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Abstract—Hydropower producers rely on stochastic optimiza-
tion when scheduling their resources over long periods of time.
Due to its computational complexity, the optimization problem is
normally cast as a stochastic linear program. In a future power
market with more volatile power prices, it becomes increasingly
important to capture parts of the hydropower operational char-
acteristics that are not easily linearized, e.g. unit commitment
and nonconvex generation curves.

Stochastic dual dynamic programming (SDDP) is a state-
of-the-art algorithm for long- and medium-term hydropower
scheduling with a linear problem formulation. A recently pro-
posed extension of the SDDP method known as stochastic dual
dynamic integer programming (SDDiP) has proven convergence
also in the nonconvex case. We apply the SDDiP algorithm to
the medium-term hydropower scheduling (MTHS) problem and
elaborate on how to incorporate stagewise dependent stochastic
variables on the right-hand sides and the objective of the opti-
mization problem. Finally, we demonstrate the capability of the
SDDiP algorithm on a case study for a Norwegian hydropower
producer.

The case study demonstrates that it is possible but time-
consuming to solve the MTHS problem to optimality. How-
ever, the case study shows that a new type of cut, known as
strengthened Benders cut, significantly contributes to closing the
optimality gap compared to classical Benders cuts.

Index Terms—Stochastic processes, Dynamic programming,
Hydroelectric power generation, Integer programming.

I. INTRODUCTION

THE hydropower scheduling problem is difficult given its
stochastic and multistage nature, and a variety of different

solution techniques have been applied to it, see e.g. [1], [2].
In a liberalized power market, one typically decomposes the
overall problem into three hierarchies (long-, medium-, and
short-term) according to the system boundary, the level of
required details in the hydro system and the representation
of different stochastic variables [3], [4], [5]. In this work we
consider the medium-term hydropower scheduling (MTHS)
problem, aiming at maximizing a single producer’s profit.
The MTHS problem links the long-term fundamental market
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model problem with the short-term (ST) operational schedul-
ing problem, as discussed in [3]. The MTHS problem can be
formulated as a multistage stochastic programming (MSSP)
problem, with many decision stages and uncertainty of inflow
and market prices.

Due to the complexity of the MTHS problem, it is typically
approximated as a multistage stochastic linear programming
(MSSLP) problem. To further exploit the flexibility of hy-
dropower by contributing in ancillary service markets, it
becomes increasingly important to capture parts of the opera-
tional characteristics that are inherently nonconvex. Noncon-
vexities arise from binary variables used to model minimum
generation limits and unit commitments, and are vital for
capturing the generation units’ capability to provide reserve
capacity. There are also other types of nonconvexities that
occur in the MTHS problem, such as the generation-discharge
function that is dependent on the water head, discharge from
multiple reservoirs to one power station and other topological
constraints in the hydropower system. These nonconvexities
should not only be represented in the ST operative models
but also in the MTHS models that provide the expected
opportunity cost of water to them.

A. MSSP Problems

The MTHS problem can be formulated as a multistage
stochastic program, of the following general extensive form

max
(xn,yn)

{∑
n∈T

pnfn(xn, yn) : (xa(n), xn, yn) ∈ Xn,∀n ∈ T

}
.

(1)
In the above formulation, T is a scenario tree given by a set
of nodes, n, that describes the underlying stochastic process
{ξ̃t : ∀t = 1, . . . , T}. Each node is assigned a probability
pn, and has a unique ancestor node a(n) and set of children
nodes C(n). For each node we define xn and yn as vectors
comprising the state and stage variables, respectively. The
state variables are those used to carry information from one
period to the next. The initial state of the system is x0, fn
is the objective function and Xn is the set of constraints.
Note that the constraint set comprises time-linking constraints,
connecting the state variables in xa(n) and xn.

The size of the MSSP in (1) grows dramatically with the
number of decision stages and number of children nodes
considered in the scenario tree. Thus, MSSP problems are
often solved by decomposition [6]. Stagewise decomposition
[7] has become a popular technique for efficiently solving
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the hydropower scheduling problems [8], [9]. Such a decom-
position scheme involves dividing (1) into subproblems for
each decision stage. Each subproblem comprises a part of the
objective function corresponding to that stage and an expected
future profit (EFP)1 function.

B. Stochastic Dual Dynamic Programming

The stochastic dual dynamic programming algorithm
(SDDP) presented in [10] is a stagewise decomposition
method for solving the long- and medium-term hydropower
scheduling problem. For a scenario tree corresponding to a
stagewise independent stochastic process, the SDDP method
proceeds by sampling in the scenario tree and sharing Benders
cuts between nodes belonging to the same stage. Proof of
almost sure convergence for the SDDP algorithm has been
given by [11], and for risk averse problems in [12], [13].
The SDDP algorithm has been frequently addressed in the
recent literature. Some of the work involves time-inconsistent
policies [14], co-optimization of hydro- and wind power [15],
joint treatment of energy and ancillary services [16], [17],
uncertainty in price [18] and uncertainty in inflow [19].

