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Abstract In this paper we consider covariance structural models with which we
associate semidefinite programming problems. We discuss statistical properties of esti-
mates of the respective optimal value and optimal solutions when the ‘true’ covariance
matrix is estimated by its sample counterpart. The analysis is based on perturbation
theory of semidefinite programming. As an example we consider asymptotics of the
so-called minimum trace factor analysis. We also discuss the minimum rank matrix
completion problem and its SDP counterparts.
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1 Introduction

Consider p x p symmetric matrices Xy and A; i = 1,...,n, and the following
Semidefinite Programming (SDP) problem
mIi[Q ¢ " x subjectto X + A(x) > 0, (1.1)
xeR”
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where A : R" — S” is the linear mapping A(x) := Y /_, x;A;. By S” we denote
the linear space of p x p symmetric matrices and A > 0 means that matrix A € S
is positive semidefinite. We view X € S? as a covariance matrix of a p x 1 random
vector Y and the mapping A4 : R” — SP? as a (linear) covariance structural model.
Classical example is the Factor Analysis model where the (population) covariance
matrix Xy is decomposed into (Xy — ¥) + ¥ with ¥ being a diagonal matrix and
matrix Yy — ¥ > 0 having rank r < p. (Diagonal elements of matrix ¥ represent
variances of the respective error terms and should be nonnegative, for the sake of
simplicity we do not consider these constraints; if the population values of the diagonal
elements of ¥ are positive, then this does not change the asymptotic analysis.) In that

case A(x) can be defined as the respective diagonal matrix X = diag(xy, ..., Xp),ie.,
A; = diag(0,...,0,1,0,...,0),i =1, ..., p,is diagonal matrix with zero diagonal
elements except i-th diagonal element equal one. If further ¢ := (1, ..., 1) is vector

of ones, denoted 1, then (1.1) becomes the so-called minimum trace factor analysis
(MTFA) problem
min 17 x subject to Xy + X > 0. (1.2)
xe

In that problem n = p. Originally the MTFA problem was motivated by computation
of a lower bound to a reliability coefficient used in Factor Analysis (cf., Bentler [3]).

From a statistical point of view the population covariance matrix X is not known
and is estimated by the sample covariance matrix

(. _ -
s=ﬁ;m—mm -7

based on a sample Y1, ..., Yy, of size N, of the random vector Y. Consequently the
‘true’ problem (1.1) is approximated by the respective sample based problem

min ¢ x subject to S 4+ A(x) > 0. (1.3)

xeRn

Of interest are statistical properties of the optimal value Py and an optimal solution
Xy of problem (1.3) considered as estimates of their counterparts of the true problem
(1.1). To a certain extent statistical properties of the MTFA were already investigated
in [14,21].

In this paper we present statistical inference of such SDP problems from a general
point of view. The basic tool in our analysis will be the modern theory of sensitivity
analysis of parameterized SDP problems (cf., Bonnans and Shapiro [4, Section 5.3]).
In the next section we give a summary of relevant results from that theory. Section 3
is devoted to statistical inference of the SDP problem (1.3). In Sect. 4 we apply
general results to the MTFA problem. Although some results of that type are already
available and scattered in various publications, we give a unified statistical inference
of the (linear) SDP problems. In Sect. 5 we discuss the so-called matrix completion
problem, this could have an independent interest. Finally in Sect. 6 we give concluding
remarks.
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Statistical inference of semidefinite programming

Such statistical inference could be useful in several ways. One is a qualitative type
characterization of the considered estimators, e.g., under what conditions one could
expect these estimators to have approximately normal distributions, how biased these
estimators could be etc. Another standard application is construction of confidence
intervals and hence evaluation of approximate errors of these estimators. It is also
possible to use this for evaluation of critical regions in respective hypotheses testing.

We use the following notation and terminology throughout the paper. By dim (V)
we denote dimension of a finite dimensional vector (linear) space V. It is said that a
property holds for almost every (a.e.) v € V, or almost surely, if it holds forall v € V
except on a set of Lebesgue measure zero. By [, we denote the m x m identity matrix.
By S_’; and Si 4 we denote cones of symmetric positive semidefinite and positive
definite p x p matrices, respectively. Trace tr(A) of square matrix A is the sum of its
diagonal elements. For A, B € S? their scalar product is defined as A ¢ B = tr(AB).
By A ® B we denote Kronecker product of p x ¢ matrix A = [a;;] and r X s matrix
B =[b;;]. Thatis, A ® B is pr x gs matrix

ay B ---ayyB
A®B = a1 B - axyB

ap1B - apy B

For a p x g matrix A we denote by vec(A) the pg x 1 vector obtained by stacking
columns of matrix A. We use notation 0 = vec(X') and s = vec(S) for vector
counterparts of matrices X' and S, etc. We use the following matrix identity for matrices
A, B, C of appropriate order

(vec(A)) T (B ® C)(vec(A)) = tr(BAT CA). (1.4)

In particular, (vec(A)) vec(A) = tr(ATA). By AT we denote the Moore-Penrose
pseudoinverse of matrix A. In particular if A € S” is matrix of rank » and A =
NDN' is its singular value (spectral) decomposition, i.e., N'N = I. and D is
r x r diagonal matrix with diagonal entries given by nonzero eigenvalues of A, then
AT = ND=INT. For two matrices A = [a;j] and B = [b;;] of the same order we
denote by A o B = [a;;b;;] their term by term product (Hadamard product).

Directional derivative of a mapping (function) f : R* — R™ at a point x € R” in
direction & € R” is defined as

L &) — ()
f'(x,h) = lt%l ; .

If this limit exists for all 2 € R”, then it is said that f is directionally differentiable
at x. Furthermore it is said that f is directionally differentiable at x in the sense of
Fréchet if

fG+h) = fO) = f(x.h)+rh),
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where 7 (h) = o(||h]), i.e., limp_o r(h) /||l = O.

