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Abstract—This paper considers the problem of coordinating
Distributed Energy Resources (DERs) in a radial distribution
work below a substation, in order to meet an injection schedule
at the substation. Loads, dispatchable resources, nondispatchable
resources, and energy storage are modeled in the problem.
Uncertainty in load and nondispatchable generation is considered
using scenarios. The focus is on situations where there are many
identical agents willing to participate, but only a subset of them
can be scheduled, due to network congestion. A multiobjective
approach is proposed, where the first objective is chosen to
promote the equity of network access among agents over time,
and the second objective is concerned with the control of the
overall deviation from the injection schedule. A fundamental
tradeoff is to determine the extent to which generation is provided
from non-dispatchable resources, and the level of risk of deviation
from the schedule that can be tolerated. Simulations are used to
illustrate the tradeoff between the objectives, and assess the level
of nondispatchable resources that can be integrated.

Index Terms—Coordination of Distributed Energy Resources,
Grid Access, Equity, Mixed-Integer Second-Order Cone Opti-
mization

NOMENCLATURE

n Index for the agent in 1, . . . , N .
t Index for the time period in 1, . . . , T .
k Index for the realization of random variables.
b Bus index in 1, . . . , B.
` Line index in 1, . . . , L.
d̄t Committed power by a Load Serving Entity.
pnt Power injected by agent n at time t.
N The set {1, . . . , N}, with subsets defined below.
ND Index set for loads.
NG Index set for dispatchable generation.
NW Index set for nondispatchable generation.
NX Index set for energy storage resources.

I. INTRODUCTION

Increased coordination is a necessary condition to the
development of distributed energy resources (DERs) [1]. A
variety of coordination schemes, enabled by IT advances [2],
have been proposed to create virtual power plants [3], perform
demand response [4], demand-side management [5], voltage
management [6]. See [7] for a review of demand response
programs implemented in the US.

DER coordination can be implemented by a load serving
entity (LSE), which can be distinct from the utility. Fostering

the coordination between DERs and utilities has long been an
objective of Integrated Resource Planning (IRP) [8].

Important and possibly conflicting criteria the LSE has
to simultaneously take into account for the design of a
load management mechanism include (i) revenue adequacy,
(ii) economic efficiency, and (iii) equitable treatment of users.
In particular (iii) means that the LSE should ensure, and
be able to transparently report, equitable treatment among
the users, especially when some users are able transact over
the distribution network while others see their resource being
curtailed or mitigated. With the advent of energy storage, the
utilization of nearby energy storage resources adds to the
panoply of actions the LSE may take to optimize the access
to the distribution grid resources.

Transmission system operators (TSOs) have long faced
similar requirements. For instance, in the US, the Open
Access Same-Time Information System (OASIS) organizes
access to transmission. Differentiated treatment of users is
still unavoidable, for instance when the TSO needs to force
subsets of generating units to shutdown and others to be online
independently of the market price in effect at the bus locations.
Often TSOs have resorted to ex-post side payments settled out
of the market.

However, the side-payment mechanism leaves open the
problem of selecting the participants allowed to operate. At
the level of the distribution grid, issues would be compounded
by the potentially large number of very similar users. Besides
the litigation risk, already pervasive at the TSO level [9], the
perception that the mitigation system is not equitable could
ultimately hamper investment in DERs.

The present paper introduces a load serving entity problem
formulation that schedules the power injection of users and
gives grid access with equity considerations directly built into
the formulation. Concretely, the geometric mean is used as
the device to aggregate a cumulated utility function assigned
to each user by the LSE, subject to the constraints of the
distribution grid. Arguably, other mathematical devices are
possible: axiomatic descriptions of fairness measures have
been studied in [10]. The geometric mean retains two essential
benefits: while remaining easy to explain to users, it can be
tractably optimized (owing to second-order cone optimization
representation).

