

TABLE I
NOTATIONS OF A GRAPH

Notation Meaning

G a graph G = (V,E)
V vertices in G, |V | = n
E edges in G, |E| = m
vi vertex i
ei.j edge from vi to vj
esrc, edst source & destination vertex of edge e
Ix interval x
Sy shard y, containing ei.j where vj ∈ Iy
Bx.y block x.y, containing ei.j where vi ∈ Ix and vj ∈ Iy

architecture. (2) Poor locality. A simple operation on one

vertex may require access to all its neighbor vertices. Such

poor locality leads to irregular global data access and ineffi-

cient bandwidth utilization (e.g., 57% bandwidth degradation

on 2-hop [11]) on multi-processing units architecture. (3)

Unbalanced workloads. The graph is highly unstructured,

thus the computation workloads of various processing units

can be quite unbalanced. (4) Heavy conflicts. Simultaneous

updating to the same vertex by different processing units

causes heavy conflicts. All these four challenges need to be

addressed from both architecture and algorithm perspectives.

Processing-in-memory (PIM) has been put forward as a

promising solution to providing high bandwidth for big data

problems. PIM achieves speedup at several orders of magni-

tude over many applications [1], [3], [6], [12], [13]. Various

processing units can be put into the memory and attached to a

part of the memory in PIM. The total theoretical bandwidth of

all units under the PIM architecture can be 10x to 100x larger

than that under conventional computing architectures [1].

Moreover, PIM scales well to large-scale problems because it

can provide proportional bandwidth to the memory capacity.

Although PIM can provide advantages such as high band-

width and massive processing units (Fig. 1), it still suffers

from inherent disadvantages in graph processing. For example,

PIM is sensitive to unbalanced workloads and conflicts as

well as other multicore architectures. Moreover, achieving high

bandwidth in large-scale graph processing suffers from both

the random access pattern and the poor locality, these problems

remain in PIM. To tackle all these problems, previous works

have proposed several solutions. Tesseract [1] introduced the

prefetcher to exploit locality, but such prefetching strategy can-

not avoid global random access to graph data. GraphPIM [3]

proposed the instruction off-loading scheme for Hybrid Mem-

ory Cube (HMC) based graph processing, while how to make

use of multiple HMCs is not presented.

Therefore, using multiple PIM devices (e.g., Hybrid Mem-

ory Cube array) can be a scalable solution for large-scale graph

processing. Although Tesseract [1] has adopted the HMC array

structure for graph processing, open questions remain in how

to fully utilize the high bandwidth provided by PIM devices.

In this paper, we propose GraphH, a Hybrid Memory Cube

array architecture for large-scale graph processing problems.

Compared with Tesseract [1], both hardware architecture and

partitioning/scheduling algorithms are elaborately designed in

GraphH. From the architecture perspective, we design spe-

cialized hardware units in the logic layer of HMC, including

Algorithm 1 Pseudo-code of Edge-Centric Model [14]

Input: G = (V,E), initialization condition

Output: Updated V

1: for each v ∈ V do

2: Initialize(v, initialization condition)

3: end for

4: while (not finished) do

5: for each e ∈ E do

6: value(edst) = Update(esrc, edst)

7: end for

8: end while

9: return V

SRAM-based On-chip Vertex Buffers (OVB), to fully ex-

ploits the local bandwidth of a vault; We also propose the

Reconfigurable Double-Mesh Connection (RDMC) scheme

to ensure locality and provide high global access bandwidth

in graph processing. From the algorithm perspective, we pro-

pose the Index Mapping Interval-Block (IMIB) partitioning

method to balance the workloads of different processing units;

Scheduling method like Round Interval Pair (RIP) is also

introduced to avoid writing conflicts. All these four designs,

which are not introduced in Tesseract [1], lead to performance

improvements (detailed in Section VI-C, 4.58x using OVB,

1.29x using RDMC+RIP, 3.05x using IMIB, averagely). Con-

tributions of this paper are concluded as follows:

• We integrate the On-chip Vertex Buffer in GraphH. Process-

ing units can directly access OVB and do not suffer from

random access pattern.

• We connect cubes in GraphH using the Reconfigurable

Double Mesh Connection scheme to provide high global

bandwidth and ensure locality.

• We partition graphs using Index Mapping Interval-Block

method to balance workloads of cubes.

• We schedule the data transferring among cubes using Round

Interval Pair scheme. Communication among cubes are

organized in pairs and conflicts are avoided.

• We propose two optimization methods to reduce synchro-

nization overhead and reuse on-chip data. Thus, we further

improve the performance of GraphH.

We have also conducted extensive experiments to evaluate

the performance of the GraphH system. We choose both real-

world and synthetic large-scale graphs as our benchmarks and

test three graph algorithms over these graphs. Our evaluation

results show that GraphH remarkably outperforms DDR-based

graph processing systems by up to two orders of magnitude

and achieves up to 5.12x speedup compared with Tesseract [1].

