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1 Introduction

Interchangeability of the minimization and expectation operators is a basis for deriving dy-
namic programming equations in multistage stochastic programming. In a setting of func-
tional spaces such interchangeability principle is derived, e.g., in Rockafellar and Wets [1,
Theorem 14.60]. In a risk averse case interchangeability of the minimization and risk func-
tionals was considered in [2, Theorem 7.1] and [3, Proposition 6.60]. We revisit the question
of interchangeability with an emphasis on the role of strict monotonicity of considered risk
functionals. Importance of such strict monotonicity was already pointed in relation to time
consistency of optimal policies of risk averse stochastic programs in [3, Section 6.8.5] and
[4]. We also discuss implications of strict monotonicity to solutions of dynamic programming
equations.
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2 Interchangeability principle

Let (Ω,F) be a sample space, i.e., F is a sigma algebra of subsets of Ω, X be an abstract
set and f : X × Ω→ R ∪ {+∞}. Consider

F (ω) := inf
x∈X

f(x, ω). (2.1)

Let Z be a linear space of F -measurable functions Z : Ω→ R. We deal with following cases.

(ℵ1) The set Ω = {ω1, ..., ωm} is finite, F is sigma algebra of all subsets of Ω and Z is the
space of all functions Z : Ω → R. In this case the space Z is m-dimensional and can
be identified with Rm.

(ℵ2) The sample space (Ω,F) is equipped with probability measure P and Z := Lp(Ω,F , P ),

p ∈ [1,∞]. Equipped with the norm ‖Z‖ =
(∫
|Z|pdP

)1/p
for p ∈ [1,∞), and ‖Z‖ =

ess sup|Z(ω)| for p =∞, this becomes a Banach space.

(ℵ3) The set Ω is a compact metric space, F is the Borel sigma algebra of Ω, and Z :=
C(Ω) is the space of continuous functions Z : Ω → R equipped with the sup-norm
‖Z‖ = supω∈Ω |Z(ω)|.

Of course the above case (ℵ1), of finite set Ω, can be considered as a particular case of
setting (ℵ3), we write it separately since in that case the analysis simplifies considerably.
In case (ℵ2) an element Z of the space Z is a class of p-integrable functions Z : Ω → R
which coincide for all ω ∈ Ω accept on a set of P -measure zero. By writing equalities like
F (·) := infx∈X f(x, ·) we mean that this equality holds for all ω ∈ Ω in cases (ℵ1) and (ℵ3),
and it holds for P -almost every (a.e.) ω ∈ Ω in case (ℵ2).

In the above cases (ℵ1)-(ℵ3) there is a naturally defined order relation between Z,Z ′ ∈ Z.
We write Z � Z ′ if Z(ω) ≥ Z ′(ω) for all ω ∈ Ω in cases (ℵ1) and (ℵ3), and Z(ω) ≥ Z ′(ω)
for a.e. ω ∈ Ω in case (ℵ2). Consider a functional R : Z → R. It is said that R is monotone
if Z,Z ′ ∈ Z and Z � Z ′, then R(Z) ≥ R(Z ′). It is said that R is strictly monotone if
R is monotone and Z � Z ′ and Z 6= Z ′ imply that R(Z) > R(Z ′). By saying that R is
continuous we mean that it is continuous with respect to the norm topology of the space Z.
Let X be the set of mappings χ : Ω → X such that fχ ∈ Z, where fχ(·) := f(χ(·), ·). We
also write R(f(χ(ω), ω) for R(fχ). Consider the following equation

R(F ) = inf
χ∈X
R(fχ), (2.2)

and the implications

χ̄(·) ∈ arg min
x∈X

f(x, ·)⇒ χ̄ ∈ arg min
χ∈X
R(fχ), (2.3)

χ̄ ∈ arg min
χ∈X
R(fχ)⇒ χ̄(·) ∈ arg min

x∈X
f(x, ·). (2.4)
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Proposition 2.1 Suppose that F ∈ Z and R is monotone. Then the following holds. (i)
Suppose that the minimum of f(x, ω) over x ∈ X is attained for all ω ∈ Ω. Then (2.2)
and (2.3) follow; the implication (2.4) also follows if either the set arg minχ∈X R(fχ) is a
singleton or R is strictly monotone. (ii) Suppose that R(·) is continuous at F and there
exists a sequence χk ∈ X such that fχk converges to F . Then (2.2) and (2.3) follow; the
implication (2.4) also follows if R is strictly monotone.