The paper is organized as follows. Section II formulates



the LSE problem. Sec. III describes the distribution grid
approximation for this paper. Sec. IV reports on simulations
used to evaluate the proposed mechanism on a radial distri-
bution network model featuring a mix of dispatchable and
nondispatchable resources. Finally, Sec. V concludes.

II. LOAD SERVING ENTITY PROBLEM

The perspective of a load serving entity (LSE) is adopted.
The LSE is assumed to have committed to inject power
at a substation, according to a schedule described by d̄t,
t = 1, . . . , T . The LSE utilizes the net power produced by
the distributed generation below the substation to realize the
injection schedule.

The LSE is tasked with preparing a multiobjective injection
schedule. Three high-level objectives are identified:

1) Limiting the penalties for the LSE incurred by deviations
from the committed schedule.

2) Leveraging the capacity of DERs (dispatchable genera-
tion, nondispatchable generation, energy storage).

3) Ensuring that opt-in participants remain satisfied of the
LSE actions in the long-run.

As the revenue adequacy requirement suggests that the penalties
will be paid back by network users, all participants are assumed
to be willing to reveal their best predictions.

A. Controlling Penalties

To describe the first objective, let d̃t denote the power
injected into the external grid from the substation, and let
ε̃t = d̃t− d̄t denote the excess injected power. Let `t : R 7→ R
be a nonnegative convex function, with `t(0) = 0, represent-
ing the expected penalty for deviating from the committed
injection d̄t.

At the time of scheduling, several possible realizations εkt
of ε̃t are envisioned,

εkt = dkt − d̄t, (1)

detailed in the sequel. Then, the first objective is handled as a
constraint, by imposing

`t(ε
k
t ) ≤ ¯̀

t, for all k, t. (2)

Essentially, the LSE sets the bounds ¯̀
t on the maximum

acceptable deviation penalty at each time step, and verifies
the bounds hold for all considered scenarios. Then with high
confidence (depending on the choice of the scenarios), the total
deviation penalty is kept below

¯̀tot =
∑T

t=1
¯̀
t.

The relation between the power dkt injected at the substation
and the quantities pknt injected by the agents n ∈ N depends
on the network model and the injection points. Additional
constraints exist such as the need for keeping flows and voltage
levels within bounds. This is described in §III. If all the
production and consumption at the substation was lumped (no
network, no losses), one would simply have dkt =

∑
n∈N p

k
nt.

B. Scheduling Distributed Generation

Distributed generation comes in two varieties. Agents
n ∈ NG have dispatchable generation (such as gas-fueled units
controlled by the LSE). Their production profile is described by
pn1, . . . , pnT . The agents n ∈ NW have nondispatchable gen-
eration (such as renewables). Their nondispatchable production
p̃nt is known to lie in the interval [p̄0nt, p̄

1
nt].

The LSE decides which agent is allowed to operate at time t,
using binary decision variables bnt ∈ {0, 1} and the following
constraints for k = 0, 1 which refers to the two scenarios
k = 0, 1 and their associated adapted variables,

pknt = p̄kntbnt, n ∈ NW (3)

Pmin
n bnt ≤ pknt ≤ Pmax

n bnt, n ∈ NG. (4)

Loads are treated as nondispatchable, uncurtailable negative
injections, using

pknt = p̄knt, n ∈ ND, (5)

where p̄0nt ≤ p̄1nt < 0 determine the possible range of
withdrawn power.

Essentially, the LSE prepares a schedule for two scenarios:
Scenario k = 0 where all nondispatchable resources produce
at their minimum and loads maximally consume, and Scenario
k = 1 where all nondispatchable resources produce at their
maximum and loads minimally consume. The schedule for
dispatchable resources is adapted to the scenario.

