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Abstract—Large-scale graph processing requires the high
bandwidth of data access. However, as graph computing con-
tinues to scale, it becomes increasingly challenging to achieve
a high bandwidth on generic computing architectures. The
primary reasons include: the random access pattern causing local
bandwidth degradation, the poor locality leading to unpredictable
global data access, heavy conflicts on updating the same vertex,
and unbalanced workloads across processing units. Processing-in-
memory has been explored as a promising solution to providing
high bandwidth, yet open questions of graph processing on PIM
devices remain in: (1) How to design hardware specializations
and the interconnection scheme to fully utilize bandwidth of PIM
devices and ensure locality; (2) How to allocate data and schedule
processing flow to avoid conflicts and balance workloads.

In this paper, we propose GraphH, a PIM architecture
for graph processing on the Hybrid Memory Cube array, to
tackle all four problems mentioned above. From the architecture
perspective, we integrate SRAM-based On-chip Vertex Buffers
to eliminate local bandwidth degradation; We also introduce
Reconfigurable Double-Mesh Connection to provide high global
bandwidth. From the algorithm perspective, partitioning and
scheduling methods like Index Mapping Interval-Block and
Round Interval Pair are introduced to GraphH, thus workloads
are balanced and conflicts are avoided. Two optimization methods
are further introduced to reduce synchronization overhead and
reuse on-chip data. The experimental results on graphs with
billions of edges demonstrate that GraphH outperforms DDR-
based graph processing systems by up to two orders of magnitude
and 5.12x speedup against the previous PIM design [1].

Index Terms—large-scale graph processing, Hybrid Memory
Cube (HMC), memory hierarchy, on-chip networks
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Fig. 1. Challenges in large-scale graph processing and solutions in GraphH.
Our system makes use of advantages of PIM and overcomes disadvantages
of PIM, providing solutions to each challenge in graph processing.

I. INTRODUCTION

S we are now in the “big data” era, the data volume

collected from various digital devices has skyrocketed in
recent years. Meanwhile, ever-growing analysis demand over
these data brings tremendous challenges to both analytical
models and computing architectures. Graph, a conventional
data structure, can both store the data value and represent the
relationships among data. The large-scale graph processing
problem is gaining increasing attention in various domains.
Many systems have been proposed and achieved significant
performance improvement over large-scale graph processing
problems, including Tesseract [1], Graphicionado [2], Graph-
PIM (3], Gemini [4], GraphLab [5], etc [6]-[9].

The essential way to improve the performance of large-scale
graph processing is to provide a higher bandwidth of data
access. However, achieving high bandwidth of graph process-
ing on conventional architectures suffers from four challenges:
(1) Random access. The data access pattern in major graph
algorithm is highly irregular, which leads to considerable local
bandwidth degradation (e.g., >90% bandwidth degradation
on CPU-DRAM hierarchy [10]) on conventional computation



TABLE I
NOTATIONS OF A GRAPH

Notation Meaning
€ a graph G = (V, E)
\% vertices in G, |V| =n
E edges in G, |[E| =m
v; vertex %
€i.j edge from v; to v;
€sres €dst source & destination vertex of edge e
I interval =
Sy shard y, containing e; ; where v; € I
By.y block z.y, containing e;.; where v; € I and v; € I

architecture. (2) Poor locality. A simple operation on one
vertex may require access to all its neighbor vertices. Such
poor locality leads to irregular global data access and ineffi-
cient bandwidth utilization (e.g., 57% bandwidth degradation
on 2-hop [11]) on multi-processing units architecture. (3)
Unbalanced workloads. The graph is highly unstructured,
thus the computation workloads of various processing units
can be quite unbalanced. (4) Heavy conflicts. Simultaneous
updating to the same vertex by different processing units
causes heavy conflicts. All these four challenges need to be
addressed from both architecture and algorithm perspectives.

Processing-in-memory (PIM) has been put forward as a
promising solution to providing high bandwidth for big data
problems. PIM achieves speedup at several orders of magni-
tude over many applications [1], [3], [6], [12], [13]. Various
processing units can be put into the memory and attached to a
part of the memory in PIM. The total theoretical bandwidth of
all units under the PIM architecture can be 10x to 100x larger
than that under conventional computing architectures [1].
Moreover, PIM scales well to large-scale problems because it
can provide proportional bandwidth to the memory capacity.

Although PIM can provide advantages such as high band-
width and massive processing units (Fig. 1), it still suffers
from inherent disadvantages in graph processing. For example,
PIM is sensitive to unbalanced workloads and conflicts as
well as other multicore architectures. Moreover, achieving high
bandwidth in large-scale graph processing suffers from both
the random access pattern and the poor locality, these problems
remain in PIM. To tackle all these problems, previous works
have proposed several solutions. Tesseract [1] introduced the
prefetcher to exploit locality, but such prefetching strategy can-
not avoid global random access to graph data. GraphPIM [3]
proposed the instruction off-loading scheme for Hybrid Mem-
ory Cube (HMC) based graph processing, while how to make
use of multiple HMCs is not presented.

Therefore, using multiple PIM devices (e.g., Hybrid Mem-
ory Cube array) can be a scalable solution for large-scale graph
processing. Although Tesseract [1] has adopted the HMC array
structure for graph processing, open questions remain in how
to fully utilize the high bandwidth provided by PIM devices.
In this paper, we propose GraphH, a Hybrid Memory Cube
array architecture for large-scale graph processing problems.
Compared with Tesseract [1], both hardware architecture and
partitioning/scheduling algorithms are elaborately designed in
GraphH. From the architecture perspective, we design spe-
cialized hardware units in the logic layer of HMC, including

Algorithm 1 Pseudo-code of Edge-Centric Model [14]
Input: G = (V, E), initialization condition
Output: Updated V'