In spite of considerable research effort, see e.g. [20], [21],
[22], [23], [24], the SDDP method does not easily facili-
tate nonconvexities. As mentioned previously, nonconvexities
arise, for example, when representing the detailed relationship
between power output and water discharge [25], and the exact
unit commitment of generators [26]. The core issue is how the
nonconvex EFP function can be modeled. In [21] McCormick
envelopes were applied to regions of the nonconvex function
between power, discharge and water head. In [22] Lagrangian
relaxation was used to convexify the EFP function, whereas
[24] applied locally valid cuts to represent the nonconvex EFP
function. All the above methods produce solutions to different
forms of relaxations rather than the original problem.

Recently [27] proposed a method referred to as stochastic
dual dynamic integer programming (SDDiP) allowing integer
variables within the SDDP method, i.e. a solution to the
multistage stochastic integer programming (MSSIP) problem.
By approximating all state variables with binary variables, the
authors were able to prove finite convergence as long as the
cuts satisfy some sufficient conditions.

Another new and promising method that can be used to
solve the nonconvex MTHS problem is reported in [28]. As
SDDiP it is an extension of SDDP for handling nonconvexities.
The significant difference is that instead of using cutting planes
to describe the EFP function, step functions are used and that
a monotonic increasing EFP function is required.

C. Contributions

In this work we apply the SDDiP method presented in [27]
to the MTHS problem with a nonconvex function of power and
discharge, incorporate stagewise dependencies in stochastic
variables and correlations between them (inflow and energy
price). We particularly extend the modeling from [27] with
stagewise dependency in energy price, since this dependency

1or expected future cost when considering cost minimization problems.

enters the objective function and thus introduces a nonconvex
term that is challenging to handle.

The SDDiP method is tested and verified on a hydropower
system in Norway. We evaluate the performance of the SDDiP
algorithm on the MTHS problem using different types of cuts
and provide recommendations for which types of cuts are most
efficient in solving the MTHS problem.

The paper is organized as follows. In the next section,
we will describe the basic modeling of the MTHS problem
followed by the fundamentals of the SDDiP method. The case
study is presented in Section VI and computational results in
Section VII followed by concluding remarks in Section VIII.

II. THE MTHS PROBLEM

In a liberalized electricity market the hydropower producer’s
primary objective is to find operational strategies for each
decision stage and maximize the total profit. For the Nordic
electricity market, it is assumed that there is a sufficient num-
ber of players such that a price-taker assumption is reasonable.

The state variables, xt, in the MTHS problem considered
here are reservoir levels, generator status, inflow and energy
price. The stage variables are represented by yt and include
the operational decisions at that stage. First, let us assume
that the set of state variables consists of both continuous and
binary variables. For the MTHS problem, given by (2), we
want to find an operating strategy that maximizes profit in
(2a), comprising the revenues from selling energy and capacity
reserves, start-up cost and penalty functions ensuring relatively
complete recourse. The expectation in (2a) is taken over the
stochastic parameter ξ̃t, representing energy price and inflow.

max
(x1,y1),...,(xT ,yT )

E

{
T∑
t=1

ft(xt, yt)

}
(2a)

s.t. Wxt +Hxt−1 +Gyt = h(ξ̃t) (2b)
Byt = 0 (2c)
Cyt −Dxt ≥ 0 (2d)
Cyt +Dxt ≤ Cymax (2e)
xt, yt ∈ Yt (2f)

xt ∈ Rk1 · Zk2 , yt ∈ Rl1 · Zl2 (2g)
∀t ∈ {1, 2, . . . , T}, (2h)

where the initial state vector x0 is given and W , H , G, B,
C and D are matrices of suitable dimensions. The right-hand-
side parameter vector, h(ξ̃t), is dependent on the random data
vector ξ̃t whose distribution is known, and where ξt are the
realizations. Due to strong autocorrelation, both inflow and
the energy price should be considered as an affine function of
state variables. Thus the profit function for stage t is

ft(xt, yt) = ct(xt)y
G
t + gt(yt), (3)

comprising the energy price, ct(xt), multiplied with gener-
ation, yGt , and the remaining linear relationships in gt(yt).
Treatment of the bilinear expression in (3) will be addressed
in Section III-B.
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Fig. 1. Illustration of the nonconvex function of power, Pt, and discharge, qt
in a power station with two units in blue. It is conditioned that the first unit
is started before the second. The dotted line illustrates the convex relaxation
of the function.

The time-linking constraint, (2b), contains all reservoir
balances, generator state time-couplings and the Vector Au-
toregressive model with lag-1 (VAR-1) constraints, outlined
in Section III-A. The energy balance is given by (2c), where
we assume that all power is sold to the market. Generation
and reserve capacity limits are included in (2d) and (2e).
We assume that the hydropower producer can offer spinning
reserve capacity, meaning that the generator has to be op-
erating to provide this service. The reserve capacity is also
assumed symmetric, i.e. an equal amount of both upwards and
downwards reserve capacity is sold. For conciseness, we also
include constraints that limit spillage, bypass and generation
from different reservoirs in (2f). In practice, spillage may
only occur when the water head is greater than the bottom
of the spillway. If, however, the optimization model finds that
the water has better utilization in a lower reservoir, it will
spill or bypass water to that reservoir, even-though this might
not be feasible in practice. By including binary variables and
additional constraints in (2f), we can prohibit this behavior of
the model. Similar to when a power station can operate from
two different reservoirs with uneven head, we can restrict the
model to only operate from one reservoir at the time.