C. Scheduling Energy Storage

The agents n ∈ NX correspond to dispatchable energy
storage resources. For each agent n ∈ NX we define
xnt Withdrawn power by charging at period t.
ynt Injected power by discharging at period t.
Pmax
n Power rating.
cnt Energy level at the beginning of period t.
cmin
n , cmax

n Range of operation for the energy level.
ηch
n , η

dis
n Charging and discharging efficiency, in [0,1].

Let δt be the duration of period t. The injected power and
energy level change during period t, in scenario k = 0, 1 (see
§II-B) are described as

pknt = yknt − xknt, (6)

ckn,t+1 − cknt = (xknt/η
ch
n − ykntηdis

n )δt, n ∈ NX . (7)

The capacity constraints for all t are

0 ≤ xknt ≤ b
X,k
nt Pmax

n , (8)

0 ≤ yknt ≤ b
Y,k
nt P

max
n , (9)

cmin
n ≤ cknt ≤ cmax

n , (10)

bX,k
nt + bY,knt ≤ bnt, n ∈ NX . (11)

The objective optimized in the sequel cannot ensure that at
the optimum, xknt and yknt are not simultaneously positive.
Therefore, binary variables bX,k

nt and bY,knt are used to enforce
this constraint, at the same time that the binary variable bnt
indicates if storage operations are allowed at all at time t.
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D. Ensuring Equitable Access to the Distribution Grid

Similar opportunities of being able to transact over the
distribution grid are given by the LSE to the DERs by
maximizing the following objective,

maximize min
k=0,1

[∏N
n=1

(
1 + Uk

n)
)]1/N

(12)

subject to Uk
n =

∑T
t=1 u

k
nt, n ∈ N , (13)

uknt = 0, n ∈ ND, (14)

uknt ≤ u(pknt), n ∈ NG, (15)

uknt ≤ u(pknt), n ∈ NW , (16)

uknt = 0, n ∈ NX , (17)

where u(·) is a nonnegative increasing concave utility function,
defined on the nonnegative real line with u(0) = 0, assigned to
each DER by the LSE. The variable uknt represents the utility
of resource n at time t consecutive to a possible transaction
pknt under scenario k. The variable Uk

n represent the cumulative
utility over the scheduling horizon.

Resorting to the geometric mean contrasts with usual welfare
maximization approaches for optimal dispatch. The geometric
mean tends to allocate the same value to each Uk

n , while the
concavity of u(·) encourages the uniform spreading of the
contributions pknt among a maximal number of entities n.

E. Computational Tractability

The geometric mean [
∏N

n=1

(
1 + Uk

n

)
]1/N is jointly concave

in Uk
n , n ∈ N , see e.g. Example 3.14 in [11]. The minimum

of concave functions is concave, thus the objective is concave.
The concavity of u(·) ensures that the inequality constraints
where u(·) is involved are convex.

The geometric mean admits a second-order cone (SOC)
representation, which can be found e.g. in [12], §2.3. Thus
if u(·) also admits a second-order cone representation, the
optimization problem can be solved by commercial solvers such
as cplex/gurobi/mosek, which handle mixed-integer second-
order cone optimization problems (MISOCOs).

Examples of SOC-representable functions u(·) include:
• Linear utility function: u(p) = ap with a > 0.

This leads to the representation uknt ≤ apknt.
• Power utility with rational power: u(p) = pr/s where

0 < r < s are integer. This leads to a geometric-mean
representation 0 ≤ u ≤ (

∏s
i=1 zi)

1/s, zi = p for i =
1, . . . , r, zi = 1 for i = r + 1, . . . , s, itself being SOC-
representable. In our experiments in §IV, u(p) =

√
p.

Relating back to §II-B, it is important to realize that in
the absence of constraints linking successive time steps, the
schedule bnt computed by taking into account the two extreme
scenarios (k = 0, 1) ensures the satisfaction of all constraints
on any mixed scenario made by switching between scenario
k = 0 and scenario k = 1 any number of times during the
planning horizon. The presence of storage units along with
Constraint (7) introduces temporal dependence, but the extent
to which this could damage the robustness of the schedule to
mixed scenarios could arguably remain relatively limited.