Proof. We have that fχ � F for any χ ∈ X . Hence by monotonicity of R it follows that
R(fχ) ≥ R(F ), and thus

inf
χ∈X
R(fχ) ≥ R(F ).

Conversely, consider the setting of case (i), i.e., there exists

χ̄(·) ∈ arg min
x∈X

f(x, ·). (2.5)

Then F = fχ̄ and since F ∈ Z it follows that χ̄ ∈ X , and hence

R(F ) = R(fχ̄) ≥ inf
χ∈X
R(fχ).

Thus (2.2) and the implication (2.3) follow. As it was shown above the minimizer χ̄ belongs
to the set arg minχ∈X R(fχ). If this set is a singleton, then the implication (2.4) follows.

Suppose now that R is strictly monotone. Let χ̂ ∈ arg minχ∈X R(fχ). We have that
R(F ) = R(fχ̂). Also fχ̂ � F and hence by strict monotonicity of R it follows that fχ̂ = F ,
i.e., f(χ̂(·), ·) = infx∈X f(x, ·). This proves the implication (2.4). This completes the proof
of case (i).

Consider now case (ii). Let χk ∈ X be a sequence such that fχk converges to F . It follows
by continuity of R that

R(F ) = lim
k→∞
R(fχk) ≥ inf

χ∈X
R(fχ).

Hence (2.2) follows, and (2.3) follows as well. If moreover R is strictly monotone, then the
implication (2.4) follows by the same arguments as in case (i).

Let us discuss assumptions of the above proposition. In the setting of case (ℵ1) the
function F belongs to the space Z if F (ω) is finite valued, i.e., for every ω ∈ Ω it follows
that infx∈X f(x, ω) > −∞ and there is x̄ ∈ X such that f(x̄, ω) <∞. Also in that case the
space Z is finite dimensional. Consequently if the functional R : Z → R is convex, then it
is continuous. Existence of the corresponding sequence χk holds automatically.

In case (ℵ3) suppose that the set X is a compact metric space and f(x, ω) is finite valued
and continuous on X ×Ω. Then F (ω) is finite valued and continuous, and hence F belongs
to the space C(Ω). Also in that case f(x, ω) attains its minimal value for every ω ∈ Ω, and
hence there is no need for the assumption (ii).

In case (ℵ2) we need to verify that F (ω) is measurable and p-integrable for p ∈ [1,∞),
and essentially bounded for p = ∞. Suppose that X = Rn. It is said that function f(x, ω)
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is random lower semicontinuous if its epigraphical mapping is closed valued and measurable,
[1, Definition 14.28] (in some publications, in particular in [1], such functions are called
normal integrands). If f(x, ω) is random lower semicontinuous, then F (ω) is measurable,
[1, Theorem 14.37]. The condition of p-integrability can be verified by ad hoc methods.
In particular this holds if F (ω) is essentially bounded. Also if R : Z → R is convex
and monotone, then it is continuous in the norm topology of the space Z = Lp(Ω,F , P ),
p ∈ [1,∞) (cf., [2, Proposition 3.1]).

Proposition 2.2 In the setting of case (ℵ2), suppose that X = Rn, f(x, ω) is random lower
semicontinuous, F ∈ Z and R : Z → R is monotone and continuous at F . Then (2.2) and
(2.3) hold. If moreover R is strictly monotone, then (2.4) holds as well.

