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Abstract: We have demonstrated, using qubits encoded in the polarization of heralded individual 
photons, that loop state-preparation-and-measurement tomography is capable of detecting 
correlated errors between the preparation and the measurement of a quantum system.  
OCIS codes: (270.5585) Quantum information and processing; (270.0270) Quantum optics; (200.0200) Optics in 
computing. 

 
1. Introduction  

Quantum tomography is an important tool for characterizing small quantum systems, and is useful for quantum 
information processing applications. Quantum-state tomography (QST) estimates the state of a quantum system, 
while quantum-detector tomography (QDT) estimates the positive-operator-valued measure (POVM) that describes 
a detector. Here we describe loop (or non-holonomic) state-preparation-and-measurement (SPAM) tomography, 
which attempts to estimate both the state and measurement parameters in a self-consistent manner [1,2]. The Hilbert 
space dimension is assumed to be known, and measurements are performed as both the state and detector settings 
are varied. The data is analyzed to look for self-consistency, which allows one to determine if there are correlations 
between the state preparations and the measurements [1]. Finally, if no correlated SPAM errors are found it is then 
possible to estimate the states using information about the detectors, or vice versa.  

We have performed experiments demonstrating that loop SPAM tomography is capable of detecting correlated 
errors in the preparation and measurement of qubits encoded in the polarizations of individual photons [2].  

2.  Theory 

Suppose we have a source that can be prepared in states that are described by density operators ˆ aρ , where the 
subscript labels the different possible state preparations. We also have a detector that is described by the POVM 
elements ˆ iΠ , where the superscript labels the different possible measurements. The probability i

ap  of a detection is 

given by the Born rule ( )ˆˆTri i
a ap = r Π . This equation can be generalized to any observable (Hermitian operator) 

ˆ iΣ , as ( )ˆˆTri i
a aS = rS  , where i

aS  is the expectation value of the observable. We will consider i
aS  to be the element 

in the a’th row and i’th column of matrix S  (the overbar indicates a quantity expressed as a matrix). 
In real experiments neither the state preparations ˆ aρ , nor the observables ˆ iΣ  can be reproduced with perfect 

precision, and we must average over the fluctuations (denoted by < >). If there are no correlations between the state 
preparation and the observables, then there is no problem in using measurements of i

aS  and a tomographic 

inversion to estimate either ˆ aρ  or ˆ iΣ . However, if there are correlations then  

  ( ) ( )ˆ ˆˆ ˆTr Tri i i
a a aS = rS  ≠ rS   ,  (1) 

so we cannot estimate ˆ aρ  or ˆ iΣ  individually. The first question that loop SPAM tomography addresses is the 

detection of such correlated errors, with the only assumption being that the system dimensions are known. 
Consider the case where 3n =  is the number of independent state and detector parameters. Measurements are 

performed with 2 6M n= =  different state preparations and 2 6N n= =  detector settings. The 6x6 matrix of 
expectation values S  can be partitioned into corners consisting of 3x3 matrices as follows 

  
A B

S
C D
 

=  
 

 . (2) 



The rows of S  refer to a fixed state preparation, while its columns refer to a fixed detector setting. The nxn matrix 
A  consists of enough measurements to be tomographically complete, but because we don’t know either the state 

preparations or the measurements, it is not possible to use tomography to uniquely determine the states or the 
detector settings. However, matrix A  is connected to matrix B  in the sense that they share a common set of state 
preparations, and the measured matrix elements of B  must be consistent with that fact. Furthermore, matrices C  
and D  share state and detector settings with A  and B , and they must be consistent with that fact.  

Define the partial determinant of S  as ( ) 1 1S A BD C− −D ≡ . It can be shown that the measured data are internally 

consistent as described above, and free of correlated SPAM errors under the condition that ( ) 1S∆ = , where 1  is 
the 3x3 identity matrix [1]. Thus, to determine if there are any correlated SPAM errors present we construct the 
matrix of expectation values S  as given in Eq. (2), and then calculate the partial determinant ( )S∆ . If 

( ) 1 0S∆ − = , to within the statistical errors of the measurements, there is no evidence for correlated SPAM errors.  

3.  Experiments 

We have prepared pure and mixed polarization states of heralded single photons produced by a parametric down 
conversion source. The different state preparations and measurement settings are implemented by rotating quarter- 
and half- wave plates. In Fig. 1(a)-(c) we show measurements for the mean and standard deviation of ( ) 1S∆ −  and 
the ratio of these two quantities, for an experiment in which we expect no SPAM correlations. Since all of the matrix 
elements of ( ) 1S∆ −  are 0 to within half of a standard deviation [Fig. 1(c)], no correlated SPAM errors were 

detected. Figure 1(d)-(f) shows measurements when a correlated error has been placed in matrix element 1
1S , and we 

see that ( ) 1S∆ −  differs from 0 by 48 standard deviations [Fig. 1(f)] and this error is detected. 

 
Fig. 1. (a) and (d) the mean of ( ) 1S∆ − , (b) and (e) the standard deviation of ( ) 1S∆ − , and (c) and (f) the absolute 
value of the ratio of these two quantities (mean divided by standard deviation). In (a)-(c) there are no SPAM 
correlations, while in (d)-(f) there are SPAM correlations. 

 
Furthermore, we have performed experiments that demonstrate we can determine the location of  a correlated 

error, not just its presence. We have also explored the precision with which we can detect correlated errors. 
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