We also note that the scenarios are defined such that that the
variations are perfectly correlated among units. This is highly
plausible given the exposure to the same local weather-induced
variations.

III. DISTRIBUTION GRID

In our simulation for this paper we employ a linear DC power
flow approximation, described in §III-A. First, we describe
some general notation.

N # of agents (cardinality of N ).
nB , nL # of buses and lines in the network

representation.
nD, nG, nW , nX # of loads, dispatchable units, nondis-

patchable units, and storage units.
b Bus index in 1, . . . , nB .
` Line index in 1, . . . , nL.
RA

` A-rating of line `.
A Bus incidence matrix in {0, 1}nB×N .

The grid below the substation (a.k.a. distribution feeder) has nB
buses and nL lines. The high-voltage side of the transformer
of the substation, connected to the transmission grid, is used as
the reference bus. The line ratings are collected in the vector
RA ∈ RnL . The bus incidence matrix is a 0-1 matrix such that
Abn = 1 if agent n ∈ N is located at bus b, and 0 otherwise.

It is convenient to also define a bus incidence matrix Aout

as the nb-dimensional row vector with 1 as the first element
and zero otherwise, to locate the point of power withdrawal
by the external grid.

A. Linear DC Power Flow Approximation

The DC network approximation is not recommended when
the ratio R/X from branch impedances Z` = R` + jX` is not
small. Nevertheless, define

pinj
t Power injected at buses at time t, in RnB .
pt Power injected by agents at time t, in RN .
Ft Vector of branch flows at time t, in RnL .
H Power transfer distribution factor (PTDF) matrix in

RnL×nB .

The PTDF matrix is calculated with the substation as the
reference bus. H`b represents the incremental power flowing
through line ` consecutive to an incremental injection of 1 kW
at bus b combined with a withdrawal of 1 kW at the reference
bus. Under the DC power flow approximation, the branch flows
and capacity constraints are expressed as

pinj
t = Apt −Aoutdt, (18)

Ft = Hpinj
t , (19)

1>pinj
t = 0, (20)

−RA � Ft � RA. (21)

The flows should be calculated for the two scenarios k = 0, 1,
thus in fact in place of pinj, pt, Ft, dt we use the variables
pinj,k, pkt , F

k
t , d

k
t .
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IV. SIMULATIONS

Simulations are carried out on a radial 8-bus test system.
The line diagram of this system is presented in Fig. 1(a). The
optimization problem consists in maximizing the objective (12),
for the N = 26 agents of the system (as detailed below), subject
to the constraints (1) to (11) and (13) to (21). The input data
are described in §IV-A. Some of the data, such as the load
profiles (Fig. 1(c) described below), are adapted from EPRI’s
OpenDSS project [13].

A. Description of the Test System

There are nG = 7 dispatchable generation units labeled G1
to G7. Their placement is indicated on the diagram. Each unit
has Pmin

n = 5 and Pmax
n = 20 in (4).

There are also nW = 11 nondispatchable generation units
labeled W1 to W11. Their placement is indicated on the
diagram. Fig. 1(b) indicates the 2 possible production levels
(k = 0, k = 1) that are possible at any period of the day for
each of those units.

There are nL = 6 loads, placed at each bus below the
substation, that is, all buses except buses 1 and 4. The load is
different at each bus, and has 2 possible levels (k = 0, k = 1).
A base consumption profile p̄base

nt , adapted from load shapes
taken from OpenDSS, is depicted in Fig. 1(c). The load profile
is multiplied by a factor 0.8 or by 1.2 to obtain the load levels
p̄knt at each bus.