1: for each v € V do
2 Initialize(v, initialization condition)
3: end for
4: while (not finished) do
5. for each e € E do
6
7
8
9

value(eqst) = Update(esre, €dst)
end for
: end while
: return V

SRAM-based On-chip Vertex Buffers (OVB), to fully ex-
ploits the local bandwidth of a vault; We also propose the
Reconfigurable Double-Mesh Connection (RDMC) scheme
to ensure locality and provide high global access bandwidth
in graph processing. From the algorithm perspective, we pro-
pose the Index Mapping Interval-Block (IMIB) partitioning
method to balance the workloads of different processing units;
Scheduling method like Round Interval Pair (RIP) is also
introduced to avoid writing conflicts. All these four designs,
which are not introduced in Tesseract [1], lead to performance
improvements (detailed in Section VI-C, 4.58x using OVB,
1.29x using RDMC+RIP, 3.05x using IMIB, averagely). Con-
tributions of this paper are concluded as follows:

e We integrate the On-chip Vertex Buffer in GraphH. Process-
ing units can directly access OVB and do not suffer from
random access pattern.

e We connect cubes in GraphH using the Reconfigurable
Double Mesh Connection scheme to provide high global
bandwidth and ensure locality.

e We partition graphs using Index Mapping Interval-Block
method to balance workloads of cubes.

e We schedule the data transferring among cubes using Round
Interval Pair scheme. Communication among cubes are
organized in pairs and conflicts are avoided.

e We propose two optimization methods to reduce synchro-
nization overhead and reuse on-chip data. Thus, we further
improve the performance of GraphH.

We have also conducted extensive experiments to evaluate
the performance of the GraphH system. We choose both real-
world and synthetic large-scale graphs as our benchmarks and
test three graph algorithms over these graphs. Our evaluation
results show that GraphH remarkably outperforms DDR-based
graph processing systems by up to two orders of magnitude
and achieves up to 5.12x speedup compared with Tesseract [1].

The rest of this paper is organized as follows. Section II
introduces the background information of graph processing
models and Hybrid Memory Cubes. Section III proposes
the architecture of GraphH. Then, the processing flow in
GraphH is detailed in Section IV. We further propose two
optimization methods to improve the performance of GraphH
in Section V. Results of comprehensive experiments are shown
in Section VI. Related works are introduced in Section VII and
we conclude this paper in Section VIIIL
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II. PRELIMINARY AND BACKGROUND

In this section, we introduce the background information of
both large-scale graph processing and PIM technology. The
notations of our graph abstraction used in this and following
sections are shown in Table I.

A. Graph Abstraction

Given a graph G = (V, E), where V and E denote vertex
and edge set of GG, the computation task over G is to update
the value of V. We assume that the graph is directed so
that each edge e; ; in G is associated with a source vertex
v; and a destination vertex v;. The undirected graph can be
implemented by adding an opposite edge e;; to e; ; in G.

To build a general graph processing framework, most large-
scale graph processing systems, including GraphLab [5] and
Pregel [7], adopt a high-level graph algorithm abstraction
model called Vertex-Centric Model (VCM). VCM is a com-
monly used model applied to different graph algorithms. In
VCM, graph processing is divided into iterations. Each vertex
needs to communicate with all its neighbor vertices to per-
form the updating operation. Edge-Centric Model (ECM) [14]
describes VCM from another perspective.

Algorithm 1 shows a detailed example of graph processing
under the Edge-Centric Model. In ECM, value of different
vertices is initialized at the beginning of the program (Line 2
in Algorithm 1). Then, the algorithm is executed in the step
of iterations, and each edge is traversed in an iteration (Line 4
to Line 8 in Algorithm 1). When an edge is accessed, the
destination vertex is updated using the value of source vertex
(Line 6 in Algorithm 1). ECM is a high-level abstraction model
for graph processing, different algorithms only differ in the
Initialize() and Update() function. For example, in Breadth-
First Search (BFS), all vertices value is set to infinity while
the value of root vertex is set to zero using Initialize(). In the
Update(), a destination vertex will be updated if the depth of
a source vertex is smaller than its depth.

B. Graph Partitioning

Graph partitioning is commonly used to ensure the lo-
cality of graph data access. Many previous works proposed
graph partitioning strategies. Distributed/Multi-core systems

like Gemini [4] and Polymer [11] mainly focused on is-
sues like locality, cache coherence, low-overhead scaling out
designs, etc. NXgraph [8] proposed an interval-block based
graph partitioning method. After preprocessing, all vertices in
the graph are divided into P disjointed intervals. Edges are
divided into P shards according to their destination vertices.
Furthermore, edges in a shard are divided into P blocks
according to their source vertices.

Fig. 2 shows an example of this interval-block graph
partitioning method. Vertices in the graph are divided into 3
intervals, 3 shards, and 3x3=9 blocks. Each edge is assigned
to a block according to it source and destination vertices. For
example, interval I» contains vertices vs,vy4,vs, interval Ig
contains vertices vg, v7,vg, thus block Bs s contains edges
€3.8,€4.8,658. In this graph partitioning method, when one
interval I, updates another interval I, using corresponding
block B, ,, other intervals and blocks will not be accessed.

C. Hybrid Memory Cube

The architecture of processing-in-memory (PIM) has been
proposed to provide a higher bandwidth from the perspective
of hardware. By allocating processing units inside memory,
PIM achieves memory-capacity-proportional bandwidth so
that can scale to large-scale problems.

3D die-stacking memory devices, such as Hybrid Memory
Cube (HMC) [15], allow us to implement PIM with high
bandwidth memory. For example, an HMC device in a single
package contains multiple memory layers and one logic layer.
These layers are stacked together and use through-silicon via
(TSV) technology as connections to achieve a high bandwidth.
In an HMC, memory and logic layers are organized into
vertical vaults, which can perform computation independently.
The latest HMC devices can provide at most 8 GB memory
space, and up to 480 GB/s external bandwidth (4 multiple
serial links, each with a default of 16 input lanes and 16
output lanes for full duplex operation) referred to the Micron
HMC 2.1 specification [16]. Inside an HMC, there are 32
vaults. Each vault consists of a logic layer and several memory
layers which can provide up to 256 MB of memory space and
10 GB/s of bandwidth (16 GB/s in Tesseract [1]). Thus, the
maximum aggregate internal bandwidth of an HMC device can
be up to 320 GB/s according to the HMC 2.1 specification
(512 GB/s in Tesseract). Because of advantages like high
internal bandwidth and low cost of moving data, the HMC
has been taken into account as an effective solution for some
data-intensive applications[1], [3], [12]. For example, Gao et
al. [12] used HMCs for neural computing and achieved 4.1x
improvement compared with conventional architectures.