The rest of this paper is organized as follows. Section II

introduces the background information of graph processing

models and Hybrid Memory Cubes. Section III proposes

the architecture of GraphH. Then, the processing flow in

GraphH is detailed in Section IV. We further propose two

optimization methods to improve the performance of GraphH

in Section V. Results of comprehensive experiments are shown

in Section VI. Related works are introduced in Section VII and

we conclude this paper in Section VIII.

Round 0: Self-updating Round 1: 1↔2，3↔4，5↔6，7↔8，9↔10，11↔12，13↔14，15↔16
Round 2: 1↔3，2↔4，5↔7，6↔8，9↔11，10↔12，13↔15，14↔16 Round 3: 1↔4，2↔3，5↔8，6↔7，9↔12，10↔11，13↔16，14↔15
Round 4: 1↔5，2↔6，3↔7，4↔8，9↔13，10↔14，11↔15，12↔16 Round 5: 1↔6，2↔5，3↔8，4↔7，9↔14，10↔13，11↔16，12↔15
Round 6: 1↔7，2↔8，3↔5，4↔6，9↔15，10↔16，11↔13，12↔14 Round 7: 1↔8，2↔7，3↔6，4↔5，9↔16，10↔15，11↔14，12↔13
Round 8: 1↔9，2↔10，3↔11，4↔12，5↔13，6↔14，7↔15，8↔16 Round 9: 1↔10，2↔9，3↔12，4↔11，5↔14，6↔13，7↔16，8↔15
Round 10: 1↔11，2↔12，3↔9，4↔10，5↔15，6↔16，7↔13，8↔14 Round 11: 1↔12，2↔11，3↔10，4↔9，5↔16，6↔15，7↔14，8↔13
Round 12: 1↔13，2↔14，3↔15，4↔16，5↔9，6↔10，7↔11，8↔12 Round 13: 1↔14，2↔13，3↔16，4↔15，5↔10，6↔9，7↔12，8↔11
Round 14: 1↔15，2↔16，3↔13，4↔14，5↔11，6↔12，7↔9，8↔10 Round 15: 1↔16，2↔15，3↔14，4↔13，5↔12，6↔11，7↔10，8↔9

(a) Interval pairs in 16 rounds.

Round 1 Round 2 Round 3 Round 4

Round 8 Round 9 Round 10 Round 11 Round 12 Round 13 Round 14 Round 15

Round 5 Round 6 Round 7

11 22 33 44

55 66 77 88

99 1010 1111 1212

1313 1414 1515 1616

Round 0

(b) Reconfigurable connection based on the double-mesh of interval pairs in 16 rounds.

Fig. 6. The scheduling and connection of 16 cubes in different rounds of an updating iteration.

stored in each vault. The source interval is duplicated and

stored in each vault.

B. Index Mapping Interval-Block Partition

The execution time of each cube is in positive correlation

with sizes of both its vertices and edges [4]. All cubes need

to be synchronized after processing. Thus, it is important to

adopt a balanced partitioning method. Vertices are divided into

intervals and assigned to cubes, as well as corresponding edges

in blocks.

One naive way is to averagely divide consecutive vertices

into an interval. For example, in a graph with 9 vertices,

v1 ∼ v7, v9, v11.1 We divide all vertices into 3 intervals, the

separation results are I1 = {v1 ∼ v3}, I2 = {v4 ∼ v6},

I3 = {v7, v9, v11}. However, when we implement this method

on natural graphs (left in Fig. 5, Graphs are from Table III),

sizes of different blocks are quite unbalanced, which leads

to unbalanced workloads. The reason of unbalanced sizes is

from the power-law [21] of natural graphs. A small fraction of

1Some vertex indexes do not appear in the original raw edge list of a graph
like v8 in this example.

Algorithm 2 Pseudo-code of updating Ix in Cubex

Input: G = (V,E), initialization condition

Output: Updated V

1: for each iteration do

2: for each Cubey do

3: receive Iy from Cubey //Transferring Phase

4: update Ix using Iy and By.x in parallel //Updating

Phase

5: end for

6: end for

vertices often pocess most of the edges in a graph. Moreover,

these vertices often have consecutive indexes and are divided

into one interval (e.g., B2.1 in AS, B1.1 in LJ, B5.5 in TW,

B1.1 in YH, account for 10.86%, 10.73%, 3.71%, 18.19% of

total edges respectively, left in Fig. 5).

To avoid the unbalanced workloads among cubes, we

adopt the Index Mapping Interval-Block (IMIB) partitioning

method. IMIB consists of two steps: (1) Compression. We

compress vertex indexes by removing blank vertices. For

example, v1 ∼ v7, v9, v11 are mapped to v1 ∼ v9 with

v1 ∼ v7 → v1 ∼ v7, v9 → v8, v11 → v9. (2) Hashing.

After mapping vertices to compressed indexes, we divide them

into different interval using modulo function. For example,

v1 ∼ v9 (after compression) are divided into 3 intervals with

I1 = {v1, v4, v7}, I2 = {v2, v5, v8}, I3 = {v3, v6, v9}.