The system has nX = 2 storage units labeled ST1 and
ST2. Their placement is indicated on the diagram of Fig. 1(a).
Their parameters are Pmax

n = 2.5, cmin
n = 0, cmax

n = 5, and
ηch
n = ηdis

n = 0.9.
Thus in total, there are N = 26 agents.
Given the radial topology and the use of a lossless DC

network approximation, the PTDF matrix is independent of
the impedances of the lines, hence the impedance data can
be omitted from the description. The rating of the lines for
the maximum flows (in per unit) is as follows. Line 3-6: 300.
Lines 4-1, 2-7, 7-8: 250. Line 8-4: 90. Line 5-4: 30.

B. Cases

The LSE has committed to an injection schedule d̄t for
t = 1, . . . , 24, see the black line in Figures 2(c) and 3(c).

The penalties for deviation are such that the realized injection
d̃t must remain in the interval [d̄t −∆, d̄t + ∆] where ∆ is
a parameter of the case instance. This implicitly defines the
function `t of equation (2). In Case 1, we assume ∆ = 0.1.
In Case 2, we assume ∆ = 10. These maximal deviations are
indicated by the outer rectangles depicted in Figures 2(c), 3(c)
(the inner gray rectangles describe the solution described in
§IV-D).

Essentially, the main tradeoff for the LSE is the quantity
of nondispatchable generation, versus the predictability of
injections. This tradeoff translates into a curtailment plan of
select nondispatchable units in advance. Within the margins for
injection, the LSE sets up a schedule such that the dispatchable
units and storage units can balance the variations from the load
and noncurtailed nondispatchable generation.

As mentioned in §II-E, the utility function that the LSE
assigns to each generating unit is u(p) =

√
p, that is, each

generator is treated equally, and the utility grows with the
injected power, but less than proportionally, to express the
preference towards solutions that split a target production level
into a larger number of generators.

C. Solver Settings

We use Mosek as the solver, and run the codes on a pc
equipped with a 2.80GHz Intel Xeon processor.

There is a high degree of symmetry in our test system. The
goal indeed is to investigate the tie-breaking properties of
solutions obtained via the formulation proposed in this paper.

In unit commitment problems with a “traditional” cumulative
objective function, symmetry among generators is known to
impede on getting a tight duality gap certificate, and possibly
create oscillations among equivalent solutions, see e.g. [14],
[15]. Therefore, in our simulations, wallclock time is used as
the stopping criterion, and a limit of 120 seconds is set for all
problem instances.

D. Results

Details of the solutions are reported in Fig. 2 for Case 1,
and Fig. 3 for Case 2.

Figures 2(a) and 3(a) describe the curtailment decisions for
the nondispatchable resources.

A first observation is that the solution with ∆ = 0.5 curtails
all nondispatchable units with more intensity than the solution
with ∆ = 10, which is expected given the tighter tolerance
asked from the schedule.

A second observation is that the curtailment decisions are
well spread out among all nondispatchable units. While it
cannot be ruled out that better solutions could be found by
letting the solver work longer, it can already be observed that
the variance of the number of periods a resource is curtailed
is smaller in Case 2. This is expected, given that the goal of
staying close to the committed schedule is given less importance
by the choice of ∆.

Figures 2(b) and 3(b) describe the status of the dispatchable
resources. There are two groups, that correspond to the
branching after the substation. The number of periods with
nonzero output is more uniform among the units of the first
group G1-G2-G3 in Case 2.

Figures 2(c) and 3(c) describe the commitments (black line),
the maximum deviation ∆ around the commitment (outer
rectangles), and the range of injection determined by the two
extreme scenarios k = 0, 1 (gray rectangle).

The cumulated utilities of each generator for the two
scenarios and the two cases are reported in Table I. The last
row of Table I reports the geometric mean of the corresponding
column (shifted by 1), GMean=[

∏
n∈NG∪NW (1 + Uk

n)]
1
18 .

