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Abstract

We consider the problem of duplicate detection in noisy and incomplete data: Given a large data set in which each record
has multiple entries (attributes), detect which distinct records refer to the same real-world entity. This task is complicated
by noise (such as misspellings) and missing data, which can lead to records being different, despite referring to the same
entity. Our method consists of three main steps: creating a similarity score between records, grouping records together
into “unique entities”, and refining the groups. We compare various methods for creating similarity scores between noisy
records, considering different combinations of string matching, term frequency-inverse document frequency methods, and
n-gram techniques. In particular, we introduce a vectorized soft term frequency-inverse document frequency method, with
an optional refinement step. We also discuss two methods to deal with missing data in computing similarity scores. We test
our method on the Los Angeles Police Department Field Interview Card data set, the Cora Citation Matching data set, and
two sets of restaurant review data. The results show that the methods that use words as the basic units are preferable to those
that use 3-grams. Moreover, in some (but certainly not all) parameter ranges soft term frequency-inverse document frequency
methods can outperform the standard term frequency-inverse document frequency method. The results also confirm that our
method for automatically determining the number of groups typically works well in many cases and allows for accurate results
in the absence of a priori knowledge of the number of unique entities in the data set.

Keywords Duplicate detection - Data cleaning - Data integration - Record linkage - Entity matching - Identity uncertainty -
Transcription error

1 Introduction

Ryan de Vera—formerly California State University, Long Beach,
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Duplicate detection problems do not scale well. The num-
ber of comparisons which are required grows quadratically
with the number of records, and the number of possible sub-
sets grows exponentially. Unlinked duplicate records bloat
the storage size of the database and make compression into
other formats difficult. Duplicates also make analyses of the
data much more complicated, much less accurate, and may
render many forms of analyses impossible, as the data are no
longer a true representation of the real world. After a detailed
description of the problem in Sect. 2 and a review of related
methods in Sect. 3, we present in Sect. 4 a vectorized soft
term frequency-inverse document frequency (soft TF-IDF)
solution for string and record comparison. In addition to cre-
ating a vectorized version of the soft TF-IDF scheme we also
present an automated thresholding and refinement method,
which uses the computed soft TF-IDF similarity scores to
cluster together likely duplicates. In Sect. 5, we explore the
performances of different variations of our method on four
text databases that contain duplicates.

2 Terminology and problem statement

We define a data set D to be an n x a array where each
element of the array is a string (possibly the empty string).
We refer to a column as a field and denote the kth field c¥.
A row is referred to as a record, with r; denoting the ith
record of the data set. An element of the array is referred to
as an entry, denoted ¢; x (referring to the ith entry in the kth
field). Each entry can contain multiple features where a fea-
ture is a string of characters. There is significant freedom in
choosing how to divide the string which makes up entry e;
into multiple features. In our implementations in this paper,
we compare two different methods: (1) cutting the string at
white spaces and (2) dividing the string into N-grams. For
example, consider an entry ¢; ; which is made up of the string
“Albert Einstein”. Following method (1) this entry has two
features: “Albert” and “’Einstein”. Method (2), the N-gram
representation, creates features flk, o f f , corresponding
to all possible substrings of e; x containing N consecutive
characters (if an entry contains N characters or fewer, the full
entry is considered to be a single token). Hence, L is equal to
the length of the string minus (N — 1). In our example, if we
use N = 3, ¢; x contains 13 features. Ordered alphabetically
(with white space “” preceding “A”), the features are

f{( — 13 Ei?’, f2]( — “Alb’?, f3]{ — “Ein9” ff — ‘6ber’7’
fSIC — £4ein,’, f6]( — “ert”’ f‘7k — Géins9,’ f8]( — £4lbe79,

k [ 2 k [0 2 k [ kil k ‘. 2
Jo ="nst?, fig ="1t7, fiy ="ste”, fip ="tE,
fllc3 — “tei”.

In our applications, we remove any N-grams that consist
purely of white spaces.
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When discussing our results we will specify where we
have used method (1) and where we have used method (2), by
indicating if we have used word features or N -gram features,
respectively.

For each field, we create a dictionary of all features in that
field and then remove stop words or words that are irrelevant,
such as “and”, “the”, “or”, “None”, “NA”, or *“ ” (the empty
string). We refer to such words collectively as “stop words”
(as is common in practice) and to this reduced dictionary as
the set of features, f*, where:

AR VN SO AN o )

if the kth field contains m features. This reduced dictionary
represents an ordered set of unique features found in field c¥.

Note that 7, the number of features in £¥, depends on k,
since a separate set of features is constructed for each field.
To keep the notation as simple as possible, we will not make
this dependence explicit in our notation. Since, in this paper,
m is always used in the context of a given, fixed k, this should
not lead to confusion.

We will write f jk € e; x if the entry ¢;  contains the feature

f j/.‘. Multiple copies of the same feature can be contained in
any given entry. This will be explored further in Sect. 3.2.
Note that an entry can be “empty" if it only contains stop
words, since those are not included in the set of features f¥.

We refer to a subset of records as a cluster and denote it
R ={ry,...,r,} where each 7; € {1, 2,...n} is the index
of arecord in the data set.

The duplicate detection problem can then be stated as
follows: Given a data set containing duplicate records, find
clusters of records that represent a single entity, i.e., subsets
containing those records that are duplicates of each other.
Duplicate records, in this sense, are not necessarily identi-
cal records but can also be ‘near identical’ records. They are
allowed to vary due to spelling errors or missing entries.

3 Related methods

Numerous algorithms for duplicate detection exist, includ-
ing various probabilistic methods [32], string comparison
metrics [31,67], feature frequency methods [54], and hybrid
methods [14]. There are many other proposed methods for
data matching, record linkage and various stages of data
cleaning, that have a range of success in specific applications
but also come with their own limitations and drawbacks. Sur-
veys of various duplicate detection methods can be found in
[1,4,21,28,53].

Probabilistic rule-based methods, such as Fellegi—Sunter-
based models [67], are methods that attempt to learn features
and rules for record matching using conditional probabil-
ities; however, these are highly sensitive to the assumed
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model which is used to describe how record duplicates
are distributed across the database and become completely
infeasible at large scale when comparing all pairs. Other rule-
based approaches such as [58] attempt to create a set of rules
that is flexible enough to deal with different types of data sets.

Privacy-preserving record matching techniques [26,56],
based on hash encoding, are fast and scalable, but can only
handle exact matching (single character differences or small
errors in input result in completely different hash codes);
approximate matching-based methods are often possible but
typically not scalable.

Collective record matching techniques [24,47] have been
proposed that match records across multiple databases, using
a graph based on similarity of groups of entities. These
methods have shown promise in some applications where
entity relationships are identifiable (such as sharing the same
address or organization), but direct applications are limited
and are currently not generalizable or scalable.

Unsupervised or supervised techniques [23] can also be
used directly, using records as features, but in most applica-
tions labeled data does not exist for training or evaluation.
Additionally, standard testing data sets, used for compar-
ing methods, are extremely limited and weakly applicable
to most applications. Some techniques are developed specif-
ically to deal with hierarchical data, such as XML data [1,41].
We do not consider that situation here.

For larger data sets, a prefix filtering [71], blocking
[17,18,49,50] or windowing [7,18,33] step can be used. Such
methods can be seen as a preprocessing step which identifies
records which are not likely to be duplicates, such that the
pairwise feature similarity does only need to be computed
for those features that co-appear in likely duplicates. A sur-
vey of various such indexing methods is given in [13]. We
did not include an indexing step in our experiments in this
paper, so that our experiments are run without excluding any
record pairings a priori, but they can be incorporated into our
method.

Pay-as-you-go [66] or progressive duplicate detection
methods [33,51] have been developed for applications in
which the duplicate detection has to happen in limited time
on data which is acquired in small batches or in (almost) real-
time [40]. In our paper, we consider the situation in which
we have all data available from the start.

In [8], the authors suggest to use trainable similarity mea-
sures that can adapt to different domains from which the data
originate. In this paper, we develop our method using given
similarity measures, such that our method is applicable in the
absence of training data.

In the remainder of this section, we present in more detail
those methods which are related to the proposed method we
introduce in Sect. 4. We review both the Jaro and Jaro—
Winkler string metrics, the feature frequency-based term

frequency-inverse document frequency (TF-IDF) method,
and the hybrid soft TF-IDF method.

3.1 Character-based similarity: Jaro and
Jaro-Winkler

Typographical variations are a common cause of duplica-
tion among string data, and the prevalence of this type of
error motivates string comparison as a method for duplicate
detection. The Jaro distance [31] was originally devised for
duplicate detection in government census data and modified
by Winkler [67] to give more favorable similarities to strings
with matching prefixes. This latter variant is now known as
the Jaro—Winkler string metric and has been found to be
comparable empirically with much more complex measures
[14]. Despite their names, neither the Jaro distance nor the
Jaro—Winkler metric, are in fact distances or metrics in the
mathematical sense, since they do not satisfy the triangle
inequality, and exact matches have a score of 1, not 0. Rather,
they can be called similarity scores.