Although Ahn et al. [1] proposed Tesseract to implement
graph processing using PIM device, they didn’t fully utilize
the high bandwidth of PIM. In Tesseract, only one prefetcher
is integrated as a queue for messages without giving much
thought to graph data access patterns. As result, Tesseract
involves unpredictable global access, leading to low bandwidth
utilization (e.g. <3000GB/s bandwidth usage while 16 HMCs
can provide up to 16GB/sx32x16=8192GB/s bandwidth,
<37% bandwidth utilization).
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III. GRAPHH ARCHITECTURE

Based on background information in Section II, we design
the GraphH. We use the Hybrid Memory Cube as an example
implementation of GraphH.

A. Overall Architecture

Our GraphH implementation consists of a 16-cube array
(same as Tesseract [1]), shown in Fig. 3. Inside each HMC,
there are 32 vaults and a crossbar switch to connect them
to external links. A vault consists of both logic layer and
memory layers to execute graph processing operation. A host
processor is responsible for data allocation and interconnection
configuration.

HMC and double-mesh. GraphH physically arranges 16
cubes in a 2-D array structure. To connect 16 cubes, GraphH
uses a double-mesh structure as interconnections (represented
by the solid line and the dotted line in Fig. 3). The connec-
tivity of this double-mesh can be dynamically reconfigured at
runtime, which is detailed in Section III-C.

Vault and crossbar. The vault is the basic unit of HMC. An
HMC is composed of 32 vaults and provides high bandwidth
to each vault. According to the HMC 2.1 specification, such
a collective internally available bandwidth from all these 32
vaults is made accessible to the I/O links using a crossbar
switch.

Layer and TSYV. Inside each vault, there are several memory
layers and a logic layer. These layers are stacked together using
through-silicon via (TSV) [17]. According to the HMC 2.1
specification, the bandwidth between memory layers and the
logic layer of each vault can be up to 10 GB/s. We implement
a simple in-order core, two specific on-chip vertex buffers, the
data controller, and the network logic in the logic layer.

B. On-chip Vertex Buffer

Data access pattern in graph processing is highly random-
ized, leading to unpredictable latency (e.g., 2x~3x latency
difference between global and local access [11]) of accessing
different vertices/edges and efficient bandwidth degradation
(e.g., 57% bandwidth degradation on 2-hop [11]). To overcome

the unpredictable latency and bandwidth loss, we introduce
On-chip Vertex Buffers (OVB) as the bridge between the in-
order core and the memory.

In the Edge-Centric Model, updating is propagated from the
source vertex to the destination vertex. Both source vertices
and destination vertices are randomly accessed. Two types
of OVB, the source vertex buffer and the destination vertex
buffer, are integrated into the logic layer of a vault using
SRAM. Instead of directly access vertices stored in DRAM
layers when processing, GraphH firstly loads vertices data
into OVB. The in-order core can directly access vertices
value stored in OVB in the random pattern without bandwidth
degradation. After all vertices in the destination vertex buffer
have been updated (all corresponding in-edges have been
accessed by the in-order core), GraphH flushes data in the
destination vertex buffer back to DRAM layers and starts to
process other vertices in the same way.

By adopting OVB in the logic layer, the random access pat-
tern of DRAM layers is avoided. Data are sequentially loaded
from and written back to the stacked memory. We assume that
the logic layer has the same size as dram layer. According to
Micron HMC 2.1 specification [16], each DRAM layer is 8 Gb.
We use Cacti 6.5 [18] to evaluate the area properties of both
SRAMs and DRAMs for the sake of consistency. The area of
an 8 Gb DRAM with 64-bit input/output bus (data+address)
under 32 nm process is 257.02 mm? [1], the area consumption
is 1.65 mm? under 32 nm process. By allocating two OVBs
(source vertex buffer and destination vertex buffer) to each
buffer, the total area consumption of OVBs is 105.6 mm?,
which is less than half of the area of the logic layer.

C. Reconfigurable Double-Mesh Connection

According to Micron HMC 2.1 specification [16], each
cube has 8 high-speed serial links providing up to 480 GB/s
aggregate link bandwidth. Many previous researchers have
studied the inter-cube connection scheme, and nearly most of
them are static based on routers, which means all connections
are pre-established. Sethia e al. [19] proposed and analyzed
the interconnection, the topologies can be mesh, flattened
butterfly, dragonfly, etc. Under the static connection scheme,
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Fig. 4. Examples of reconfiguring double mesh connection using the crossbar
switch. Lines in orange, yellow and green represent the way of configuring the
corresponding cube into a source, destination, and router cube respectively.

a cube is often connected to 3 to 4 adjacent cubes, and such
480 GB/s external link will be partitioned by these cubes with
the bandwidth around 120 GB/s to 160 GB/s. However, the
aggregate internal bandwidth of a cube is 320 GB/s (10 GB/s
per vault), thus such static interconnection scheme cannot fully
utilize the internal bandwidth of HMC when transferring data
among cubes.