As an extension to the MTHS problem we include a
nonconvex relationship between power and discharge for each
hydropower station, referred to as the generation function.
Much work has been done recently, see [21], [22], to include
a nonconvex generation function, also with water head depen-
dencies. Considering the modest water head variations of most
Norwegian hydropower stations and to limit the complexity of
the modelling, with added computational time, we omit this in
our approach. Our experience has shown that it is important to
include the nonconvex generation function when selling both
energy and reserve capacity in order not to overestimate the
sales of capacity reserves [15]. This is especially imperative
for periods with low energy price and high capacity price.
Then the model wants to operate the units at low power
outputs in order to participate in the capacity reserve market.
An illustration of a generation function is given in Figure 1.

For presentation simplicity, the reserve capacity price is
assumed to be deterministic, but as the work done in [16]
shows, it could be extended to a stochastic variable.

III. THE SDDIP FORMULATION

In this section, we reformulate the problem (2) to a form
suitable for SDDiP. First, we describe how the stochastic
processes are handled.

A. Stochastic Processes

We consider two types of uncertainties in the problem;
inflow to the hydro reservoirs and energy price. For the
sake of simplicity both processes are assumed to have a
normal distribution. Since both stochastic processes exhibit a
seasonal pattern and are non-stationary processes, these are
normalized by subtracting the seasonal mean and dividing
by the seasonal standard deviation. Moreover, we shift the
mean of the normalized value to ensure non-negative values.
The normalized and shifted series are then assumed to be
stationary and fitted to a Vector Autoregressive model with lag-
1 (VAR-1), which enables us to account for seasonal effects
and capture correlations between the time series within the
SDDiP framework. In order to get a manageable number
of stochastic outcomes of ξ̃t, we applied the “Fast forward
selection” scenario reduction algorithm in [29], resulting in a
confined amount of scenarios with a corresponding probability.
Another known method to handle the uncertainty of energy
price in SDDP is by an outer Markov chain as proposed in
[30]. The drawback is then that there are two independent
stochastic processes in the model.

The VAR-1 model includes a state variable, δt. Since it
is a state variable, binary expansion has to be applied to it.
After the scenario reduction and sampling of the stochastic
parameters are completed, a bound can be computed so that
a finite support is guaranteed. Subsequently, we need to shift
the mean of the process by U such that δt is non-negative.
The bound is then given by (4b) and δt is the normalized and
shifted values. We can derive the following VAR-1 model,
which is included in (2b)

δt = Φδt−1 + ξ̃t (4a)

δt ∈ [0, 2U ]2, (4b)

where Φ is the correlation matrix. Note that E[δt] = U and
E[ξ̃t] = U . The stochastic parameters for inflow and energy
price are respectively given by[

It(δt)
ct(δt)

]
= σt

(
δt − U

)
+ µt. (5)

where the inflow, It(δt), is the right-hand side of the reservoir
constraints and the energy price, ct(δt), is expressed in the
objective function (3). Note that δt in the stochastic model
is identical with xt in (3) as the stochastic model was not
yet introduced. In order to solve the bilinear term in (3) an
approximation is applied.

B. Approximation of the Energy Price

To circumvent the computational complexity introduced
by the bilinear term in (3), we apply an approximation by
linear relaxation of the objective function term, ct(δt)yGt . The
relaxation is applied by using the binary expansion method to
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the energy price state variable, δt. The method is based on
the fact that if λt is an integer variable, λt ∈ {0, . . . , L}, it
can be represented by κ binary variables, κ = blog2(L)c+ 1,
such that λt = Σκj=12j−1λtj . Similarly, for the continuous
case, λt ∈ [0, L], where λt is given with ε accuracy; κ =
blog2(L/ε)c+ 1, hence λt = Σκj=12j−1ελtj . See e.g. [31] for
further details about the binary expansion. In the following
we use the notation λt =

∑κ
j=1Atjλtj . Thus, we redefine

δt =
∑r
j=1Atjxtj , with r = blog2(2U/ε)c+ 1 and substitue

δt in (5). Moreover, we then replace the bilinear terms xtjyGt
with auxiliary variables wtj , and constrain these by (6b)-(6e),
for all j ∈ {1, . . . , r}. The objective function becomes,

ft(xt, yt) =σt

r∑
j=1

Atjwtj + (µt − σtU)yGt + g(yt) (6a)

s.t. wtj − yGt ≤ 0 (6b)
wtj −Mtjxtj ≤ 0 (6c)

wtj − yGt +Mtj(1− xtj) ≥ 0 (6d)
wtj ∈ Rr, xtj ∈ {0, 1}r (6e)
∀j ∈ {1, . . . , r}. (6f)

We fix Mtj to yG,max for all j, in order to get an accurate
relaxation.

Note that after the binary expansion is applied to the
state variable, δt, (4a) becomes a constraint with only binary
variables and a stochastic parameter. Thus, in order to ensure
feasibility of the model with all possible outcomes of ξ̃t,
the constraint is altered to a less than or equal constraint.
Implications of this are discussed in Section VII.

