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ABSTRACT

This paper studies the optimal control of energy storage when operations are permitted only

at random times. At the arrival of a permission, the storage operator has the option, but not the

obligation, to transact. A nonlinear pricing structure incentivizes small transactions spread out

among arrivals, instead of a single unscheduled massive transaction, which could stress the energy

delivery system. The problem of optimizing storage operations to maximize the expected cumulated

revenue over a finite horizon is modeled as a piecewise deterministic Markov decision process. Various

properties of the value function and the optimal storage operation policy are established, first when

permission times follow a Poisson process, and then for permissions arriving as a self-exciting point

process. The sensitivity of the value function and optimal policy to the permission arrival process

parameters is studied as well. A numerical scheme to compute the optimal policy is developed and

employed to illustrate the theoretical results.

Current distribution systems cannot support simultaneous and identical actions of a large number

of agents reacting all to an identical signal. That motivates transactive market frameworks when their

access to transactions is restricted. Therefore, the optimal policy of an agent under this restriction

is important to be studied. Being able to act at random arrival of permissions and under a nonlinear

pricing structure are salient characteristics differentiating this study from existing work on energy

storage optimization.

Keywords: Transactive energy, Energy storage, Dynamic optimization, Optimal control

1. Introduction
This paper is concerned with the optimal control of energy storage, given a finite horizon over
which permissions for operation arrive at random times. The permission flow is modeled by an
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arrival process. The goal is to maximize the cumulative expected profit from operations given the
fixed horizon. The revenue from discharge operations is described by a time-varying function which
is increasing and concave in the quantity. Such a nonlinear pricing structure has the property of
encouraging discharges in smaller amounts.
Two key properties of this energy storage problem are the lack of control over the operation

times and the nonlinear pricing scheme for the discharge payoffs. Being permitted to act only at
random times is a salient characteristic differentiating this problem from existing studies on optimal
energy storage management in which the controller can act at pre-specified times or act continuously.
Nonlinear pricing is pervasive in electricity markets, for instance when side payments are used to
compensate specific generating units for starting up or for staying idle. However, these schemes often
lack transparency, and are not applied uniformly over all participants. In contrast, in the present
work, the nonlinear pricing scheme is defined upfront.

This problem is motivated by market frameworks where the access of energy resources to trans-
actions is restricted and managed in real time by a distribution system operator. Recently, there
has been growing interest in so-called transactive energy markets aimed at facilitating transactions,
including unscheduled transactions. Transactive energy markets can enable bilateral transactions
without passing through the wholesale markets (Rahimi and Ipakchi 2012, Olken 2016, Rahimi and
Ipakchi 2016, Kristov et al. 2016, Cazalet et al. 2016). Transactive energy markets would allow
distributed energy resources without direct access to wholesale markets to participate in energy trans-
actions over the distribution grid. Energy storage’s unique capabilities (Denholm et al. 2010, DOE
Report 2011, Diaz-Gonzalez et al. 2012, Du and Lu 2014), combined with technological advances that
have been driving costs down (Straubel 2015, Quadrennial Energy Review 2015), suggest that energy
storage is an asset that can play an important enabling role in the development of transactive energy
markets. At the same time, further deployment of energy storage requires developing appropriate
market models to address current market and regulatory barriers (Sioshansi et al. 2012, Bhatnagar
et al. 2013, Xiao et al. 2014), especially when it comes to encouraging small participants at the level
of the distribution network.
However, the power injections from storage resources cannot be completely unsupervised and ad

hoc. Because, otherwise, as their deployment and participation become widespread, there will be
times when a large number of storage owners discharge in arbitrary quantities simultaneously. This
will put stress on the distribution system. Restricting distributed energy storage transactions to only
those times that are specified in real time (and not in advance) by a distribution system operator,
supported by an appropriate payoff structure, can alleviate this risk while enabling transactions with
no pre-commitments for distributed storage. A simple framework capturing these key properties is
proposed and outlined in subsection 1.1.
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From the perspective of a storage resource operator participating in such a framework, the permis-

sions for operation communicated by the distribution system operator arrive at random. Thus, the

operator needs to optimally control energy storage under random operation times. The problem in

this paper fits well in this situation. In fact, this analysis is the building block for further analyzing

nonbinding commitment market frameworks.

1.1. Contributions

We formulate the energy storage operation problem as a continuous-time stochastic control problem,

in which the optimal policy depends on the stochastic operation permission flow. The control problem

in this paper belongs to the family of piecewise deterministic Markov decision processes, a class of

optimal control problems introduced by Davis (1984) and studied in Davis (1993). These processes

evolve through random jumps at random points in time while the evolution between jumps is deter-

ministic. The dynamic programming principle for the control problem of interest leads to a system

of nonlinear partial differential equations, which can be solved numerically, for instance see Kushner

and Dupuis (2001). We demonstrate the effectiveness of the computational approach using several

numerical examples. Next, the extension of the framework to a self-exciting permission arrival model

is discussed to show how the previous analysis based on a constant arrival rate can be generalized to

this more challenging context.

Several properties of the value function and the optimal policy of this problem are established,

relating to the sensitivity of the value function to its state variables and to parameters of the problem.

This analysis is expected to shed light on ways to influence the optimal behavior of the controller.

Summary: To summarize, our main contributions include developing a novel nonbinding com-

mitment market framework with a number of attractive characteristics, and studying the optimal

control of a storage device participating in this framework. The analyses in this paper can guide a

potential storage owner to value its participation in this nonbinding commitment market framework.

In addition, this study provides insights for the policy makers and regulators to design efficient and

attractive storage deployment programs.

1.2. Literature Review

Energy Storage Optimal Control: Managing grid-level storage or controlling hybrid renewable-

energy storage systems have been the topic of several previous studies, see e.g., Thompson et al.

(2009), Lai et al. (2010), Lohndorf et al. (2013), Sioshansi et al. (2014), Zhou et al. (2013), Moazeni

et al. (2015), Moazeni et al. (2017), Harsha and Dahleh (2015), Hu and Defourny (2017) and the ref-

erences therein. These studies differ in their settings, modeling approach, and objectives. Operations

optimization of storage facilities that participate in the wholesale electricity market by placing bids
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and commitments with the objective of profiting from price differences are studied in Carmona and
Ludkovski (2010), Byrne and Verbic (2013), Xi et al. (2015).
In most existing analyses of energy storage operations in the literature (including those cited above),

electricity flows in and out of the storage resources during time periods that are well specified in
advance. These models have focused on a discrete time model with fixed time epochs or a continuous
time operation environment over a finite or infinite horizon. The present work differs by introducing
uncertainty in the permitted discharge times. In these models, letting an energy storage device operate
at specified times imposes a pre-commitment for the grid or the entity, interacting with them, to
buying electricity at those specific times, for example every hour in discrete time models or anytime
in continuous time models. To the best of our knowledge, the analysis of an energy storage discharge
environment restricted to exogenous random operation permission times is novel.
Piecewise Deterministic Markov Processes: For studies on similar controlled piecewise deter-

ministic Markov processes, see Yushkevich (1980), Hordijk and Schouten (1985), Almudevar (2001),
Guo and Hernandez-Lerma (2009), Bauerle and Rieder (2010). For applications of these models in
finance and portfolio optimization, see e.g., Jacobsen (2006), Matsumoto (2006), Pham and Tankov
(2008), Bauerle and Rieder (2009), Bayraktar and Ludkovski (2011), Gassiat et al. (2011), Fujimoto
et al. (2013). For applications in insurance, see e.g., Schmidli (2008) and Kirch and Runggaldier
(2005). For applications in queueing theory, see e.g., Kitaev and Rykov (1995) and Rieder and Winter
(2009).
Price Spike Modeling by Poisson Processes: Capturing electricity price spikes as jumps

modeled via Poisson processes has been frequently considered in the literature on electricity price
models, see e.g., Deng (1999), Cartea and Figueroa (2005), Culot et al. (2006), Geman and Roncoroni
(2006), Kluge (2006), and Weron et al. (2004). For a comprehensive survey on the electricity price
models see Carmona and Coulon (2013).

1.3. Outline

This paper is organized as follows. The mathematical formulation of the optimal energy storage
discharge control problem is described in Section 3. The structure of the value function is analyzed
in Section 4. In Section 5, the procedure to compute an optimal control is discussed. Section 6
summarizes structural properties of the optimal policy. Illustrative examples and computational
analyses are presented in Section 7. The framework with uncertain arrival rates is explained in
Section 8. Storage models with inefficiencies are briefly addressed in Section 9. Insights and other
possible extensions conclude the paper in Section 10.
Throughout this paper, “increasing" and “decreasing" mean “nondecreasing" and “nonincreasing",

respectively. We denote the set of natural numbers including zero by N and the set of nonnegative
real numbers by R+.
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2. Nonbinding Commitment Market Framework
In this section, we describe the salient characteristics of our setting. The key property of this frame-
work is to restrict the times at which a particular participating storage unit can discharge.