With IMIB, sizes of both intervals and blocks can be bal-

anced (right in Fig. 5, the ratios of largest and smallest blocks

are 1.32x, 1.11x, 1.22x, and 1.18x respectively in three graphs,

much smaller than the infinity (some blocks are empty), 6175x,

996x, and 33334x which uses naive partitioning method. In

this way, workloads are balanced in GraphH. Although there

are also many other partitioning methods, like METIS [22],

we use IMIB to minimize preprocessing overhead. The time

complexity of IMIB (as well as the dividing consecutive

vertices into an interval) is O(m) because we only need to

scan all edges without extra calculations (e.g., We do not need

to get the degree of each edge to perform partitioning scheme

based on the number of edges in a partition like Gemini [4]).

C. Round Interval Pair Scheduling

From the inner for loop in Algorithm 2 in Section IV-A

we can see that interval data update in each cube can be

8×8

Crossbar

(0 to 7)

8×8

crossbar

switch

(0 to 7)

…
…

Vault 0
Vault 8

Vault 16
Vault 24

Vault 7
Vault 15

Vault 23
Vault 31

Vault 0
Vault 8

Vault 16
Vault 24

Vault 7
Vault 15

Vault 23
Vault 31

Fig. 8. Crossbar switches to reuse vertices in the logic layer.

value of all vertices from other vaults in Transferring Phase.

In this phase, we can also use the RIP scheduling scheme

shown in Fig. 6, each cube only receives updated vertices value

without updating. Table II compares synchronization times

and space requirement in a vault of two scheduling methods.

Because all vertices need to be stored in a vault, some large

graph may not adopt this method due to memory space

limitation in a vault. We will solve this issue in Section V-B.

B. Reuse Data in the Logic Layer

In order to update different destination vertices in a cube in

parallel, all vaults need to store a complete copy of the source

interval. Such implementation has two drawbacks: (1) The

memory space of a vault is limited (8GB÷32=256MB[16]),

which may be not sufficient to store all intervals in our first

optimization method (Section V-A); (2) All source vertices

need to be loaded from memory layers to the logic layer 32

times (1 time by each vault).

In order to overcome two disadvantages mentioned above,

we adopt four 8×8 crossbar switches followed by eight

4×4 crossbar switches running at 1 GHz (same as Graphi-

cionado [2]) with standard virtual output queues [23] to share

source vertices value of 32 vaults in GraphH. Source vertices

from any vault can be sent to destination interval buffers in

any vault in this way. Assuming that we use 8 Bytes to store

an edge, the maximum throughput of DRAM in a vault is

10 GB/s÷8 Bytes = 1.25 edges/ns. Thus, the throughput of

DRAMs matches that of crossbar switches. Moreover, because

we do not need to modify the value of source vertices under

our processing model, all crossbar switches can be pipelined

without suffering from hazards (no forwarding units need to

be adopted in the design). In this way, instead of duplicating

intervals among vaults in a cube, GraphH can share source

vertices among vaults. Such data reuse architecture is shown

in Fig. 8.

VI. EXPERIMENTAL EVALUATION

In this section, we first introduce the simulation setup of

our GraphH design, followed by the workloads of experiments

used in this section, including the graphs and algorithms.

A. Simulation Setup

All experiments are based on our in-house simulator. Trace

files of graph data access patterns are first generated based on

DynamoRIO [24]. Then, we apply these traces to timing model

generated by Cacti 6.5 [18] and DRAMsim2 [25] to get the

execution time. The overhead of reconfiguring the double mesh

connection by the host has been taken into consideration in the

simulator, detailed in Section III-C. We run all our experiments

on a personal computer equipped with a hexa-core Intel i7

CPU running at 3.3GHz. The bandwidth of each vault is set

to 10 GB/s according to HMC 2.1 specification (16 GB/s in

Tesseract). On the logic layer in a cube, We implement eight 4

MB shared source vertex buffer running at 4 GHz and thirty-

two 1 MB individual destination vertex buffer running at 2

GHz to perform the write-after-read operation. We use ARM

Cortex-A5 with FPU (without cache) running at 1 GHz as a

demo of the in-order core.

B. Workloads

Algorithms. We implement three different graph algo-

rithms. Breadth-First Search (BFS) calculates the shortest path

from a given root vertex to all other vertices in the graph.

PageRank (PR) evaluates the importance of all websites in

a network according to the importance of their neighbor

websites. Connected Components (CC) detects all subgraphs

in an arbitrary graph. The number of iterations for PR is

set to 10 in our simulation, while for other two algorithms

the number of iterations depends on the graph data thus we

simulate them to convergence.

