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Abstract—In a nonbinding transactive energy market with
a distribution system operator (DSO) and a set of distributed
flexible energy resources, this paper studies the DSO controls.
In this framework, DSO sends discharge permission signals to a
subset of enrolled transactive agents, who then have the option,
but not the obligation, to discharge power in real time at a
time-varying payoff specified in advance in the contract. The
DSO controls include decisions on when to dispatch discharge
permissions and which subset of transactive agents should be
selected at a time to receive the permission to operate. Three
schemes for transaction trigger policy and agent selection policy
for this nonbinding transactive market are developed. In these
schemes the real-time electricity prices and the difference be-
tween the real-time and day-ahead loads are employed. Using
data from NYISO the intensity of discharge permissions for
each transaction trigger policy is estimated. For a nonlinear
payoff structure and assuming that the distributed agents all
follow their optimal control policies, the value of the nonbinding
transactive energy market for the flexible energy resources as
well as for DSO is computed under each DSO control. It is
shown that the transaction trigger policy, determined by positive
unforecasted loads and real-time power prices greater than the
contractual time-varying payoff parameter, outperforms other
policies in terms of the achievable cost saving for DSO.

Index Terms—Transactive energy, power market, distributed
flexible energy resources, stochastic dynamic optimization.

I. INTRODUCTION

Transactive energy markets involving distributed energy
resources have been envisioned for the power grid of the future
[1], [2], [3]. These energy markets aim to create opportunities
for broader integration and participation of variable generations
and those power system assets who cannot or do not want to
enroll in the wholesale market. The expected characteristics of a
transactive energy market in comparison with typical wholesale
markets are summarized in Table I. While a power plant can
take part in the day-ahead or real-time wholesale markets after
accepting the compliance with the process requirements and
commitments, transactive energy markets facilitate transactions
by an electric vehicle or residential energy storage.

Quick ramping capabilities of flexible energy resources and
improvements in their reliability and affordability ensure major
roles for these technologies in transactive markets [4], [5].
Energy storage, plug-in hybrid electric vehicles, and demand
response constitute prominent current and emerging technolo-
gies for flexible generations, see e.g. the US Department of
Energy report [6].

TABLE I
TRANSACTIVE ENERGY MARKET VERSUS WHOLESALE MARKET

Wholesale Market Transactive Market

Grid Level Transmission Distribution
Profit Level High Low
Commitment Level High Low
Operation Time Fixed Flexible
Capacity Size Large Small

Creating an environment in which distributed flexible
capacity resources can participate in the production and
trading electricity, without dealing with the complexities and
commitment requirements of the wholesale market, requires
designing markets with appropriate features. In particular, such
markets should accommodate the needs and limitations of
all market participants, while maintaining the operability of
the power grid. The lack of appropriate markets and business
models has been identified as one of the main barrier in further
deployment of energy storage (see e.g. [7] and Sandia National
Laboratories report [8]), in spite of its emerging technological
advances and cost improvements [9], [10].

While the importance of transactive energy and features of
appropriate market models for distributed flexible capacities
have been recognized in the recent few years (e.g., see [7]),
research activities are still under development and specific
market frameworks are scarce [1], [11].

In [12], an energy transaction framework is proposed for
the deployment of energy storage or other resources with
generation flexibility. In this paradigm, transactions are defined
between these distributed flexible energy resources, referred to
as transactive agents, and a distribution system operator (DSO)
such as a power utility company. The two parties undergo
an agreement based on which a transactive agent has the
option, but not the obligation, to discharge power in real time,
whenever DSO dispatches a discharge permission signal to
this agent. Payoffs for the injected energy are time-varying
and agreed upon in advance. A salient characteristic of this
transactive market is its flexibility and nonbinding nature, in
the sense that the transactive agents do not have to commit in
advance to provide electricity, and the DSO does not commit to
buying electricity at specific times in advance. In addition, the



transactive agent does not need to undergo complex bidding
processes. This comfort comes at the cost of uncertainty about
times when electricity is permitted to flow out of the resource.
The DSO dispatches operation permission signals to a subset of
enrolled transactive agents at times, driven by the state of the
grid or electricity price. Restricting operation times at which a
participating transactive agent is allowed to discharge enables
the DSO to indirectly supervise the activities of the distributed
agents and control their effects on the power grid and market.