To define the Jaro—Winkler metric, we must first define
the Jaro distance. For two features ff and f /]f, we define the
character window size

W {min(lf,-"l, Iffl)J

ij = 2

where | fik| is the length of the string fik, i.e., the number of
characters in fik counted according to multiplicity. The /th
character of the string fik is said to match the I’th character
of f ]’.‘, if both characters are identical and [ — Wi]f j </ <

[+ Wlif Iz Let M be the number of characters in string fik
that match with characters in string f /’f (or, equivalently, the
number of characters in f /k that match with characters in fl.k),
let (ay, ..., ap) be the matched characters from fl.k in the
order they appear in the string fi" , and let (by,...,by) be
the matched characters from f ]k in order. Then ¢ is defined to
be half the number of transpositions between fl-k and f jk ,1.e.,
half the number of indices [ € {1, ..., M} such thatq; # b;.
Each such pair (a7, b;) is called a transposition pair. Now
the Jaro distance [31] J(fl.k, f]’.‘) is defined as

1(M+M+M—t) it M £ 0
= . . - b 1 9
JE =13\ M

0, if M =0.

Figure 1 shows an example of transpositions and matching
character pairs.

The Jaro—Winkler metric, JW( fl.k, f /’.‘ ), modifies the origi-
nal Jaro distance by giving extra weight to matching prefixes.
It uses a fixed prefix factor p to give a higher similarity score

@ Springer
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Fig.1 Example of a comparison of two features in the computation of
the Jaro distance, with character window size W = 4. The example has
seven matching character pairs, two of which are transposition pairs,
represented by the red lines. The green lines indicate matching pairs
that are not transpositions. Notice that “G” is not considered a matching
character as “G” in “NITHOWLG?” is the 8th character while “G” in
“NIGHTOWL” is the 3rd character, which is out of the W = 4 window
for this example. Here, J = %(% + % + 77;1) = 0.869 (color figure
online)

to features that start with the same characters. Given two
features fik and f k , the Jaro—Winkler metric is

WWGE D = IUE I+ pty (1= IGR D).

where J( fik, f ;‘) is the Jaro distance between two features
fik and f jk , pis a given prefix factor, and ¢; ; is the number of

prefix characters in fl.k that are the same as the corresponding
prefix characters in f j].‘ (i.e., the first £; ; characters in fl.k are

the same as the first £; ; characters in fkj and the (¢; ; + 1)th
characters in both features differ). When we want to stress
that, for fixed k, JW( fik, f ;‘) is an element of a matrix, we
write JW§ j=TW( 1K, f/’.‘), such that JWK e Rm*m,

In Winkler’s original work, he set p = 0.1 and restricted
£; j < 4 (even when prefixes of five or more characters were
shared between features) [67]. We follow the same parameter
choice and restriction in our applications in this paper. So
longaspt; ; <1 foralli, j, the Jaro-Winkler metric ranges
from O to 1, where 1 indicates exact similarity between two
features and O indicates no similarity between two features.

In Fig. 1, we have £ = 2, as both features have identical
first and second characters, but not a matching third character.
This leads to JW = 0.869 + 0.1 - 2 - (1 — 0.869) = 0.895.

Because we remove stop words and irrelevant words from
our set of features, it is possible for an entry e;  to contain
a feature that does not appear in f*. If a feature f € ek
does not appear in the dictionary f*, we set, for all f;‘ e 1k,

JW(f(f, f) := 0. We call such features f null features.

3.2 Feature-based similarity: TF-IDF

Another approach to duplicate detection, generally used in
big data record matching, looks at similar distributions of fea-
tures across records. This feature-based method considers
entries to be similar if they share many of the same fea-
tures, regardless of order; this compensates for errors such
as changes in article usage and varying word order (e.g., “The
Bistro”, “Bistro, The”, or “Bistro”), as well as the addition of
information (e.g., “The Bistro” and “The Bistro Restaurant”).

@ Springer

Algorithm 1: Jaro—Winkler Algorithm

Data: ¥, ann x 1 array of text
Result: JW¢ ¢ R
Create the set of features ¥ = ( flk y.
for each pair of features (f[k, f/].‘) do
Compute Jaro distance J; ; = J(fl.k, fj].‘)
Compute Jaro—Winkler similarity
Ji,j +pli j(1 = J; ), ifneither feature

o S

JW;‘.: _fikorf]l‘isa
/ null feature,
0, else
end

This form of duplicate detection is closely related to vec-
tor space models of text corpora [55], where a body of text
is represented as a vector in some word vector space. The
dimension of the space is the number of relevant words
(other words are assumed to be meaningless), and, for a given
record, each element of the vector representation is the fre-
quency with which a word appears in the entry. (It should be
noted that these models also disregard word order.) A more
powerful extension of these models is the term frequency-
inverse document frequency (TF-IDF) scheme [54]. This
scheme reweighs different features based on their frequency
in a single field as well as in an entry.

Using the reduced set of features, f k we create the term
frequency and inverse document frequency matrices. We
define the term frequency matrix for the kth field, TF e
R™™M " such that TFf." j is the number of times the feature
f jl.‘ appears in the entry e; x (possibly zero). A row of TF*
represents the frequency of every feature in an entry.

Next, we define the diagonal inverse document frequency
matrix IDFX € R"™*™ with diagonal elements'

n
|{eeck:fik € e}l

IDF; ; := log

where |{e € ¢* : fik € e} is the number of entries? in field c
containing feature fik ,and where n is the number of records in
the data set. The matrix IDF uses this number of entries in the
field which contain a given feature to give this feature a more
informative weight. The issue when using term frequency
only, is that it gives features that appear frequently a higher
weight than rare features. The latter often are empirically
more informative than common features, since a feature that
occurs frequently in many entries is unlikely to be a good
discriminator.

! We use log to denote the natural logarithm in this paper.

2 By the construction of our set of features in Sect. 2, this number of
entries is always positive.
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The resulting weight matrix for field k is then defined with
a logarithmic scaling for the term frequency as’

TFIDF* := N*log(TF* + 1)IDF*, )

where 1 is an n x m matrix of ones, the log operation acts on
each element of TF* + 1 individually, and N ke Rrxnjga
diagonal normalization matrix such that each nonzero row of
TFIDFX has unit £! norm.* The resulting matrix has dimen-
sion n x m. Each element TFIDFf.‘ . represents the weight
assigned to feature j in field k for record i. Note that each
element is nonnegative.

Algorithm 2: TF-IDF Algorithm
Data: ¢*, an n x 1 array of text
Result: TFIDF* € R"™™
Create the set of features f* = (_flk, ..
for each pair of features ( fl.k, f Jk ) do

‘ Compute term frequency TF{.‘, j

I

end
for each feature fik do

‘ Compute inverse document frequency IDF{FJ.
end
Initialize TFIDF* = log(TF* + 1)IDF*
Normalize rows of TFIDF¥ to have unit £' norm

3.3 Hybrid similarity: soft TF-IDF

The previous two methods concentrate on two different
causes of record duplication, namely typographical error and
varying word order. It is easy to imagine; however, a case
in which both types of error occur; this leads us to a third
class of methods which combine the previous two. These
hybrid methods measure the similarity between entries using
character similarity between their features as well as weights
of their features based on importance. Examples of these
hybrid measures include the extended Jacard similarity and
the Monge—Elkan measure [46]. In this section, we will dis-
cuss another such method, soft TF-IDF [14], which combines
TF-IDF with a character similarity measure. In our method,
we use the Jaro—Winkler metric, discussed in Sect. 3.1, as
the character similarity measure in soft TF-IDF.

3 Note that, following [14], we use a slightly different logarithmic scal-
ing, than the more commonly used TFIDFf." i = ( log(TFf." D+ 1)IDF¥

i,i’

if TFf ; # 0, and TFIDF} ; = 0, if TF} ; = 0. This avoids having

to deal with the case TFf.‘_ ;= 0 separately. The difference between
k ok : k

log(TFiyj) + 1 and log(TFiiyj + 1) is bounded by 1 for TFi,j > 1.

4 Here, we deviate from [14], in which the authors normalize by the 02

norm. We do this so that later in Eq. (3), we can guarantee that the soft
TF-IDF values are upper bounded by 1.

For 6 € [0, 1), let Sili j(Q) be the set of all index pairs
(p.q) € R™™ such that f € e, ff € ej and
IW(fE, f§) > 6, where JW is the Jaro-Winkler similarity
metric from (1). The soft TF-IDF similarity score between
two entries ¢; x and ¢ x in field c* is defined as

k k k T
Zk TFIDF; , ~TFIDFM AW g i FE
(p.q)€S; ;(0)
1, ifi =j.
(€)

STFIDF; ; :=

The parameter 6 allows for control over the similarity of fea-
tures, removing entirely pairs that do not have Jaro—Winkler
similarity above a certain threshold. The results presented in
this paper are all obtained with 6 = 0.90.