Agents

Transactions are defined between a utility company or a load serving entity, and a flexible energy
resource owner (e.g., a battery in an electrical vehicle) who is unable to participate in the wholesale
market, perhaps due to its commitment requirements.

Agreement

Participants enroll in a program managed by the utility company to inform the utility company of
their willingness to receive transaction permission notice from the utility company.
The agreement specifies:
• A fixed time horizon over which operation permissions will be sent at random.
• The time-varying payoff structure as a function of the quantity discharged.

The utility company will issue operation permissions to a subset of enrolled available energy stor-
age units, at its own discretion. The utility company has an internal policy for triggering discharge
requests, and distributing them among program participants. For instance, load conditions, distri-
bution network congestions, variability in supply will affect these decisions. However, the utility
company ignores the response rate for the requests it sends. Actually, the response rate follows from
the optimal policy of the storage controller. Therefore, as a first logical step to study the response rate
and develop the permission sending policy, this paper analyzes the optimal behavior of the storage
operator.
As an energy storage unit receives a permission, it has the option, but not the obligation, to

discharge in real time and receive a payment, following the payoff structure agreed upon.

Benefit for the Storage Operator

In contrast to participation in the wholesale market, the storage owner does not have to commit in
advance to providing energy, and does not need to get involved in a bidding process. This provides
the energy storage unit opportunities to participate and benefit from energy transactions without
the financial risk of a binding commitment for energy injection. Thus, it is a nonbinding commitment
for the storage operator.

Benefit for the Utility

The utility company gets access to installed storage capacity without having to invest itself in those
assets. Although the access to individual units is intermittent, overall, aggregate capacity is obtained
at a certain confidence level. Once again this relates back to the optimal behavior of the program
enrollees, which is the main focus of this paper.
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The utility company does not commit in advance to buy from the enrolled energy storage units.

Thus, it is a nonbinding commitment for the utility company. Through operation permission times,

the utility company can indirectly supervise these participants and avoid their ad hoc interferences

in the distribution grid.

Broader Benefits

This framework offers a mutually beneficial agreement: it involves nonbinding commitments with

attractive flexibility and financial benefits for both parties. It promotes further deployment of dis-

tributed storage capacities at the level of the distribution grid. The presence of energy storage units

across the distribution grid can help smoothing out variability, thereby firming transactions from

other agents such as buyers and sellers of wind and solar energy.

Specific details and further valuation of this market need to be studied. However, any further anal-

yses about this framework requires understanding the optimal behavior of storage units participating

in the program. Therefore, as the first step, in this paper, we focus on this building block of the

framework, namely the optimal control of an energy storage participating in this market.

3. The Model
Consider an energy storage unit of capacity K > 0, participating in a flexible discharge program,

which enables it to discharge its stored power at permitted times over [0, T ], where T denotes the

fixed terminal time horizon.

3.1. Permission Process

We postulate that the discharge permissions are issued randomly by the Poisson process {Ns}s≥0

with arrival rate λ. We assume that λ is fixed (this assumption is relaxed in Section 8). We denote

by {Ft}t≥0 the natural filtration associated with the Poisson process, where Ft is the sigma-algebra

generated by {Ns}s≤t. We refer to the time-stamp of the ith discharge permission that arrives on the

interval [t,∞) by τi,t. This implies that τi,t ≥ t. Thus, {τi,t}i∈N is the sequence of jump times of the

Poisson process {Ns}s≥0 since time t. For convenience we set τ0,t = t.

The total number of permissions received between the current time and the fixed terminal time is

random. Because there is no guarantee of receiving future opportunities to act, the storage operator

faces the problem of deciding between using current versus uncertain future discharge opportunities.

3.2. Nonlinear Pricing Scheme

When a discharge permission is communicated at some time t∈ [0, T ), the storage owner will receive

Rt(a) dollars by discharging a units of electricity at this time. At terminal time T , the value of the

leftover stored electricity is given by the terminal reward function RT (a).
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In this paper, we assume that the reward function Rt(a) is nonnegative and null at a= 0, increasing
in a, concave in a, and continuous in t everywhere. The nonnegativity and concavity assumptions
imply that Rt is subadditive, that is, Rt(a1 + a2) ≤ Rt(a1) +Rt(a2). We define a terminal reward
function RT (k) where k is the stored quantity remaining at time T . We assume RT is nonnegative,
null at k = 0, increasing in k and concave in k.
The subadditivity of Rt incentivizes participating storage units to split their stored energy into

smaller amounts and not to discharge the entire stored amount at once. This is an attractive prop-
erty of the program regarding the usage of the distribution network. However, by discharging the
stored energy in small amounts, the storage operator bears the risk of receiving no more discharge
permissions by the terminal time, in which case a leftover charged level remains at time T that is
valued according to the terminal reward RT .

An example of the reward function is Rt(a) = R(pt, a) for some stationary function R and time-
varying reward coefficients pt, which may represent the expected nodal electricity prices. Alternatively,
the reward function can be time-independent, i.e., Rt(a) =R(p, a), where p can be interpreted as the
average electricity price per day.
In our numerical work reported in §7, we use the log-utility function Rt(a) = log(1 + pta) as the

reward function for t∈ [0, T ) and the constant function RT (a) = 0 for the terminal time. The selected
log-utility function is motivated by the following property.

Proposition 3.1 The cumulated payment for a total amount of k, divided equally into n transactions,
cannot be greater than the equivalent linear payment pk.

Proof. The function f(n) = n log(1 + pk/n) is increasing in n. The result then follows from
limn→∞ nR(k/n) = limn→∞ n log(1 + pk/n) = pk. �

If p is interpreted as a contractual price, the utility company is guaranteed not to spend more than
the contractual price times the total quantity discharged from these resources.

3.3. Optimal Control Problem

When the storage operator is rational and risk-neutral, an optimal discharge policy π to discharge
k ≤K units of power can be determined by maximizing the total expected revenue over the time
horizon [0, T ]. This results in the following optimization problem,

V0(k) def= max
π∈Π

E

NT−∑
i=1

Rτi,0

(
xπτi−1,0

−xπτi,0
)

+RT (xπT )
∣∣∣ xπ0 = k

 . (1)

The process xπ = {xπt }t∈[0,T ] represents the charge level under the discharge policy π. We assume
that xπ is a nonnegative real-valued, right-continuous with left limits, decreasing process adapted
to the filtration {Ft}t>0. We denote by Π the class of policies π where xπ satisfies those conditions
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and corresponds to feasible actions, defined below. The filtration condition imply that the values of
xπ can only change at the time of jumps of the Poisson process. The random variable NT− is the
number of jumps of the Poisson process {Ns}s≥0 over the time interval [0, T ), and RT (xπT ) captures
the terminal reward. Note that from the assumptions on the reward function, V0(0) = 0.
The aforementioned problem constitutes a piecewise deterministic Markov decision process (Davis

1993). In parallel with the formulation in (1) in terms of the controlled charge level xπ, one may also
describe the control strategy Aπ for the discharge amount over (0, T ). The corresponding controlled
charge process xπt at time t when the discharge strategy Aπ is being employed satisfies

xπ0 = k,

dxπt =−Aπt (xπt−)dNt, ∀t∈ (0, T ), (2)

xπT = xπT− ,

where {xπt−}t∈[0,T ] is the left limit process.
For a fixed T <∞, the expected performance of a policy π from time t onwards, starting from a

charge level k at time t, is written

V π
t (k) def= E

NT−−Nt−∑
i=1

Rτi,t

(
xπτi−1,t

−xπτi,t
)

+RT (xπT )
∣∣∣ xπt = k

 . (3)

Here, NT− −Nt− equals the number of jumps of the Poisson process {Ns}s≥0 over the time interval
[t, T ). The expected performance from time t onwards with an optimal strategy is written

Vt(k) def= max
π∈Πt

V π
t (k), (t, k)∈ [0, T )× [0,K], (4)

and VT (k) =RT (k) for all k in [0,K]. Here, Πt is the set of all truncated policies defined over [t, T ].
Note that Vt(0) = 0 for all t∈ [0, T ], and VT (k) =RT (k) for all k ∈ [0,K].
Let Ak ⊆ R+ be the set of all discharge amounts that the storage unit can discharge, when the

charge level is k. The function Vt(k) in (4) satisfies the following dynamic programming equation:

Vt(k) = E
[
max
a∈Ak

{
Rτ1,t(a) +Vτ1,t(k− a)

}
· 1τ1,t<T +RT (k) · 1τ1,t≥T

]
, (5)

where the expectation is over the time τ1,t of the next permission. With a slight abuse of language,
we call this function the value function. It represents the expectation of the cumulated reward-to-go
at the upcoming decision stage.
Examples of the set of admissible discharges include Ak = [0, k], or Ak = {0} ∪ [c,min(k, c̄)] for

some constants c≥ 0 and c̄≤K. In this paper, we assume that the admissible Ak is nonempty for
each k ∈ [0,K] and argmaxa∈Ak

{
Rτ1,t(a) +Vτ1,t(k− a)

}
6= ∅.
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Let at(k) denote the optimal discharge amount at time t, when a discharge permission arrives
(t= τi,0 for some i) and the charge level is k. It follows from (5) that the optimal discharge amount
is given by

at(k)∈ argmax
a∈Ak

{Rt(a) +Vt(k− a)} . (6)

To avoid ambiguity, we assume that if the maximizer in (6) is not unique, then at(k) is the smallest
maximizer. We set at(0) = 0, for all t≤ T .
When the value functions Vt(k) are determined, the surface {at(k)}k∈[0,K],t∈[0,T ], computed from

(6), is used in conjunction with (2) to react to the arrivals of discharge permissions in an optimal
way. Thus, it is enough to fully specify the value function Vt(k) for each 0≤ k ≤K and 0≤ t≤ T .
In the subsequent section, we analyze several properties of the value functions which we later use to
characterize the optimal discharges.

4. Structure of the Value Function
A simple observation is that the value function Vt(k) is nonincreasing over t, and nondecreasing over
k. This is formalized in the following proposition and proved in Appendix A.

Proposition 4.1 It holds that
(a) For any charge level k, Vt(k) is decreasing in t.
(b) For any time t∈ [0, T ], Vt(k) is increasing in k.

Next, we show that the value function is monotone in the discharge permission rate λ.

Proposition 4.2 For any time t ∈ [0, T ] and charge level k, the value function Vt(k) is increasing
in the arrival rate λ.

Proof. Let λ1 and λ2 be arrival rates with λ1 < λ2. Let V 1
t and V 2

t be the corresponding value
functions, i.e., V 1

t measures cumulated rewards in expectation over a Poisson input process {N1
s }s≥t

of arrival rate λ1, while V 2
t measures the expected cumulated rewards over a Poisson input process

{N2
s }s≥t of rate λ2.
Define p def= λ1

λ2
. Now, let {Zi}i≥1 be an i.i.d. sequence of binary random variables, independent of

the Poisson processes, such that Pr(Zi = 1) = p and Pr(Zi = 0) = 1− p.
Let the process {Zi}i≥1 label each arrival from the input process N2

s . Recall that the process that
counts the points labeled with ones up to time s is a Poisson process with the rate pλ2. By our choice
of p, pλ2 = λ1. This means N2

s compounded with Zi defines an input process distributed as N1
s .

Let π1 be an optimal discharge policy that attains V 1
t under the Poisson process {N1

s }s≥t. Define
a discharge policy π2 adapted to N2

t and Zi as follows,

dxπ2
t

def= −ZiAπ1
t

(
xπ1
t−
)
dN2

t , ∀t∈ (0, T ),
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where xπ2
0 = k and xπ2

T = xπ2
T− . Here, Zi plays the role of a coin-flipping process which, at each new

arrival i from N2
s , occurring at time τi,t, permits to discharge the amount Aπ1

τi
(xπ1
τ−
i,t

) with probability
p, or prevents it with probability 1− p.
It follows that under the Poisson process N2

t , π2 attains the value V 1
t (k) for each k. Therefore we

can conclude

V 2
t (k) = max

π∈Πt
E

N
2
T−
−N2

t−∑
i=1

Rτi,t(x
π
τi,t
−xπτi−1,t

) +RT (xπT )


≥E

N
2
T−
−N2

t−∑
i=1

Rτi,t(x
π2
τi,t
−xπ2

τi−1,t
) +RT (xπ2

T )


= E

N
1
T−
−N1

t−∑
i=1

Rτi,t(x
π1
τi,t
−xπ1

τi−1,t
) +RT (xπ1

T )

= V 1
t (k),

where the first expectation is over N2
t , the second expectation is over N2

t and Zi, and the third
expectation is over N1

t . This completes the proof of V 1
t (k)≤ V 2

t (k). �

Monotonicity of the value function in the charge level addressed in Proposition 4.1 implies that
Vt(k)≥ Vt(0) = 0 for any k ≥ 0. The following proposition indicates that the value function is also
bounded above when the reward function is bounded.

Proposition 4.3 Let cr := maxt∈[0,T ]Rt(K). Then, Vt(k)≤ (1 +λT ) cr, for all t∈ [0, T ].

Proof. Let Π+
t be the extension of Πt to the set of policies defined over [t, T ] that are FT mea-

surable. This means that the controlled process can now peek into the future until time T . Then we
have

Vt(k) = max
π∈Πt

E

NT−−Nt−∑
i=1

Rτi,t

(
xπτi−1,t

−xπτi,t
)

+RT (xπT )
∣∣∣ xπt = k


≤E

max
π∈Π+

t

N
T−−Nt−∑
i=1

Rτi,t

(
xπτi−1,t

−xπτi,t
)

+RT (xπT )
∣∣∣ xπt = k

 .
Since the reward function is bounded by cr, we have Rτi,t

(
xπτi−1,t

−xπτi,t
)
≤ cr almost surely (a.s.),

for all i= 1, · · · ,NT− −Nt− and Rτi,t(xT )≤ cr a.s. Therefore, we have

Vt(k) ≤E
[

max
π∈Π+

t

cr (NT− −Nt− + 1)
∣∣∣ xt = k

]
= cr (λ(T − t) + 1)≤ cr (λT + 1) .

This completes the proof. �

Next, we establish the concavity of the value function given that the reward functions Rt are
concave in the charge level. The proof of Proposition 4.4 is given in Appendix A.
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Proposition 4.4 For any time t∈ [0, T ], the value function Vt(k) is concave in k.

The concavity of the value function Vt(k) in the charge level k implies the continuity of Vt(k) in k on
[0,K], e.g., see Corollary 2.37 in Rockafellar and Wets (1998). In fact since [0,K] is a nonempty closed
and bounded subset of R, Vt(k) is uniformly continuous in k. The following proposition addresses
the continuity of the value function in t. We provide a proof of Proposition 4.5 in Appendix A.

Proposition 4.5 For any charge level k, Vt(k) is uniformly continuous in t.

In the following section, we derive the system of partial differential equations that will be satisfied
by the value function Vt(k). This equation is the building block of our computational scheme to
derive an optimal policy.

5. Computational Scheme
For any reward function Rt(·), the value function Vt(k) can be computed using Euler’s method (e.g.,
see Judd (1998), Kushner and Dupuis (2001)) with the difference equation

Vt+δ(k) = Vt(k) + δ
∂Vt(k)
∂t

. (7)

The dynamic programming equation (5) for our control problem leads to the computation of ∂Vt(k)
∂t

.

Proposition 5.1 The derivative of the value function with respect to time equals

∂Vt(k)
∂t

= λ

(
Vt(k)−max

a∈Ak
(Rt(a) +Vt(k− a))

)
, (8)

where λ is the constant intensity of the discharge permissions arrival process.

Proof. Consider the time interval (t− δ, t], where δ > 0 is a small real. Denote A def= {τ1,t−δ > t},
B

def= {τ1,t−δ ≤ t, τ2,t−δ > t}, and C
def= (A ∪ B)c. By the dynamic programming principle the value

function Vt satisfies

Vt−δ(k) = E [Vt(k) · 1A +XB · 1B +XC · 1C ] ,

where XB
def= Rτ1,t−δ(aτ1,t−δ(k)) +Vt(k− aτ1,t−δ(k)) and where XC is a bounded random variable due

to the fact that the rewards are bounded. Here, aτ1,t−δ(k) is defined as in (6) at time τ1,t−δ. The
events A, B, C are Ft-measurable.
The definitions of the events yield Pr(A) = e−λδ, Pr(B) = λδe−λδ, and Pr(C) = o(δ). Hence,

Vt−δ(k) = Vt(k)Pr(A) +E [XB|B]Pr(B) +E[XC |C]Pr(C)

= Vt(k)e−λδ +E [XB|B]λδe−λδ +E[XC |C]o(δ).
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Using this equality, we have

∂Vt(k)
∂t

= lim
δ→0

Vt(k)−Vt−δ(k)
δ

= lim
δ→0

(1− e−λδ)Vt(k)−E [XB|B]λδe−λδ −E[XC |C]o(δ)
δ

= λVt(k)−λ lim
δ→0

E [XB|B] . (9)

Using Proposition 4.3, for every instance τ1,t−δ(ω) ∈ [t− δ, t], where ω refers to an element of the
sample space, we have

|XB(ω)|=
∣∣∣Rτ1,t−δ(ω)(aτ1,t−δ(ω)(k)) +Vt(k− aτ1,t−δ(ω)(k))

∣∣∣≤ cr + (1 +λT )cr.