To avoid disadvantages of using static connections based
on routers, GraphH adopts a reconfigurable double-mesh con-
nection (RDMC) scheme shown in Fig. 3. A mesh consists of
24 meta-connections (connection between two adjacent cubes)
and 48 joints. Each mesh has individual data path and owns
exclusive bandwidth. Each meta-connection can provide up to
480 GB/s physical bandwidth with the full duplex operation.
The joint on each side of a meta-connection can be configured
to connect external links of a cube or another meta-connection.
In this way, two cubes can be connected using an exclusive link
with up to 480 GB/s bandwidth. GraphH refers to a look-up
table (LUT) in the host processor to store all configurations
required by processing scheme (detailed in Section IV). In
this way, GraphH can build up an exclusive data path for
any two cubes in the array. To implement the reconfigurable
connection scheme according to the pre-stored LUT, GraphH
uses a crossbar switch [20] connected to 4 links and 4 meta-
connections (each meta-connection has 4 individual links for
4 serial links of the cube, 4x4=16 in total). Fig. 4 shows an
example of how the crossbar switch works. When a cube in
a mesh network is the source/destination of data transferring,
the crossbar switch connects 4 output/input serial links of the
cube to the corresponding meta-connection (orange and yellow
lines in Figure 4). When a cube is a routing node, the crossbar
switch connects meta-connections without transferring data to
the cube (green lines in Figure 4). The status of the crossbar
is controlled by the host processor according to a pre-stored
LUT. Moreover, the interconnection reconfiguration can be
executed simultaneously during processing graphs in the cube
(No data are transferred among cubes when processing graphs
in a cube). Thus, such a reconfigurable connection scheme
will not affect the whole GraphH performance. Compared with
the static connection scheme, such reconfigurable connection
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scheme mitigates the cost of using routers and maximizes the
link bandwidth of two connected cubes.

IV. GRAPHH PROCESSING

Based on the proposed GraphH architecture introduced in
Section III, we introduce the graph processing flow of GraphH
in this section, high level programming interface of GraphH
is also introduced.

A. Overall Processing Flow

GraphH adopts Edge-Centric Model and Interval-Block
partitioning method for graph processing tasks. In the pre-
processing and data loading step, the vertex set V' is divided
into 16 equal-sized intervals and then assigned to each HMC
cube; for each interval, the 16 corresponding in-edge blocks
are also loaded into the same cube. In the next processing step,
program execution is divided into iterations, as in Algorithm 2.
Since ECM iterates over edges and requires both the source
and destination vertex data of the edge to be available, each
cube (Cube,) would first receive a source interval (I,) from
another cube (Cube,) in Transferring Phase. Then Cube,
performs Updating Phase to update I in parallel with the
data stored in I, and B, ;.

To exploit vault-level parallelism, vertices in an interval
are further divided into 32 disjoint small sets. Each vault is
responsible for updating one small set with the corresponding
in-edges. Thus, a block is also divided into 32 small sets and
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Fig. 6. The scheduling and connection of 16 cubes in different rounds of an updating iteration.

stored in each vault. The source interval is duplicated and
stored in each vault.

B. Index Mapping Interval-Block Partition

The execution time of each cube is in positive correlation
with sizes of both its vertices and edges [4]. All cubes need
to be synchronized after processing. Thus, it is important to
adopt a balanced partitioning method. Vertices are divided into
intervals and assigned to cubes, as well as corresponding edges
in blocks.

One naive way is to averagely divide consecutive vertices
into an interval. For example, in a graph with 9 vertices,
V1 ~ v7,9,v11." We divide all vertices into 3 intervals, the
separation results are I; = {vy ~ w3}, Io = {vg ~ vg},
I35 = {v7,v9, v11 }. However, when we implement this method
on natural graphs (left in Fig. 5, Graphs are from Table III),
sizes of different blocks are quite unbalanced, which leads
to unbalanced workloads. The reason of unbalanced sizes is
from the power-law [21] of natural graphs. A small fraction of

'Some vertex indexes do not appear in the original raw edge list of a graph
like vg in this example.

Algorithm 2 Pseudo-code of updating I, in Cube,
Input: G = (V, E), initialization condition
Output: Updated V'

1: for each iteration do

2:  for each Cube, do

3: receive I, from Cube, //Transferring Phase

4 update I, using I, and B, , in parallel //Updating
Phase

5:  end for

6: end for

vertices often pocess most of the edges in a graph. Moreover,
these vertices often have consecutive indexes and are divided
into one interval (e.g., Bo1 in AS, By in LJ, Bs 5 in TW,
B; 1 in YH, account for 10.86%, 10.73%, 3.71%, 18.19% of
total edges respectively, left in Fig. 5).

To avoid the unbalanced workloads among cubes, we
adopt the Index Mapping Interval-Block (IMIB) partitioning
method. IMIB consists of two steps: (1) Compression. We
compress vertex indexes by removing blank vertices. For
example, v; ~ wv7,v9,v11 are mapped to vy ~ wvg with
v o~ V7 — V1 ~ U7,V9 — Ug,V1i1 — 7Ug. 2) Hashing.
After mapping vertices to compressed indexes, we divide them
into different interval using modulo function. For example,
v1 ~ vg (after compression) are divided into 3 intervals with
Il = {U1,1}4,1}7}, IQ = {’Ug,’l)g,,vs}, 13 = {U3,’U6,U9}.

With IMIB, sizes of both intervals and blocks can be bal-
anced (right in Fig. 5, the ratios of largest and smallest blocks
are 1.32x, 1.11x, 1.22x, and 1.18x respectively in three graphs,
much smaller than the infinity (some blocks are empty), 6175x,
996x, and 33334x which uses naive partitioning method. In
this way, workloads are balanced in GraphH. Although there
are also many other partitioning methods, like METIS [22],
we use IMIB to minimize preprocessing overhead. The time
complexity of IMIB (as well as the dividing consecutive
vertices into an interval) is O(m) because we only need to
scan all edges without extra calculations (e.g., We do not need
to get the degree of each edge to perform partitioning scheme
based on the number of edges in a partition like Gemini [4]).