C. Dynamic Programming (DP) Formulation

From the MTHS problem given by (2) and the energy price
approximation in (6), we have the following DP equation

Qt(xt−1,ξt−1) := max
xt,yt

ft(xt, yt) + φt(xt) (7a)

s.t. (xt, yt) ∈ Xt(xt−1, ξ̃t) (7b)

xt ∈ Rk1 · Zk2 , yt ∈ Rl1 · Zl2 . (7c)

Problem (7) consists of the present objective function
f(xt, yt), the true EFP function φt(xt) and constraint set Xt,
with parameters xt−1 and ξ̃t, described by (2b)-(2f) and (6b)-
(6f).

As the MTHS problem contains integer stage variables the
EFP function is nonconvex with respect to the state variables.
Existing nested decomposition methods rely on convex relax-
ation to approximate the EFP function, and convergence can
therefore not be guaranteed.

The traditional approach to solving the nonconvex problem
in (7) has been to relax the problem formulation to an LP. We
are then able to define a convex relaxation of the EFP function
given by,

Qit(xt−1,ξt−1) := max
xt,yt

ft(xt, yt) + ϕit(xt) (8a)

s.t. (xt, yt) ∈ X
′

t(xt−1, ξ̃t) (8b)

xt ∈ Rk3 , yt ∈ Rl3 . (8c)

The EFP function is then ϕit(xt), for a given iteration i of
the SDDP method, and constraint set X

′

t that describes a LP
relaxation of Xt. We see that this DP formulation is similar
to the SDDP method, where the EFP function is described by
hyperplanes, defined as

ϕit(xt) := max{θt ≤ Vt (9a)

θt ≤ vlt+1 + πlt+1xt, ∀l ∈ H(i), (9b)

xt ∈ Rk3}. (9c)

Where the set H(i) contains the cuts that are used to approx-
imate the EFP function up to iteration i. The cuts are repre-
sented with a right hand side parameter vlt+1, the coefficient
πlt+1 and θt is a scalar variable representing the value of the
EFP function. The different type of cuts that we have used in
our implementation will be outlined in Section IV-A.

To solve the nonconvex MTHS problem we apply the SD-
DiP method proposed in [27]. The key concept of the method
is that any function of binary variables can be represented as
a convex polyhedral function. This can, therefore, be achieved
by applying the above-mentioned binary expansion to all
integer and continuous state variables of the original problem.

After the binary expansion is applied to the state variables
in (2g), xt ∈ Rk1 × Zk2 , it is reformulated to xt ∈ {0, 1}k,
such that all state variables in the MTHS problem are binary
and representing the original continuous state variables to ε-
accuracy. Note that k 6= k1 + k2, as it depends on the binary
expansion.

Since the possible state variables solutions are given by a
finite set of binary variables, we can generate a finite number
of cuts to approximate it, as the convex hull of the binary state
space ensures that we can compute tight bounds. See Figure 2
and its explanation below.

Another reformulation used in the SDDiP method is to
generate local copies of the state variables. This reformulation
is crucial to ensure that one is able to generate cuts that
accurately approximate the EFP function. The DP formulation
of the problem with binary state variables becomes

Qi
t
(xt−1,ξt−1) := max

xt,yt,zt
ft(xt, yt) + ψit(xt) (10a)

s.t. (xt, zt, yt) ∈ X
′′

t (ξ̃t) (10b)
zt = xt−1 (10c)

zt ∈ [0, 1]k (10d)

xt ∈ {0, 1}k, yt ∈ Rl1 · Zl2 . (10e)

Where (10c) is the essential copy constraint, connecting the
previous state solution, xt−1, and the copy variable zt. The set
X

′′

t is obtained by transforming all state variables in Xt into
binaries. The EFP function, ψit(xt), is defined as (9), with the
differentiation that all the state variables has to be binary.

IV. REVIEW OF THE SDDIP APPROACH

The SDDiP approach builds on the same principles as
SDDP, where each main iteration comprises a forward and
a backward iteration, as shown in Algorithm 1. We can sum-
marize the main differences between SDDiP and SDDP into
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Fig. 2. Illustration of the nonconvex EFP function (left) and the transformation
into the binary state (right). Note that we are solving a maximization problem
and thus the function is nonconcave, but in line with standard terminology, we
refer to it as a nonconvex function. Assume that the continuous variable xt is
transformed by two binary variables xt1 and xt2, such that xt = xt1+2xt2.
By constructing two hyperplanes (C1 and C2) in the binary state space, we can
illustrate how they are projected to the continuous space. This illustrates how
by using binary state variables we are able to construct cuts that approximate
a nonconvex function. The hyperplane C3 is added to show the tightest cut
we are able to generate from the convex relaxation of the nonconvex function.

three pillars; the requirement of discretization of state variables

into binary variables, introduction of the copy variable and the

different cut families it facilitates.

Scenarios are sampled from the underlying stochastic pro-

cess in line 4 in Algorithm 1. The forward iteration solves

the problem given in (10) for each stage and scenario, pro-

viding candidate solutions to the problem in line 9 and an α
confidence lower bound on the optimal value.