2 Perturbation analysis of SDP problems
In this section we discuss some basic results of sensitivity analysis of problem

min ¢ x subject to ¥ + A(x) > 0, 2.1

xeR”

viewed as an SDP problem parameterized by matrix X' € S”. In particular we inves-
tigate differentiability properties of the optimal value ¥ (X') and an optimal solution
Xx(X) of problem (2.1) considered as functions of matrix X € S”. We also use nota-
tion o := vec(X'), and ¥ (o) and x (o) for the respective optimal value and optimal
solution.

The Lagrangian of problem (2.1) is

Lix,A) :=c'x—Ae(X + A®x)), (x,A) e R" x S,
and the (Lagrangian) dual of problem (2.1) is the problem

max min L(x, A),
AGS]i xeR”

which can be written as

max AeX subjectto AeA; =c¢;, i=1,...,n. 2.2)
AeSh

We refer to problems (2.1) and (2.2) as the primal (P) and dual (D) problems, respec-
tively.

It is said that Slater condition holds for the primal problem if there exists x* € R”
such that X + A(x*) € SIJ’FJF, ie., X 4+ A(x*) belongs to the interior of cone Sfi. If
Slater condition holds, then optimal values of problems (P) and (D) are equal to each
other. Assuming that the optimal value of problem (P) is finite, Slater condition holds
iff the set of optimal solutions of the dual problem is nonempty and bounded.

For a discussion of the following basic results we can refer to [4, section 5.3]. The
tangent cone to Sfi at matrix A € Sf_ of rank r = rank(A) is given by

Ty (A) = {H €SP ETHE = 0} (2.3)

where E isa p x (p —r) matrix of rank p — r such that AE = 0. The lineality space
of cone TSi is

1in(TS¢ (A)) ={H €SP : ETHE =0}. (2.4)

Note that the matrix E is defined up to a transformation E +— ET, where T can be
any nonsingular (p — r) x (p — r) matrix, and that the right hand sides of (2.3) and
(2.4) do not depend on a particular choice of such matrix E.
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Statistical inference of semidefinite programming

Matrices A € S? of rank(A) = r < p form a smooth manifold, denoted W,, of
dimension

dimW,) =p(p+D/2=(p—=r)p—r+1)/2=pr—rr=D/2  (2.5)

(e.g., Helmke and Moore [11, Chapter 5, Proposition 1.1]). It could be noted that for
AeW,.nSsk,
1in(TS¢(A)) = T, (A), (2.6)

where Ty, (A) is the tangent space of the manifold W, at A € W,

Definition 1 It is said that x* € R” is a nondegenerate point of mapping x >
Y+ Ax) iffor T := ¥ + A(x™) and r := rank(7") it follows that

AMR") + Ty, (Y) =SP, 2.7)

otherwise point x* is said to be degenerate.

That is, x* is nondegenerate if mapping x — X + A(x) intersects the smooth
manifold W, transversally at X + A(x*) € W,. Note that in this definition of non-
degeneracy we do not require for matrix X + A(x*) to be positive semidefinite. If
> + A(x*) = 0, then by (2.6) condition (2.7) becomes

AMR™) + lin(Tsi(T)) = SP. (2.8)

Transversality concept is borrowed from differential geometry. For a detail study
of transversality concept and relevant references we can refer, e.g., to Golubitsky and
Guillemin [10]. In eigenvalue and semidefinite programming the above definition of
nondegeneracy was suggested in Shapiro and Fan [20] and Shapiro [17]. For opti-
mization problems subject to polyhedral cone constraints an analogue of equation
(2.8) was introduced in Robinson [12] as definition of nondegeneracy. For general
cone constrained problems definition (2.8) was used in [4, section 4.6.1] where it was
also related to the concept of cone reducibility. A definition of nondegeneracy in SDP,
formulated in an equivalent algebraic form, was used in Alizadeh et al. [1].

If the primal problem has a nondegenerate optimal solution, then the set of the opti-
mal solutions of the dual problem is a singleton. Also there is the following algebraic
characterization of nondegeneracy (cf., [4, Proposition 5.71],[17, Proposition 6]).

Proposition 1 For ¥ + A(x) € Si suppose that rank(X + A(x)) = r and let
el ..., ep_r be a basis of the null space of the matrix ¥ + A(x). Then x is a non-
degenerate point of mapping X + A(-) iff vectors v;j = (elTAlej, e elTAnej)T,
1 <i<j<p-—r,arelinearly independent.

Transversality is a generic property in the following sense. Those X such that
the corresponding mapping X + .A(-) has a degenerate point form a set of Lebesgue
measure zero in the space S”. In other words for almostevery X' € S” the mapping X'+
A(-) does not possess degenerate points. Since matrices A; are linearly independent
we have that dim(A(R")) = n. Together with (2.5) this implies the following generic
result (cf., [17, p.309]).
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Proposition 2 For almost every X € SP it follows that
(p—r)(p—re+1))/2<n, Vx e R", 2.9)

where ry := rank(X + A(x)).

This means that for almost every X € S? the rank r, of X + A(x) cannot be

reduced below the bound
- 2p+1—/8n+1
p— 2 .

Ty (2.10)
Another way of saying this is that if matrix ¥ € S? is random having continuous
distribution, then the reduced rank inequality (2.10) holds with probability one (w.p.1).
For recent studies of genericity in conic programming we can refer to Diir et al. [8]
and references therein.

Let us discuss now differentiability properties of the optimal value function ¥ (-)
and an optimal solution x(-). By Sol(P) we denote the set of optimal solutions of
the reference (true) problem (1.1), and by Sol(D) the set of optimal solutions of its
dual problem (2.2) for X' = X. By the classical convex analysis the function 9 (-) is
convex and we have the following result (e.g., [18, Theorem 4.1.9]).