Proof. By the second part of Proposition 2.1 we only need to verify existence of a
sequence χk ∈ X such that fχk converges to F . Consider ε > 0. By the definition (2.1) of
function F , for a.e. ω ∈ Ω there is χ̄(ω) ∈ X such that f(χ̄(ω), ω) < F (ω) + ε. Moreover χ̄
can be chosen in such a way that f(χ̄(·), ·) is measurable. Indeed, since f(x, ω) is random
lower semicontinuous and hence its epigraphical mapping ω 7→ epif(·, ω) ⊂ Rn×R is closed
valued and measurable, it follows by Castaing representation that there is a countable family
of measurable mappings (χν , αν) : Ω → Rn × R, ν ∈ N, such that for every ω ∈ Ω the set
{(χν(ω), αν(ω))} is dense in epif(·, ω), [1, Theorem 14.5]. Consider sets

Aν := {ω ∈ Ω : f(χν(ω), ω) < F (ω) + ε}.

It follows that the sets Aν are measurable and ∪ν∈NAν = Ω. Some of these sets can be
empty. Define χ̄(ω) in the recursive way: χ̄(ω) := χ1(ω) for ω ∈ A1, and χ̄(ω) := χν(ω) for
ω ∈ Aν \ (∪ν−1

ι=1Aι) for ν = 2, ... .
Now let εk be a sequence of positive numbers converging to zero and χk(ω) be measurable

mappings such that
f(χk(ω), ω) < F (ω) + εk, ω ∈ Ω. (2.6)

By the definition of F (ω) we also have that f(χk(ω), ω) ≥ F (ω). Since F ∈ Z and hence
is p-integrable, it follows from (2.6) that fχk is also p-integrable and hence fχk ∈ Z. It also
follows from (2.6) that fχk converges to F in the norm topology of Z.

As the following examples show the strict monotonicity condition is essential to ensure
the implication (2.4).

Example 1 Consider the setting of case (ℵ1) and let R(Z) :=
∑m

i=1 piZ(ωi), where pi are
nonnegative numbers such that

∑m
i=1 pi = 1. The functional R can be viewed as the expec-

tation operator R = E associated with probabilities pi ≥ 0. This functional is monotone
and continuous. The equation (2.2) takes here the form

E
[

inf
x∈X

f(x, ω)

]
= inf

χ∈X
E[f(χ(ω), ω)]. (2.7)
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If all pi > 0, i = 1, ...,m, then R = E is strictly monotone and both implications (2.3) and
(2.4) follow.

Suppose now that one of the probabilities pi is zero, say p1 = 0. In that case E[f(χ(ω), ω)]
does not depend on χ(ω1) and hence χ̄(ω1) can be any element of the set X in the left hand
side of (2.4), provided that such minimizer χ̄ does exist. Hence there is no guarantee that
χ̄(ω1) ∈ arg minx∈X f(x, ω1) and the implication (2.4) can be false. Of course here the
probability of the event {ω1} is zero, and the implication (2.4) becomes correct if the right
hand side of (2.4) is understood to hold w.p.1. In the setting of case (ℵ2) the expectation
operator is strictly monotone. �

Example 2 Consider the setting of case (ℵ3) and letR(Z) := maxω∈Ω Z(ω). This functional
is monotone and continuous, but is not strictly monotone. The equality (2.2) takes here the
form

max
ω∈Ω

inf
x∈X

f(x, ω)︸ ︷︷ ︸
F (ω)

= inf
χ∈X

max
ω∈Ω

f(χ(ω), ω)︸ ︷︷ ︸
R(fχ)

(2.8)

and the implication (2.3) becomes

χ̄(·) ∈ arg min
x∈X

f(x, ·)⇒ χ̄ ∈ arg min
χ∈X

{
max
ω∈Ω

f(χ(ω), ω)

}
. (2.9)

The converse of the implication (2.9) does not need to hold here. Similar conclusion follows
in the setting of case (ℵ2) with Z = L∞(Ω,F , P ) and R(Z) := ess supω∈Ω Z(ω). �

Recall that in the setting of case (ℵ2) the dual of space Z = Lp(Ω,F , P ), p ∈ [1,∞), is
the space Z∗ = Lq(Ω,F , P ), q ∈ (1,∞], 1/p + 1/q = 1. If functional R : Z → R is convex
continuous, then its subdifferential ∂R(Z) ⊂ Z∗ is nonempty for every Z ∈ Z. The space
L∞(Ω,F , P ) is paired with L1(Ω,F , P ). For convex functional R we have the following
characterization of monotonicity (cf., [4]).