The soft TF-IDF similarity score between two entries is
high if they share many similar features, where the similar-
ity between features is measured by the Jaro—Winkler metric
and the contribution of each feature is weighted by its TF-
IDF score. If we contrast the soft TF-IDF score with the
TF-IDF score described in Sect. 3.4, we see that the latter
only uses those features which are exactly shared by both
entries, whereas the former also incorporates contributions
from features that are very similar (but not exactly the same).
This means that the soft TF-IDF score allows for high sim-
ilarity between entries in the presence of both misspellings
and varying word (or feature) order more so than the TF-IDF
score does.

Note from (3) that for all 7, j, and k, we have sTFIDFi." j €
[0, 1]. The expression for the case i # j does not necessar-
ily evaluate to 1 in the case i = j. Therefore, we explicitly
included sTFIDFi.‘Y ; = 1 as part of the definition, since this is
areasonable property for a similarity measure to have. Luck-
ily, these diagonal elements of sTFIDFF will not be relevant
in our method, so the i = j part of the definition is more
for definiteness and computational ease,” than out of strict
necessity for our method.

In practice, this method’s computational cost is greatly
reduced by vectorization. Let M*? € R™*™ be the Jaro—
Winkler similarity matrix defined by

ko VIV 1) AW, f) = 6,
P o, if IW(FE, £5) < 0.

5 The values of the diagonal elements are not relevant theoretically,
because any record is always a ‘duplicate’ of itself and trivially will
be classified as such, i.e., each record will be clustered in the same
cluster as itself. However, if the diagonal elements are not set to have
value 1, care must be taken that this does not influence the numerical
implementation.

@ Springer
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The soft TF-IDF similarity for each (i, j) pairing (i # j)
can then be computed as

m
STFIDF, ; = > [(TFIDF{ TFIDF ) s 57]
’ P9
p-q=1

where TFIDFZF denotes the ith row of the TF-IDF matrix
of field c* and * denotes the Hadamard product (i.e., the
element-wise product). We can further simplify this using

—k,0 . .
tensor products. Let M denote the vertical concatenation
of the rows of M*?.

T
Myt

k6T
—k,0 _ M2

T
mL?
where Ml.k’e is the ith row of M*?. We then have

STFIDF! ; = (TFIDF{ ® TFIDF) « 1",

if i # j. Here ® is the Kronecker product. Finally, we set
the diagonal elements sTFIDFf?’i =1.

Algorithm 3: soft TF-IDF Algorithm

Data: JWk € R™*" TFIDFt € R™™, 6
Result: sTFIDF* € R"™"
Create the set of features f* = ( flk, ..
for each pair of features (fl.k, f;‘) do

‘ Compute the thresholded Jaro—Winkler matrix Mlk .ie
end

I

Vertically concatenate rows of M*? :

— T T T

M = R MR Mk

for each pair of entries (e; k. e; ) in field & do
Compute soft TF-IDF fori # j:

sTFIDF} i= (TFIDFf ® TFIDFJ’F y s 7
end
Set the diagonal elements sTFIDFf"i =1

The TF-IDF and Jaro—Winkler similarity matrices are typ-
ically sparse. This sparsity can be leveraged to reduce the
computational cost of the soft TF-IDF method as well.

The soft TF-IDF scores above are defined between entries
for a single field. For each pair of records, we produce a
composite similarity score ST; ; by adding their soft TF-IDF
scores over all fields:

a
ST;,j := Y _ sTFIDF} ;. )
k=1

@ Springer

Hence, ST € R™*" and ST; ; is the score between the ith
and jth records. Remember that a is the number of fields in
the data set, thus each composite similarity score ST; ; is a
number in [0, a].

For some applications, it may be desirable to let some
fields have a greater influence on the composite similarity
score than others. In the above formulation, this can eas-
ily be achieved by replacing the sum in (4) by a weighted
sum:

a
ST}, :== Y wy sTFIDF} ;.
k=1

for positive weights wy € R, k € {1, ..., a}. If the weights
are chosen such that ZZ: | Wi < a, then the weighted com-
posite similarity scores ST;I,). j take values in [0, a], like ST; ;.
In this paper, we use the unweighted composite similarity
score matrix ST.

3.4 Using TF-IDF instead of soft TF-IDF

In our experiments in Sect. 5, we will also show results
in which we use TF-IDF, not soft TF-IDF, to compute
similarity scores. This can be achieved in a completely
analogous way to the one described in Sect. 3.3, if we
replace JW’;,q in (3) by the Kronecker delta §,, :=

1, if p=gq, .
ne q The dependency on 6 disappears and we
0, otherwise.
get
5 (tFDEE )’
TFIDF! ) . ifi #
sTFIDFj{j =1,2 P 5)
1, ifi =j.

Note that the values for i 7~ j correspond to the off-diagonal
values in the matrix TFIDF¥ (TFIDFI‘)T € R"™" where
TFIDF is the TE-IDF matrix from (2) and the superscript 7
denotes the matrix transpose.®

We used the same notation for the matrices in (3) and (5),
because all the other computations, in particular the com-
putation of the composite similarity score in (4) which is
used in the applications in Sect. 5, follow the same recipe
when using either matrix. Where this is of importance in
this paper, it will be clear from the context if ST has been
constructed using the soft TF-IDF or TF-IDF similarity
scores.

© Qur choice to normalize the rows of TFIDF by their £! norms
instead of their ¢> norms means that the diagonal elements of

TFIDF¢ (TFIDF")T are not necessarily equal to 1.
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Fig.2 An outline of our method for duplicate detection

4 The proposed methods

We extend the soft TF-IDF method to address two com-
mon situations in duplicate detection: sparsity due to missing
entries and large numbers of duplicates. For data sets with
only one field, handling a missing field is a non-issue; a miss-
ing field is irreconcilable, as no other information is gathered.
In a multi-field setting, however, we are faced with the prob-
lem of comparing partially complete records. Another issue
is that a record may have more than one duplicate. If all
entries are pairwise similar we can easily justify linking them
all, but in cases where one record is similar to two different
records which are dissimilar to each other the solution is not
so clear-cut.

Figure 2 shows an outline of our method. First, we use
TF-IDF to assign weights to features that indicate the impor-
tance of that feature in an entry. Next, we use soft TF-IDF
with the Jaro—Winkler metric to address spelling inconsis-
tencies in our data sets. After this, we adjust for sparsity by
taking into consideration whether or not a record has miss-
ing entries. Using the similarity matrix produced from the
previous steps, we threshold and group records into clusters.
Lastly, we refine these groups by evaluating how clusters
break up under different conditions.

4.1 Adjusting for sparsity

A missing entry is an entry that is either entirely empty from
the start or one that contains only null features and thus
ends up being empty for our purposes. Here, we assume that
missing entries do not provide any information about the
record and therefore cannot aid us in determining whether

two records should be clustered together (i.e., labeled as
probable duplicates). In [62], [67], and [3], records with
missing entries are discarded, filled in by human fieldwork,
and filled in by an expectation—maximization (EM) impu-
tation algorithm, respectively. For cases in which a large
number of entries are missing, or in data sets with a large
number of fields such that records have a high probability
of missing at least one entry, these first two methods are
impractical. Furthermore, the estimation of missing fields
is equivalent to unordered categorical estimation. In fields
where a large number of features are present (i.e., the set of
features is large), estimation by an EM scheme becomes com-
putationally intractable [29,52,69]. Thus, a better method is
required.

Leaving the records with missing entries in our data set,
both TF-IDF and Jaro—Winkler remain well defined, allow-
ing (soft) TF-IDF schemes to proceed. However, because the
Jaro—Winkler metric between a null feature and any other
feature is O, the soft TF-IDF score between a missing entry
and any other entry is 0. This punishes sparse records in the
composite soft TF-IDF similarity score matrix ST. Even if
two records have the exact same entries in fields where both
records do not have missing entries, their missing entries
deflate their composite soft TF-IDF similarity. Consider the
following example using two records (from a larger data set

ELINNT3

containing n > 2 records) and three fields: [“Joe Bruin”,
”, “male”] and [“Joe Bruin’, “CA”, “’]. The two records are
likely to represent a unique entity “Joe Bruin”, but the com-
posite soft TF-IDF score between the two records is on the
lower end of the similarity score range (1 out of a maximum
of 3) due to the missing entry in the second field for the first
record and the missing entry in the third field for the sec-
ond record. The issue described above for the soft TF-IDF
method is also present for the TF-IDF method described in
Sect. 3.4.

To correct for this, we take into consideration the number
of mutually present (not missing) entries in the same field
for two records. This can be done in a vectorized manner to
accelerate computation. Let B be the n x a binary matrix
defined by

0, if ¢; ¢ is a missing entry,
Bi = )
1, otherwise.