TABLE III
PROPERTIES OF BENCHMARKS

Benchmarks # Vertices # Edges

as-skitter (AS) [8] 1.69 million 11.1 million
live-journal (LJ) [8] 4.85 million 69.0 million

twitter-2010 (TW) [8] 41.7 million 1470 million
yahoo-web (YH) [8] 720 million 6640 million

delaunay n20 (D20) [26] 1.05 million 6.29 million
delaunay n21 (D21) [26] 2.10 million 12.6 million
delaunay n22 (D22) [26] 4.19 million 25.2 million
delaunay n23 (D23) [26] 8.39 million 50.3 million
delaunay n24 (D24) [26] 16.8 million 101 million

Graphs. Both natural graphs and synthetic graphs are used

in our experiments. We conduct four natural graphs including

an Internet topology graph as-skitter (AS) from trace routes

run daily in 2005, live-journal (LJ) from the LiveJournal

network, twitter-2010 (TW) from the Twitter social network

and yahoo-web (YH) from the Yahoo network which consists

of billions of vertices and edges. We also conduct a set of

synthetic graphs, delaunay n20 to delaunay n24, to evaluate

the scalability of GraphH. The properties of these graph

benchmarks mentioned above are shown in Table III2.

C. Benefits of GraphH Designs

Compared with Tesseract [1], four techniques architecture

(OVB, RDMC) and algorithm (IMIB, RIP) perspectives are

2Indexes of vertices have been compressed. Thus, the number of vertices
may not equal to the largest vertex index or number of vertices appeared in
other papers.

introduced in GraphH. To show the performance improve-

ment by adopting these designs, we simulate the performance

difference with/without these techniques in this section. To

control the single variable, we adopt all other techniques when

simulating the influence of one technique in this section. Two

optimization methods in Section V are also adopted in this

section.

1

3

5

7

9

AS LJ TW YH

Speedup using OVB

PR BFS CC

Fig. 9. Speedup using On-chip Vertex Buffer.

1) Benefits of OVB: GraphH adopts on-chip vertices buffer

to avoid random access pattern to DRAM layers. We compare

the performance of implementing OVB in the logic layer with

the performance of directly accessing DRAM layers. The size

of source/destination interval buffers is set to 1MB per vault.

Techniques like crossbar switches and shared source interval

buffers are adopted.

As we can see in Fig. 9. By implementing OVB in the logic

layer, GraphH achieves 4.58x speedup compared with directly

accessing DRAM layers on average.

1

1.2

1.4

1.6

AS LJ TW YH

Speedup using RDMC and RIP

PR BFS CC

Fig. 10. Speedup using Reconfigurable Double-Mesh Connection/Round
Interval Pair.

2) Benefits of RDMC and RIP: GraphH adopts recon-

figurable double-mesh connection (RDMC) to maximize the

interconnection bandwidth between two cubes. Moreover, to

avoid conflicts among cubes, the round interval pair (RIP)

scheduling scheme is implemented on RDMC. RDMC and

RIP work together in GraphH. We compare the performance

using RDMC+RIP with a static single mesh connection net-

work under RIP-like routing scheme. The physical bandwidth

of each connection in such static mesh network is also set

to 480 GB/s, but each cube can only share a quarter of that

bandwidth because only one out of four external links is

connected to one meta-connection.

Using RDMC+RIP based connection and scheduling

scheme, GraphH achieves 1.29x speedup compared with the

static connection method on average.

1

2

3

4

5

6

AS LJ TW YH

Speedup using IMIB

PR BFS CC

Fig. 11. Speedup using Index Mapping Interval-Block partitioning method.

3) Benefits of IMIB: Workloads of different cubes in a

round can be balanced using our IMIB partitioning methods.

We compare the performance of using IMIB with chunk-

based method [4] (dividing vertices with consecutive indexes

into a partition). These two partitioning methods introduce

least preprocessing overhead (scanning all edges without other

linear algebra operations).

As we can see from Fig. 11, using IMIB achieves 3.05x

speedup compared with chunk-based partitioning on average.

Such conclusion is in contrast to the conclusion in Gemini [4],

which concludes that hash-based partitioning leads to more

network traffic and worse performance. The reason is that the

interconnection bandwidth in GraphH provided by HMC is

two orders of magnitude as that in Gemini, thus balancing

workloads is more important in this situation. We will discuss

the influence of network bandwidth on the whole system

performance in Section VI-E3.

D. Performance

Based on experimental results in Section VI-C, both archi-

tecture (OVB, RDMC) and algorithm (IMIB, RIP) techniques

in GraphH lead to performance profits. We implement these

techniques and evaluate the performance of systems under

different configurations.

• DDR-based system. We run software graph processing

code on a physical machine. The CPU is an i7-5820K core

and the bandwidth of DDR memory is 12.8 GB/s.

• Original-GraphH system. This is the GraphH system

without using optimization methods.

1

4

16

64

256

PR BFS CC PR BFS CC PR BFS CC PR BFS CC

AS LJ TW YH

DDR original opt1 opt2 optimized Tesseract

Fig. 12. Performance comparison among DDR-based system, GraphH under different configurations, and Tesseract (normalized to DDR-based system, thus
bars of DDR are omitted).