Proposition 3 Suppose that Slater condition holds for the reference problem (1.1)
and its optimal value ¥ (X)) is finite. Then the set Sol(D) is nonempty, convex and

compact and the optimal value function ¥ (-) is continuous and Fréchet directionally
differentiable at Xy with

®'(Xo,H) = sup AeH. (2.11)
AeSol(D)

We assume in the remainder of this section that Slater condition holds for the

reference problem. By the first order optimality conditions we have that for x* €
Sol(P) and A € Sol(D) the following complementarity condition follows

(Zo + A(x*) e A = 0. (2.12)

Note that since Xy + A(x*) > 0 and A > 0, this complementarity condition is
equivalent to (X + A(x*)) A = 0 and hence rank(A) < p — r, where

r = rank(Xy + A(x™)). (2.13)
It is said that the strict complementarity condition holds at A € Sol(D) if rank(A) =

p—r.
The critical cone at x* € Sol(P) is defined as

C(x*) = [h ER": A(h) € Ty (1), ¢Th = o} ,
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Statistical inference of semidefinite programming

where 7" := Xy + A(x*). Because of (2.3) and since Ao A; =c¢;,i =1,...,n, for
any A € Sol(D), it can be written as

Cr*) = {h eR":ETAME =0, Ao A(h) = 0} ’

where r = rank(Y"), E isa p x (p — r) matrix of rank p — r such that Y E = 0.
Suppose further that the strict complementarity condition holds at some A €
Sol(D). Then A > Ohasrank p —r and hence A = EET for some p X (p —r) matrix

E =[ey,...,ep—] of rank p — r. Consequently the critical cone can be written in
the form
n
C(x*) = {heR”:ZhiETAiEzo} (2.14)
i=1
={heR”:v5h=0,15i5j5p—r}, (2.15)
where
vij = (e;rAlej, R e;rAnej)T, I1<i<j<p-r (2.16)

Note that replacing matrix E in (2.14) with matrix E T, for any nonsingular (p —r) x
(p — r) matrix T, does not change the corresponding equations. Hence matrix E in
(2.14) can be any p x (p — r) matrix of rank p — r such that (Xy + A(x*))E = 0.

It follows that under the assumption of strict complementarity the critical cone
C(x™) is a linear space and

dim(Cx*) >n—(p—r)(p—r+1)/2. 2.17)

Moreover, if x* is a nondegenerate point of X + A(-), then vectors v;j, 1 <i < j <
p — r, are linearly independent (see Proposition 1), and hence by (2.15) the equality
in (2.17) holds.
Now consider points x* € Sol(P), A € Sol(D) and n x n matrix H = H(x*, A)
with elements
[H];j = tr [AAiTTA,], ii=1,....n, (2.18)

where 7 := Xy + A(x™). By matrix identity (1.4) this matrix can be written in the
form H = A'[A ® Y T]A, where A := [vec(Ay), ..., vec(Ay)] is p2 X 1 matrix.
Consider the following second order conditions

h'Hh >0, Vh e C(x*)\{0}. (2.19)

These conditions imply the so-called second order growth condition at the point x*,
and if moreover Sol(D) = {A} is a singleton are necessary and sufficient for the
second order growth condition (cf., [18, Theorem 4.1.8]). In particular conditions
(2.19) imply that x* is the unique optimal solution of the reference problem. Assuming
strict complementarity the following converse statement holds (cf., Scheinberg [13,
Theorem 4.2.1]).

@ Springer



A. Shapiro

Proposition 4 Suppose that Sol(P) = {x™*} is a singleton and the strict complemen-
tarity condition holds at some A € Sol(D). Then the second order conditions (2.19)
follow.

Proof Let T := Yo 4+ A(x*), r := rank(Y) and T = NDN be the spectral
decomposition of matrix 7", and hence T = ND~INT. Because of the strict com-
plementarity we have that A = FF T for some p x (p — r) matrix F of rank p — r
such that N7 F = 0. Then

W Hh = Z hihj[H]i; = tr [A A(h)T*A(h)] — [MD_IMT],

i,j=1

where M = Y7, h; FTA;N. Therefore (2.19) holds iff M # 0 for any h €
C(x*) \ {0}. Now for h € C(x*) and K := [F, N] we have by (2.14) that
M = 0iff Y77, h;FTA;K = 0. Note that matrix K is nonsingular, and hence
I hiFTA;K =0iff !, h; FTA; = 0. Since matrices A, ..., A, are linearly
independent, we obtain that (2.19) holds iff F TA(h) =0(or equivalently A(h) A = 0)
implies that 4 = 0 for any h € C(x*).

We argue now by a contradiction. Suppose that there is 7 # 0 such that A(k) A = 0.
Then point ¥ := x* 4 ¢/ is also an optimal solution of the reference problem (1.1) for
some ¢t > 0. Indeed

(Zo+AGNA = (Zg+ Ax™)A =0.

Because of the strict complementarity it follows that rank (X 4 A(x)) = rank(Xy +
A(x*)) for ¢t > 0 small enough. Let us note that if A € S? is a positive semidefinite
matrix of rank r, then any matrix B € S? of rank r in a sufficiently small neighborhood
of A is also positive semidefinite. It follow that Xy +.4(x) > Ofor¢ > 0 small enough.
By the first order optimality conditions this implies that X := x*+h € Sol(P), which
contradicts the assumption of uniqueness of the optimal solution x*. O

Let us discuss now differentiability properties of an optimal solution x (o) of prob-
lem (2.1) considered as a function of o = vec(X'). Suppose that Sol(P) = {x*} and
that x* is a nondegenerate point of Xy + .A(-), and hence Sol(D) = {A} is a single-
ton. Suppose also that the strict complementarity condition holds. Let " = NDN "
be the spectral decomposition of matrix T = Xy + A(x*), and A = EOFE T be the
spectral decomposition of matrix A. Recall that because of the strict complementarity,
rank(A) = p —r. Hence E isa p x (p — r) matrix of rank p — r with orthonormal
columns, i.e., ETE = Ip_r, and such that NTE =0.