The backward iteration operates along the N state trajecto-

ries obtained in the previous forward iteration to compute cuts

that are passed backward in time. The different types of cuts

considered are described in the next section. The value of the

objective function in the first stage will then represent an upper

bound of the true optimal solution in line 23. Convergence is

achieved if the lower bound is within a statistical confidence

interval of the upper bound.

A. Cut Families

SDDiP is defined on a notion of valid and tight cuts. A

cut is valid and tight if it supports the EFP function. For

maximization problems, it is only valid if it provides an upper

approximation of the EFP function. An illustration is given in

Figure 2, where the cuts C1, C2 and C3 are all valid, but only

C1 is tight when the state variable has the value 1.

The different cut families that could be used within SDDiP

are briefly described below.

1) Benders Cuts (B): Benders cuts (see [32]) are con-

structed by solving the LP relaxation of problem (10). We

obtain the following Benders cut for stage t in iteration i

θt ≤
∑

m∈C(t)
qtm

[
QLP

m
+ (πi

m)�(xt − xi
t)
]
. (11)

Where πi
m is a vector of dual values corresponding to

(10c), qtm is the probability of going to a child node m, in

decision stage t and QLP

m
is the optimal LP relaxation value.

Convergence is not guaranteed with only Benders cuts for

SDDiP. In some practical scheduling cases, the Benders cuts

may be far from tight, as we will see in the Section VI-B.

Algorithm 1 The SDDiP Method

1: Set xi
0, ξi0, i ← 1, UB = +∞ and LB = −∞,

2: Apply binary expansion on continuous and integer state

variables

3: while i < imax or some other stopping criteria do
4: Sample N scenarios Ωi = ξk1 , . . . , ξ

k
T k=1,...,N

5: /* Forward Iteration */

6: for k=1,. . . ,N do
7: for t=1,. . . ,T do
8: Solve Qik

t
(xik

t−1, ξ
ik
t−1)

9: Collect solution ft(x
ik
t , yikt , ξikt ), xik

t , yikt , zikt
10: lbk ← Σt=1,...,T ft(x

ik
t , yikt , ξikt )

11: /* Compute lower bound */

12: μ ← 1
NΣN

k=1lb
k and σ2 ← 1

N−1Σ
N
k=1(lb

k − μ)2

13: LB ← μ+ zα
σ√
N

14: /* Backward Iteration */

15: for t=T,. . . , 2 do
16: for k=1,. . . , N do
17: for m∈ C(t) do
18: Solve a suitable relaxation of

19: Qik

m
(xik

t , zikt , ξikt )
20: Collect cut coefficients and parameters

21: Add desired cut(s) as described in Sec. IV-A

22: /* Compute upper bound */

23: UB ← Qi

1
(xi0, ξ

i
0)

24: i ← i+ 1

2) Lagrangian Cuts (L): This cut family is based on La-

grangian relaxation, where we relax the copy constraint (10c).

The Lagrangian multiplier is obtained by

π̄i
t := argmin

π̄t

{
Li
t(π̄t) + π̄�

t xt−1

}
, (12)

and Li
t is defined as

Li
t(π̄t) := max

xt,yt,zt
ft(xt, yt, ξt) + ψi

t(xt)− π̄�
t zt (13a)

s.t. (zt, xt, yt) ∈ X
′′
t (ξ̃t) (13b)

zt ∈ [0, 1]k (13c)

xt ∈ {0, 1}k, yt ∈ R
l1 · Zl2 . (13d)

Lagrangian relaxation often aims to relax complicating con-

straints and divide the problem into smaller subproblems that

can more easily be computed. Our aim, however, is to find

good multipliers that make the Lagrangian cuts as tight as

possible. It is essential for the convergence of SDDiP that the

Lagrangian cuts can be generated in a sufficient manner, in

regard to both computation time and tightness. By repeatedly

solving (12) and updating the Lagrange multipliers π̄t, e.g.

using the subgradient [33] or level [34] methods, one can

construct tight and valid Lagrangian cuts, as described in [27].

Nevertheless whichever method we use to get the Lagrangian

multiplier, π̄i
t, the cut we construct is of the following form,

θt ≤
∑

m∈C(t)
qtm[Li

m(π̄i
m) + (π̄i

m)�xt]. (14)



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2018.2805164, IEEE
Transactions on Sustainable Energy

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, SPECIAL ISSUE, CLASS FILES, VOL. XX, NO. XX, MONTH YEAR 6

𝑥𝑡

𝜙𝑡 𝑥𝑡

𝜑𝑡 𝑥𝑡

Fig. 3. Illustration of improvement for the strengthened Benders cut (C2)
compared to Benders cut (C1) by generating a tighter right-hand-side param-
eter, equaling the distance of A. ϕt(xt) is the LP relaxation of the original
nonconvex function φt(xt).

3) Strengthened Benders Cuts (SB): The strengthened Ben-
ders cuts presented in [27] are parallel to the regular Benders
cut and are at least as tight. They are not guaranteed to be
tight, but they may improve the solution quality significantly
compared to the Benders cuts, as illustrated in Figure 3. The
increased precision comes at a modest increase in computation
time.