Proposition 2.3 In the setting of case (ℵ2), a convex continuous functional R : Z → R is
monotone iff for every Z ∈ Z and γ ∈ ∂R(Z) it follows that γ � 0. Moreover, R is strictly
monotone iff for every Z ∈ Z and γ ∈ ∂R(Z) it follows that γ(ω) > 0 for a.e. ω ∈ Ω.

In the setting of case (ℵ3) the dual of space Z = C(Ω) is the space Z∗ of finite signed
measures with the corresponding scalar product

〈µ, Z〉 =

∫
Ω

Z(ω)dµ(ω), Z ∈ Z, µ ∈ Z∗.

In that case we have the following characterization of monotonicity.

Proposition 2.4 In the setting of case (ℵ3), a convex continuous functional R : Z → R is
monotone iff for any Z ∈ Z and µ ∈ ∂R(Z) it follows that the measure µ is nonnegative,
i.e., µ(A) ≥ 0 for every A ∈ F . Moreover, R is strictly monotone iff for every µ ∈ ∂R(Z)
it follows that µ(A) > 0 for every open set A ⊂ Ω.
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Proof. Consider the conjugate of R,

R∗(ζ) = sup
Z∈Z
〈ζ, Z〉 − R(Z), ζ ∈ Z∗,

and its domain dom(R∗) = {ζ ∈ Z∗ : R∗(ζ) < ∞}. We have that R is monotone iff
every ζ ∈ dom(R∗) is nonnegative (cf., [3, Theorem 6.5]). Since R is convex continuous its
subdifferential ∂R(Z) is nonempty for all Z ∈ Z and

∂R(Z) = arg max
ζ∈Rm
{〈ζ, Z〉 − R∗(ζ)},

and hence ∂R(Z) ⊂ dom(R∗). It follows that if R is monotone, then every µ ∈ ∂R(Z) is
nonnegative.

Consider a subgradient µ ∈ ∂R(Z). Then for any Z,Z ′ ∈ Z,

R(Z ′) ≥ R(Z) + 〈µ, Z ′ − Z〉. (2.10)

It follows that if Z ′ � Z and µ is nonnegative, then 〈µ, Z ′−Z〉 ≥ 0, and henceR(Z ′) ≥ R(Z).
Moreover, if Z 6= Z ′, then since Z,Z ′ : Ω→ R are continuous, there exist an open set A ⊂ Ω
and ε > 0 such that Z ′(ω) ≥ Z(ω) + ε for all ω ∈ A. Hence if µ(A) > 0, then the strict
inequality R(Z ′) > R(Z) follows.

Conversely suppose that R is strictly monotone. We argue by a contradiction. Suppose
that there is a nonnegative measure µ ∈ ∂R(Z) and open set A ⊂ Ω such that µ(A) = 0.
Let Z̄ ∈ Z be such that Z̄(ω) > 0 for all ω ∈ A and Z̄(ω) = 0 for all ω ∈ Ω \ A. Consider
Z ′ := Z − Z̄. We have by (2.10) and since 〈µ, Z ′ − Z〉 = −〈µ, Z̄〉 = 0, that R(Z ′) ≥ R(Z).
On the other hand, Z � Z ′ and hence R(Z) ≥ R(Z ′). It follows that R(Z ′) = R(Z). Since
Z ′ 6= Z this contradicts strict monotonicity of R. This competes the proof.