Consider the following optimization problem!

L As it was pointed before, the constraints in (2.20) are invariant with respect to replacing matrix E by
matrix ET for an arbitrary nonsingular (p —r) x (p — r) matrix T. Therefore, unless stated otherwise, for
the sake of computational convenience we assume that matrix E has orthonormal columns.
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min i [A(A(h) + AT Am) + A)]
heRn

st. ETAWE+ETAE =0 (2.20)

depending on A € S?. This is a problem of minimization of quadratic function subject
to linear constraints

T T
vijh—i—e,-

Aej=0, 1<i<j=<p-r, (2.21)
with vectors v;; defined in (2.16). By using matrix identity (1.4) the objective function
of problem (2.20) can be written in the following form

tr [A(A(h) + MY Am) + A)] = [vec(A(h) + M)]T[A ® T F[vec(Ah) + A)]
=hTATAQYNAR+2hTAT[AQ Y15
—
H
+8T[A® T8, (2.22)

where A := [vec(A1), ..., vec(A,)]is p? x n matrix and § := vec(A).

Recall that since x™* is assumed to be nondegenerate, vectors v;;, 1 <i < j < p—r,
are linearly independent. Hence because of (2.19) problem (2.20) has a unique optimal
solution 4 (8), which is a linear function of § = vec(A), and the optimal value of (2.20)
is a quadratic function of 8. That is 7(8) = J '8, where J is the corresponding p? x n
matrix, and the optimal value of problem (2.20) can be written as 8 ' Q8 with Q being
p? x p? positive semidefinite matrix. By Proposition 4 we have the following result
which is a particular case of a general result [4, Theorem 5.95 and eq. (5.238)].

Theorem 1 Suppose that Sol(P) = {x*} is a singleton, and that x* is a nondegener-
ate point of Xy + A(-) and the strict complementarity condition holds. Then x(-) is
differentiable at oy = vec(Xy) and

i(0) =x(00) + J (0 — 00) + o([lo — ool), (2.23)
where J 18 is the optimal solution of problem (2.20) with A being the optimal solution
of the dual problem and E being a matrix whose columns are orthonormal and generate

the null space of the matrix Xy + A(x™).
Moreover

9(0) = 9(00) + A e (X — %) + (0 —00) ' Q(06 —00) + oo —aol|*), (2.24)

where 87 Q8 is the optimal value of problem (2.20).

That is, J is the Jacobian matrix of x (o) and 2Q is the Hessian matrix of (o) at
o = 0).
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Remark 1 In particular, if n = (p —r)(p — r + 1)/2, then under the assumptions of
Theorem 1, dim(C (x*)) = 0, i.e., C(x™) = {0}. In that case the constraints of problem
(2.20),

ETAMWE + ETAE =0, (2.25)

define unique feasible point /(8) which is the optimal solution of problem (2.20). The
constraints (2.25) can be written as the system of linear equations (2.21). Consider
matrix V with columns

vij = (elTAlej, ...,e;rAnej)T, 1<i<j<p-r

Sincen = (p —r)(p —r + 1)/2, matrix V an n X n matrix and because of the
nondegeneracy assumption is nonsingular (see Proposition 1). Then the system (2.21)
can be written as V T h + U (8) = 0, where U (8) is n x 1 vector valued linear function
of § = vec(A) with respective elements el.TAe = 8 Tvec(e j el.T). Hence in that case

W) =—-wvHTues). (2.26)

3 Statistical inference

In this section we assume that matrix X is estimated by the sample covariance matrix
S, based on a sample of size N. The optimal value Dy = 9(S) andan optimal solution
Xy = x(S) of the sample counterpart of the ‘true’ (population) problem (1.1) are
viewed as estimates of their population counterparts ©* and x*. In this section we
investigate statistical properties of the estimates Dy and Ry.

e We assume that the population distribution has finite fourth order moments.

It follows then by the Central Limit Theorem that N '/? (s —o() converges in distribution
to multivariate normal with mean vector zero and p? x p? covariance matrix I
We write this as N'/2(s — o9) = N(0, I'), with “ =" denoting convergence in
distribution. Note that p> x 1 vector s = vec(S) has only p(p + 1)/2 nonduplicated
elements, and hence rank(I") < p(p + 1)/2.

In particular if the sample is drawn from a normally distributed population, then
the element in row ij and column &/ of matrix I” is

[I')ij ke = 0ik0j¢ + 0i¢0jk,

where 0;; = [Xp];;. This can be written in the following matrix form (cf., Browne

(5D
I'=2M,(Xy ® Xp), (3.1

where M, is p2 X p2 symmetric matrix with [M];j u = %((Sikéﬂ + 8i18 k), where
8ik = lifi =k, and §;x = 0ifi # k. This matrix has the following properties: M% =
My, rank(Mp) = p(p+1)/2, Mp(Xo @ Xo) = (X0 ® Xo)M), and M (vec(A)) =
vec(A) for any A € SP. It follows that in case of normally distributed population,
rank(I") = p(p + 1)/2.
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Statistical inference of semidefinite programming

We use notation 0, (-) and O, (-) for statistical analogues of o(-) and O(-). That is,
for two sequences X and Y of random variables, X; = 0, (Y;) means that X /Yy
tends in probability to zero, and Xz = O,(Y;) means that X; /Yy is bounded in
probability. In particular X = o0, (1) means that X; converges in probability to zero.
This notation is standard in Statistics literature.

Theorem 2 Suppose that the optimal value 9* = (X)) is finite and Slater condition
for the true problem holds. Then

Oy —9* = sup Ae(S— o) +o0,(N~'/?), (3.2)
AeSol(D)
N2@y —9*) = sup ATZ, (3.3)
LeSol(D)

where Z is a random vector having multivariate normal distribution N'(0, I').