The bounded convergence theorem for expectations (e.g., see Çınlar (2011)) implies that the limit
and the expectation in equation (9) can be interchanged. Therefore

lim
δ→0

E [XB | B] = lim
δ→0

E [Rν(aν) +Vt(k− aν(k))] = E
[
lim
δ→0
{Rν(aν) +Vt(k− aν(k))}

]
(10)

where ν has the distribution of τ1,t−δ given B. For any instance ν(ω)∈ [t− δ, t], we have

lim
δ→0

{
Rν(ω)(aν(ω)(k)) +Vt(k− aν(ω)(k))

}
= lim
δ→0

{
Rν(ω)

(
aν(ω)(k)

)
+Vν(ω)

(
k− aν(ω)(k)

)
−Vν(ω)

(
k− aν(ω)(k)

)
+Vt

(
k− aν(ω)(k)

)}
= lim
δ→0

{
Rν(ω)

(
aν(ω)(k)

)
+Vν(ω)

(
k− aν(ω)(k)

)}
− lim
δ→0

{
Vν(ω)

(
k− aν(ω)(k)

)
−Vt

(
k− aν(ω)(k)

)}
= lim
δ→0

{
max
a∈Ak

(
Rν(ω)(a) +Vν(ω)(k− a)

)}
− lim
δ→0

{
Vν(ω)

(
k− aν(ω)(k)

)
−Vt

(
k− aν(ω)(k)

)}
. (11)

According to Proposition 4.5, the value function Vt(k) is uniformly continuous in t on Ak ∩ [0,K].
In addition, as δ → 0, ν → t almost surely. Therefore, for any a ∈ Ak ∩ [0,K] and the instance
ν(ω)∈ [t− δ, t] we have

lim
δ→0

Vν(ω) (k− a) = lim
ν(ω)→t

Vν(ω) (k− a) = Vt (k− a) .

In particular, for a= aν(ω)(k), this equation yields

lim
δ→0

{
Vν(ω)

(
k− aν(ω)(k)

)
−Vt

(
k− aν(ω)(k)

)}
= 0. (12)

At the same time, since the objective function is uniformly continuous in t, Rν(ω)(a) +Vν(ω)(k−a)
epi-converges to Rt(a)+Vt(k−a) as δ→ 0 by Theorem 7.15 of Rockafellar andWets (1998). Therefore,
Theorem 7.33 of Rockafellar and Wets (1998) implies that

lim
δ→0

{
max
a∈Ak

(
Rν(ω)(a) +Vν(ω)(k− a)

)}
= max
a∈Ak

(Rt(a) +Vt(k− a)) . (13)

We note that equality (13) could also be derived by Theorem 2.1 of Fiacco (1974) using the uniform
continuity of Vt(k) in t and the continuity of the value function and the reward function in k.
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Using equations (12) and (13) in equation (11) and subsequently in equation (10), it follows that

lim
δ→0

E [XB | B] = E
[
lim
δ→0

{
Rν(ω)(aν(ω)(k)) +Vt(k− aν(ω)(k))

}]
= max
a∈Ak

(Rt(a) +Vt(k− a)) .

This equation along with (9) completes the proof. �

Using Proposition 5.1 and Euler’s method, for small δ > 0 we obtain the difference equation

Vt−δ(k) = Vt(k)− δ ∂Vt(k)
∂t

= Vt(k)− δ λ
(
Vt(k)−max

a∈Ak
(Rt(a) +Vt(k− a))

)
,

that is,

Vt−δ(k) = (1−λδ)Vt(k) +λδmax
a∈Ak

(Rt(a) +Vt(k− a)) . (14)

This difference equation along with the boundary conditions Vt(0) = 0 and VT (k) =RT (k) specifies the
value function Vt(k) for all 0≤ k ≤K and 0≤ t≤ T . The optimal discharge amounts at(k) are then
determined from (6) along with the boundary conditions at(0) = 0, for all 0≤ t≤ T , and aT (k) = k,
for all 0≤ k ≤K. Note that since both the reward functions Rt and optimal value functions Vt are
concave and the set of admissible discharges Ak is convex, (14) involves solving convex optimization
problems.
Below, we prove that the partial derivative is monotone in the charge level.

Corollary 5.1 Suppose that the feasible action sets Ak as functions of the charge level k are such
that k1 ≤ k2 yields Ak1 ⊆Ak2 . Then,

∂Vt(k)
∂t

is decreasing in k.

Proof. Let k1 and k2 be two charge levels where k1 ≤ k2. Therefore, the monotonicity of feasible
action sets implies that at(k1)∈Ak1 ⊆Ak2 . This along with equation (8) imply that for λ> 0,

∂Vt(k2)
∂t

= λ

(
Vt(k2)− max

a∈Ak2
(Rt(a) +Vt(k2− a))

)
≤ λ (Vt(k2)− [Rt (at(k1)) +Vt (k2− at(k1))]) . (15)

In addition, the concavity of the value function Vt in the charge level established in Proposition 4.4
implies that it has decreasing differences. Hence, Vt(k2)− Vt(k1)≤ Vt(k2 − at(k1))− Vt(k1 − at(k1)),
and consequently

Vt(k2)−Vt (k2− at(k1))≤ Vt(k1)−Vt (k1− at(k1)) . (16)

It then follows from inequality (16) in (15) that
∂Vt(k2)
∂t

≤ λ (Vt(k2)−Rt(at(k1))−Vt(k2− at(k1))) (17)

≤ λ (Vt(k1)−Rt(at(k1))−Vt(k1− at(k1)))

= λ

(
Vt(k1)− max

a∈Ak1
(Rt(a) +Vt(k1− a))

)
= ∂Vt(k1)

∂t
,

which shows the result. �
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6. Structure of the Optimal Policy
This section is devoted to addressing some properties of at(k), defined in (6), and of the charge
level process xπ. Three fundamental properties are established: (i) the optimal discharged amount is
nondecreasing in the charge level, (ii) the optimal charge trajectory over [0, T ] is nondecreasing in
the initial charge level, and (iii) under mild conditions, the passage of time increases the discharged
amounts. Note that property (ii) implicitly bounds how the discharged amounts increase with an
increase of the initial charge level, and therefore complements property (i).
We start by establishing a monotonicity result for the optimal discharge amount. In the sequel, the

set Ak ⊆R is called ascending in k, if for any k1 ≤ k2 and any two elements (a, b) where a∈Ak1 and
b∈Ak2 , we have min{a, b} ∈Ak1 and max{a, b} ∈Ak2 , see e.g., Heyman and Sobel (2003) or Topkis
(1998).

Proposition 6.1 Let the set C def= {(k, a) ∈ R2 : a ∈ Ak, k ∈ [0,K]} be a sublattice of R2 and Ak be
ascending in k on [0,K]. Then, for any t ∈ [0, T ], at(k) is an increasing function of the charge level
k, i.e., k1 ≤ k2 implies at(k1)≤ at(k2).

Proof. The reward function Rt is a function on R, and consequently it is supermodular in a on
R. In addition, since the value function Vt is concave in the charge level, Lemma 2.6.2 in Topkis
(1998) implies that the function Vt(k − a) is supermodular in (k, a) on R2. Therefore, the positive
linear combination of these two supermodular functions, Rt(a) +Vt(k− a), is supermodular in (k, a)
on R2. Since C is a sublattice of R2, and Ak is the section of C at k, it follows from Theorem 2.8.2
in Topkis (1998) that the optimal solution set argmax

a∈Ak
{Rt(a) +Vt(k− a)} is ascending in k on

{k : argmax
a∈Ak

{Rt(a) +Vt(k− a)} 6= ∅} = [0,K]. Therefore, it follows from Theorem 2.8.3 of Topkis
(1998) that the smallest element of the optimal solution set, at(k), is increasing in k. �

For instance, the set Ak = [0, k] is ascending in k on [0,K] and the set C def= {(k, a)∈R2 : a∈Ak, k ∈
[0,K]} is a sublattice of R2. In addition, Ak = [0, k] has the property assumed in Corollary 5.1 that
is k1 ≤ k2 implies that Ak1 ⊆Ak2 .
The following proposition shows that an optimal policy π started at a higher initial charge level

results in a stored quantity process with higher levels through the entire time horizon.