Example 3 In the setting of case (ℵ3), let P be the set of probability measures on the
sample space (Ω,F) and consider a set M ⊂ P defined by the moment constraints

M := {µ ∈ P : 〈µ, ψi〉 = bi, i = 1, ..., q} ,

where ψi : Ω→ R, i = 1, ..., q, are measurable functions. Suppose that the set M is nonempty
and define functional

R(Z) := sup
µ∈M
〈µ, Z〉. (2.11)

Note that for any µ ∈ P and Z ∈ Z it follows that 〈µ, Z〉 ≤ ‖Z‖, and hence the functional
R is finite valued. By Richter-Rogosinski Theorem the maximum in the right hand side of
(2.11) is attained at a probability measure supported on a finite set of no more than q + 1
points. Since ∂R(Z) = arg maxµ∈M〈µ, Z〉, the functional R has a subgradient µ ∈ ∂R(Z)
supported on a finite set of no more than q+1 points. It follows by Proposition 2.4 that R is
monotone, but is not strictly monotone if the set Ω has more than q+ 1 points, in particular
if the set Ω is not finite. �
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3 Dynamic equations

3.1 Two-stage problems

Consider the following two stage stochastic programming problem

min
x∈X

{
f(x) := R(Fx)

}
, (3.1)

where Fx(ω) = F (x, ω) is the optimal value of the second stage problem

min
y∈G(x,ω)

g(x, y, ω), (3.2)

with X ⊂ Rn, g : Rn×Rk×Ω→ R and G : Rn×Ω ⇒ Rk being a multifunction. We assume
that Fx ∈ Z for all x ∈ X, and hence R(Fx) is well defined. In particular this implies that
G(x, ·) is nonempty for all x ∈ X, i.e., that the problem has relatively complete recourse. For
a thorough discussion of measurability of the optimal value function F (x, ω) we can refer to
[1, chapter 14(D)].

Together with (3.1) consider the following formulation

min
x∈X, η(·)∈G(x,·)

R[g(x, η(ω), ω)]. (3.3)

We can write Fx in the form
F (x, ω) = inf

y∈Rk
ḡ(x, y, ω), (3.4)

where

ḡ(x, y, ω) :=

{
g(x, y, ω), if y ∈ G(x, ω),

+∞, otherwise.

Suppose that R is monotone and either the corresponding assumptions (i) or (ii) of Propo-
sition 2.1 hold. Then

R(Fx) = inf
η(·)∈G(x,·)

R[g(x, η(ω), ω)], x ∈ X, (3.5)

and hence the optimal values of problems (3.1) and (3.3) are equal to each other. Also it
follows by (2.3) that if x̄ is an optimal solution of the first stage problem (3.1) and

η̄(ω) ∈ arg min
y∈G(x̄,ω)

g(x̄, y, ω), ω ∈ Ω, (3.6)

then (x̄, η̄(·)) is an optimal solution of problem (3.3). Moreover, if R is strictly monotone,
then by (2.4) we have that (x̄, η̄(·)) is an optimal solution of (3.3) iff x̄ is a solution of the
first stage problem (3.1) and condition (3.6) holds.

Remark 3.1 Without strict monotonicity it could happen that (3.3) has an optimal solu-
tion (x̄, η̄(·)) such that η̄ does not satisfy (3.6). Such solution is not time consistent in the
sense that η̄ is not optimal for the second stage problem (3.2) conditional on x = x̄ (cf., [4]).
We demonstrate this in Example 4 below.
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Example 4 Consider the setting of case (ℵ3) with Ω being a compact subset of R such that
sup(Ω) = 1. As in Example 2 define R(Z) := maxω∈Ω Z(ω). Recall that this functional is
monotone and continuous, but is not strictly monotone. Suppose further that X := R+ and

F (x, ω) = inf{y ∈ R : y ≥ x+ ω}.