Moreover, if Sol(D) = {Ag} is a singleton, then N1/2(1§N — 0%) converges in
distribution to normal with zero mean and variance c* = )\(‘)r I Lo, where Ly =
vec(Ag). In particular, if I' is of the form (3.1), then the asymptotic variance o>
2tr(Xo Ao XoAo).

Proof Because of Slater condition we have that the primal and dual problems have the
same optimal value and the set of optimal solutions of the dual problem is nonempty
and compact. Formula (3.2) follows from (2.11). Indeed by Proposition 3 we have

dy— 0" = sup Ae(S— Zo)+o(ls —ool).
A€eSol(D)

Since N'/?(s — 0¢) converges in distribution, it is bounded in probability. It follows
that ||s — og| = Op(N_l/z). Hence by the standard calculus of 0,(-) and O (-) it
follows that o(||s — oyl|) = 0,(N~'/2), and thus (3.2) follows.

By (3.2) we have that

NGy =0 = sup ATINY2(s —00)] + 0,(1). (3.4)
reSol(D)

By the continuous mapping theorem we have that the first term in the right hand side of
(3.4) converges in distribution to sup, cg.)(p) AT Z. Together with Slutsky’s theorem
this implies (3.3). In particular if Sol(D) = {Ap} is a singleton, then it follows by
(3.3) that

N2y — %) = N(0, 02), (3.5)

where 02 = Ag I'Lo. The above derivations basically is the classical (finite dimen-
sional) Delta Theorem.

Now suppose that matrix I is of the form (3.1). Then since for & = vec(A) we
have that M ,A = A and using matrix identity (1.4) we can write

)»(—)r]—')»() = 2vec(Ag)(Xo ® Xo)vec(Ag) = 2tr[ XgAgXoAg].

This completes the proof. O
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Consider set
Fi={AeSl:AeA=c;,i=1,...,n}

of feasible solutions of the dual problem . Assuming Slater condition we have that
D(S) = supyez AeS. Since S is an unbiased estimate of X, i.e., E[S] = Xy, we
can write

Edy]=E|sup AeS|> supE[AeS] = sup AeXy=0*"
AeF AeF AeF

That is, dy is an upward biased estimate of 9*. Under mild regularity conditions it
follows from the convergence in distribution (3.3) that the expected value of N 1/2 On—
0*) converges to the expected value of sup; cso1(p) L1 Z (see, e.g., [19, Remark 57]).
That is

Edy]—9*=N"2E| sup ATZ|+o(N"?), (3.6)
reSol(D)

where Z ~ N(0, I'). If the dual problem has more than one optimal solution, i.e.,
Sol(D) is not a singleton, then the term E [supkeSOI(D) ATZ] is positive. In that case

the asymptotic bias of Dy is of order O(N~1/2). In case Sol(D) is a singleton, the
asymptotic bias of ¥y typically is of order O(N~!) (see Remark 3 below).

Theorem 3 Suppose that Sol(P) = {x*} is a singleton, and that x* is a nondegenerate
point of £o+A(-) and the strict complementarity condition holds. Then N'/? (% y —x*)
converges in distribution to normal N'(0, J TrJ), where J is the p2 X n matrix such
that J '8 is the optimal solution of problem (2.20).

Proof By (2.23) we have
iy —x* =T (s = 00) +olls — ool
In the same way as in the proof of Theorem 2 we can conclude that N/?(£y — x*)

converges in distribution to J ' Z, where Z ~ N (0, I'"). Since J ' Z ~ N(0, J T I"J)
we obtain that N'/2(xy — x*) = N0, J T I'J). O

Remark 2 In particular suppose thatn = (p —r)(p —r + 1) /2 (see Remark 1). Then
by formula (2.26) we have that N'/2[U (s — 00)] = N(0, £2) and hence J ' I'J =
(v=HTev-l with

[21ij.ke = [vec(eje; )] I'vec(ece] )]. 3.7
If moreover I is of the form (3.1), then by using the matrix identity (1.4) we have

[21;j ke = 2[vec(eje )] (Zo ® Zo)lvec(ere] )] = 2(e] Zoer)(e] Toer).  (3.8)

In particular, if X = 021, for some o > 0, then [2];j k¢ = 20* for (i, j) = (k, 0),
and [£2];j ke = O for (i, j) # (k, £), i.e., in that case £2 = 2041,
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Remark 3 By using (3.6) we can write, under assumptions of Theorem 3, the following
second order expansion of the optimal value

On =0+ Ae(S— Zo)+ (s —00) " Qs — a9) +0,(N7). (3.9)

Here A is the unique optimal solution of the dual of the true problem, § " Q8 is the
optimal value of problem (2.20) and the term o, (N —1) is obtained from the term
o(|lo — opl/?) in expansion (3.6). Since S is an unbiased estimate of Xy, it follows
that E[A e (S — Xp)] = 0. Hence the asymptotic bias of f’N here is defined by the
term (s — 0g) ' Q(s — 0p). Note that for Z ~ N (0, I') the expectation E[ZT QZ] =
tr(Q ). We obtain that under assumptions of Theorem 3 the asymptotic bias of D
is N~ltr(QIN) + o(N~1).

4 Factor analysis

In this section we apply general results of Sect. 3 to the Factor Analysis model and in
particular to the MTFA problem (1.2). We denote by D? the space of p x p diagonal
matrices. The corresponding mapping here is X — X + X from D? into S” (we use
notation x = diag(X) for X € D”). By Proposition 2 we have the following almost
sure lower bound for the reduced rank of covariance matrix (cf., [14]).

Proposition 5 For almost every X € S? it follows that

2p+1—-4/8p+1

rank(X + X) > 3 , VX e D?. 4.1

By Proposition 1 we have that X* € D? is a nondegenerate point of the mapping
X — X+ Xiff vectorse; oej, 1 <i < j < p —r, are linearly independent, where
r:=rank(X¥+X*)ande, ..., e,_, is abasis of the null space of the matrix X' 4 X*.
It follows that if X™* is nondegenerate, then (p — r)(p — r + 1)/2 < p. This leads to
the almost sure bound (4.1).