Proposition 6.2 Let k1 ≤ k2. Denote the charge level processes corresponding to the optimal policy
started at states k1 and k2 at time t= 0 with x1

t and x2
t , respectively. Then for all t∈ [0, T ], x1

t ≤ x2
t .

Proof. Let t̄ := max{t : x1
s ≤ x2

s for 0≤ s≤ t}. Suppose by contradiction that t̄ < T . Then, t̄ must
be the time of a discharge permission arrival, t̄= τj,0 for some j, such that x2

t̄− ≥ x1
t̄− and x2

t̄ <x1
t̄ .

Let a1 ∈ argmaxa∈[0,x1
t−

]
{
Rt(a) +Vt(x1

t− − a)
}
. Therefore, x1

t = x1
t− − a1 and

Rt
(
a1)+Vt

(
x1
t− − a1)≥Rt (a) +Vt

(
x1
t− − a

)
∀a∈ [0, x1

t− ].
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In particular, for a= (x1
t− −x2

t )∈ [0, x1
t− ] this inequality implies that

Rt (a1) +Vt
(
x1
t− − a1) ≥ Rt

(
x1
t− −x2

t

)
+Vt

(
x1
t− −

(
x1
t− −x2

t

))
= Rt

(
x1
t− −x2

t

)
+Vt

(
x2
t

)
. (18)

Let a2 be the smallest element of the solution set argmaxa∈[0,x2
t−

]
{
Rt(a) +Vt(x2

t− − a)
}
. We have

x2
t = x2

t− − a2 and

Rt
(
a2)+Vt

(
x2
t− − a2)≥Rt(a) +Vt

(
x2
t− − a

)
∀a∈ [0, x2

t− ]. (19)

Since a2 is the smallest maximizer, inequality (19) must hold strictly for any a < a2. In particular,
for (x2

t− − x1
t ) ∈ [0, x2

t− ], it follows from the strict inequality x2
t < x1

t that x2
t− − x1

t < x2
t− − x2

t = a2.
Hence,

Rt (a2) +Vt
(
x2
t− − a2) > Rt

(
x2
t− −x1

t

)
+Vt

(
x2
t− −

(
x2
t− −x1

t

))
= Rt

(
x2
t− −x1

t

)
+Vt

(
x1
t

)
. (20)

By combining inequalities (18) and (20), we arrive at

Rt
(
x1
t− −x2

t

)
−Rt (a1) ≤ Vt

(
x1
t− − a1)−Vt(x2

t ) (21)

= Vt
(
x1
t

)
−Vt

(
x2
t− − a2) (22)

<Rt
(
a2)−Rt (x2

t− −x1
t

)
. (23)

Here inequalities (21) and (23) are rearrangements of inequalities (18) and (20), and the equality (22)
comes from the facts that x1

t = x1
t− − a1 and x2

t = x2
t− − a2.

On the other hand, it follows from the concavity of Rt that it has decreasing differences. Thus,

Rt
(
x1
t− −x2

t

)
−Rt(a1) =Rt

(
a1 + (a2−x2

t− +x1
t )
)
−Rt

(
a1)

≥Rt
(
x2
t− −x1

t + (a2−x2
t− +x1

t )
)
−Rt

(
x2
t− −x1

t

)
=Rt(a2)−Rt(x2

t− −x1
t ).

which is in contradiction with inequality (23). Thus the supposition that t̄ < T cannot be true, i.e.,
for all t∈ [0, T ], we must have x1

t ≤ x2
t . �

The following proposition discusses the monotonicity of at(k) in t. It shows that as time approaches
to the end of horizon, the participating storage unit discharges in larger amounts.

Proposition 6.3 Suppose that ∂Rt(a)
∂t

is increasing in a. In addition, suppose that the set of admissi-
ble actions Ak is such that k1 ≤ k2 yields Ak1 ⊆Ak2 . Then for any charge level k, at(k) is increasing
in t, i.e., t1 < t2 yields at1(k)≤ at2(k).
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Proof. Fix k and let t2 > t1. For any b < at1(k), b 6∈ argmaxa∈Ak {Rt1(a) +Vt1(k− a)}. Therefore,
Rt1(b) +Vt1(k− b)<Rt1(at1(k)) +Vt1 (k− at1(k)), and consequently

Vt1(k− b)−Vt1 (k− at1(k))<Rt1 (at1(k))−Rt1(b). (24)

On the other hand, the assumption that ∂Rt2 (a)
∂t

is increasing in a implies that ∂Rt2 (b)
∂t
≤ ∂Rt2 (at1 (k))

∂t
.

Thus, we have Rt2(b)−Rt1(b)≤Rt2(at1(k))−Rt1(at1(k)). Therefore,

Rt1(at1(k))−Rt1(b)≤Rt2(at1(k))−Rt2(b).

Combining the recent inequality in inequality (24) results in

Vt1(k− b)−Vt1 (k− at1(k))<Rt2(at1(k))−Rt2(b). (25)

According to Corollary 5.1, ∂Vt2 (k)
∂t

is decreasing in k. In particular, k− b > k− at1(k) implies that
∂Vt2 (k−b)

∂t
≤ ∂Vt2 (k−at1 (k))

∂t
. Using t2 ≥ t1, we have

Vt2(k− b)−Vt1(k− b)≤ Vt2 (k− at1(k))−Vt1 (k− at1(k)) .

Using this inequality and inequality (25) we get

Vt2(k− b)−Vt2 (k− at1(k)) ≤ Vt1(k− b)−Vt1 (k− at1(k))<Rt2(at1(k))−Rt2(b).

A rearrangement of the recent inequality equals

Rt2(b) +Vt2(k− b)<Rt2(at1(k)) +Vt2 (k− at1(k)) ,

which indicates that at1(k) achieves a superior value for Rt2(a) +Vt2(k− a) than b. Hence, b cannot
be in the solution set argmaxa∈Ak {Rt2(a) +Vt2(k− a)}. Since this is true for any b < at1(k), we can
conclude that at2(k)≥ at1(k). �

Next we present our computational investigation of the optimal value function and optimal deci-
sions of a storage unit.

7. Numerical Examples
We consider a storage device of capacity K = 4. The finite time horizon over which a participating
storage unit may be issued a permission is assumed to be [7am-11pm].
We assume that the discharge permission events are triggered when the zonal electricity price is

above a given price threshold. The real time 5-min prices over [7am-11pm] for August 25, 2015 for New
York City (load zone J in NYISO) and the price threshold 50[$/MWh] are illustrated in Figure 1(a).
Given the price threshold, the discharge permission event is triggered 100 times on August 25, 2015,
which is the highest number of realized discharge permission arrivals per day in August 2015. These
discharge permission time slots correspond to the times specified by the solid red line in Figure 1(a).
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Figure 1 (a) Real time 5-min prices in N.Y.C. zone and the discharge permission times on August 25, 2015.
Discharge permission times are indicated by the solid red line. (b) Time-varying reward coefficients,
approximated by the mean real time prices in August 2015 in the N.Y.C. zone.

7.1. Permission Process

For a given price threshold, we estimate the daily arrival rate using the real time 5-min prices of
peak hours from August 1, 2015 to August 31, 2015. For example, for the threshold price equal
to 50[$/MWh], the average arrival rate over peak hours is 24.9355 per day. For threshold prices
100[$/MWh] and 25[$/MWh], the permission arrival rates become 4.7742 per day and 144.7742 per
day, respectively.

7.2. Nonlinear Pricing Scheme

We consider the log-utility function Rt(a) = log(1 + pta) as the reward function for t ∈ [0, T ). The
average real time hourly electricity price over one month is used as a proxy of the reward coefficient
pt at every time t∈[7am-11pm]. The average real time hourly price curve for August 2015 is depicted
in Figure 1(b).
The value of the stored power at the end of the time horizon is assumed to be zero, i.e., RT (a) = 0,

for all a.