That is, F (x, ω) = x + ω and R(Fx) = maxω∈Ω(x + ω) = x + 1. Hence problem (3.1) has
optimal value 1 and optimal solution x̄ = 0. Here the corresponding minimum is attained
and

R(Fx) = inf
η∈C(Ω)

{
max
ω∈Ω

η(ω) : η(ω) ≥ x+ ω

}
,

and the optimal values of the respective problems (3.1) and (3.3) are equal to each other.
The set of optimal solutions of problem (3.3) is given by x̄ = 0 and any continuous function
η̂ : Ω → R such that η̂(ω) ≥ ω for all ω ∈ Ω and maxω∈Ω η̂(ω) = 1. On the other hand, for
x̄ = 0 the solution η̄(·) given by (3.6), is the unique function η̄(ω) = ω, ω ∈ Ω.

This can happen even if the set Ω is finite. For example, suppose that Ω = {ω1, ω2} with
ω1 = 0, ω2 = 1. We have that x̄ = 0, ȳ1 = 1/2, ȳ2 = 1 is an optimal solution of the problem

min
x,y1,y2

x+ max{y1, y2} s.t. x ≥ 0, y1 ≥ x, y2 ≥ x+ 1. (3.7)

However, ȳ1 is not optimal for the second stage problem min
y≥x+ω

y, for x = x̄ and ω = ω1. That

is, problem (3.7) possesses optimal solution (x̄, ȳ1, ȳ2) which does not satisfy the dynamic
equations and is not time consistent. �

3.2 Multistage problems

Let us discuss now risk averse multistage stochastic programs. We follow here the notation
of [3, Section 6.8.1], where more detailed descriptions and results can be found. Consider
a sequence of nested sigma algebras F1 ⊂ · · · ⊂ FT with FT = F and F1 = {∅,Ω} being
trivial. Let Zt be a linear space of Ft-measurable functions Z : Ω→ R and ρt : Zt → Zt−1,
t = 2, ..., T . Since F1 is trivial, the space Z1 can be identified with R. For mappings ρt the
concepts of monotonicity and strict monotonicity are defined in the same way as for real
valued functionals considered in Section 2. We assume that mappings ρt, t = 2, ..., T , satisfy
the following condition of translation equivariance:

ρt(Z + Y ) = ρ(Z) + Y, Z ∈ Zt, Y ∈ Zt−1. (3.8)

Consider the composite function ρ̄ := ρ2 ◦ · · · ◦ ρT : ZT → R. By translation equivariance we
have that for Zt ∈ Zt, t = 1, ..., T ,

ρ̄(Z1 + ...+ ZT ) = Z1 + ρ2

[
Z2 + ...+ ρT−1

[
ZT−1 + ρT [ZT ]

]]
. (3.9)

Consider now the following multistage problem

min
π∈Π

ρ̄ [f1(x1) + f2(x2(ω), ω) + ...+ fT (xT (ω), ω)] . (3.10)
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The minimization in (3.10) is performed over the set Π of policies π = (x1, x2(ω), ..., xT (ω))
adapted to filtration F = (F1, ...,FT ) and satisfying the feasibility constraints

x1 ∈ X1, xt(·) ∈ Xt(xt−1(·), ·), t = 2, ..., T.

With problem (3.10) are associated dynamic programming equations

Qt(xt−1, ω) = inf
xt∈Xt(xt−1,ω)

{
ft(xt, ω) + ρt+1 [Qt+1(xt, ω)]

}
, (3.11)

t = 2, ..., T , with the term ρT+1 [Qt+1(xt, ω)] at the last stage omitted, and the first stage
problem

min
x1∈X1

f1(x1) + ρ2[Q2(x1)]. (3.12)

For T = 2 problem (3.10) takes the form1

min
x1∈X1,x2(·)∈X2(x1,·)

ρ2 [f1(x1) + f2(x2(ω), ω)] . (3.13)

This problem is of the form (3.3) with g(x, y, ω) = f1(x) + f2(y, ω). Equations (3.1) and
(3.2) can be considered as the dynamic programming equations for this two stage problem.

For the sake of simplicity, in order to avoid delicate questions of measurability etc, we
discuss below the case of finite set Ω with sigma algebra F of all its subsets, and spaces
Zt consisting of all Ft-measurable functions Z : Ω → R. In that case the filtration F can
be represented by a finite scenario tree (cf., [3, Section 6.8.1]). We make the following
assumption.