Strengthened Benders cuts are constructed as follows. First,
we solve the LP relaxation of problem (10). Then problem
(13) is solved with π̄t equals to the optimal LP dual solution
with respect to constraint (10c), πit. From the solution of the
latter problem we obtain the right-hand side Lit(πit) and then
construct the following strengthened Benders cut

θt ≤
∑

m∈C(t)

qtm[Lim(πim) + (πim)>xt]. (15)

The strengthened Benders cuts do not require the state
variables to be binary and can such be used to achieve good
solutions to problems that do not possess highly nonconvex
properties.

4) Integer Optimality Cuts (I): The last family of cuts we
have used in our method is the integer optimality cuts [35],
[36]. The integer optimality cuts are valid, tight and finite and
will, therefore, guarantee convergence. They are also very fast
to generate, as they only rely on the solution obtained in the
forward iteration.

B. Cut Discussion

As mentioned in Section I-B, the Lagrangian cuts proposed
by [27], and used in this paper, differentiate from the La-
grangian cuts proposed by [22], [21]. Instead of introducing
copy constraints they dualize the time-linking constraints and
are therefore not able to guarantee tight cuts, even-though they
in many cases are stronger than the Benders cuts. This can be
shown by a small example. Consider,

Q(x) = min
y1,y2
{y1 + y2 : 2y1 + y2 ≥ 3x, (16)

y1 ∈ {0, 1, 2}, y2 ∈ [0, 3]}

Where Q(x) is a value function dependent on the binary
state x, and y1 and y2 are local variables. First, by dualizing
the time-linking constraint and providing x = 1 as a candidate
solution one gets the following Lagrangian cut θ ≥ 1.5x, this
is essentially the method proposed by [22], [21] and as the
small example shows it does not necessarily provide tight cuts.
Furthermore, let’s add a copy constraint z = x, z ∈ [0, 1] and
swap x with z in the time-linking constraint. By dualizing
the copy constraint we can compute the Lagrangian cut θ ≥
−1 + 3x, with x = 1 as a candidate solution. For x = 0
we get that θ ≥ 0, such that we are able to provide a tight
approximation of Q(x).

As proven in [27] and partially illustrated above, the SDDiP
algorithm will converge if Lagrangian or integer optimality
cuts are added. Benders and strengthened Benders cuts will
not guarantee convergence, but will often serve to improve
convergence rate in concert with Lagrangian or integer opti-
mality cuts. Benders cuts are by far the least computational
demanding type of cuts since their construction only involves
solving LP problems. For this reason, we only add Benders
cuts until a stable upper bound is reached. Subsequently, we
add the other cut families to further tighten the EFP functions.

C. The Approximate SDDiP Problem

The SDDiP method depends on the aforementioned three
pillars to ensure finite convergence. However, we are still able
to use some of its features if we do not restrict the state
variables to be binary. Finite convergence can then no longer
be guaranteed, with the trade-off of reduced computational
complexity. We reformulate (7) by applying the same concepts
of copy variables and copy constraints. For this problem we
can only compute Benders and Strengthened Benders cuts.
This is done in the same manner as for the (10) in Section
IV-A1 and IV-A3. Results from this approach is also reported
in Section VI-B

V. BOUNDING THE EFP FUNCTION

Due to the bilinear objective term introduced when consider-
ing uncertain energy price, we relaxed the problem by artificial
variables and constraints containing the big-M notation in (6).
As we will elaborate, it is difficult to obtain tight bounds for
that problem formulation. Consider the case where a given
energy price state variable is xtj = 1, we then have

πEt,j =
∂Qi

t

∂xtj
=

∂Qi
t

∂wtj
· ∂wtj
∂xtj

=
∂Qi

t

∂wtj
·Mtj , (17)

where πEt,j is the dual value for the copy constraints for that
energy price state variable in (10c).

From a practical standpoint, it is obvious that there are time
periods and scenarios where yGt is far from yG,max. In this
sense the proposed relaxation method has the same drawback
as the integer optimality cut, but now the big-M notation
cascades into all types of cuts, making it hard to compute
cuts that are tight for not only the given candidate solution
but nearby solutions as well. A modest upside is that the big-
Ms depend on a physical value and not the expected future
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profit, contributing to a tighter formulation than for the integer
optimality cuts.

Given the nature of the problem at hand, different techniques
could be applied in order to make the big-Ms tighter by adding
some heuristics on the bounds of yt. Nevertheless, for an
MTHS problem with a price taker assumption and no demand,
this has proven difficult, as the only limiting constraints are
generation limits and available water in the reservoirs.

Observe that the big-M formulation is only required for our
implementation of the uncertainty of the energy price. The
following theorem establishes a method for constructing an
upper bound to this problem so as to be able to evaluate the
policy quality.

Theorem 1. Let v∗ be the optimal value of the MTHS problem
in (2) with price uncertainty, and vLP be the optimal value
of its LP relaxation. Let v̄LP be the optimal value of the LP
relaxation where the uncertain energy price is replaced by its
expected value. Then

v∗ ≤ vLP ≤ v̄LP.