This is a binary mask of the data set, where 1 denotes a
non-missing entry (with or without error), and O denotes a
missing entry. In the product BBT € R"*", each (BBT),;j
is the number of “shared fields” between records r; and 7},
i.e., the number of fields ¢f such that both ejy and ej i are
non-missing entries. Our adjusted (soft) TF-IDF similarity
score is given by

@ Springer



International Journal of Data Science and Analytics

ST.) o,
| FaT ifi# jand (BBY); ; #0,
adjST; ; := qo0, ifi # jand (BBY); ; =0, (6
1, ifi =j.

Remembering that JW(fII,‘, f(;‘) =0if f;,‘ is a null feature or
fé‘ isanull feature, we see that, if ¢;  is amissing entry ore; ¢
is a missing entry, then the set Sl.]" j(9) used in (3) is empty
(independent of the choice of 8) and thus sTFIDFi." ;= 0.
The same conclusion is true in (5) since the ith or jth row of
TFIDF¥ consists of zeros in that case. Hence, we have that,
forall i, j (i # j), (ST);; € [0, (BBT)i,j] (which refines
our earlier result that (ST); ; € [0, a]) and thus (adjST); ; €
[0, 1].

In the event that there are records r; and r; such that
(BBT),;j = 0, it follows that ST; ; = 0. Hence, it makes
sense to define adjST; ; to be zero in this case. In the data
sets we will discuss in Sect. 5, no pair of records was without
shared fields. Hence, we can use the shorthand expression
adjST = ST @ BBT for our purposes in this paper,’ where
@ denotes element-wise division.

Algorithm 4: Adjusting for Sparsity

Data: sTFIDFF € R"*" fork € {1,...,a}, Dann X a array of
text
Result: adjST € R"*"
for each entry e; . in each field c* of D do
| Compute B;
end
Initialize ST = Y, sTFIDF*
Adjust ST for sparsity: adjST = ST @ BBT

Instead of the method proposed above to deal with miss-
ing data, we can also perform data imputation to replace the
missing data with a “likely candidate” [4,30,34,35,39,65]. To
be precise, before computing the matrix B, we replace each
missing entry e; x by the entry which appears most often in
the kth field.3 In case of a tie, we choose an entry at random
among all the entries with the most appearances (we choose
this entry once per field, such that each missing entry in a
given field is replaced by the same entry). For a clean com-
parison, we still compute the matrix B (which has now no 0
entries) and use it for the normalization in (6). The rest of our

7 Since we defined the inconsequential diagonal entries to be
STFIDF}; = 1 in (3) and (5), it could be that (ST);; > (BBT);;
for some i, which is why we explicitly defined (adjST); ; = 1 in (6) for
consistency with the other values. Since the diagonal values will play
no role in the eventual clustering this potential discrepancy between (6)
and adjST = ST @ BBT is irrelevant for our purposes.

8 We use the mode, rather than the mean, because all our data is either
textual or, when numeric, it is ordinal, rather than cardinal, such as in
the case of social security numbers.
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method is then implemented as usual. We report the results
of this comparison in Sect. 5.4.

4.2 Thresholding and grouping

The similarity score adjST; ; gives us an indication of how
similar the records r; and r; are. If adjST; j is close to 1,
then the records are more likely to represent the same entity.
Now, we present our method of determining whether a set of
records are duplicates of each other based on adjST. There
exist many clustering methods that could be used to accom-
plish this goal. For example, [45] considers this question in
the context of duplicate detection. For simplicity, in this paper
we restrict ourselves to a relatively straightforward thresh-
olding procedure, but other methods could be substituted in
future implementations. We call this the thresholding and
grouping step (TGS).

The method we will present below is also applicable to
clustering based on other similarity scores. Therefore, it is
useful to present it in a more general format. Let SIM € R"*"
be a matrix of similarity scores, i.e., for all i, j, the entry
SIM; . is a similarity score between the records r; and r;.
We assume that, for alli # j, SIM; ; = SIM;; € [0, a].” If
we use our adjusted (soft) TF-IDF method, SIM is given by
adjST from (6). In Sect. 4.1 we saw that in that case we even
have SIM; ; € [0, 1].

Let 7 € [0, a] be a threshold and let S be the thresholded
similarity score matrix defined for i # j as

g = 1, ifSIMi,jET,

o, ifsM < T
The outcome of our method does not depend on the diagonal
values, but for definiteness (and to simplify some computa-
tions) we set S; ; := 1, for all i. If we want to avoid trivial
clusterings (i.e., with all records in the same cluster, or with
each cluster containing only one record) the threshold value
T must be chosen in the half-open interval

(min SIM; j, max SIM,',j].
ijiji i,jij#i

If S;,; = 1, then the records r; and r; are clustered
together. Note that this is a sufficient, but not necessary con-
dition for two records to be clustered together. For example,
if §;; = 0,but S;x = 1and §;x = 1, then r; and r; are
clustered together, as are r; and ry, and thus so are r; and r;.
The output of the TGS is a clustering of all the records in the
data set, i.e., a collection of clusters, each containing one or

9 We will not be concerned with the diagonal values of SIM, because
trivially any record is a ‘duplicate’ of itself, but for definiteness we may
assume that, for all i, SIM; ; = a.
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more records, such that each record belongs to exactly one
cluster.

The choice of t is crucial in the formation of clusters.
Choosing a threshold that is too low leads to large clusters of
records that represent more than one unique entity. Choosing
a threshold that is too high breaks the data set into a large
number of clusters, where a single entity may be represented
by more than one cluster. Here, we propose a method of
choosing t.

Let H € R” be the n x 1 vector defined by

H; := max SIM; ;.
1<j=n
J#
In other words, the ith element of H is the maximum sim-
ilarity score SIM; ; between the ith record and every other
record. Now define

__|r(H) +o(H), if u(H)+o(H) < max; H;

W(H), else,
where (1 (H) is the mean value of H and o (H) is its corrected
sample standard deviation.'”

We choose 7y in this fashion, because it is easily imple-
mentable, has shown to work well in practice (see Sect. 5)
even if it is not always the optimal choice, and is based on
some underlying heuristic ideas and empirical observations
of the statistics of H in our data sets (which we suspect to
be more generally applicable to other data sets) that we will
explain below. It provides a good alternative to trial-and-
error attempts at finding the optimal t, which can be quite
time-intensive.

For a given record r;, the top candidates to be duplicates of
r; are those records r; for which SIM; ; = H;. A typical data
set, however, will have many records that do not have dupli-
cates at all. To reflect this, we do not want to set the threshold
Ty lower than w(H). If H is normally distributed, this will
guarantee that at least approximately half of the records in
the data set will not be clustered together with any other
record. In fact, in many of our runs (Fig. 3a is a representa-
tive example), there is a large peak of H values around the
mean value w(H). Choosing tg equal to w(H) in this case
will lead to many of the records corresponding to this peak
being clustered together, which is typically not preferred.
Choosing ty = w(H) + o (H) will place the threshold far
enough to the right of this peak to avoid overclustering, yet
also far enough removed from the maximum value of H so
that not only the top matches get identified as duplicates. In
some cases, however, the distribution of H values has a peak
near the maximum value instead of near the mean value (as,
for example, in Fig. 3b) and the value u(H) + o (H) will

10 We used MATLAB’s std function.
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Fig. 3 Histograms of H for different methods applied to the FI and
RST data sets (see Sect. 5.1). a H corresponding to the TF-IDF method
(with word feature, without refinement step, see Sect. 4.3) applied to
the FI data set. The red line is the chosen value 1y = u(H)+o (H); the
blue line indicates ;(H), b H corresponding to the soft TF-IDF method
(with 3-gram features, with refinement, see Sect. 4.3) applied to the RST
data set. The blue line indicates the chosen value ty = w(H); the red
line indicates w(H) + o (H) (color figure online)

be larger than the maximum H value. In those cases, we can
choose Ty = w(H) without risking overclustering.

It may not always be possible to choose a threshold in
such a way that all the clusters generated by our TGS corre-
spond to sets of actual duplicates, as the following example,
illustrated in Fig. 4, shows. We consider an artificial toy data
set for which we computed the adjusted soft TF-IDF simi-
larity, based on seven fields. We represent the result of the
TGS as a graph in which each node represents a record in
the data set. We connect nodes i and j (i # j) by an edge
if and only if their similarity score SIM; ; equals or exceeds
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Threshold = 5.5

Joey Bruin
Joan L
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(a)

Threshold = 5.6
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Fig. 4 Two examples of clusters created by the TGS applied to an
artificial data set, with different threshold values t. a Result of the TGS
with T = 5.5, b Result of the TGS with t = 5.6

the chosen threshold value 7. The connected components of
the resulting graph then correspond to the clusters the TGS
outputs.