• Opt1-GraphH system. We reduce synchronization over-

heads using optimization method in Section V-A.

• Opt2-GraphH system. We reuse vertex data in the logic

layer using optimization method in Section V-B.

• Optimized-GraphH system. Based on two optimization

methods in Section V, this is the combination of Opt1/Opt2-

GraphH system.

• Tesseract system. We do some modifications in GraphH

to simulate Tesseract [1], including: (1) The size of the

prefetcher in Tesseract is set to 16 KB; (2) We assume no

global access latency but the external bandwidth is set to

160 GB/s (each cube is linked to 3 cubes in Tesseract); (3)

Workloads are balanced in Tesseract. In this way, we can

simulate the performance upper bound of Tesseract.

1) Performance Comparison: We compare the performance

of GraphH under different configurations with both DDR-

based and Tesseract system. The comparison result is shown

in Fig. 12. As we can see, both Tesseract and GraphH

outperforms the DDR-based system by one to two orders

of magnitude. GraphH achieves 1.16x ∼ 5.12x (2.85x on

average) speedup compared with Tesseract because GraphH

introduces both architecture and algorithm designs to solve

challenges in graph processing.

Reducing cube synchronization overhead has limited contri-

bution to GraphH performance, because workloads of different

cubes have been balanced using IMIB. Moreover, such imple-

mentation needs to store all vertices value in a vault. Thus, it

may not apply to larger graphs (e.g., PR/CC on YH, there is

no bar for original and opt1). Reusing on-chip vertices data

(opt2/optimized) leads to 2.28x average performance improve-

ment compared with original/opt1 configuration, because such

implementation leads to fewer data transferring between OVBs

and DRAM layers (Detailed in Section VI-D2).

2) Execution Time Breakdown: Fig. 13 shows the execution

time breakdown in GraphH. Note that we assume the memory

space of one vault is enough to store required data, thus for

larger graphs like YH, we can get results of original/opt1

configurations.

As we can see, loading vertices (including writing back

updated vertices data) accounts for 73.99% of total execution

time under original/opt1 configurations. By adopting shared

source interval memories, GraphH significantly reduces the

time of transferring vertices between OVBs and DRAM layers

to 50.63% for AS, LJ, and TW. For larger graphs like YH,

0%

20%

40%

60%

80%

100%

o
r
ig

in
a
l

o
p

t1

o
p

t2

o
p

ti
m

iz
e
d

o
r
ig

in
a
l

o
p

t1

o
p

t2

o
p

ti
m

iz
e
d

o
r
ig

in
a
l

o
p

t1

o
p

t2

o
p

ti
m

iz
e
d

o
r
ig

in
a
l

o
p

t1

o
p

t2

o
p

ti
m

iz
e
d

AS LJ TW YH

processing loading vertices transferring

Fig. 13. Execution time breakdown when running PR (processing: processing
edges in a cube; loading vertices: transferring vertices between OVBs and
DRAM layers; transferring: transferring data among cubes.).

transferring vertices between OVBs and DRAM layers still

account for over 86.21% of total execution time. Larger on-

chip SRAM can relieve such bottleneck to some extent, but

GraphH can only provide 1MB source vertices buffer per vault

due to the area limitation.

0

100

200

300

400

D20 D21 D22 D23 D24

Throughput (1000MTEPS)

GraphH Tesseract

Fig. 14. Scalability running PR on synthetic graphs.

3) Scalability: PIM can achieve memory-capacity-

proportional bandwidth, so it scales well when processing

large-scale problems. We compare the scalability of GraphH

with Tesseract. We run PR algorithm on five synthetic graphs,

3) Different Network Bandwidth: As mentioned at the end

of Section VI-C3, other distributed graph processing systems

may also adopt the IMIB partitioning method. However,

whether the method works depends on the network bandwidth.

Compared with distributed graph processing systems, like

Gemini [4], the network bandwidth in GraphH is two orders

of magnitude higher. We depict the proportion of transferring

data among cube in the total execution time, when the total

external bandwidth of a cube varies, in Fig. 18.

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300

Total external link bandwidth of a cube (GB/s)

Network traffics

AS LJ TW YH

Fig. 18. Proportion of transferring data among cubes in the total execution,
when the total external bandwidth of a cube varies.

As we can see in Fig. 18, if we lower the interconnection

bandwidth to tens of Gigabytes (same as Gemini [4]), the

network traffic accounts for up to 80.79% of the total execution

time when network bandwidth is low. Transferring data among

cubes using IMIB will domination the total execution time in

that situation. While in GraphH, due to high bandwidth among

cubes with our designs, the network traffic only accounts for

less than 20% of the total execution time, so we balance

workloads rather than reduce network traffics in GraphH.