For brevity, we omit a detailed proof of the above result and
provide a sketch. Note that the first inequality is simply owing
to the LP relaxation. Since the price uncertainties are only on
the right-hand side (recall the modeling approach discussed in
Section III-B), we know that the optimal value of LP relaxation
is a concave function of the uncertain parameters [6]. It follows
by Jensen’s inequality that vLP ≤ v̄LP, hence an upper
bound to the original problem can be constructed by using
the upper bound computed with only Benders cuts applied to
the problem where energy price is modeled by its expected
value.

VI. CASE STUDY

For the case study, we considered a Norwegian hydropower
reservoir system that consists of reservoirs with both short-
and long-term storage capacity. The case study is documented
in previous publications [15], [26]. The system contains three
hydropower reservoirs, with two power stations and a total
installed capacity of 414 MW. One of the modeling issues
with this system is that the two lower reservoirs, with uneven
water head, are connected to the same power station, such
that the station can only generate from one of them at a
time. Considering that one of the reservoir’s size is 2% of
the other with an equal amount of inflow, linear SDDP tended
to overestimate its ability to avoid spillage. This is handled
more precisely in the SDDiP framework.

The mean and standard deviation parameters for the stochas-
tic processes were extracted from price forecasts obtained from
a fundamental market model using inflow from 70 years of
historical data as input. For simplicity, we only use a single
inflow and energy price series in this work, as extensions to
multiple are straightforward.

The stagewise decision problem of the SDDiP formulation
consists of 137 constraints, 182 variables (120 continuous and
62 binary), 52 decision stages and 9 branches for each decision
stage. In each forward iteration we sampled 2 scenarios and
restricted the number of forward and backward iterations to

iteration

100 200 300 400 500

%

100

100.5

101

101.5

102

102.5

103
B   

SB  

SB+I

SB+L

Opt 

Fig. 4. Illustration of the upper bound for SDDiP of the MTHS problem with
6 stages, convex generation function and expected values for the stochastic
parameters. Values are given with the optimal value as base.

50. Lastly, a final simulation of 300 forward scenarios was per-
formed to evaluate the policy by calculating a 95% confidence
interval of the lower bound. For an even comparison between
the different methods we use the same scenarios in the forward
iteration. Computations were performed on a Dell Latitude
E7240 with an Intel Core i7-4600U processor with 2.7 GHz
clock rate and 16 GB RAM. The problem was formulated in
Python 3.5 with Gurobi 7.0 as the mathematical solver. We
did not implement any parallel processing except from default
settings in the MIP solver.

A. Validation
In order to validate the convergence properties of our imple-

mentation of the SDDiP method for the MTHS problem, a case
was constructed with only 6 decision stages, convex genera-
tion function and the stochastic parameters modeled by their
expected value. The upper bounds for different combinations
of cut families are illustrated in Figure 4. Due to the reduced
scale of the problem it is possible to compute the true optimal
value, illustrated by the lower line in the figure. The figure
shows the results from iteration 3 to 567, where convergence
is obtained using strengthened Benders and Lagrangian cuts
(SB+L). The reason to use Lagrangian and integer optimality
cuts combined with strengthened Benders is that strengthened
Benders cuts rapidly find a good stable solution, that the
other cuts can start from. From the figure, it is clear that
Benders (B) and strengthened Benders (SB) does improve
only up to a certain point, from there either Lagrangian or
integer optimality cuts are required to obtain convergence.
This does, however, come at a cost of significant increase of
computational time. The benefit of using strengthened Benders
cuts compared to Benders cuts is also evident, as we see the
gap is almost reduced by half.

B. Results

Now we turn to the 52-stage MTHS problem defined in
Section II where two different case studies were performed.
First, in Case I we modeled only uncertainty of inflow, then
in Case II we also included uncertainty of the energy price.
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TABLE I
CASE I, INFLOW UNCERTAINTY. SDDIP (TOP) AND APPROXIMATE

PROBLEM (BOTTOM).

UB stat. LB gap time
[kEUR] [kEUR] [%] [s]

B 47 353.72 40 776.87 13.89 16 792
B-SB 42 907.58 41 135.43 4.13 17 716
B-SB-I 42 854.80 41 197.25 3.87 30 277

B 47 030.08 40 973.28 12.88 742
B-SB 42 906.90 41 350.85 3.63 1 176

Subsequently, we tested the SDDiP method using Benders,
strengthened Benders and integer optimality cuts. Lagrangian
cuts were omitted due to computational requirement. We
also computed the approximate problem, as defined in Sec-
tion IV-C, with the Benders and strengthened Benders cut
families. Recall that for the approximate problem the state
variables are not required to be binary. The solution of the
approximate problem, when only using Benders cuts, will also
give an indication on how well the generic SDDP method
performs for the MTHS problem.