(A) The cost-to-go functions Qt(xt−1, ·), t = 2, ..., T , are finite valued for all xt−1 satisfying
the feasibility constraints, so that the corresponding functionals in (3.11) are well
defined.

Proposition 3.1 Suppose that assumption (A) is fulfilled, the mappings ρt, t = 2, ..., T , are
monotone, continuous and translation equivariant. Then: (i) the optimal values of problems
(3.10) and (3.12) are equal to each other, (ii) if

x̄t(·) ∈ arg min
xt∈Xt(x̄t−1,·)

{
ft(xt, ·) + ρt+1 [Qt+1(xt, ·)]

}
, t = 1, ..., T, (3.14)

then π̄ = (x̄1, ..., x̄T (ω)) is an optimal solution of problem (3.10), (iii) if moreover mappings
ρt, t = 2, ..., T , are strictly monotone and π̄ = (x̄1, ..., x̄T (ω)) is an optimal solution of
problem (3.10), then condition (3.14) follows.

1By definition X1(x0, ·) ≡ X1.
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Proof. For fixed x1, ..., xT−1(·) consider minimization in (3.10) with respect to the last
component xT (·) :

min
xT (·)

f1(x1) + ρ2

[
f2(x2(ω), ω) + · · ·+ ρT−1

[
fT−1(xT−1(ω), ω) + ρT [fT (xT (ω), ω)

]]
s.t. xT (·) ∈ XT (xT−1(·), ·).

(3.15)

Consider the problem

min
xT (·)

ρT [fT (xT (ω), ω)] s.t. xT (·) ∈ XT (xT−1(·), ·), (3.16)

conditional on FT−1. By “conditional on FT−1” we mean that we consider (3.16) pointwise
for elementary events of the sigma algebra FT−1. That is, let Ω be partitioned into union of
disjoint sets Ai, i = 1, ..., r, such that Z : Ω→ R is FT−1-measurable iff Z(ω) is constant on
each Ai. Conditional on ω ∈ Ai we can view ρT : ZT → ZT−1 as real valued. We can apply
now Proposition 2.1 to conclude that conditional on ω ∈ Ai, i = 1, ..., r, the optimal value of
problem (3.16) is equal to ρT [QT (xT−1(ω), ω)]. Note that since xT−1(·) is FT−1-measurable,
it is constant on every set Ai. It follows that the optimal value of problem (3.10) is equal to
the optimal value of

min f1(x1) + ρ2

[
f2(x2(ω), ω) + ...+ ρT−1

[
fT−1(xT−1(ω), ω) + ρT [QT (xT−1(ω), ω)]

]]
, (3.17)

where the minimization is performed over x1 ∈ X1, ..., xT−1(·) ∈ XT−1(xT−2(·), ·). We can
apply then the same interchange procedure to fT−1(xT−1(ω), ω) + ρT [QT (xT−1(ω), ω) with
respect to ρT−1 and xT−1(ω), and so on going backward in time. Eventually we obtain that
the optimal value of problem (3.10) is equal to the optimal value of the first stage problem
(3.12).

Also by (2.3) we can conclude that if (3.14) holds, then π̄ = (x̄1, ..., x̄T (ω)) is an optimal
solution of problem (3.10). If moreover mappings ρt, t = 2, ..., T , are strictly monotone, then
by (2.4) the converse implication holds as well. This completes the proof.

Remark 3.2 Without the strict monotonicity condition the converse implication (iii) of the
above proposition does not necessarily holds if problem (3.10) has more than one optimal
solution. This was already demonstrated in Example 4 for a two stage problem (see also
[4] for such simple example). That is, in order to ensure that an optimal policy satisfies
the dynamic programming equations, the strict monotonicity condition is essential. In the
setting of case (ℵ2) the conditional expectation mappings ρt := E|Ft are strictly monotone.
Therefore in the risk neutral case a policy π is optimal for problem (3.10), with ρ̄ = E, iff it
satisfies the respective dynamic programming equations.
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