VII. RELATED WORK

A. Processing-in-Memory and 3D-Stacking

The concept of Processing-in-memory (PIM) has been pro-

posed since 1990s [28]. The original motivation of PIM is to

reduce the cost of moving data and overcome the memory

wall. Although adopting caches or improving the off-chip

bandwidth are also solutions to such problems, PIM has

its advantages like low data fetch cost. One key point in

PIM devices is to place massive computation units inside

memory dies with high integration density, 3D-stacking tech-

nology turns it into reality. In 3D-stacking technology, silicon

dies are stacked and interconnected using through-silicon via

(TSV) in a package. Intel Corporation presents its first 3D-

stacking Pentium 4 processors in 2004 and after that 3D-

stacking technology has raised growing attentions. Several

work used 3D-stacking PIM architecture to accelerate data-

intensive applications, like graph processing [1], [3], neural

computation [12], and etc [29], [30].

B. Large-scale Graph Processing Systems

Many large-scale graph processing systems have been de-

veloped in recent years. These systems execute on different

platforms, including distributed systems [4], [5], [7], [11],

single machine systems [8], [14], [31], heterogeneous sys-

tems [32]–[35], etc [2]. Some distributed systems are based

on big data processing framework [36], [37], they focus on

the fault tolerance to provide a stable system. Other distributed

graph processing systems focus on other issues like graph par-

titioning and real-time requirement. Single machine systems

focus on providing an efficient system under limited resources

(like a personal computer). Heterogeneous systems use other

devices like GPUs [32] and FPGAs [33]–[35] to accelerate

graph computation, while the capacity and bandwidth of these

systems may be limited.

C. Large-scale Graph Processing on Hybrid Memory Cubes

Tesseract [1] and GraphPIM [3] are two PIM-based graph

processing architecture based on Hybrid Memory Cubes. By

first adopting PIM in graph processing, Tesseract [1] it is

efficient and scalable to the problem with intense mem-

ory bandwidth demands. To fully exploit the potential of

PIM on graph processing, GraphH proposes specific designs

for graph processing, including hardware support, balancing

method, and reconfigurable network, which are not discussed

in Tesseract. GraphPIM [3] proposes the solution of offloading

instructions in graph processing to HMC devices. Compared

with GraphH and Tesseract, GraphPIM does not introduce

extra logics in the logic layer of HMCs. However, without

the design of the cube’s interconnection, HMC in GraphPIM

just performs as the substitute for the conventional memory

in a graph processing system. On the other hand, GraphH and

Tesseract focus on the scalability of using multiple cubes, and

providing the solution of offloading operations in whole graph

processing flow to HMCs.

VIII. CONCLUSION

In this paper, we analyze four crucial factors of improving

the performance of large-scale graph processing. To pro-

vide higher bandwidth, we implement an HMC array-based

graph processing system, GraphH, adopting the concept of

processing-in-memory (PIM). Hardware specializations like

on-chip vertex buffer (OVB) are integrated into GraphH to

avoid random data access. Cubes are connected using Recon-

figurable Double-Mesh Connection (RDMC) to provide high

global bandwidth and ensure locality. We divide large graphs

into partitions and then map them to the HMC. We balance

workloads of partitions using Index Mapping Interval-Shard

(IMIB). Conflicts among cubes are avoided using Round In-

terval Pair (RIP) scheduling method. Then, we propose two op-

timization methods to reduce global synchronization overhead

and reuse on-chip data to further improve the performance of

GraphH. According to our experimental results, GraphH scales

to large graphs and outperforms DDR-based graph processing

systems by up to two orders of magnitude and achieves up yo

5.12x speedup compared with Tesseract [1].

REFERENCES

[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in ISCA. ACM,
2015, pp. 105–117.

[2] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in MICRO. IEEE, 2016, pp. 1–13.

[3] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM:
Enabling instruction-level pim offloading in graph computing frame-
works,” in HPCA. IEEE, 2017, pp. 457–468.

[4] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system,” in OSDI. USENIX, 2016,
pp. 301–316.

[5] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: a framework for machine learning
and data mining in the cloud,” VLDB Endowment, vol. 5, no. 8, pp.
716–727, 2012.

[6] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and O. Oz-
turk, “Energy efficient architecture for graph analytics accelerators,” in
ISCA. ACM, 2016, pp. 166–177.

[7] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD. ACM, 2010, pp. 135–146.

[8] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang, “NXgraph: An
efficient graph processing system on a single machine,” in ICDE. IEEE,
2016, pp. 409–420.

[9] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph: Efficient
gpu-accelerated graph processing on a single machine with balanced
replication,” in ATC. USENIX, 2017, pp. 195–207.

[10] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core cpu and gpu,” in PACT. IEEE, 2011, pp.
78–88.

[11] K. Zhang, R. Chen, and H. Chen, “Numa-aware graph-structured ana-
lytics,” in SIGPLAN Notices, vol. 50, no. 8. ACM, 2015, pp. 183–193.

[12] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and efficient neural network acceleration with 3d memory,” in
ASPLOS. ACM, 2017, pp. 751–764.

[13] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” in ISCA. IEEE, 2016, pp. 380–392.