The expected profit for the given case study with a final
simulation of 300 forward scenarios is shown in Table I
and Table II for Case I and II, respectively. The reported
computation time includes final simulation and the gap is given
as UB−LB

UB .
We obtained good solutions after 50 iterations in both the

SDDiP and for the approximate problem. The approximate
problem is solved faster as there are less binary variables,
and the convergence gap is better for the given amount of
iterations. When comparing the solutions from the Benders to
the strengthened Benders cut families, for both SDDiP and
the approximate problem, a significant improvement of the
convergence gap is observed. This can also be seen in the
convergence plot in Figure 5. We see that after iteration 20
when the strengthened Benders cuts were added, both the
upper and lower bound for both cases improves.

The case with uncertain energy price results in a large
gap. When using strengthened Benders cuts a significant
improvement is observed compared to only Benders cuts.
By using the upper bound from Theorem 1 we can use the
approximate problem’s value with Benders cuts and compute
a tighter gap, referred to as gap in Table II. It shows that even-
though the upper bound initially was very high, the policy that
it provides is quite good. Notably is the improvement with
strengthened Benders cuts for the approximate problem with
superior policy and computation time compared to the other
results.

VII. DISCUSSION

We found that the integer cuts are not very computationally
efficient compared to solution improvement when applied for
the given case study. Lagrangian cuts were omitted from the
large case due for the same reason, and are therefore not
represented. On the other hand, the strengthened Benders cut
significantly improves solution quality compared to ordinary
Benders cuts with only a modest increase in computational

TABLE II
CASE II, INFLOW AND ENERGY PRICE UNCERTAINTY. SDDIP (TOP) AND

APPROXIMATE PROBLEM (BOTTOM).

UB stat. LB gap gap time
[kEUR] [kEUR] [%] [%] [s]

B 107 469.94 42 276.74 60.66 11.24 11 788
B-SB 84 380.16 43 802.85 48.09 7.37 13 896
B-SB-I 84 291.78 43 748.69 48.10 7.50 18 966

B 107 449.36 42 444.20 60.50 10.80 2 279
B-SB 84 367.26 43 891.43 47.98 7.15 2 869
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Fig. 5. Convergence plot for the different case studies with Benders and
strengthened Benders cuts. The solid line indicates the upper bound and the
other the expected lower bound. One can clearly observe how large the gap
difference is between Case I and II. The approximate method also follows
SDDiP close as seen for the dashed and dash-dot lines.

effort. We believe this is due to the characteristics of the
presented MTHS case; it seems more important to adjust the
right-hand side of the EFP function than to fine-tune its shape
by adjusting the cut coefficients. Many Norwegian hydropower
stations have high water head and their generation functions
are not significantly affected by head variations. It may be that
a nonconvex generation function with water head dependencies
found in other systems, e.g. as reported in [22], will lead to a
more pronounced shape of the EFP function, further justifying
the need for Lagrangian and integer cuts.

Due to the introduction of very large numbers in the
constraint matrix when adding integer optimality cuts, we have
observed increased computation time for the subproblems.
When comparing the computation time between the first stage
subproblem for Case II after 50 iterations with SB and SB+I
we observe an increase from 0.02 to 0.08 seconds. It is clear
that the added constraints with large coefficients make it diffi-
cult for the solver to find a solution quickly. Subsequently, the
integer optimality cuts do not provide good enough solution
improvements to justify the added computational burden we
observe, as seen in Table I and II.

Lastly, we observed that the lower bounds are higher for
the approximate problem, when comparing computations with
the same cut families, e.g. for Case I with Benders cuts the
approximate problem has a lower bound of 40 973.28 and
the SDDiP problem has 40 776.87. This follows from how
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the VAR-1 model is altered to a less than or equal constraint
to ensure feasibility of the model, as discussed in Section
III-B. In the final simulation, where we compute the lower
bound, there are some extreme scenarios where the model
are required to use an artificial penalty variable that ensures
relative complete recourse. Since the inflow state in the SDDiP
formulation is somewhat less than that of the approximate,
due to the relaxation of the equality constraint, a subsequently
higher penalty is observed in the order of the difference of the
lower bounds that explains this observation.

VIII. CONCLUSION

With the earlier mentioned challenges flexible power pro-
ducers encounter, we believe that binary state expansion and
the SDDiP algorithm gives the producers a useful tool to
address new challenges that involve nonconvexities in the
modeling.

We observed that our method performs very well when
omitting the uncertainty modeling of energy price, due to the
drawback of the big-M formulation. Nonetheless, it allowed us
to model the stochastic processes within a unified framework
and we showed that the resulting policy from SDDiP is
very good. Methods to improve the implementation of the
uncertainty of the energy price will be investigated in future
research, including methods on how to avoid the relaxation of
the VAR-1 constraint.

In the case study, we found that the strengthened Benders
cuts are superior to Benders cuts in finding good policies and
bounds. We also found that the strengthened Benders cuts
can be used in an approximate SDDiP method to provide
satisfying results for nonconvex MTHS problems, that also
includes a nonconvex generation function. To eventually close
the optimality gap, however, one would have to use SDDiP and
add either Lagrangian or Integer optimality cuts. Further, we
observed that adding Integer optimality cuts did not improve
the results enough to justify the increased computational time.
We emphasize that these findings are case-specific, and expect
that the efficiency of Lagrangian and Integer optimality cuts
will be higher in scheduling problems with more pronounced
nonconvexities.
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