7.3. Results

Figure 2 summarizes the results from the computational scheme in §5 with δ = 5 min. Here, the
permission arrival rate is set to λ = 24.9355/16 = 1.5585 per hour and the reward coefficient pt at
every time t is obtained from the curve in Figure 1(b).
The left plot illustrates the value function and the right plot depicts the optimal actions at(k). The

left plot confirms the results in §4 on the concavity of the value function in the charge level k and its
monotonicity in the charge level k and time t. The right plot also illustrates the structure analyzed
in §6. In particular, the discharge amount at(k) is increasing in the charge level k.



Moazeni and Defourny: Optimal Control of Energy Storage under Random Operation Permissions
18

v
a
lu

e
 f

u
n

c
ti

o
n

0

5

4

10

15

20

3 11 pm

25

10 pm
9 pm

30

8 pm

35

7 pmcharge level k

6 pm
2

40

5 pm

45

time t

4 pm3 pm

50

2 pm1 pm1 12 pm
11 am

10 am
9 am8 am0 7 am

(a) optimal value function

d
is

c
h

a
rg

e
 a

c
ti

o
n

0

4

0.5

1

1.5

3 11 pm

2

10 pm
9 pm

2.5

8 pm7 pm

3

charge level k

6 pm
2 5 pm

3.5

time t

4 pm3 pm

4

2 pm1 pm1 12 pm
11 am

10 am
9 am8 am0 7 am

(b) optimal actions at(k)

Figure 2 Results for the log-utility reward function Rt(a) = log(1 + pta).

7.4. Sensitivity to Permission Arrival Rate

We investigate the structure of the value function and actions for the log-utility reward function, as

the discharge permission arrival rate λ increases. The arrival rate is an important parameter that can

be controlled by the utility. The analysis for the charge level k = 2 and for four values of λ, namely

λ= λ0, λ= 3λ0, λ= 6λ0, and λ= 10λ0, is reported in Figure 3. The left plot depicts the value function

Vt(2), which increases with the arrival rate λ. This observation is consistent with Proposition 4.2.

Figure 3(b) shows the optimal discharge amounts at(2) for the four values of discharge permission

rates. As the curve corresponding to λ = λ0 indicates, at(2) is nonzero even at times closer to the

beginning of the time horizon. When the expectation for having more discharge permissions is low,

which corresponds to a smaller rate λ, the storage owner uses any given opportunity to discharge

even if the time does not correspond to the best reward value. As the discharge permission rate

increases, the optimal action is to discharge more patiently and in larger amounts when the end of

time horizon is approached.

8. Extension to Uncertain Arrival Rates
This section extends our analysis to the case where the Poisson arrival process is replaced by a

more general point process, motivated by the need for studying the robustness of our model to the

Poisson arrival process assumption. Namely, we now assume that the permissions are generated as a

Markovian self-exciting point process. The generalization of the arrival model to self-exciting point

processes (see e.g., Bremaud (1981), Daley and Vere-Jones (2003)) can be well-suited to the modeling

of permissions arriving in clusters (Hawkes and Oakes 1974). This may happen, for example, when

discharge permissions are driven by high demand levels or network perturbations, in which cases the
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Figure 3 Sensitivity of the optimal value function and optimal actions to λ for k= 2. Here, λ0 = 1.5585.

occurrence of past discharge permission arrivals may increase the probability of occurrence of future

permission arrivals. This intensity model may address the fact that balancing needs would trigger

permissions from the utility company.

Here, we investigate self-exciting shot processes. Following Chapter 6 of Çınlar (2011), let M be

a standard Poisson random measure on R+×R+. The counting process {Nt}0≤t≤T and arrival rate

{λt}0≤t≤T are defined by

λt = λ0e
−βt +

∫ t

0
αe−β(t−s)dNs

Nt =
∫

[0,t]×R+
M(ds, dz)10<z≤λs ,

(26)

where α ≥ 0 is the jump magnitude, β ≥ 0 is the decay rate, and the indicator function 10<z≤λs

is equal to 1 if z ∈ (0, λs] and to 0 otherwise. The process λt in (26) is Markov (see Section 6.27

of Çınlar (2011) for a proof). For algorithms employed in simulation studies of such self-exciting

processes, see Lewis and Shedler (1979), Ogata (1981), Sigman (2013). Figure 4 illustrates two sample

realizations of this process for λ0 = 1, β = 0.8, and α = 1. The continuous lines represent the rate

λt, and the dots represent the arrival times. Arrivals trigger a positive jump in the rate, while the

absence of arrivals results in the exponential decay of the rate. These characteristics of the stochastic

rate favor the emergence of arrivals in clusters, recognizable in Figure 4.

Given the intensity model (26), the state space at time t in the control problem of maximizing the

total expected revenue is augmented to include λt. Equation (5) is thus extended to

Vt(k,λt) = E
[
max
a∈Ak

{
Rτ1,t(a) +Vτ1,t(k− a,λτ1,t)

}
·1τ1,t<T +RT (k) ·1τ1,t≥T

]
, (27)

where the expectation is now also over the future stochastic rates, given the current rate λt. The

maximization is now over the time-varying Markov discharge policies {Aπt (k,λ)}0≤t≤T where k is
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Figure 4 Two realizations of the self-exciting shot process (curves: arrival rate; dots: arrival times).

the charge level and λt is the permission arrival rate at time t. An optimal discharge action at the
permission time is obtained by at(k,λt) = argmaxa∈Ak {Rt(a) +Vt(k− a,λt)}.
Consider the time interval (t− δ, t] for a small real δ > 0. The probability of no arrival equals

Pr(τ1,t−δ > t|λt−δ) = exp
(
−λt−δ

(1− e−βδ)
β

)
. (28)

See, e.g., Hawkes and Oakes (1974). This can be directly established by decomposing the interval
into n equal subintervals of length ∆ = δ

n
, and by evaluating

Pr (τ1,t−δ > t|λt−δ) = Pr (∩nk=1 {τ1,t−δ > t− δ+ k∆} |λt−δ)

=
n∏
k=1

Pr
(
τ1,t−δ > (t− δ) + k∆ | λt−δ+(k−1)∆ = λt−δe

−β(k−1)∆)= exp
(
−λt−δ

n∑
k=1

e−β(k−1)∆∆
)
.

As ∆→ 0, this quantity can be approximated by exp
(
−λt−δ

∫ δ
0 e
−βsds

)
= exp

(
−λt−δ(1−e−βδ)

β

)
, result-

ing in (28).
Similarly, Pr(Nt− −N(t−δ)− ≥ 2) = o(δ) and Pr(Nt− −N(t−δ)− = 1) = 1−Pr(Nt− −N(t−δ)− = 0) +

o(δ) hold for small δ. Thus, it follows from the dynamic programming principle that

Vt−δ(k,λt−δ) =
(
e
−λt−δ(1−e−βδ)

β

)
Vt
(
k,λt−δe

−βδ)
+
(

1− e
−λt−δ(1−e−βδ)

β

)(
max
a∈Ak

{
Rt(a) +Vt

(
k− a,λt−δe−βδ +α

)})
. (29)

This equation is employed to compute Vt(k,λt) and corresponding actions at(k,λt) for charge level
k and intensity level λt. Figure 5 illustrates these values. Similar to §7, K = 4 and the log-utility
reward function Rt(a) = log(1 + pta) for pt as in Figure 1(b) are considered.
Proposition 4.1 remains valid for the intensity model (26); its proof in Appendix A is directly appli-

cable. Given cr as in Proposition 4.3, cr := max
t∈[0,T ]

Rt(K), and following the proof of this proposition,
we arrive at Vt(k)≤ cr (E[NT− −Nt− | λt = λ] + 1). Equations (6.15) and (6.35) in Çınlar (2011) yield
E[Nt] = λ0

(α−β)(e(α−β)t− 1). Therefore, the following upper bound on the value function associated to
the arrival rate model (26) can be established,

Vt(k,λt)≤
(

1 + λt
(α− β)

(
e(α−β)(T−t)− 1

))
cr. (30)
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Figure 5 Optimal value function and discharge actions under the self-exciting shot process for permission arrivals.

The following proposition extends the result in Proposition 4.2 and states sensitivity of the value
function to the shot noise process parameters.

Proposition 8.1 Suppose (λt,Nt) follows the shot noise process in (26). Consider the expected value

function Vt(k,λt) defined by (27). Then (i) λ1 ≤ λ2 implies Vt(k,λ1)≤ Vt(k,λ2), for all k. Further-

more, let the notation V
(`)
t indicate that the arrival process follows (26) with parameters α`, β`, for

`= 1,2. Then (ii) β1 ≥ β2 and α1 ≤ α2 imply that V (1)
t (k,λ)≤ V (2)

t (k,λ), for all k, λ.