[14] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: edge-centric
graph processing using streaming partitions,” in SOSP. ACM, 2013,
pp. 472–488.

[15] J. Jeddeloh and B. Keeth, “Hybrid memory cube new dram architecture
increases density and performance,” in VLSIT. IEEE, 2012, pp. 87–88.

[16] Hybrid Memory Cube Specification 2.1, Nov. 2015, hybrid Memory
Cube Consortium, Tech. Rep.

[17] M. G. Smith and S. Emanuel, “Methods of making thru-connections in
semiconductor wafers,” Sep. 1967, uS Patent 3,343,256.

[18] H. Labs, “Cacti,” http://www.hpl.hp.com/research/cacti/.

[19] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke, “Memory-centric
system interconnect design with hybrid memory cubes,” in PACT. IEEE,
2013, pp. 145–156.

[20] C. Cakir, R. Ho, J. Lexau, and K. Mai, “Modeling and design of high-
radix on-chip crossbar switches,” in NOCS. ACM, 2015, p. 20.

[21] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in SIGCOMM computer communication

review, vol. 29, no. 4. ACM, 1999, pp. 251–262.

[22] G. Karypis and V. Kumar, “METIS–unstructured graph partitioning and
sparse matrix ordering system, version 2.0,” 1995.

[23] Y. Tamir and G. L. Frazier, High-performance multi-queue buffers for

VLSI communications switches. IEEE Computer Society Press, 1988,
vol. 16, no. 2.

[24] “Dynamorio,” http://www.dynamorio.org/.

[25] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” Computer Architecture Letters,
vol. 10, no. 1, pp. 16–19, 2011.

[26] “10th dimacs implementation challenge,” http://www.cc.gatech.edu/
dimacs10/index.shtml.

[27] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of die-
stacked processing in memory,” 2014.

[28] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The
terasys massively parallel pim array,” Computer, vol. 28, no. 4, pp. 23–
31, 1995.

[29] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi, and
F. Franchetti, “A 3d-stacked logic-in-memory accelerator for application-
specific data intensive computing,” in 3DIC. IEEE, 2013, pp. 1–7.

[30] N. Mirzadeh, O. Kocberber, B. Falsafi, and B. Grot, “Sort vs. hash
join revisited for near-memory execution,” in ASBD, no. EPFL-TALK-
209111, 2015.

[31] X. Zhu, W. Han, and W. Chen, “GridGraph: Large-scale graph process-
ing on a single machine using 2-level hierarchical partitioning,” in ATC.
USENIX, 2015, pp. 375–386.

[32] F. Khorasani, “Scalable simd-efficient graph processing on gpus,” in
PACT. ACM, 2015, pp. 39–50.

[33] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang, “ForeGraph:
Exploring large-scale graph processing on multi-fpga architecture,” in
FPGA. ACM, 2017, pp. 217–226.

[34] G. Dai, Y. Chi, Y. Wang, and H. Yang, “FPGP: Graph processing
framework on fpga a case study of breadth-first search,” in FPGA.
ACM, 2016, pp. 105–110.

[35] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe,
J. F. Martı́nez, and C. Guestrin, “Graphgen: An fpga framework for
vertex-centric graph computation,” in FCCM. IEEE, 2014, pp. 25–28.

[36] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[37] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark : Cluster computing with working sets,” HotCloud, pp. 1–7, 2010.

Guohao Dai (S’18) received his B.S. degree in 2014
from Tsinghua University, Beijing. He is currently
pursuing the Ph.D. degree with the Department of
Electronic Engineering, Tsinghua University, Bei-
jing. Now, he is visiting University of California,
Berkeley. His current research interests include ac-
celeration of large-scale graph processing on hard-
ware and emerging devices.

Tianhao Huang is currently a senior undergraduate
majoring in Electronic Engineering of Tsinghua Uni-
versity, Beijing. He joined the Nanoscale Integrated
Circuits and Systems (NICS) Lab, Department of
Electronic Engineering since 2016. His research
interests include architecture support for efficient
graph processing and parallel computing.

Yuze Chi received his B.S. degree in electronic
engineering from Tsinghua University and started
pursuing a Ph.D. degree in computer science in
2016. Being advised by Prof. Jason Cong, Yuze is
looking for software/hardware optimization opportu-
nities in many application domains, including graph
processing, image processing, and genomics.

Jishen Zhao (M’10) is an Assistant Professor at
Computer Science and Engineering Department of
University of California, San Diego. Her research
spans and stretches the boundary between computer
architecture and system software, with a particular
emphasis on memory and storage systems, domain-
specific acceleration, and high-performance comput-
ing. She is a member of IEEE.

Guangyu Sun (M’09) received his BS and MS de-
grees from Tsinghua University, Beijing, in 2003 and
2006, respectively and the PhD degree in computer
science from Pennsylvania State University, in 2011.
He is currently an associate professor of CECA at
Peking University, Beijing, China. His research in-
terests include computer architecture, VLSI Design
as well as electronic design automation (EDA). He
has published more than 60 journals and refereed
conference papers in these areas. He serves as an
AE of ACM TECS and JETC. He has also served

as a peer reviewer and technical referee for several journals, which include
IEEE Micro, the IEEE Transactions on Very Large Scale Integration, the IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
etc. He is a member of the IEEE, ACM, and CCF.