C. Round Interval Pair Scheduling

From the inner for loop in Algorithm 2 in Section IV-A
we can see that interval data update in each cube can be



Algorithm 3 Pseudo-code of processing in GraphH
Input: G = (V, E), initialization condition
Output: Updated V'

1: HMC_Allocate(V) & HMC_Initialize(V')

2: while (finished = false) do

3:  for each round do

4: for each interval pair < I, I, > (all interval pairs
in parallel) do
5: transfer I, to Cube, (update I, in parallel)

for each edge e € a vault in Cube, (all vaults in
parallel) do
value(egqs)=HMC_Update(egst, value(esye))

end for
: HMC_Intracube_Barrier(/,,)
10 end for
11: HMC_Intercube_Barrier()

12:  end for
13:  finished = HMC_Check(V)
14: end while

divided into Transferring Phase and Updating Phase. During
the Transferring Phase, a cube receives an interval from
another cube. Since intervals of different cubes are disjointed,
the procedure can be parallelized as follows. The 16 intervals
in our GraphH implementation are organized as 8 disjoint
interval pairs. Two intervals in a pair send local interval data
to another cube. Thus, updating of 8§ interval pairs can be
executed in parallel. The operation is denoted as one round.
A complete outer for loop iteration in Algorithm 2 needs 16
such rounds. Pair configurations are updated in each round so
that any cube has been paired with all other cubes once when
one iteration finishes.

Fig. 6(a) shows an example solution of interval pairs in
16 rounds. Round O refers to the round that each interval
updates its value. Note that this is not the only pair config-
uration. Based on this scheduling scheme, an interconnection
reconfiguration scheme is a prerequisite to implementing such
design. We adopt the dynamic interconnection scheme instead
of static ones. The host processor controls switch statuses of
all meta-connections (Fig. 3). GraphH can easily configure
the interconnections in all 16 rounds according to a pre-
stored LUT. The targets of our interconnection scheme are:
(1) implementing the Round Interval Pair scheduling scheme;
(2) avoiding two or more cube pairs using the same meta-
connection to transfer data. Under the double-mesh structure,
Fig. 6(b) shows the interconnection implementation of the
example solution in Fig. 6(a). Eight individual connections
are configured to build up direct data paths for interval pairs
(labeled in eight different colors) except Round 0. In this
way, conflicts among cubes are eliminated because a cube is
updated by only one cube at one time, using an exclusive data
path with 480 GB/s bandwidth.

D. Programming Interface

Algorithm 3 shows the execution flow of GraphH. Only
HMC _Initialize() and HMC_Update() need to be defined by
users using high-level languages.

Global syncI‘onization
Transfer I, Update I, a.g
Start g to Cube, using Iy > Finish
Traverse all y (1 to 16)
(a) Data flow of GraphH.
Global synchronizItion Global synchronization
Start Transfer I, Update I, | y_| Finish

4 | to Cube, | |#

Travers¢ all y (1 to 16)

using I,

Traverse all y|(1 to 16)

(b) Data flow of optimized GraphH.

Fig. 7. Difference in optimized GraphH.

HMC_Allocate(). The host processor allocates graph data
to vaults and cubes according to IMIB.

HMC _Initialize(). This function initializes the value of
graph data.

HMC_Update(). This function defines how a source vertex
updates a destination vertex using an edge. We can consider
HMC_Update() function as a particular case of the Update()
function in Algorithm 1.

HMC _Intracube_Barrier(). This is the synchronization
function in a cube. GraphH synchronizes 32 vaults to ensure
all vaults have finished updating.

HMC_Intercube_Barrier(). This is the synchronization
function for all interval pairs.

HMC_Check(). This function checks if the terminal con-
dition is satisfied.

V. GRAPHH OPTIMIZATION
A. Reduce Synchronization Overhead

As mentioned in Algorithm 3, all cubes need to be syn-
chronized 16 times in an iteration (per Updating Phase and
Transferring Phase). Such synchronization operations suffer
from unbalanced workloads of different cubes because the
execution time of processing a block in a cube is relative
to the graph dataset. However, the time of transferring data
among cubes is easy to balance because we set each interval
to the same size in GraphH. Thus, instead of receiving interval
data from other cubes in each round, a vault can store the
value of all vertices thus all cubes can perform the updating
simultaneously without transferring data among cubes.

TABLE II
REDUCE SYNCHRONIZATION OVERHEAD
Original Optimized
Sync. (Transfer) 16 times 16 times
Sync. (Update) 16 times once
Space (in a vault) | an interval  all intervals

Fig. 7 shows the difference between original scheduling
scheme and scheduling after reducing synchronization over-
head. In Updating Phase, each cube doesn’t need to communi-
cate with others before finishing updating. After finishing pro-
cessing using all vertices value, all vaults receive the updated
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Fig. 8. Crossbar switches to reuse vertices in the logic layer.

value of all vertices from other vaults in Transferring Phase.
In this phase, we can also use the RIP scheduling scheme
shown in Fig. 6, each cube only receives updated vertices value
without updating. Table II compares synchronization times
and space requirement in a vault of two scheduling methods.
Because all vertices need to be stored in a vault, some large
graph may not adopt this method due to memory space
limitation in a vault. We will solve this issue in Section V-B.

B. Reuse Data in the Logic Layer

In order to update different destination vertices in a cube in
parallel, all vaults need to store a complete copy of the source
interval. Such implementation has two drawbacks: (1) The
memory space of a vault is limited (8GB-+-32=256MBJ[16]),
which may be not sufficient to store all intervals in our first
optimization method (Section V-A); (2) All source vertices
need to be loaded from memory layers to the logic layer 32
times (1 time by each vault).

In order to overcome two disadvantages mentioned above,
we adopt four 8x8 crossbar switches followed by eight
4x4 crossbar switches running at 1 GHz (same as Graphi-
cionado [2]) with standard virtual output queues [23] to share
source vertices value of 32 vaults in GraphH. Source vertices
from any vault can be sent to destination interval buffers in
any vault in this way. Assuming that we use 8 Bytes to store
an edge, the maximum throughput of DRAM in a vault is
10 GB/s=+-8 Bytes = 1.25 edges/ns. Thus, the throughput of
DRAMs matches that of crossbar switches. Moreover, because
we do not need to modify the value of source vertices under
our processing model, all crossbar switches can be pipelined
without suffering from hazards (no forwarding units need to
be adopted in the design). In this way, instead of duplicating
intervals among vaults in a cube, GraphH can share source
vertices among vaults. Such data reuse architecture is shown
in Fig. 8.