For simplicity, Fig. 4 only shows the features of each entry
from the first two fields (first name and last name). Based on
manual inspection, we declare the ground truth for this exam-
ple to contain two unique entities: “Joey Bruin" and “Joan
Lurin". The goal of our TGS is to detect two clusters, one
for each unique entity. Using T = 5.5, we find one cluster
(Fig. 4a). Using T = 5.6, we do obtain two clusters (Fig. 4b),
but it is not true that one cluster represents “Joey Bruin” and
the other “Joan Lurin”, as desired. Instead, one cluster con-
sists of only the “Joey B” record, while the other cluster
contains all other records. Increasing t further until the clus-
ters change would only result in more clusters; therefore,
we cannot obtain the desired result this way. This happens
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because the adjusted soft TF-IDF similarity between “Joey
B" and “Joey Bruin" (respectively, “Joe Bruin”) is less than
the adjusted soft TF-IDF similarity between “Joey Bruin"
(respectively, “Joe Bruin”) and “Joan Lurin". To address this
issue, we apply a refinement step to each set of clustered
records created by the TGS, as explained in the next section.

The graph representation of the TGS output turns out to
be a very useful tool and we will use its language in what
follows interchangeably with the cluster language.

Algorithm 5: Thresholding and grouping

Data: SIM = ST € R"*" threshold value 7 (manual choice or
automatic T = ty)
Result: a collection of ¢ clusters C = {R; ... R;}
for each i do
| Initialize S;; = 1
end
for each pair of distinct records r; and r; do
| Compute S; ;
end
for each pair of distinct records r; and r; do
| IfS; ; =1, assignr; and r; to the same cluster
end

4.3 Refinement

As the discussion of the TGS and the example in Fig. 4 have
shown, the clusters created by the TGS are not necessarily
complete subgraphs: it is possible for a cluster to contain
records 7;, r;j for which §; ; = 0. In such cases, it is a priori
unclear if the best clustering is indeed achieved by grouping
r; and r ; together or not. We introduce a way to refine clusters
created in the TGS, to deal with situations like these. We take
the following steps to refine a cluster R:

1. determine whether R needs to be refined by determining
the cluster stability with respect to single record removal;

2. if R needs be to refined, remove one record at a time from
R to determine the ‘optimal record’ r* to remove;

3. if r* is removed from R, find the subcluster that r* does
belong to.

Before we describe these steps in more detail, we introduce
more notation. Given a cluster (as determined by the TGS)
R={ry,..., rtp} containing p records, the thresholded sim-
ilarity score matrix of the cluster R is given by the restricted
matrix S|z € RP*P with elements (S[g);,; Sti ;-
Remember we represent R by a graph, where each node cor-
responds to a record 7, and two distinct nodes are connected
by an edge if and only if their corresponding thresholded
similarity score (S|g);,j is 1. If arecord ry; is removed from
R, the remaining set of records is
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Fig.5 An example of a cluster
R that does not require
refinement. Each node
represents a record. In each test,
we remove one and only one
node from the cluster and apply
TGS again. The red node
represents the removed record
1y, the remaining black nodes
make up the set R(#;). Notice
that every time we remove a
record, all other records are still
connected to each other by solid
lines; hence, R does not need to
be refined (color figure online)

R(ry,) == {rey, .o Tty Py s ...,r,p}. We define the sub-
clusters Ry, ...R, of R(r;) as the subsets of nodes cor-
responding to the connected components of the subgraph
induced by R(r(#;)).

Step 1. Starting with a cluster R from the TGS, we first
determine if R needs to be refined, by investigating, for each
1y, € R, the subclusters of R(ry,). If, forevery r;, € R, R(ry;)
has a single subcluster, then R need not be refined. An exam-
ple of this is shown in Fig. 5. If there is an r; € R, such that
R(ry;) has two or more subclusters, then we refine R.

Step 2. For any set R consisting of p records, we define its
strength as the average similarity between the records in R:

14

> (Slpij

i,j=1

s(R) := . ifp =2, @)
2

0, if p=1.

Note that s(R) = 1 if S|z = 17*P (it suffices if the off-
diagonal elements satisfy this equality). In other words, a
cluster has a strength of 1 if every pair of distinct records in
that cluster satisfy condition 1 of the TGS.

If in Step 1 we have determined that the cluster R requires
refinement, we find the optimal record r* := T« such that
the average strength of subclusters of R(r*) is maximized:

q(i)
k= arg max ;< , —— Zs(Rj).
q() =

Here, the sum is over all j such that R; is a subcluster of
R(ry;), and ¢ (i) is the (i-dependent) number of subclusters of
R(ry;). In the unlikely event that the maximizer is not unique,
we arbitrarily choose one of the maximizers as k*. Since
the strength of a subcluster measures the average similarity
between the records in that subcluster, we want to keep the

strength of the remaining subclusters as high as possible after
removing r* and optimizing the average strength is a good
strategy to achieve that.

Step 3. After finding the optimal r* to remove, we now must
determine the subcluster to which to add it. We again use the
strength of the resulting subclusters as a measure to decide
this. We evaluate the strength of the set R; U {r*} C R, for
each subcluster R; C R(r*). We then add r* to subcluster
R+ to form R* := Ry« U {r*}, where

I*:=  argmax

J: Rj is a subcluster
of R(r*)

s(Rj U{r™}).

In the rare event that the maximizer is not unique, we arbi-
trarily choose one of the maximizers as [*. Choosing [* in
this way ensures that 7* is similar to the records in R;.

We always add r* to one of the other subclusters and do
not consider the possibility of letting {r*} be its own cluster.
Note that this is justified, since from our definition of strength
in (7), s({r*}) = 0 < s(R*), because r* was connected to at
least one other record in the original cluster R.

Finally, the original cluster R is removed from the output
clustering, and the new clusters
Ri,...,Rx_1, R*, Rpsp, ..., Rq(k*) are added to the clus-
tering.

Figure 6 shows an example of how the refinement helps
us to find desired clusters.

In our implementation, we computed the optimal values k*
and [* are via an exhaustive search over all parameters. This
can be computationally expensive when the initial threshold
T is small, leading to large initial clusters.

We only applied the refinement step process once (i.e., we
executed Step 1 once and for each cluster identified in that
step we applied Steps 2 and 3 once each). It is possible to iter-
ate this three-step process until no more ‘unstable’ clusters
are found in Step 1.
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Fig.6 An example of how refinement is used to improve our clusters.
The left figure shows that by removing the record “Joan Lurin”, we
obtain the two desired subsets. The right figure shows that “Joan Lurin”
is inserted back into the appropriate cluster. Note that we have not
changed the threshold value t during this process

Algorithm 6: Refinement

Data: R = {r;,, ..., r;,} a cluster resulting from the TGS
Result: R set of refined clusters
if there exists ry; such that R(ry,) has more than 1 subcluster then
for each r;, € R do

Find the subclusters Ry, ... Ry of R(ry;)

Compute % (11.:1 s(Rj)

end

Assign r* = ry,, where k* = argmax; é 3:1 s(Rj)
for each subcluster R; C R(r*) do
| Compute s(R; U {r*})
end
Assign R* = (Rp= U {r*}) where I* = argmax; s(R; U {r*})

R={R1,..., Rpx—1, Ry, Rpx11, ..., Ry}
end
else
| Do not refine R: R = {R}
end
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5 Results
5.1 The data sets

The results presented in this section are based on four data
sets: the Field Interview Card data set (FI), the Restaurant
data set (RST), the Restaurant data set with entries removed
to induce sparsity (RST30), and the Cora Citation Matching
data set (Cora). FI is not publicly available. The other data
sets currently can be found at [20]. Cora can also be accessed
at[16]. RST and Cora are also used in [8] to compare several
approaches to evaluate duplicate detection.

Fl This data set consists of digitized Field Interview cards
from the LAPD. Such cards are created at the officer’s dis-
cretion whenever an interaction occurs with a civilian. They
are not restricted to criminal events. Each card contains 61
fields of which we use seven: last name, first name, mid-
dle name, alias/moniker, operator license number (driver’s
license), social security number, and date of birth. A sub-
set of this data set is used and described in more detail in
[63]. The FI data set has 8,834 records, collected during the
years 2001-2011. A ground truth of unique individuals is
available, based on expert opinion. There are 2,920 unique
people represented in the FI data set. The FI data set has many
misspellings as well as different names that correspond to the
same individual. Approximately 30% of the entries are miss-
ing, but the “last name” field is without missing entries.

RST This data set is a collection of restaurant information
based on reviews from Fodor and Zagat, collected by Dr.
Sheila Tejada [59], who also manually generated the ground
truth. It contains five fields: restaurant name, address, loca-
tion, phone number, and type of food. There are 864 records
containing 752 unique entities/restaurants. There are no miss-
ing entries in this data set. The types of errors that are
present include word and letter transpositions, varying stan-
dards for word abbreviation (e.g., “deli” and “delicatessen”),
typographical errors, and conflicting information (such as
different phone numbers for the same restaurant).