Consider now the MTFA problem (1.2). It is interesting to note that the MTFA
solution may not coincide with the minimum rank solution even if the minimal rank
is equal to one. In this respect there is the following result (cf., [15, Theorem 3.1]).

Proposition 6 Suppose that ¥ = yy ' + W for some p x 1 nonzero vector y and
¥ € DP, and let X* be the optimal solution of the corresponding MTFA problem.
Then X* = —W iff the following condition holds

il <Y il i=1,....p. (4.2)
J#L

Otherwise, if condition (4.2) is not satisfied, then rank(X + X*) = p — 1.

The Lagrangian dual of problem (1.2) is

max tr(AXy) subject to diag(A) =1, 4.3)
AeSh
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where 1 is p x 1 vector of ones. Optimal value of the primal problem (1.2) is finite
and Slater condition always holds here. Hence the dual problem (4.3) has a nonempty
convex compact set of optimal solutions, denoted Sol(D), and there is no duality gap
between the primal and dual problems. The set of optimal solutions of the primal
problem (1.2) is a singleton, i.e., Sol(P) = {X*} (cf., Ten Berge et al. [22]). Indeed,
let X* and X be optimal solutions of the MTFA problem (1.2) and A be an optimal
solution of the dual problem. Then by the first order optimality conditions we have
that (X* — X)A = 0. Since diag(A) = 1, it follows that X* — X = 0.

Consider now the estimates 9y and £y of the optimal value and optimal solution
of the MTFA problem (1.2). The asymptotics of Dy are given in Theorem 2 (cf.,
[14, Theorem 4.2]). Assuming that the nondegeneracy and strict complementarity
conditions hold, asymptotics of Xy can be derived from general results of Theorem 3.

By (2.18) and (2.22) we have here that

H=Aor and hTAT[A® Y15 = tr [HAATT] , (4.4)

where h = diag(H), T = Xy + X*, A € S? and § = vec(A). Therefore problem
(2.20) takes here the following form (with the last term in (2.22) omitted)

min AT (Ao YTk + 2tr [HAATT]
heRP

st. ETHE+ ETAE =0. (4.5)

By Theorem 3 and Remark 2 we have the following results.

Theorem 4 Let x* be the optimal solution of the MTFA problem (1.2), T = Xy +
X* and r = rank(Y"). Suppose that the point x* is nondegenerate and the strict
complementarity condition holds. Then NY/2(Xy — x*) converges in distribution to
normal N'(0, JTI"J), where J is the p*> x p matrix such that J '8 is the optimal
solution of problem (4.5).

In particular, if p = (p —r)(p —r + 1)/2, then JTT'J = (V)T Q2V ™! where
$2 is given in (3.7) (and in (3.8) for normally distributed population), and V is the
p X p matrix with columns e; cej,1<i<j=<p-r

It is also possible to evaluate the asymptotic bias of the estimator In. By the
discussion of section 3 we have that this asymptotic bias is of order O(N~1/?) if
Sol(D) is not a singleton, and is of order O (N —1y under the assumptions of Theorem
4.

5 Matrix completion
Consider the problem of recovering an m | x m data matrix of low rank when observing
a small number m of its entries. This can be written as the following optimization

problem (cf., Candés and Recht [6])

min rank(Y) subject to Y;; = M;;, (i, j) €, 5.1

Y eRm1xXm2
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where « C {1,...,m1} x {1,...,my} is an index set of cardinality m and M;; are
specified values. We refer to (5.1) as the minimum rank matrix completion (MRMC)
problem.

The MRMC problem (5.1) can be formulated in the following equivalent form (see
Remark 4 below)

;ni{/l rank (& + X) subjectto & + X > 0, 5.2)
ev,

MT 0
is the m; x m; matrix with entries M;; at (i, j) € ¢, and all other entries equal zero.
Minimization in (5.2) is performed over matrices X € SP which are complement to &
in the sense of having zero entries at all places corresponding to the specified values
M;j, (i, j) € . Thatis X € V., where 7 is the symmetric index set associated with
the index set” ¢ and

. . . 0 M
where & € SP, p = m| + my, is symmetric matrix of the form & = i|, M

V,:={XeSP:X;; =0, (i, j) € 1) (5.3)

is the respective linear subspace of S”.

Remark 4 Consider a feasible point ¥ of problem (5.1), i.e., Yi; = M;;, (i, j) € ¢,
of rank r. It can be written as ¥ = VW (singular value decomposition), where V
and W are matrices of the respective order m x r and my X r and common rank r.
Consider

T _
X:=UU'" — &, where U := [‘H e, X = [(YV_VM)T iVWITW} (5.4)

This matrix X is a feasible point of problem (5.2) and X 4 & has rank r. It follows that
the optimal value of problem (5.2) is less than or equal to the optimal value of problem
(5.1). Conversely let X be a feasible point of problem (5.2) and r := rank(X + Z).
Then X + & = UUT for some p x r matrix U of rank r. By partitioning U as in
(5.4), we obtain that Y := VW is a feasible point of problem (5.1) and rank(Y) < r.
It follows that the optimal value of problem (5.1) is less than or equal to the optimal
value of problem (5.2), and hence these two problems have the same optimal value
denoted r*.

Let us note that if X is a feasible point (of the form (5.4)) of problem (5.2) with

VTVl Y -M

Y -—mMmT" wr! WT]
is also a feasible point of problem (5.2) of the same rank r. Therefore to any solution
of (5.1) of rank r corresponds a manifold of dimension r(r + 1)/2 of solutions of
problem (5.2).

r = rank(X + &), then for any matrix 7' € S/, , the matrix |:

2 The index set T C {1, ..., prx{l, ..., p} is symmetric in the sense that if (i, j) € 7, then (j,i) € 1,
and is formed by such (i, j) that (i, j —ny) € tfor1 <i <npandn; +1 < j < ny| + np, and the
respective (j, i) otherwise.
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As a heuristic it was suggested in Fazel [9] (see also [6]) to approximate problem
(5.2) by the following problem

min tr(X) subjectto & + X > 0. (5.5)
XeV,

Of course problem (5.5) can be considered as a particular case of the SDP problem
(1.1). Note that tr(& 4+ X) = tr(X) forany X € V; and & € V;.