VI. EXPERIMENTAL EVALUATION

In this section, we first introduce the simulation setup of
our GraphH design, followed by the workloads of experiments
used in this section, including the graphs and algorithms.

A. Simulation Setup

All experiments are based on our in-house simulator. Trace
files of graph data access patterns are first generated based on
DynamoRIO [24]. Then, we apply these traces to timing model
generated by Cacti 6.5 [18] and DRAMsim2 [25] to get the
execution time. The overhead of reconfiguring the double mesh
connection by the host has been taken into consideration in the
simulator, detailed in Section III-C. We run all our experiments
on a personal computer equipped with a hexa-core Intel i7
CPU running at 3.3GHz. The bandwidth of each vault is set
to 10 GB/s according to HMC 2.1 specification (16 GB/s in
Tesseract). On the logic layer in a cube, We implement eight 4
MB shared source vertex buffer running at 4 GHz and thirty-
two 1 MB individual destination vertex buffer running at 2
GHz to perform the write-after-read operation. We use ARM
Cortex-AS with FPU (without cache) running at 1 GHz as a
demo of the in-order core.

B. Workloads

Algorithms. We implement three different graph algo-
rithms. Breadth-First Search (BFS) calculates the shortest path
from a given root vertex to all other vertices in the graph.
PageRank (PR) evaluates the importance of all websites in
a network according to the importance of their neighbor
websites. Connected Components (CC) detects all subgraphs
in an arbitrary graph. The number of iterations for PR is
set to 10 in our simulation, while for other two algorithms
the number of iterations depends on the graph data thus we
simulate them to convergence.

TABLE III
PROPERTIES OF BENCHMARKS

# Vertices
1.69 million
4.85 million
41.7 million
720 million
1.05 million
2.10 million
4.19 million
8.39 million
16.8 million

Benchmarks
as-skitter (AS) [8]

live-journal (LJ) [8]

twitter-2010 (TW) [8]

yahoo-web (YH) [8]
delaunay_n20 (D20) [26]
delaunay_n21 (D21) [26]
delaunay_n22 (D22) [26]
delaunay_n23 (D23) [26]
delaunay_n24 (D24) [26]

# Edges
11.1 million
69.0 million
1470 million
6640 million
6.29 million
12.6 million
25.2 million
50.3 million
101 million

Graphs. Both natural graphs and synthetic graphs are used
in our experiments. We conduct four natural graphs including
an Internet topology graph as-skitter (AS) from trace routes
run daily in 2005, live-journal (LJ) from the LiveJournal
network, rwitter-2010 (TW) from the Twitter social network
and yahoo-web (YH) from the Yahoo network which consists
of billions of vertices and edges. We also conduct a set of
synthetic graphs, delaunay_n20 to delaunay_n24, to evaluate
the scalability of GraphH. The properties of these graph
benchmarks mentioned above are shown in Table III°.

C. Benefits of GraphH Designs

Compared with Tesseract [1], four techniques architecture
(OVB, RDMC) and algorithm (IMIB, RIP) perspectives are

2Indexes of vertices have been compressed. Thus, the number of vertices
may not equal to the largest vertex index or number of vertices appeared in
other papers.



introduced in GraphH. To show the performance improve-
ment by adopting these designs, we simulate the performance
difference with/without these techniques in this section. To
control the single variable, we adopt all other techniques when
simulating the influence of one technique in this section. Two
optimization methods in Section V are also adopted in this
section.

5
-
1
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Fig. 9. Speedup using On-chip Vertex Buffer.

Speedup using OVB
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1) Benefits of OVB: GraphH adopts on-chip vertices buffer
to avoid random access pattern to DRAM layers. We compare
the performance of implementing OVB in the logic layer with
the performance of directly accessing DRAM layers. The size
of source/destination interval buffers is set to 1IMB per vault.
Techniques like crossbar switches and shared source interval
buffers are adopted.

As we can see in Fig. 9. By implementing OVB in the logic
layer, GraphH achieves 4.58x speedup compared with directly
accessing DRAM layers on average.

Speedup using RDMC and RIP
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Fig. 10. Speedup using Reconfigurable Double-Mesh Connection/Round
Interval Pair.

2) Benefits of RDMC and RIP: GraphH adopts recon-
figurable double-mesh connection (RDMC) to maximize the
interconnection bandwidth between two cubes. Moreover, to
avoid conflicts among cubes, the round interval pair (RIP)
scheduling scheme is implemented on RDMC. RDMC and

RIP work together in GraphH. We compare the performance
using RDMC+RIP with a static single mesh connection net-
work under RIP-like routing scheme. The physical bandwidth
of each connection in such static mesh network is also set
to 480 GB/s, but each cube can only share a quarter of that
bandwidth because only one out of four external links is
connected to one meta-connection.

Using  RDMC+RIP based connection and scheduling
scheme, GraphH achieves 1.29x speedup compared with the
static connection method on average.

Speedup using IMIB
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Fig. 11. Speedup using Index Mapping Interval-Block partitioning method.

3) Benefits of IMIB: Workloads of different cubes in a
round can be balanced using our IMIB partitioning methods.
We compare the performance of using IMIB with chunk-
based method [4] (dividing vertices with consecutive indexes
into a partition). These two partitioning methods introduce
least preprocessing overhead (scanning all edges without other
linear algebra operations).

As we can see from Fig. 11, using IMIB achieves 3.05x
speedup compared with chunk-based partitioning on average.
Such conclusion is in contrast to the conclusion in Gemini [4],
which concludes that hash-based partitioning leads to more
network traffic and worse performance. The reason is that the
interconnection bandwidth in GraphH provided by HMC is
two orders of magnitude as that in Gemini, thus balancing
workloads is more important in this situation. We will discuss
the influence of network bandwidth on the whole system
performance in Section VI-E3.