Proof. Let Mω denote a fixed realization ω of a standard 2-dimensional random Poisson measure,
with corresponding atoms (ti(ω), zi(ω)), i ≥ 0, indexed such that ti < ti+1. To prove (i) and (ii)
simultaneously, consider for j = 1,2 the processes {(λ(j)

s ,N (j)
s −N

(j)
t )}t≤s≤T following (26) with β =

βj , α = αj , started on λ
(j)
t = λj almost surely, where λ1 ≤ λ2, β1 ≥ β2, and α1 ≤ α2. Given ω, we

derive the corresponding realizations (λ(j)
s (ω), [N (j)

s − N
(j)
t ](ω))t≤s≤T from Mω and (26). We have

λ
(1)
t (ω) = λ1 ≤ λ2 = λ

(2)
t (ω). Suppose λ(1)

s (ω) ≤ λ(2)
s (ω) and [N (1)

s −N
(1)
t ](ω) ≤ [N (2)

s −N
(2)
t ](ω) for

s ∈ S, which is true for S = {t}. Then for all times s′ ∈ (ti(ω), ti+1(ω))∩ [s,T ] where i= sup{i≥ 0 :
ti(ω)≤ s}, we have λ(1)

s′ (ω)≤ λ(2)
s′ (ω), from the relations λ(j)

s′ (ω) = λ(j)
s (ω)e−βj(s′−s) with β1 ≥ β2 and

λ(1)
s ≤ λ(2)

s , as well as N (1)
s′ −N (1)

s =N
(2)
s′ −N (2)

s = 0 since there is no arrival. At the tentative jump
time ti, the inequality λ(1)

t−
i

(ω)
(ω)≤ λ(2)

t−
i

(ω)
(ω) implies λ(1)

ti(ω)(ω)≤ λ(2)
ti(ω)(ω), since λ(1)

ti(ω)(ω) = λ
(1)
t−
i

(ω)
(ω)+

α11(0,λ(1)
t−
i

(ω)
](z

i(ω))≤ λ(2)
t−
i

(ω)
(ω)+α21(0,λ(2)

t−
i

(ω)
](z

i(ω)) = λ
(2)
ti(ω)(ω), using α1 ≤ α2. We also have [N (1)

ti(ω)−

N
(1)
t−
i

(ω)
](ω) = 1(0,λ(1)

t−
i

(ω)
](z

i(ω))≤ 1(0,λ(2)
t−
i

(ω)
](z

i(ω)) = [N (2)
ti(ω)−N

(2)
t−
i

(ω)
](ω) and thus [N (1)

ti(ω)−N
(1)
t ](ω)≤

[N (2)
ti(ω)−N

(2)
t ](ω). Hence, the set S can be extended to [t, T ], that is, λ(1)

s (ω)≤ λ(2)
s (ω) for all s∈ [t, T ],

and [N (1)
s −N

(1)
t ](ω) ≤ [N (2)

s −N
(2)
t ](ω) for all s ∈ [t, T ]. From there, it follows, as in the proof of

Proposition 4.1, that if π1 denotes a policy over [t, T ] able to attain V (1)
t (k,λ1), then we can replicate

its expected value under the process λ(2)
t started on λ2 at time t by constructing a virtual rate
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process λ′t started on λ1, decaying at rate β1, and jumping with jumps of size α1, at the times ti
where simultaneously, the original process λ(2)

t jumps, and the independently drawn Bernoulli random

variable Zi is equal to 1, set to happen with probability λ′ti/λ
(2)
ti
∈ [0,1]. This proves V (2)

t (k,λ2) ≥

V
(1)
t (k,λ1). We obtain (i) by setting α1 = α2 = α and β1 = β2 = β to get the same shot noise stochastic

process. We obtain (ii) by setting λ1 = λ2 = λ to get the same start rate at time t. �

In addition, the value function Vt(k,λt) is concave in k, for any time t∈ [0, T ]. The proof is similar

to the proof of Proposition 4.4 using augmented states for V π`
t (k`, λt) and Aπ`s (xπ`

s− , λs) for `= 1,2.

Figure 6 illustrates the patterns for the value function in theoretical findings when permissions

arrive according to the point process described in (26).
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Figure 6 Optimal value function structure under the self-exciting shot process for permission arrivals.

The monotonicity of the optimal action at(k,λt) in the charge level k and time t, established

in Propositions 6.1 and 6.3, is preserved for the intensity model (26); similar proofs are employed.

Figure 7, obtained under the self-exciting point process model, illustrates these characteristics.
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Figure 7 Optimal policy structure under the self-exciting shot process for permission arrivals.
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9. Extension to Storage Models with Inefficiencies
Here we clarify how one can take into account the inefficiencies of physical storage devices, thereby
extending the perfectly efficient storage model assumed so far. In the presence of a storage self-
discharging rate per hour, denoted by γloss, the value Vτ1,t(k − a) in equation (5) is replaced by
Vτ1,t([1 − γloss(τ1,t − t)]+(k − a)). In the computational scheme in equation (14), both Vt(k) and
Vt(k− a) are replaced by Vt([1− γlossδ]+k) and Vt([1− γlossδ]+(k− a)).
When the storage discharging efficiency, denoted by η, is strictly less than one, the rewards Rt(a)

in (5) as well as in (14) are replaced by Rt(ηa). Limitations on the discharging rate are captured
by bound constraints on a when defining feasible actions. More precisely, denote the minimum and
maximum discharging power of the storage unit by amin and amax. Hence, the expression of the feasible
set Ak should include the constraints amin ≤ a≤ amax. The structural results will be preserved under
these modifications.

10. Conclusion and Discussion
A novel approach to promote distributed energy storage deployment and participation in unscheduled
transactions at the level of the distribution grid is proposed. This framework is promising since
it enjoys several attractive features: (i) it involves nonbinding commitments, (ii) offers attractive
financial benefits and flexibility for both parties, and (iii) enables the utility company to indirectly
supervise operations of the energy storage units.
As the very first step to specify and value this framework, we need to study the optimal behavior of

energy storage under the assumption that it is permitted to operate only at random times over a finite
horizon. Thus this paper limits its scope to characterizing this component of the framework. Two
salient properties of the energy storage operation model in this paper include the random operation
times and a nonlinear pricing scheme.
The results established in this paper have immediate relevance for both energy storage owners

as well as electricity distribution companies, energy policy makers, and contract underwriters. The
computed optimal policy can be used by the storage operators to obtain a more precise valuation of
the energy storage unit and support their investment decisions. The derivation of the optimal policy
as well as the properties of the storage owner’s value function enable the utility company involved in
the contract to predict the response behavior of the storage controllers and the expected discharge
amounts, in order to better design the details of the framework.
Our results imply that this model is a promising framework for further research and applications in

the efficient energy storage deployment and transactive energy markets. It is noteworthy to observe
that if permissions sent at a rate λ to a certain area were assigned with probability pj to a storage
resource j within that area, then the input process seen by resource j is again Poisson, with rate pjλ.
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Hence, the mathematical treatment of the one-storage resource presented in this paper can be seen
as a fundamental building block for the coordination of multiple storage resources.

Appendix A: Proofs
Proof of Proposition 4.1 (a) For times t1 and t2 with t1 < t2, let k be the charge level. Con-

sider an optimal discharge policy π2 ∈ Πt2 over [t2, T ] starting at the state xπ2
t2 = k, i.e., xπ2 ∈

argmaxπ∈Πt2 V
π
t2

(k). Then the policy π1 resulting in the stored quantity process xπ1 = {xπ1
t }t∈[t1,T ]

in which xπ1
t = k for t∈ [t1, t2] and xπ1

t = xπ2
t for t∈ (t2, T ] is an admissible control for discharging k

units over [t1, T ], which yields Vt1(k)≥ V π1
t1 (k) = V π2

t2 (k) = Vt2(k). This completes the proof of (a).
(b) Fix charge levels k1, k2 at time t, such that 0< k1 ≤ k2. Let π1 ∈Πt be an optimal policy over

[t, T ] from the state k1, i.e., xπ1
t = k1 and Vt(k1) = V π1

t (k1). We have

Vt(k1) = E

NT−−Nt−∑
i=1

Rτi,t

(
xπ1
τi−1,t

−xπ1
τi,t

)
+RT (xπ1

T )
∣∣∣ xπ1

t = k1


= E

Rτ1,t

(
k1−xπ1

τ1,t

)
+
N
T−−Nt−∑
i=2

Rτi,t

(
xπ1
τi−1,t

−xπ1
τi,t

)
+RT (xπ1

T )


≤E

Rτ1,t

(
k2−xπ1

τ1,t

)
+
N
T−−Nt−∑
i=2

Rτi,t

(
xπ1
τi−1,t

−xπ1
τi,t

)
+RT (xπ1

T )

= V π2
t (k2), (A.1)

where the policy π2 starting from the state k2 is an admissible policy over [t, T ], with the charge level
process xπ2

s = k2 for s ∈ [t, τ1,t) and xπ2
s = xπ1

s for s ∈ [τ1,t, T ]. The inequality in (A.1) comes from
the assumption that the reward function Rt is increasing in the amount discharged and 0< k1 ≤ k2.
Hence, Rτ1,t(k1−xτ1,t)≤Rτ1,t(k2−xτ1,t). Therefore, Vt(k2) = max

π∈Πt
V π
t (k2)≥ V π2

t (k2)≥ Vt(k1), which
completes the proof of part (b). �

Proof of Proposition 4.4. Fix some charge levels k1, k2 at time t, such that 0< k1 ≤ k2. Let π1 and
π2 be optimal Markov discharge policies, respectively, starting from the charge level k1 and k2. Hence,
Vt(k1) = V π1

t (k1) and Vt(k2) = V π2
t (k2). For any α ∈ [0,1], define the charge level kα def= (1−α)k1 +αk2.