In this section we consider a slightly more general minimum rank problem of
the form (5.2) in that we allow the index set T to be a general symmetric subset of
{1,..., p} x{1,..., p}, and such that if (i, j) € 7,theni # j. By tC{l,..., p} x
{1,..., p} we denote the symmetric complement index set of 7, i.e., if (i, j) € 7,
then (j,i) € 7;and (i, j) € 7,1 < j,iff (i, j) ¢ 7. Note that V, N Vz = {0}
and V; + V;z = SP. The matrix £ € V7 is supposed to have specified entries Zjj,
(i, j) € 7, and all other entries equal zero. Together with the minimum rank problem
(5.2) we consider the following SDP problem

min C e X subjectto & + X > 0, (5.6)
XeV,

for some matrix C € V;. Note that Ce & = 0 for any & € V;. For C := I,
problem (5.6) coincides with problem (5.5). The MTFA can be also considered in
this framework by defining the set t to be the symmetric set of all indexes (i, j) such
that i # j, and taking C := I),. Also for this index set t the respective minimum
rank problem (5.2) becomes the so-called Minimum Rank Factor Analysis (MRFA)
problem. As it was discussed in Proposition 6, even if the MRFA problem has solution
of rank one the corresponding MTFA problem may have solution of rank p — 1.

Define the respective mapping A : V; — S” as A(X) := X. Then similar to
Definition 1 we say that X € V. is a nondegenerate point of problem (5.2) (of
problem (5.6)) if for r := rank(Z + X) it follows that

V, + Ty, (8 + X) = SP. (5.7)

Otherwise we say that the point X is degenerate. We have that the following is a
necessary condition for a point X € V. to be nondegenerate

dim(Vy) + dimOWV,) > dim(SP). (5.8)

By formula (2.5) for dimension of W;, condition (5.8) can be written as (compare
with (2.9) and (2.10))

(p—rx)(p—rx +1)/2 <dim(Vy), (5.9

or equivalently

- 2p+1—4/8dim(V;) + 1

rx > 5 : (5.10)

where ry := rank(& + X).
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Theorem 5 For a.e. E € V3 it follows that problem (5.2) does not have degenerate
points and the inequalities (5.9) and (5.10) hold for all X € V.

Proof Note that we cannot apply here the result of Proposition 2 in a direct way since
projection of a set of measure zero onto a subspace of lower dimension does not need
to have measure zero. However, the same type of arguments can be used in the proof.
Consider mapping G(X, &) := E 4+ X, X € V;, B € V;. Since V; + V; = SP, the
image

Im(G)={E+X:XeV,, E €V;3}

of this mapping coincides with the whole space S”. It follows that mapping G intersects
every W, transversally, i.e., Im(G) 4+ Ty, (Y) = S? for every T € W,. Viewing
& as a parameter vector, by the classical result of differential geometry (e.g., [10])
we have then that for a.e. & € V; the mapping Gz (-) := G(-, &) intersects W,
transversally. That is, for a.e. & € V; and every W, it follows that for any X € V,
either Gz (X) ¢ W, or Gg(X) € W, and condition (5.7) holds. Since there is a finite
number of manifolds W, it follows that for for a.e. & € V3 all points of problem (5.2)

are nondegenerate, and hence conditions (5.9) and (5.10) hold for all X € V.. O

A natural question is how tight the bound (5.9), or equivalently the bound (5.10), for
the respective minimal rank. As it was already pointed, when the index set t consists of
all indexes such thati # j,i.e., V; = D?, then problem (5.2) becomes the Minimum
Rank Factor Analysis (MRFA), and the bound (5.10) becomes the bound (2.10) with
n = p. It is well known that in that case the bound (2.10) is tight in the sense that the
set of matrices for which it is attained is not of measure zero.

For the MRMC problem (5.1) the above bound (5.9) can be improved by recalling
that to any solution of problem (5.1) corresponds a manifold of dimension r(r + 1) /2
of solutions of problem (5.2) (see Remark 4). This leads to the following bound for
the rank r,

dim(V;) + dimW,) — r(r + 1)/2 > dim(SP). (5.11)

Here dim(V;) = p(p + 1)/2 — m. Consequently using formula (2.5) for dimension
of W, we can write condition (5.11) in the following form (cf., [6,7])

r(my+my—r)>m. (5.12)
Note thatr < min{m, m,}and bound (5.12) can be written in the following equivalent

form
r > R(@my, my, m), (5.13)

where

Ry, ma,m) = (my +m2)/2 = Jmi +mo?/d—m. (5.14)

For the MRMC problem (5.1) bound (5.12) can be derived in a direct way. As
before we say that a property holds for a.e. choice of the constants M;;, (i, j) € ¢, if
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the set of vectors [M;;];, j)e, for which it does not hold has Lebesgue measure zero in
the respective linear space of dimension m. Consider

M, = {Y e R™>™M2 - rank(Y) = r}

the set of m x m, matrices of rank r. It is well known that M, is a smooth manifold
with
dim(M,) =r(m; +mo —r) (5.15)

(e.g., [2]). By the same arguments as in the proof of Theorem 5 we have that the
(affine) space
Fu =Y e R""™ Y, = M;j, (i, ) €} (5.16)

intersects M, transversally for a.e. choice of the constants M;;, (i, j) € t. Note that
Fu is the space of feasible points of problem (5.1).