Recall that the cumulated utility of demand and storage are set
to 0, so the geometric means that include these contributions
are maximized by the same solutions. The smallest GMean
among the two scenarios is the one being maximized and is
typeset in bold.
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Fig. 1. 8-bus Test System comprised of 7 dispatchable generators G. . . , 11 nondispatchable units W. . . , and 2 storage units ST. . .
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Fig. 2. Solution to Case 1, that has the injection schedule tolerance set to ∆ = 0.5. In Figs 2(a), 2(b): Black square: bnt = 1, White circle: bnt = 0. In
Fig 2(c), Black line: Commitment d̄t; Outer rectangle: Bounds d̄t ±∆ to control deviation penalties; Inner gray rectangle: Deviation bounds of the schedule.
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Fig. 3. Solution to Case 2: ∆ = 10.

V. DISCUSSION AND CONCLUDING REMARKS

The simulations of §IV suggest that the geometric mean
formulation is functioning as intended, resulting in an effort to
make individual schedules as comparable to others as possible.
Larger deviations to the committed schedule appear to offer
more opportunities to make individual schedules similar.

The formulation that has been proposed controls the maxi-
mum deviation to a schedule, and the worst geometric mean of
a cumulative utility for each agent. The actual cumulative utility
will depend on the realization of the nondispatchable resources.
It is good to keep in mind that agents can be compensated
for the power they provide, independently of the choice of
the utility function used for their selection, and that the actual

penalties for the actual deviation from the schedule should be
allocated ex-post among the agents.

As pointed out by a reviewer, in a distribution system, the
uncertainty and variation is high compared with a transmission
system. In the present work, feasibility is ensured by allowing
a smaller subset of non-dispatchable resources to participate.
However, this is expected to raise equity concerns among
the agents, which may ultimately discourage agents from
participating. In the present paper, the objective function acts
as a device to alternate among non-dispatchable resources that
are scheduled.

Figures 2(a) and 3(a) in particular show that all resources
of this type tend to suffer from a very similar number of
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TABLE I
CUMULATED UTILITIES Uk

n .

Unit Case I Case II
U0

n U1
n U0

n U1
n

W1 7.15 11.46 6.28 10.36
W2 7.15 11.75 8.15 13.10
W3 8.15 13.11 7.15 11.75
W4 7.15 11.76 7.15 11.75
W5 7.15 11.76 7.15 11.75
W6 5.41 9.43 8.15 13.21
W7 8.15 13.29 8.15 13.21
W8 8.15 13.29 8.15 13.21
W9 5.41 9.43 8.15 13.21
W10 6.28 10.79 7.28 12.19
W11 8.15 13.42 8.15 13.35
G1 64.55 36.59 59.34 36.21
G2 74.54 40.28 59.27 36.17
G3 59.76 34.51 59.13 35.84
G4 92.80 49.89 99.08 50.90
G5 92.81 47.77 99.09 49.15
G6 92.81 47.77 99.09 49.15
G7 92.81 49.95 99.09 51.14

GMean 19.78 20.66 20.53 21.40

curtailments, placed at different time periods. Comparing the
two figures, equity seems higher for the plan in Figure 3(a).
However, this is achieved at the cost of allowing for potentially
higher deviations from the schedule, as indicated by the gray
rectangles in Figure 3(c), which cover the set of possible
realizations.

In the same vein of results, Table I reports on the utility of
each agent, for the two extreme scenarios k = 0 and k = 1.
The proposed approach focuses on the utility for the worst
outcome, which turns out to be the scenario k = 0 in both
cases. In case I there is still a discrepancy between the utility of
W6, equal to 5.41, to be compared to the utility 8.15 that other
identical agents enjoy on this the schedule. The discrepancy is
somehow less pronounced in case II, with W1 receiving only
6.28 while other similar agents get 8.15.

It is expected, however, that over time, the objective can be
used to balance the discrepancies among the agents created
by individual schedules. Concretely, in (12), the factor 1 +Uk

n

can be changed to c+ Uk
n , where c is used to summarize the

utility received from past schedules.
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