RST30 To be able to study the influence of sparsity of the
data set on our results, we remove approximately 30% of
the entries from the address, city, phone number, and type of
cuisine fields in the RST data set. The resulting data set we
call RST30. We choose the percentage of removed entries to
correspond to the percentage of missing entries in the FI data
set. Because the FI data set has a field that has no missing
entries, we do not remove entries from the “name” field.
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Table 1 Summary of methods used

Name Similarity matrix Features Ref.
TFIDF ST using (5) Words No
TFIDF 3g ST using (5) 3-grams No
SsTFIDF ST using (3) ‘Words No
sTFIDF 3g ST using (3) 3-grams No
STFIDF ref ST using (3) Words Yes
sTFIDF 3g ref ST using (3) 3-grams Yes

The second, third, and fourth columns list for each method which sim-
ilarity score matrix is used in the TGS, if words or 3-grams are used as
features, and if the refinement step is applied after TGS or not, respec-
tively. Equation (4) is always used to compute the similarity score, but
the important difference is whether the soft TF-IDF matrix from (3) or
the TF-IDF matrix from (5) is used in (4)

Cora The records in the Cora Citation Matching data set'!
are citations to research papers [43]. Each of Cora’s 1,295
records is a distinct citation to any one of the 122 unique
papers to which the data set contains references. We use three
fields: author(s), name of publication, and venue (name of
the journal in which the paper is published). This data set
contains misspellings and a small amount of missing entries
(approximately 3%).

5.2 Evaluation metrics

We compare the performances of the methods summarized
in Table 1. Each of these methods outputs a similarity matrix,
which we then use in the TGS to create clusters.

To evaluate the methods, we use purity [27], inverse purity,
their harmonic mean [25], the relative error in the number
of clusters, precision, recall [9,15], the F-measure (or Fi
score) [6,64], z-Rand score [44,60], and normalized mutual
information (NMI) [57], which are all metrics that compare
the output clusterings of the methods with the ground truth.

Purity and inverse purity compare the clusters of records
which the algorithm at hand gives with the ground truth
clusters. Let C := {Ry, ..., R.} be the collection of ¢ clus-
ters obtained from a clustering algorithm and let C’' :=
{R], ..., R/} be the collection of ¢’ clusters in the ground
truth. Remember that 7 is the number of records in the data
set. Then we define purity as

l C
Pur(C,C) := - 21: max |R; N R
i=

/'|
1<j<c I

where we use the notation |A| to denote the cardinality of a
set A. In other words, we identify each cluster R; with (one of
the) ground truth cluster(s) R} which shares the most records

1 The Cora data set should not be confused with the Coriolis Ocean
database ReAnalysis (CORA) data set.

with it, and compute purity as the total fraction of records that
is correctly classified in this way. Note that this measure is
biased to favor many small clusters over a few large ones. In
particular, if each record forms its own cluster, Pur = 1. To
counteract this bias, we also consider inverse purity,

1<
Inv(C,C') :=Pur(C’,C) = — Z max |R. N R;|.
n‘—l=<j=c
i=1
Note that inverse purity has a bias that is opposite to purity’s
bias: if the algorithm outputs only one cluster containing all
the records, then Inv = 1.
We combine purity and inverse purity in their harmonic

mean,12

2Pur x Inv

HM(C,C) = o

The relative error in the number of clusters in C is defined
as

licr =11 Ce=¢
cr ¢

We define precision, recall, and the F-measure (or F
score) by considering pairs of clusters that have correctly
been identified as duplicates. This differs from purity and
inverse purity as defined above, which consider individual
records. To define these metrics the following notation is
useful. Let G be the set of (unordered) pairs of records that
are duplicates, according to the ground truth of the particular
data set under consideration,

G:={{r,s}:r#sand3R € s.t.r,s e R},

and let C be the set of (unordered) record pairs that have
been clustered together by the duplicate detection method of
choice,

C .= {{r,s}:r;ésandEIReCs.t.r,seR}.

Precision is the fraction of the record pairs that have been
clustered together that are indeed duplicates in the ground
truth,

_lcng)

PI‘C(C, C/) = T,

12 The harmonic mean of purity and inverse purity is sometimes also
called the F-score or F-score, but we will refrain from using this ter-
minology to not create confusion with the harmonic mean of precision
and recall.
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and recall is the fraction of record pairs that are duplicates in
the ground truth that have been correctly identified as such
by the method

IC NG

Rec(C,(C)) = Gl

The F-measure or Fy score is the harmonic mean of precision
and recall,

Pre(C,C’) x Rec(C,C")
Pre(C,C') + Rec(C,C)

IC NG|

F(.C):=2 .
Gl + IC|

Note that in the extreme case in which |C| = n, i.e., the case
in which each cluster contains only one record, precision,
and thus also the F-measure, are undefined.

Another evaluation metric based on pair counting is the
z-Rand score. The z-Rand score zg is the number of stan-
dard deviations by which |C N G| is removed from its mean
value under a hypergeometric distribution of equally likely
assignments with the same number and sizes of clusters. For
further details about the z-Rand score, see [44,60,63]. The
relative z-Rand score of C is the z-Rand score of that clus-
tering divided by the z-Rand score of C’, so that the ground
truth C’ has a relative z-Rand score of 1.3

A final evaluation metric we consider, is normalized
mutual information (NMI). To define this, we first need to
introduce mutual information and entropy. We define the
entropy of the collection of clusters C as

¢ R; R;
Ent(C) := — Z |n—| log <|n—|) , (8
i=1

and similarly for Ent(C"). The joined entropy of C and C’ is

R; N R} RiNR,
Ent(C,C') := — ZZ' g(| p /|).

i=1 j=1

The mutual information of C and C’ is then defined as

1C,C) = Ent(C) + Ent(C') — Ent(C, C')

IR N R n|R; N R'|
-y 3y (),
|R;i||R;]

i=1 j=1

where the right hand side follows from the equalities
Zf'zl |R,-ﬂR;.| = |.R} | and 2.5:1 |R,ﬂR}| = |R;|. Ther.e are
various ways in which mutual information can be normalized.
We choose to normalize by the geometric mean of Ent(C) and
Ent(C") to give the normalized mutual information

13 We conjecture that the relative z-Rand score is bounded above by 1,
but to the best of our knowledge this remains unproven at the moment.
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Note that the entropy of C is zero, and hence the normal-
ized mutual information is undefined, when |C| = 1, i.e.,
when one cluster contains all the records. In practice this is
avoided by adding a small number (e.g., the floating-point
relative accuracy eps in MATLAB) to the argument of the
logarithm in (8) for Ent(C) and Ent(C").

Because we are testing our methods on data sets for which
we have ground truth available, the metrics we use all com-
pare our output with the ground truth. This would not be an
option in a typical application situation in which the ground
truth is not available. If the methods give good results in test
cases in which comparison with the ground truth is possi-
ble, it increases confidence in the methods in situations with
an unknown ground truth. Which of the metrics is the most
appropriate in any given situation depends on the needs of
the application. For example, in certain situations (for exam-
ple when gathering anonymous statistics from a data set) the
most important aspect to get right might be the number of
clusters and thus the relative error in the number of clusters
metric would be well suited for use, whereas in other situa-
tions missing out on true positives or including false negatives
might carry a high cost, in which case precision or recall,
respectively, or the F| score are relevant metrics. For more
information on many of these evaluation metrics, see also [5].

NMI(C, C') ==

5.3 Results

In this section, we consider six methods: TF-IDF, soft TF-
IDF without the refinement step, and soft TF-IDF with the
refinement step, with each of these three methods applied to
both word features and 3-gram features. We also consider five
evaluation metrics: the harmonic mean of purity and inverse
purity, the relative error in the number of clusters, the Fj
score, the relative z-Rand score, and the NMI. We investigate
the results in two different ways: (a) by plotting the scores
for a particular evaluation metric versus the threshold values,
for the six different methods in one plot and (b) by plotting
the evaluation scores obtained with a particular method ver-
sus the threshold values, for all five evaluation metrics in one
plot. Since this paper does not offer space to present all fig-
ures, we show some illustrative plots and describe the main
results in the text. In Sect. 6 we will discuss conclusions
based on these results.

5.3.1 The methods

When we compare the different methods by plotting the
scores for a particular evaluation metric versus the threshold
value t for all the methods in one plot (as can be seen, for
example, in Fig. 7a), one notable attribute is that the behav-
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Fig. 7 Two evaluation metrics as a function of the threshold value 7,
computed on two different data sets. Each of the six graphs in a plot
corresponds to one of the six methods used. The filled markers indicate
the metric’s value at the automatically chosen threshold value ty for
each method. In the legend, “(s)TF-IDF” stands for (soft) TF-IDF, “3g”
indicates the use of 3-gram-based features instead of word-based ones,
and “ref” indicates the presence of the refinement step. a The F score
for the Cora data set, b the relative z-Rand score for the RST data set

ior of the methods that use word features typically is quite
distinct from that of the methods that use 3-gram features.
This is not very surprising, since the similarity scores pro-
duced by those methods, and hence their response to different
threshold values, are significantly different.