Proposition 7 For almost every choice of the constants M;j, (i, j) € 1, the following
holds: (1) for every feasible point Y of problem (5.1) it follows that

rank(Y) > R(my, mp, m), (5.17)

(ii) if the number R(m1, mo, m) is not an integer, then problem (5.1) has multiple
(more than one) optimal solutions.

Proof Consider the space F), of feasible points of problem (5.1). Of course this space
depends on the choice of constants M;;. As it was discussed above the transversality
condition holds almost surely, i.e., for a.e. choice of the constants M;;, (i, j) € t. Since
dim(Fys) = mymy — m and because of (5.15), the transversality condition implies
the bounds (5.12) and (5.13) for r = rank(Y). This completes the proof of assertion
).

Suppose that F), intersects M, transversally at a point Y* € M,. Then M, N Fy
forms a smooth manifold near Y* with the tangent space to this manifold at Y* given
by

Tmonry (YY) = Tpm, (Y N Fy.

The dimension of this manifold cannot be zero unless dim(M, ) 4+ dim(Fj) is equal
to the dimension mm; of the whole space, which is equivalent to the condition
rank(Y*) = QR(my, mp, m). If the manifold M, N Fj; has a positive dimension
in a neighborhood of an optimal solution Y*, then all points of this manifold are
optimal in that neighborhood, and hence problem (5.1) has multiple solutions. Of
course if R(my, mp, m) is not an integer we cannot have the equality rank(Y*) =
PR(m1, my, m). Since the transversality holds almost surely this completes the proof
of (ii). O

Remark 5 Consider the optimal value r* of the MRMC problem (5.1), which is also
the optimal value of problem (5.2). Of course for a given index set ¢ the minimal rank
r* depends on the specified values M;;, (i, j) € t. By Proposition 7 we have that if
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values M;;, (i, j) € t, are observed with noise having a continuous nondegenerate
distribution, then r* > R(m1, my, m) w.p.1. Another way of looking at this is that if
r* < M(my, my, m), then the respective MRMC problem is unstable in the sense that
an arbitrary small change of values of M;; can result in that the respective value r*
of the rank cannot be achieved. On the other hand if PR(m, m2, m) is not an integer,
then almost surely r* > SR(m 1, my, m) and problem (5.2) has more than one optimal
solution. We came to the conclusion that the MRMC problem can be both stable and
generically have unique optimal solution only if r* (m | +my —r*) = mor equivalently
r* = M(my, my, m), which can happen only if R(m1, my, m) is an integer.

Consider now the SDP problem (5.6). We assume that the matrix C € V is positive
definite. The (Lagrangian) dual of problem (5.6) is the problem

max min CeX — Ae(EZ + X). (5.18)
A=0 XeV,

For A = C — ®, with ® € Vz, problem (5.18) can be written (recall that Ce Z = 0
for £ € V;) as
max @ e = subjectto C — @ > 0. (5.19)
®eV;
Note that Slater condition always holds for the primal problem (5.6), this can be seen
by taking X = al), for sufficiently large & > 0. Also since C is positive definite
Slater condition holds for the dual problem (5.19), just take & = 0. Hence there is
no duality gap between problems (5.6) and (5.19), i.e., these problems have the same
finite optimal value. It also follows that both problems have nonempty and bounded
sets of optimal solutions.

Proposition 8 The following holds: (i) given & € V3, it follows that for a.e. positive
definite matrix C € V, problem (5.6) has unique optimal solution, (ii) given positive
definite matrix C € Vo, it follows that for a.e. £ € V; the dual problem (5.19) has
unique optimal solution.

Proof Consider the set of positive definite matrices C € V. This set is nonempty
convex and open. On this set the optimal value of problem (5.6), considered as a
function of C € V. for given (fixed) Z, is finite valued and concave as the minimum
of linear functions. It follows by Danskin’s theorem (e.g., [4, Theorem 4.13]) that
this function is differentiable at a point C € V iff the corresponding set of optimal
solutions of problem (5.6) is a singleton. By Rademacher’s theorem a locally Lipschitz
function is differentiable almost everywhere. This implies the statement (i) (cf., [16,
Theorem 5.2]).

There is a symmetry between problems (5.6) and (5.19). By applying the same
arguments to problem (5.19) we obtain (ii). O

This shows that unlike the MRCM problem, the SDP problem (5.6) typically has

unique optimal solution. Recall that the MTFA problem always has unique optimal
solution.
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6 Conclusion

We showed in Sect. 3 that under certain regularity conditions optimal solutions of
the sample based SDP problem have asymptotically normal distribution. We argued
that the required regularity conditions, specified in Theorem 3, in a certain sense
are generic. The assumption that the population distribution has finite fourth order
moments is natural in the considered context, otherwise the matrix /" is not defined.
The required values of the components of matrix I" and the Jacobian matrix J are
functions of the respective population parameters. Since the population parameters
are unknown the standard practice is to estimate these values by replacing the true
covariance matrix Xy by the sample covariance matrix> S and optimal solution x* by
the computed X . These type of numerical experiments were performed in [21] for a
problem related (but with a different objective function) to the MTFA with moderate
values of dimension p.

In principle it is also possible to analyse asymptotics of the optimal solutions when
the cost vector c is estimated, by considering the dual problem. However, it seems that
this would be of a lesser interest.

The discussion of the minimum rank matrix completion problem in Sect. 5 has an
independent interest. We argued in Remark 5 that, unless the number SR(m 1, m>, m)
is an integer, such problem is either unstable or generically has multiple solutions.
The corresponding SDP problem typically has a unique optimal solution (see Propo-
sition 8). However, for large values of p = m +m it would be practically impossible
to have reliable estimates of the components of the Jacobian matrix J. The situation
is simplified considerably when the minimal rank is equal to the lower bound (see
Remark 2). This could be a subject of future investigation.

Acknowledgements The author is indebted to anonymous referees for constructive comments which
helped to improve the manuscript.
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