Consider the controlled process xα over [t, T ] defined as

xαt = kα, dxαs =−
(
(1−α)Aπ1

s

(
xπ1
s−
)

+αAπ2
s

(
xπ2
s−
))
dNs, ∀s∈ (t, T ), xαT = xαT− . (A.2)

Note that in general this is not equivalent to applying some Markov strategy to xαt , in particular
the strategy keeps track of π1 and π2 started at charge levels k1 and k2. It follows from (A.2) that
xαs = (1 − α)xπ1

s + αxπ2
s , for all s ∈ [t, T ]. From the feasibility of the policies π1 and π2, we have

0≤Aπ`s
(
x
π`
s−
)
≤ xπ`s , for `= 1,2. Hence, 0≤ (1−α)Aπ1

s

(
xπ1
s−
)

+αAπ2
s

(
xπ2
s−
)
≤ (1−α)xπ1

s +αxπ2
s = xαs ,

which implies that xα in (A.2) is an admissible charge process starting at kα.
For any realization ω of the Poisson process {Ns}s∈R+ , the equality xαs = (1−α)xπ1

s +αxπ2
s implies

that the difference of charge levels in the process xα between two consecutive arrival times τi−1,t(ω)
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and τi,t(ω) is the convex combination of the differences of charge levels in the processes xπ1 and xπ2 .
This, along with the concavity of the reward function Rτi,t(ω), implies that

Rτi,t(ω)

(
xατi−1,t(ω)−xατi,t(ω)

)
=Rτi,t(ω)

(
(1−α)xπ1

τi−1,t(ω) +αxπ2
τi−1,t(ω)− (1−α)xπ1

τi,t(ω)−αx
π2
τi,t(ω)

)
=Rτi,t(ω)

(
(1−α)

(
xπ1
τi−1,t(ω)−x

π1
τi,t(ω)

)
+α

(
xπ2
τi−1,t(ω)−x

π2
τi,t(ω)

))
≥ (1−α)Rτi,t(ω)

(
xπ1
τi−1,t(ω)−x

π1
τi,t(ω)

)
+αRτi,t(ω)

(
xπ2
τi−1,t(ω)−x

π2
τi,t(ω)

)
. (A.3)

Similarly, the concavity of RT and the equality xαs = (1−α)xπ1
s +αxπ2

s yield

RT (xα(ω)) =RT ((1−α)xπ1
T (ω) +αxπ2

T (ω))≥ (1−α)RT (xπ1
T (ω)) +αRT (xπ2

T (ω)) . (A.4)

Taking the sum from i= 1 to NT−(ω)−Nt−(ω) of inequalities (A.3) and of (A.4) results in
N

T − (ω)−N
t− (ω)∑

i=1

R
(
xατi−1,t(ω)−xατi,t(ω)

)
+RT (xαT )≥ (1−α)

N
T − (ω)−N

t− (ω)∑
i=1

R
(
xπ1
τi−1,t(ω)−x

π1
τi,t(ω)

)

+RT (xπ1
T (ω)) +α

N
T − (ω)−N

t− (ω)∑
i=1

R
(
xπ2
τi−1,t(ω)−x

π2
τi,t(ω)

)
+RT (xπ2

T (ω)).

Since this inequality holds for any instance ω of the arrival process {Ns}s∈R+ , we have

E

NT −−Nt−∑
i=1

R
(
xατi−1,t

−xατi,t

)
+RT (xαT )

≥
(1−α)E

NT −−Nt−∑
i=1

R
(
xπ1
τi−1,t

−xπ1
τi,t

)
+RT (xπ1

T )

+αE

NT −−Nt−∑
i=1

R
(
xπ2
τi−1,t

−xπ2
τi,t

)
+RT (xπ2

T )


= (1−α)V π1

t (k1) +αV π2
t (k2) = (1−α)Vt(k1) +αVt(k2).

Since the value function at time t and at state kα is at least equal to the value of the admissible
policy defined in (A.2), we have

Vt(kα) ≥E

NT−−Nt−∑
i=1

R(xατi−1,t
−xατi,t) +RT (xαT )

≥ (1−α)Vt(k1) +αVt(k2),

which establishes the concavity of Vt in k. �

Proof of Proposition 4.5. Fix the charge level k. For any given ε > 0, let δε > 0 be such that
crλ (δε + 2T (1− e−λδε)) < ε. Consider any times t1 and t2 such that |t1 − t2| < δε. Without loss of
generality, assume that t1 ≤ t2. Let π1 ∈Πt1 be an optimal policy over [t1, T ] starting from the charge
level xπ1

t1 = k. Therefore, Vt1(k) = V π1
t1 (k). In addition, let π2 ∈ Πt2 be any admissible policy over

[t2, T ] starting from state k at time t2, that is, xπ2
t2 = k. Therefore, Vt2(k)≥ V π2

t2 (k). Hence,

|Vt1(k)−Vt2(k)| = Vt1(k)−Vt2(k) = V π1
t1 (k)−Vt2(k)≤ V π1

t1 (k)−V π2
t2 (k), (A.5)

where the first equality comes from Proposition 4.1 which yields Vt1(k)≥ Vt2(k).
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Note that, since the reward function is bounded above by cr, we have

E


N

t
−
2
−N

t
−
1∑

i=1

Rτi,t1

(
xπ1
τi−1,t1

−xπ1
τi,t1

) ∣∣∣ xπ1
t1 = k

≤ crλ(t2− t1)< crλδε, (A.6)

and consequently,

V π1
t1 (k) < crλδε +E


N

T −−N
t

−
1∑

i=N
t

−
2
−N

t
−
1

+1

Rτi,t1

(
xπ1
τi−1,t1

−xπ1
τi,t1

) ∣∣∣ xπ1
t1 = k

 .
Note that for any i ≥ Nt−2

−Nt−1
+ 1, we have τi,t1 = τ(i−N

t−2
+N

t−1
),t2 . Thus, the index in the above

summation can be rewritten to start from 1 to NT− −Nt−2
to label arrival times τi,t2 . Therefore, we

arrive at V π1
t1 (k)−V π2

t2 (k)< crλδε +Q, where

Q
def= E


N

T −−N
t

−
2∑

i=1

Rτi,t2

(
xπ1
τi−1,t2

−xπ1
τi,t2

) ∣∣∣ xπ1
t1 = k

−E


N

T −−N
t

−
2∑

i=1

Rτi,t2

(
xπ2
τi−1,t2

−xπ2
τi,t2

) ∣∣∣ xπ2
t2 = k

 .
Define the events A def= {τ1,t1 > t2} and B

def= {τ1,t1 ≤ t2}. When the event A occurs, the policy π1,

starting from charge level k1 at time t1, results in xπ1
t2 = k. Therefore, E[Q|A] = 0. By invoking

the upper bound on the reward function, each expectation in Q is bounded above by crλ(T −

t2), which is no greater than crλT . Hence, E[Q|B] ≤ 2crλT . By using Pr(B) = 1 − e−λ(t2−t1), we

get E[Q] = E[Q|B]Pr(B) ≤ 2crλT
(
1− e−λ(t2−t1)) < 2crλT (1− e−λδε). Replacing this inequality in

V π1
t1 (k)−V π2

t2 (k)< crλδε +Q and (A.5) yields

|Vt1(k)−Vt2(k)|< crλδε + 2crλT
(
1− e−λδε

)
< ε,

which completes the proof of continuity of the function Vt in t. �
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