D. Performance

Based on experimental results in Section VI-C, both archi-
tecture (OVB, RDMC) and algorithm (IMIB, RIP) techniques
in GraphH lead to performance profits. We implement these
techniques and evaluate the performance of systems under
different configurations.

e DDR-based system. We run software graph processing
code on a physical machine. The CPU is an i7-5820K core
and the bandwidth of DDR memory is 12.8 GB/s.

e Original-GraphH system. This is the GraphH system
without using optimization methods.
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Fig. 12. Performance comparison among DDR-based system, GraphH under different configurations, and Tesseract (normalized to DDR-based system, thus

bars of DDR are omitted).

e Optl-GraphH system. We reduce synchronization over-
heads using optimization method in Section V-A.

e Opt2-GraphH system. We reuse vertex data in the logic
layer using optimization method in Section V-B.

e Optimized-GraphH system. Based on two optimization
methods in Section V, this is the combination of Opt1/Opt2-
GraphH system.

o Tesseract system. We do some modifications in GraphH
to simulate Tesseract [1], including: (1) The size of the
prefetcher in Tesseract is set to 16 KB; (2) We assume no
global access latency but the external bandwidth is set to
160 GB/s (each cube is linked to 3 cubes in Tesseract); (3)
Workloads are balanced in Tesseract. In this way, we can
simulate the performance upper bound of Tesseract.

1) Performance Comparison: We compare the performance
of GraphH under different configurations with both DDR-
based and Tesseract system. The comparison result is shown
in Fig. 12. As we can see, both Tesseract and GraphH
outperforms the DDR-based system by one to two orders
of magnitude. GraphH achieves 1.16x ~ 5.12x (2.85x on
average) speedup compared with Tesseract because GraphH
introduces both architecture and algorithm designs to solve
challenges in graph processing.

Reducing cube synchronization overhead has limited contri-
bution to GraphH performance, because workloads of different
cubes have been balanced using IMIB. Moreover, such imple-
mentation needs to store all vertices value in a vault. Thus, it
may not apply to larger graphs (e.g., PR/CC on YH, there is
no bar for original and optl). Reusing on-chip vertices data
(opt2/optimized) leads to 2.28x average performance improve-
ment compared with original/optl configuration, because such
implementation leads to fewer data transferring between OVBs
and DRAM layers (Detailed in Section VI-D2).

2) Execution Time Breakdown: Fig. 13 shows the execution
time breakdown in GraphH. Note that we assume the memory
space of one vault is enough to store required data, thus for
larger graphs like YH, we can get results of original/optl
configurations.

As we can see, loading vertices (including writing back
updated vertices data) accounts for 73.99% of total execution
time under original/opt]l configurations. By adopting shared
source interval memories, GraphH significantly reduces the
time of transferring vertices between OVBs and DRAM layers
to 50.63% for AS, LJ, and TW. For larger graphs like YH,
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Fig. 13. Execution time breakdown when running PR (processing: processing
edges in a cube; loading vertices: transferring vertices between OVBs and
DRAM layers; transferring: transferring data among cubes.).

transferring vertices between OVBs and DRAM layers still
account for over 86.21% of total execution time. Larger on-
chip SRAM can relieve such bottleneck to some extent, but
GraphH can only provide 1MB source vertices buffer per vault
due to the area limitation.

Throughput (1000MTEPS)
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Fig. 14. Scalability running PR on synthetic graphs.

3) Scalability: PIM can achieve memory-capacity-
proportional bandwidth, so it scales well when processing
large-scale problems. We compare the scalability of GraphH
with Tesseract. We run PR algorithm on five synthetic graphs,



delaunay_n20 to delaunay_n24 [26]. We use the Million
Traversed Edges Per Second (MTEPS) as the metric to
evaluate the scalability of system performance.

Fig. 14 shows the scalability of both GraphH and Tesseract.
As we can see, both GraphH and Tesseract scales well to larger
graphs. GraphH provides 2.31x throughput than Tesseract on
average.

4) Power density: We analyze the power density of GraphH
in Fig. 15 using Cacti 6.5 [18] and previous HMC model [15].
Energy consumption of hardware support like OVBs is in-
cluded in this figure. Logic layer accounts for 58.86% power
in GraphH. By introducing extra hardware support for graph
processing on HMCs, GraphH consumes more power than
Tesseract (94mW/mm?), but the power density is still under
the thermal constraint (133 mW/mm?) [27] mentioned in
Tesseract [1].

Power density (mW/mm?)
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Fig. 15. Power density and its distribution in GraphH when running PR on
real-world graphs.

E. Design Space Exploration

1) Different OVB Sizes: We choose 1MB for both source
and destination interval buffers per vault in our GraphH im-
plementation. We compare the performance comparison using
different OVB sizes in Fig. 16. We run the PR algorithm on
four graphs. Note that the size is the source interval buffer size
per vault, because the shared source interval buffer is adopted.
Considering one goal of HMC is to have a small footprint, we
also add the performance of adopting no OVB in Fig. 16. The
execution time is normalized to Tesseract.

As we can see in Fig. 16, for small graphs like AS and LJ,
SRAMs of 0.25MB per vault are enough to store all vertices
on the logic layer. However, for larger graphs, smaller OVB
leads to significant performance degradation because more
data are transferred between OVBs and DRAM layers. In
some situations (e.g., YH), small OVBs cannot bring benefits
compared with the no OVB configuration and Tesseract. As
we can see, GraphH can still achieve 1.40x speedup against
Tesseract even without OVBs.

2) Different Cube Array Sizes: We study the influence of
the different number of cubes on the performance. We run PR
performance of different array size: a 2x2 array (4 cubes),

Logic layer (core+controller+SRAM)

Normalized performance (OVB size)
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1MB 0.SMB ®(0.25MB ®no OVB HETesseract

Fig. 16. Speedup using different OVB sizes (Normalized to Tesseract).

a 2x4 array (8 cubes), a 4x8 (32 cubes), and the current
16 cubes’ design. The scheduling schemes are akin (e.g., we
use Cube 1~8 to perform Round O~7 in Fig. 6(b) as the
scheduling scheme of 8 cubes). 32 cubes need a triple-mesh
structure to avoid conflicts among cubes.

