F the functions 1A and 1A′ are distribu-
tionally equivalent iff P (A) = P (A′).

We make the following assumption.
Assumption (B) The following implication holds for any A, B ∈ F :

P (B) ≤ P (A) ⇒ sup
Q∈M

Q(B) ≤ sup
Q∈M

Q(A).(4.14)

This assumption implies that every Q ∈ M is absolutely continuous with respect
to P . Indeed consider B ∈ F such that P (B) = 0 and let A := ∅ be the empty set.
Then P (A) = 0, and hence by assumption (B)

sup
Q∈M

Q(B) ≤ sup
Q∈M

Q(A) = 0.

It follows that Q(B) = 0 for every Q ∈ M, and hence Q is absolutely continuous with
respect to P .

Remark 4.3. In case the functional ρ is law invariant and the reference probability
measure P is nonatomic, assumption (B) holds automatically. Indeed if A, B ∈ F and
P (B) ≤ P (A), then since P is nonatomic there is B′ ∈ F such that P (B) = P (B′)
and B′ ⊂ A. Since 1B′ � 1A it follows by monotonicity of ρ that ρ(1B′) ≤ ρ(1A),
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and by law invariance of ρ we have that ρ(1B′) = ρ(1B). Without assuming that P
is nonatomic, assumption (B) may not hold even if ρ is law invariant. For example,
suppose that the set Ω = {ω1, . . . , ωm} is finite with respective probabilities pi > 0
being essentially different from each other (see Remark 2.7). Then any uncertainty set
A and functional ρ = ρA are law invariant. In particular we can take A = {Q} to be a
singleton. Then assumption (B) holds iff {pi ≥ pj} ⇒ {qi ≥ qj}, i, j ∈ {1, . . . , m}. On
the other hand, if probabilities pi are equal to each other, i.e., pi = 1/m, i = 1, . . . , m,
and ρ is law invariant, then assumption (B) holds.

Consider function p : [0, 1] → [0, 1] defined as

p(t) := sup
{
Q(A) : P (A) ≤ t, A ∈ F , Q ∈ M

}
.(4.15)

By definition of the functional ρ we can write

p(t) = sup
{
ρ(1A) : P (A) ≤ t, A ∈ F}

.(4.16)

Also for ε ∈ [0, 1] consider

p−1(ε) := inf{t ∈ [0, 1] : p(t) ≥ ε}.(4.17)

Clearly p(·) is nondecreasing on [0,1] and because of assumption (B) we have that
for A ∈ F and t∗ := P (A) it follows that p(t∗) = ρ(1A). Therefore we can write
constraint (4.13) in the following equivalent form:

p(t) ≤ ε subject to t ≥ P (Ax).(4.18)

Moreover condition p(t) ≤ ε can be written as t ≤ p−1(ε), and hence constraint (4.18)
as P (Ax) ≤ p−1(ε). We obtain the following result.

Proposition 4.4. Suppose that assumption (B) is fulfilled. Then the ambiguous
chance constraint (4.11) can be written as

P{C(x, ω) ≤ 0} ≥ 1 − ε∗,(4.19)

where ε∗ := p−1(ε).

This indicates that if assumption (B) is fulfilled, then the computational complexity
of the corresponding ambiguous chance constrained problem is basically the same as
the computational complexity of the respective reference chance constrained problem
provided value p−1(ε) can be readily computed.

4.2.1. Law invariant case. In this section we consider the case of law invariant
functional ρ = ρA. We also assume that the reference probability space is nonatomic.
Then, as pointed in Remark 4.3, assumption (B) follows, and hence the ambiguous
chance constraint (4.11) can be written as (4.19). Since P is nonatomic, P (A) can be
any number in the interval [0,1] for some A ∈ F . Thus function p(·) can be defined
as p(t) = ρ(1A) for t = P (A). Alternatively p(t) can be defined as follows. Let
Zt ∼ Ber(t) be Bernoulli random variable, i.e., P (Zt = 1) = t and P (Zt = 0) = 1− t,
t ∈ [0, 1]. By law invariance of ρ we have that ρ(Zt) is a function of t, and p(t) = ρ(Zt).

In the case of nonatomic reference space, function p(·) has the following properties
(cf. [24, Proposition 6.53]): (i) p(0) = 0 and p(1) = 1; (ii) p(·) is monotonically
nondecreasing on the interval [0, 1]; (iii) p(·) is monotonically increasing on the interval
[0, τ ], where

τ := inf{t ∈ [0, 1] : p(t) = 1} = p−1(1);(4.20)
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(iv) if M = {P}, then p(t) = t for all t ∈ [0, 1], and if M �= {P}, then p(t) > t for all
t ∈ (0, 1); and (v) p(·) is continuous on the interval (0, 1].