Itis also interesting to note which methods give better eval-
uation metric outcomes on which data sets. First, we compare
the word-based methods with the 3-gram-based methods. On
the FI data set the word feature-based methods outperform
the 3-gram-based methods (judged on the basis of best-case
performance, i.e., the optimal score attained over the full
threshold range) for every evaluation metric by quite a mar-

gin, except for the NMI for which the margin is minimal (but
still extant).

On both the RST and RST?30 data sets, the word feature-
based methods outperform the 3-gram feature-based methods
on the pair counting-based metrics, i.e., F| score and relative
z-Rand score (Fig. 7b), but both groups of methods perform
equally well for the other metrics.

An interesting difference between the Cora data set and
the other data sets is that while sSTFIDF ref (see Table 1) does
outperform sTFIDF 3g ref on the pair counting-based metrics
for the Cora data set, the difference is much less pronounced
than for the other data sets. The difference in the relative
error in the number of clusters is more pronounced, how-
ever, in favor of the former method. Only on the relative error
in the number of clusters does it perform somewhat worse
than sTIDF ref. In fact, on all other metrics STFIDF 3g ref
outperforms the other two word-based methods (TFIDF and
STFIDF). The other 3-gram-based methods perform worse
than their word-based counterparts on the pair counting met-
rics and on par with them on the other metrics.

Next, we compare the TF-IDF methods with the soft TF-
IDF methods (without refinement step in all cases). There
are very few observable differences between TFIDF 3g and
sTFIDF 3g in any of the metrics or data sets, and where there
are, the differences are minor.

The comparison between TFIDF and sTFIDF shows more
variable behavior. The most common behavior among all
metrics and data sets is that both methods perform equally
well in the regions with very small or very large values of ,
although in some cases these regions themselves can be very
small indeed. In the intermediate region, TFIDF usually per-
forms better at small 7 values, whereas sTFIDF performs
better at larger v values. The size of the these different
regions, as well as the size of the difference in outcome can
differ quite substantially per case. For example, in the case
of NMI for the Cora data set, NMI and the harmonic mean
of purity and inverse purity for the RST data set, and all
metrics except the relative error in the number of clusters
for the RST30 data set, TFIDF outperforms sTFIDF quite
consistently in the regions where there is a difference.

When it comes to the benefits of including the refinement
step, the situation is again somewhat different depending on
the data set. First, we compare sTFIDF 3g with sTFIDF 3g
ref. For small threshold values including the refinement step
is beneficial (except in a few cases when there is little differ-
ence for very small 7 values). This is to be expected, since the
refinement will either increase the number of clusters formed
or keep it the same, so its effect is similar to (but not the same
as) raising the threshold value. For larger t values typically
one of two situations occurs: either sSTFIDF 3g outperforms
STFIDF 3g ref for intermediate t values and there is little
difference for higher t values, or there is little difference
on the whole range of intermediate and large t values. The
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former occurs to a smaller or larger degree for all metrics
except NMI for the Cora data set, for the harmonic mean of
purity and inverse purity and the relative error in the number
of clusters for the FI data set, and also for the relative error
in the number of clusters for the RST30 data set. The other
cases display the second type of behavior.

If we compare sTFIDF with sTFIDF ref there are three
approximate types of behavior that occur. In the region with
very small T values the performance is usually similar for
both methods, but this region can be very small. Next to this
region, there is a region of small t values in which sTFIDF
ref outperforms sTFIDF. For the same reason as explained
above, this is not surprising. This region can be followed by
a region of the remaining intermediate and large 7 values
in which sTFIDF outperforms sTFIDF ref (the F score and
harmonic mean of purity and inverse purity for the FI data
set), or by a region of the remaining intermediate and large t
values in which both methods are on par (NMI for the Cora
data set, the F score, the harmonic mean of purity and inverse
purity, and NMI for the RST30 data set, and all metrics for the
RST data set), or by first a region of intermediate t values on
which sTFIDF outperforms sTFIDF ref, followed by a region
on which there is little difference between the methods (all
other metric/data set combinations).

It is also noteworthy that all methods do significantly
worse on RST30 than on RST, when measured according to
the pair counting-based methods (the F7 and relative z-Rand
scores), while there is no great difference, if any, measured
according to the other metrics. In this context, it is interesting
to remember that RST30 is created by removing 30% of the
entries from all but one of the fields of RST.

5.3.2 The metrics

When plotting the different evaluation metrics per method,
we notice that the two pair counting-based metrics, i.e., the
F1 score and relative z-Rand score, behave similarly to each
other, as do the harmonic mean of purity and inverse purity
and the NMI. The relative error in the number of clusters
is correlated with those other metrics in an interesting way.
For the word feature-based methods, the lowest relative error
in the number of clusters is typically attained at or near the
threshold values at which the F; and relative z-Rand scores
are highest (this is much less clear for the Cora data set as it
is for the others). Those are also usually the lowest thresh-
old values for which the harmonic mean and NMI attain
their high(est) values. The harmonic mean and NMI, how-
ever, usually remain quite high when the threshold values are
increased, whereas the Fj and relative z-Rand scores typi-
cally drop (sometimes rapidly) at increased threshold values,
as the relative error in number of clusters rises. Figure 8a
shows an example of this behavior.
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Fig.8 Different evaluation metrics as a function of the threshold value
7, computed on two different data sets. Each of the five graphs in a plot
corresponds to one of five evaluation metrics. The vertical dotted line
indicates the automatically chosen threshold value 7y for the method
used. a Soft TF-IDF (on word-based features) without the refinement
step applied to the RST30 data set, b Soft TF-IDF (on word-based
features) with the refinement step applied to the FI data set

The relationship between the harmonic mean of purity and
inverse purity and the NMI has some interesting subtleties.
As mentioned before they mostly show similar behavior, but
the picture is slightly more subtle in certain situations. On the
Cora data set, the harmonic mean drops noticeably for higher
threshold values, before settling eventually at a near constant
value. This is a drop that is not present in the NMI. This
behavior is also present in the plots for the 3-gram feature-
based methods on the FI data set and very slightly in the
word feature-based methods on the RST data set (but not the
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RST30 data set). For word feature-based methods on the FI
data set the behavior is even more pronounced, with little
to no ‘settling down at a constant value’ happening for high
threshold values (e.g., Fig. 8b).

Interestingly, both the harmonic mean and NMI show very
slight (but consistent over both data sets) improvements at
the highest threshold values for the 3-gram-based methods
applied to the RST and RST30 data sets.

Another meaningful observation is that for T values lower
than the value at which the relative error in the number of
clusters is minimal, TFIDF performs better for this metric
than does sTFIDF. This situation is reversed for T values
higher than the optimal value. This can be understood from
the difference between (3) and (5). Soft TF-IDF incorporates
contributions into the similarity score not only from features
that are exactly the same in two entries, but also from features
that are very similar. Hence the soft TF-IDF similarity score
between two entries will be higher than the TF-IDF score
between the same entries and thus clusters are less likely to
break up at the same 7 value in the soft TF-IDF method than
in the TF-IDF method. For t values less than the optimal
value the breaking up of clusters is beneficial, as the optimal
cluster number has not yet been reached and thus TFIDF
will outperform sTFIDF on the relative error in the number
of clusters metric in this region. For t larger than the optimal
value, the situation is reversed.

5.3.3 The choice of threshold

On the RST and RST30 data sets, our automatically chosen
threshold performs well (e.g., see Figs. 7b, 8a, 9a). It usually
is close to (or sometimes even equal to) the threshold value
at which some or all evaluation metrics attain their optimal
value (remember this threshold value is not the same for all
the metrics). The performance on RST is slightly better than
on RST30, as can be expected, but in both cases the results
are good.

On the FI and Cora data sets, our automatically chosen
threshold is consistently larger than the optimal value, as can
be seenin, e.g., Figs. 7a, 8b, and 9b. This can be explained by
the left-skewedness of the H -value distribution, as illustrated
in Fig. 3a. A good proxy for the volume of the tail is the ratio
of number of records referring to unique entities to the total
number of entries in the data set. For RST and RST30 this
ratio is a high 0.87, whereas for FI it is 0.33 and for Cora
only 0.09. This means that the relative error in the number
of clusters grows rapidly with increasing threshold value and
the values of the other evaluation metrics will deteriorate
correspondingly.