AS LJ
0.32 0.32
0.3 0.3
0.28 0.28
/"\ 0.26 /\‘\ 0.26
0.24 0.24
22 24 44 48 22 2x4 4x4 4x8

speedup =®=speedup/#cubes speedup =#-speedup/#cubes

™ YH
0.32 0.32
0.3 0.3
0.28 0.28
’/‘/\’ 0.26 0.26
0.24 0.24
X2 2x4  4x4 458 X2 2x4  4x4 48

speedup =#=speedup/#cubes speedup —®-speedup/#cubes

Fig. 17. Performance on different array sizes.

Fig. 17 shows the performance comparison of different
array sizes. We normalize the speedup to the performance of
the 2x2 array. The axis on the left (light green bar) shows
that using more cubes leads to better absolute performance.
However, when we normalize the speedup to the number of
cubes (right axis, dark green line), we find that speedup per
cube is not monotonically increasing. For small graphs like
AS and LJ, the OVB of 0.25MB per vault is enough to store
all vertices and using more cubes may lead to unbalanced
issues. For larger graphs like YH, using more cubes provides
larger OVB, thus leads to better performance (normalized to
the number of cubes). Simply adding cubes to GraphH can
lead to enhancement of absolute performance, but it can also
cause inefficient utilization of each cube depending on the size
of the graph.



3) Different Network Bandwidth: As mentioned at the end
of Section VI-C3, other distributed graph processing systems
may also adopt the IMIB partitioning method. However,
whether the method works depends on the network bandwidth.
Compared with distributed graph processing systems, like
Gemini [4], the network bandwidth in GraphH is two orders
of magnitude higher. We depict the proportion of transferring
data among cube in the total execution time, when the total
external bandwidth of a cube varies, in Fig. 18.
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Fig. 18. Proportion of transferring data among cubes in the total execution,
when the total external bandwidth of a cube varies.

As we can see in Fig. 18, if we lower the interconnection
bandwidth to tens of Gigabytes (same as Gemini [4]), the
network traffic accounts for up to 80.79% of the total execution
time when network bandwidth is low. Transferring data among
cubes using IMIB will domination the total execution time in
that situation. While in GraphH, due to high bandwidth among
cubes with our designs, the network traffic only accounts for
less than 20% of the total execution time, so we balance
workloads rather than reduce network traffics in GraphH.

VII. RELATED WORK

A. Processing-in-Memory and 3D-Stacking

The concept of Processing-in-memory (PIM) has been pro-
posed since 1990s [28]. The original motivation of PIM is to
reduce the cost of moving data and overcome the memory
wall. Although adopting caches or improving the off-chip
bandwidth are also solutions to such problems, PIM has
its advantages like low data fetch cost. One key point in
PIM devices is to place massive computation units inside
memory dies with high integration density, 3D-stacking tech-
nology turns it into reality. In 3D-stacking technology, silicon
dies are stacked and interconnected using through-silicon via
(TSV) in a package. Intel Corporation presents its first 3D-
stacking Pentium 4 processors in 2004 and after that 3D-
stacking technology has raised growing attentions. Several
work used 3D-stacking PIM architecture to accelerate data-
intensive applications, like graph processing [1], [3], neural
computation [12], and etc [29], [30].

B. Large-scale Graph Processing Systems

Many large-scale graph processing systems have been de-
veloped in recent years. These systems execute on different
platforms, including distributed systems [4], [5], [7], [11],
single machine systems [8], [14], [31], heterogeneous sys-
tems [32]-[35], etc [2]. Some distributed systems are based
on big data processing framework [36], [37], they focus on
the fault tolerance to provide a stable system. Other distributed
graph processing systems focus on other issues like graph par-
titioning and real-time requirement. Single machine systems
focus on providing an efficient system under limited resources
(like a personal computer). Heterogeneous systems use other
devices like GPUs [32] and FPGAs [33]—-[35] to accelerate
graph computation, while the capacity and bandwidth of these
systems may be limited.

C. Large-scale Graph Processing on Hybrid Memory Cubes

Tesseract [1] and GraphPIM [3] are two PIM-based graph
processing architecture based on Hybrid Memory Cubes. By
first adopting PIM in graph processing, Tesseract [1] it is
efficient and scalable to the problem with intense mem-
ory bandwidth demands. To fully exploit the potential of
PIM on graph processing, GraphH proposes specific designs
for graph processing, including hardware support, balancing
method, and reconfigurable network, which are not discussed
in Tesseract. GraphPIM [3] proposes the solution of offloading
instructions in graph processing to HMC devices. Compared
with GraphH and Tesseract, GraphPIM does not introduce
extra logics in the logic layer of HMCs. However, without
the design of the cube’s interconnection, HMC in GraphPIM
just performs as the substitute for the conventional memory
in a graph processing system. On the other hand, GraphH and
Tesseract focus on the scalability of using multiple cubes, and
providing the solution of offloading operations in whole graph
processing flow to HMCs.

VIII. CONCLUSION

In this paper, we analyze four crucial factors of improving
the performance of large-scale graph processing. To pro-
vide higher bandwidth, we implement an HMC array-based
graph processing system, GraphH, adopting the concept of
processing-in-memory (PIM). Hardware specializations like
on-chip vertex buffer (OVB) are integrated into GraphH to
avoid random data access. Cubes are connected using Recon-
figurable Double-Mesh Connection (RDMC) to provide high
global bandwidth and ensure locality. We divide large graphs
into partitions and then map them to the HMC. We balance
workloads of partitions using Index Mapping Interval-Shard
(IMIB). Conflicts among cubes are avoided using Round In-
terval Pair (RIP) scheduling method. Then, we propose two op-
timization methods to reduce global synchronization overhead
and reuse on-chip data to further improve the performance of
GraphH. According to our experimental results, GraphH scales
to large graphs and outperforms DDR-based graph processing
systems by up to two orders of magnitude and achieves up yo
5.12x speedup compared with Tesseract [1].
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