For γ := limt↓0 p(t) and ε ∈ (γ, 1), value p−1(ε) can be computed by solving
equation p(t) = ε. It can happen that γ > 0, in which case p−1(ε) = 0 for ε ∈ [0, γ]
(see Example 4.7 below). In some cases function p(·) and modified significance level
ε∗ can be computed in a closed form. Consider the setting of φ-divergence discussed
in section 3.2. By (3.18) in that case we have

p(t) = inf
λ≥0,μ

{
λc + μ + E[(λφ)∗(Zt − μ)]

}
, t ∈ [0, 1],(4.21)

where Zt ∼ Ber(t). Since Zt can only take value 1 with probability t and value 0
with probability 1 − t, it follows that

p(t) = inf
λ≥0,μ

{
λc + μ + t[(λφ)∗(1 − μ)] + (1 − t)[(λφ)∗(−μ)]

}
, t ∈ [0, 1].(4.22)

We have here that p(·) is given by minimum of a family of affine functions, and hence
p(·) is a concave function. It could be noted that in general the function p(·) does
not have to be concave. Indeed let ρ1 and ρ2 be law invariant functionals of the form
(1.4), with the corresponding functions p1 and p2. Then ρ(·) := max{ρ1(·), ρ2(·)}
is also a law invariant functional of the form (1.4) with the corresponding function
p(·) = max{p1(·), p2(·)}. A maximum of two concave functions can be not concave.
This indicated that not every convex, weakly∗ closed, and law invariant set A can be
represented in the form (3.12) (see Example 4.6 below).

Example 4.5. Consider the setting of Example 3.10 with the set A of the form
(3.20) and ρ = AV@Rα. Here the function p = pα is

pα(t) =
{

α−1t if t ∈ [0, α],
1 if t ∈ (α, 1],(4.23)

and hence ε∗ = αε. In this example the constant τ , defined in (4.20), is equal to α.

Example 4.6. Consider risk measure ρ : Z → R of the form

ρ(Z) :=
∫ 1

0
AV@Rα(Z)dμ(α),

where μ is a probability measure on the interval (0, 1]. The function p(t) of this risk
measure is given by p(t) =

∫ 1
0 pα(t)dμ(α), where pα is given in (4.23). Since each

function pα is concave, it follows that p is also a concave function.
In particular, let ρ(·) := βAV@Rα(·) + (1 − β)AV@R1(·) (note that AV@R1(·) =

EP (·)), for some α, β ∈ (0, 1). Then (cf., [24, p. 322])

p(t) =
{

(1 − β + α−1β)t if t ∈ [0, α],
β + (1 − β)t if t ∈ (α, 1]

is a concave piecewise linear function. A maximum of such two functions can be
nonconcave.

Example 4.7. Consider the uncertainty set A of Example 3.12. In this example,
by using (3.25), it can be computed that p(0) = 0 and p(t) = min{t + c/2, 1} for
t ∈ (0, 1]. In this example the function p(t) is discontinuous at t = 0. Also for
ε ∈ [0, c/2] we have that ε∗ = p−1(ε) = 0. That is, for ε ∈ [0, c/2] the ambiguous
chance constraint (4.11) is equivalent to the constraint that C(x, ω) ≤ 0 should be
satisfied for P -almost every ω ∈ Ω.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright  by SIAM. Unauthorized reproduction of this article is prohibited. 

DISTRIBUTIONALLY ROBUST STOCHASTIC PROGRAMMING 2275

REFERENCES

[1] A. Ahmadi-Javid, Entropic value-at-risk: A new coherent risk measure, J. Optim. Theory
Appl., 155 (2012), pp. 1105–1123.

[2] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, A Hitchhiker’s Guide,
3rd ed., Springer, Berlin, 2006.

[3] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, Coherent measures of risk, Math.
Finance, 9 (1999), pp. 203–228.

[4] G. Bayraksan and D. K. Love, Data-driven stochastic programming using phi-divergences,
in Tutorials in Operations Research, INFORMS, Catonsville, MD, 2015.

[5] A. Ben-Tal, A. El Ghaoui, and A. Nemirovski, Robust Optimizations, Princeton University
Press, 2009.

[6] A. Ben-Tal and M. Teboulle, Penalty functions and duality in stochastic programming via
phi-divergence functionals, Math. Oper. Res., 12 (1987), pp. 224–240.

[7] D. Bertsimas and J. Sethuraman, Moment problems and semidefinite optimization, in Hand-
book of Semidefinite Programming, H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds.,
Kluwer Academic, Dordrecht, 2000, pp. 469 – 510.

[8] K. P. S. Bhaskara Rao and M. Bhaskara Rao, A remark on nonatomic measures, The
Ann. Math. Stat., 43 (1972), pp. 369–370.

[9] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer
Series in Operations Research, Springer, Berlin, 2000.

[10] I. Csiszár, Eine informationstheoretische ungleichung und ihre anwendung auf den beweis der
ergodizitat von markoffschen ketten, Magyar. Tud. Akad. Mat. Kutato Int. Kozls, 8 (1063).

[11] E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with
application to data-driven problemsm, Oper. Res., 58 (2010), pp. 595–6127.

[12] P. M. Esfahani and D. Kuhn, Data-driven distributionally robust optimization using the
wasserstein metric: Performance guarantees and tractable reformulations, Preprint,
Optimization Online, 2015.
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