We also compared whether TFIDF, sTFIDF, or sTFIDF ref
performed better at the value T = 7y . Interestingly, STFIDF
ref never outperformed all the other methods. At best it tied
with other methods: for the F; and relative z-Rand scores for
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Fig.9 Different evaluation metrics as a function of the threshold value
7, computed on two different data sets. Each of the five graphs in a plot
corresponds to one of five evaluation metrics. The vertical dotted line
indicates the automatically chosen threshold value for the method used.
a Soft TF-IDF (on 3-gram-based features) without the refinement step
applied to the RST data set. b Soft TF-IDF (on 3-gram-based features)
with the refinement step applied to the FI data set

0.1 02

the RST30 data set it performed equally well as TFIDF; all
three methods performed equally well for the NMI for the
Cora data set, for the NMI and relative error in the number of
clusters for the RST data set, and for NMI and the harmonic
mean of the purity and inverse purity for the RST30 data set.
TFIDF and sTFIDF tied for the F and relative z-Rand scores
for the FI data set. TFIDF outperformed the other methods
on the RST data set for the F; and relative z-Rand scores,
as well as the harmonic mean of purity and inverse purity.
Finally, sSTFIDF outperformed the other methods across the
board for the FI data set, as well as for all metrics but the NMI
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for the Cora data set and for the relative error in the number
of clusters for the RST30 data set. To recap, at t = ty,
the soft TF-IDF method seems to be a good choice for the
Cora and FI data set, while for most metrics for the RST and
RST30 data sets the TF-IDF method is preferred at T = 7.
(Remember that the value Ty depends on the data set and the
method).

5.4 Results for alternative sparsity adjustment

At the end of Sect. 4.1, we described an alternative sparsity
adjustment step, which replaces missing entries by the mode
in each field. All the results reported so far use the spar-
sity adjustment step described in the first part of Sect. 4.1
(which we will call here the “original” step); in this section
we describe the results obtained using the alternative sparsity
adjustment step.

We chose to test this alternative sparsity adjustment step
on the Cora and RST30 data sets. The former has a very
small percentage of missing data (approximately 3%), while
the latter has a high percentage (30% in all but one of the
fields). We use the alternative sparsity adjustment step as part
of each of the six methods discussed in this paper. We judge
the output again using the same five metrics used above.

In all our tests on the Cora data set, there is very lit-
tle if any difference in the performance of all the methods,
with two notable exceptions: the two methods that include
the refinement step perform considerably worse according
to the two pair counting-based metrics (the F; and relative
z-Rand scores) when incorporating the alternative sparsity
adjustment step (and one minor, yet noticeable exception:
TFIDF also performs worse with the alternative adjustment
step when measured according to the Fj score). Figure 10a
shows the results corresponding to Fig. 7a, with as sole dif-
ference that in the former the alternative sparsity adjustment
step is used, while in the latter the original step is incorpo-
rated into the methods.

In all our tests on the RST30 data set the 3-gram-based
methods which use the alternative sparsity adjustment step
perform very similarly to those that use the original adjust-
ment step (with the difference that those similar results are
obtained at lower threshold values when using the alternative
step instead of the original adjustment step). The word-based
methods also perform similarly using either sparsity adjust-
ment step, when measured according to the relative error
in the number of clusters, the harmonic mean of purity and
inverse purity, and NMI. However, word-based methods per-
form worse with the alternative adjustment step on the pair
counting metrics. Figure 10 shows the results corresponding
to the same method as was used in Fig. 8a, with as sole differ-
ence the incorporation of the alternative sparsity adjustment
step. The worsened performance of the alternative method
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Fig. 10 Results obtained using the alternative sparsity adjustment step.
a The F; score for the Cora data set; each listed method has the
alternative sparsity adjustment step incorporated, b Soft TF-IDF (on
word-based features) without the refinement step applied to the RST30
data set, incorporating the alternative sparsity adjustment step

with respect to the two pair counting metrics can be seen at
the high end of the r-range.

If any general conclusion can be drawn based on these
tests, it is that there does not seem to be an advantage in
using the alternative sparsity adjustment step instead of the
original step; in some cases the resulting output is even
worse, when measured according to the pair counting met-
rics.

A sparsity adjustment method that was not tested in this
paper is to replace each missing entry by the same place-
holder, e.g., “[]” or “void” [39]. This in effect will encourage
records with missing entries to be clustered together but car-
ries less risk of them being clustered together with other
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non-duplicate documents. This could be slightly beneficial
in data sets with few missing entries, even though it is effec-
tively a soft version of removing records with missing entries
from the data set altogether.

6 Conclusions and suggestions for future
work

In this paper, we have investigated six methods which are
based on term frequency-inverse document frequency counts
for duplicate detection in a record data set. We have tested
them on four different data sets and evaluated the outcomes
using five different metrics.

One conclusion from our tests is that there is no clear ben-
efit to constructing the features the methods work on using
3-grams as opposed to white space separated ‘words’. Keep-
ing the other choices (TF-IDF or soft TFIDF, refinement step
or not) the same, using words for the features either outper-
forms the corresponding 3-gram-based method or performs
equally well at worst (in terms of the optimal values that are
achieved for the evaluation metrics). See, for example, the
graphs in Fig. 7 or compare Figs. 8b and 9b.

Somewhat surprisingly, our tests lead to a less clear picture
regarding the choice between TF-IDF and soft TF-IDF (with
word-based features, without the refinement step). For low
to intermediate threshold values TF-IDF performs better, for
higher threshold values either soft TF-IDF performs better,
or the difference between the two methods is so small as to
be negligible. This behavior is not always very pronounced
and, as described in Sect. 5.3.1, there are even cases in which
TF-IDF outperforms soft TF-IDF for almost every threshold
value.

The question whether or not to include the refinement step
into a (word based) soft TF-IDF method also requires some
care. At low 7 values inclusion of the refinement step is bene-
ficial, but at higher values the behavior can vary substantially
per data set and metric, as described in Sect. 5.3.1. As arule
of thumb (but not a hard and fast rule) we can say that for
the Cora and FI data sets there is a region of intermediate
and/or high t values at which including the refinement step
is detrimental, whereas for the RST and RST?30 data sets soft
TF-IDF with refinement at worst performs similar to soft
TF-IDF without refinement, but it performs better for cer-
tain t values as well. This might partly be explained by the
observation made in Sect. 5.3.3: the FI and Cora data sets
have a much lower ratio of unique entities to total number
of entries than the RST and RST30 data sets have. Since
the refinement step creates extra clusters, including it can be
detrimental for data sets that are expected to contain rela-
tively few unique entries. This suspicion is strengthened by
the fact that we see in our experiments that the growth in the
relative error of the number of clusters when t is increased

past its optimal value (for that metric) is much larger for
the FI and Cora data sets than for the RST and RST30 data
sets.

Our tests with our automatically chosen threshold show
that ty = w(H) + o(H) is a good choice on data sets
which have H -distributions that are approximately normal or
right-skewed. If, however, the H -distribution is left-skewed,
this choice seems to be consistently larger than the optimal
threshold. It should be noted though that for most of the eval-
uation metrics and most of the data sets, the behavior of the
metrics with respect to variations in the threshold value is not
symmetric around the optimal value. Typically the decline
from optimality is less steep and/or smaller for higher thresh-
old values than for lower ones. This effect is even stronger
if we consider methods without refinement step. Combined
with the fact that at low threshold values the refinement step
requires a lot more computational time than at high thresh-
old values, especially for larger data sets, we conclude that,
in the absence of a priori knowledge of the optimal thresh-
old value, it is better to overestimate than underestimate this
value. Hence, our suggestion to choose 1y = w(U) + o (H)
is a good rule of thumb at worst and a very good choice for
certain data sets.

Since our automated threshold value tg is usually a value
in the intermediate or higher end of the 7 range, the discus-
sion above suggests that at T = 7y it is typically beneficial
to use either TF-IDF or soft TF-IDF, in either case without
the refinement step. The former is preferred for data sets with
a high ratio of unique entities to number of entries, whereas
the latter is preferred when this ratio is low. This is consistent
with the observations at the end of Sect. 5.3.2 (since 7y is
close to the optimal t value where the number of clusters is
concerned for the RST and RST30 data sets and overshoots
the optimal value for the Cora and FI data sets) and 5.3.3.
This should only be treated as guidance and not as a hard and
fast rule.

Future work could explore the possibilities of using meth-
ods that first project the data into a lower dimensional
latent variable space to allow for duplicate detection in very
high dimensional and large data sets, e.g., topic modeling
techniques such as latent Dirichlet allocation [10] and non-
negative matrix factorization [36], or the CenKNN method
from [48]. An overview of other such methods is given in
[19]. Where possible, new scalable hashing methods that
allow for approximate matching might also be considered to
reduce computational complexity in such settings [12]. These
methods could reduce the number of comparisons made by
quickly identifying specific subsets of pairs (e.g., those that
must have similarity zero), but the construction of efficient
hash functions is non-trivial and usually domain dependent.
Further, the hash functions themselves incur a computational
cost, so there is no guarantee of an overall speed up. Finding
the right hash function for a given application and exploring
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the potential benefits of its use in a preprocessing step can be
a topic for future research.
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