Yongpan Liu (M’07-SM’15) received his B.S.,
M.S. and Ph.D. degrees from Electronic Engineer-
ing Department, Tsinghua University in 1999, 2002
and 2007. He has been a visiting scholar at Penn
State University during summer 2014. He is a key
member of Tsinghua-Rohm Research Center and
Research Center of Future ICs. He is now an as-
sociate professor in Dept. of Electronic Engineering
Tsinghua University. His main research interests
include nonvolatile computation, low power VLSI
design, emerging circuits and systems and design au-

tomation. His research is supported by NSFC, 863, 973 Program and Industry
Companies such as Huawei, Rohm, Intel and so on. He has published over
60 peer-reviewed conference and journal papers and led over 6 chip design
projects for sensing applications, including the first nonvolatile processor
(THU1010N) and has received Design Contest Awards from (ISLPED2012,
ISLPED2013) and best paper award HPCA2015. He is an IEEE (ACM,IEICE)
member and served on several conference technical program committees
(DAC, ASP-DAC, ISLPED, A-SSCC, ICCD, VLSI-D).

Yu Wang (S’05-M’07-SM’14) received his B.S. de-
gree in 2002 and Ph.D. degree (with honor) in 2007
from Tsinghua University, Beijing. He is currently
a tenured Associate Professor with the Department
of Electronic Engineering, Tsinghua University. His
research interests include brain inspired computing,
application specific hardware computing, parallel
circuit analysis, and power/reliability aware system
design methodology.

Dr. Wang has published more than 50 journals (38
IEEE/ACM journals) and more than 150 conference

papers. He has received Best Paper Award in FPGA 2017, ISVLSI 2012, and
Best Poster Award in HEART 2012 with 8 Best Paper Nominations (DAC
2017, ASPDAC 2016, ASPDAC 2014, ASPDAC 2012, 2 in ASPDAC 2010,
ISLPED 2009, CODES 2009). He is a recipient of IBM X10 Faculty Award
in 2010. He served as TPC chair for ISVLSI 2018, ICFPT 2011 and Finance
Chair of ISLPED 2012-2016, Track Chair for DATE 2017-2018 and GLSVLSI
2018, and served as program committee member for leading conferences in
these areas, including top EDA conferences such as DAC, DATE, ICCAD,
ASP-DAC, and top FPGA conferences such as FPGA and FPT. Currently
he serves as Co-Editor-in-Chief for ACM SIGDA E-Newsletter, Associate
Editor for IEEE Transactions on CAD, and Journal of Circuits, Systems, and
Computers. He also serves as guest editor for Integration, the VLSI Journal
and IEEE Transactions on Multi-Scale Computing Systems. He has given
70 invited talks and 2 tutorials in industry/academia. He is now with ACM
Distinguished Speaker Program. He is an ACM/IEEE Senior Member. Yu
Wang also received The Natural Science Fund for Outstanding Youth Fund in
2016, and is the co-founder of Deephi Tech (valued over 150M USD), which
is a leading deep learning processing platform provider.

Yuan Xie (SM’07-F’15) was with IBM, Armonk,
NY, USA, from 2002 to 2003, and AMD Research
China Lab, Beijing, China, from 2012 to 2013.
He has been a Professor with Pennsylvania State
University, State College, PA, USA, since 2003.
He is currently a Professor with the Electrical and
Computer Engineering Department, University of
California at Santa Barbara, Santa Barbara, CA,
USA. He has been inducted to ISCA/MICRO/HPCA
Hall of Fame. His current research interests include
computer architecture, Electronic Design Automa-

tion, and VLSI design.

Huazhong Yang (M’97-SM’00) was born in Ziyang,
Sichuan Province, P.R.China, on Aug.18, 1967. He
received B.S. degree in microelectronics in 1989,
M.S. and Ph.D. degree in electronic engineering
in 1993 and 1998, respectively, all from Tsinghua
University, Beijing.

In 1993, he joined the Department of Electronic
Engineering, Tsinghua University, Beijing, where he
has been a Full Professor since 1998. Dr. Yang
was awarded the Distinguished Young Researcher
by NSFC in 2000 and Cheung Kong Scholar by

Ministry of Education of China in 2012. He has been in charge of several
projects, including projects sponsored by the national science and technology
major project, 863 program, NSFC, 9th five-year national program and several
international research projects. Dr. Yang has authored and co-authored over
400 technical papers, 7 books, and over 100 granted Chinese patents. His
current research interests include wireless sensor networks, data converters,
energy-harvesting circuits, nonvolatile processors, and brain inspired comput-
ing. Dr. Yang has also served as the chair of Northern China ACM SIGDA
Chapter.