The control problem faced by a transactive agent enrolled
in this market and its optimal discharge decisions are studied
in [12]. Given the intensity rate of the operation permissions
and the time-varying nonlinear payoff structure, the agent’s
control problem is reduced to a semi-Markov decision problem.
An algorithmic strategy to solve this problem is proposed
in [12], and properties of the optimal policy and value function
are analyzed.

This paper investigates the nonbinding transactive market
framework in [12] from the point of view of the DSO. The
distribution system operator control includes decisions on
when to dispatch discharge permissions and which subset of
transactive agents should be permitted to operate. Two policies,
referred to as the transaction trigger policy and the agent
selection policy, are introduced. This paper proposes three
transaction trigger policies and three agent selection policies,
specified by the state of the real-time electricity price or
unforecasted load as well as the payoffs to be paid to the agents.
Using the real-time actual and day-ahead load data, and the real-
time locational based marginal price (LBMP) data from Long
Island (zone K) of New York Independent System Operator
(NYISO) from Jan. 1, 2016 to Dec. 31, 2016, the arrival rates
corresponding to each transaction trigger policy is estimated.
Then, the total collected energy from these flexible distributed
energy resources as well as the cost savings achieved by DSO
in each month of 2016 are analyzed under each pair of these
DSO policies. The payoff of transactive agents with different
capacity sizes are computed. For each transaction trigger policy,
the realized rate of permission arrivals are compared to the
estimated ones.

To summarize, this paper aims to address the following
valuation problems:

• Value of the nonbinding transactive market for DSO,
measured by the total collected energy [MWh]

• Value of the nonbinding transactive market for DSO,
measured by the total cost saving [$]

• Value of the nonbinding transactive market for transactive
agents, measured by the collected payoff [$]

This paper is organized as follows. Section II presents the
transactive energy market framework introduced in [12]. The
control problems of DSO and transactive agents are discussed
in Sections III and IV, respectively. Section V explains the
data from NYISO. Section VI describes computational results
of the DSO’s proposed transaction trigger policy and agent
selection policy. The paper is concluded in Section VII.

Fig. 1. Interactions between DSO and Transactive Agents with flexible
capacities (e.g., Residential customers with storage, Prosumers, Electrical
vehicles, or Residential customers with demand management).

II. A NONBINDING TRANSACTIVE ENERGY MARKET

The novel nonbinding transactive energy market, proposed
in [12], is adopted. The market enables transactions between
distributed flexible energy resources, referred to as transactive
agents, and a distribution system operator (DSO).

In this framework, flexible capacity owners enroll in the
market and express their willingness to receive transaction
(discharge) permission signals from DSO. However, they are
not required to make an advance commitment to provide
power, should they receive such a transaction permission
from DSO. Similarly, DSO does not commit to let them
discharge at specified times and buy their discharged power.
Figure 1 illustrates the interaction between DSO and distributed
transactive agents with flexible energy resources.

The market operates during a time horizon [0, T ] of a day,
e.g., [7am-11pm]. Should an agent, who received a transaction
permission signal from DSO at time t, choose to discharge a
units of electricity, he will be paid a contractual profit of Rt(a).
The payoff function is nonnegative, Rt(0) = 0, increasing in
a, concave in a, and continuous in t everywhere. An example
of the reward curve is

R(θt, a) = log (1 + θta) (1)

for some time-varying payoff parameter θt, e.g., see Fig. 2.
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Fig. 2. Reward function R(θt, a) corresponding to the payoff parameters
{θt}t in July, depicted in Fig. 3 (b).
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III. DISTRIBUTION SYSTEM OPERATOR CONTROL

Suppose there are N agents, indexed by i = 1, · · · , N , who
have enrolled in the transactive market. A DSO controller with
two policies, transaction trigger policy and agent selection
policy, are introduced.

The transaction trigger policy decides on whether to dispatch
transaction permission signals at a time t. The agent selection
policy decides on the subset of agents, N ∗t ⊆ {1, 2, · · · , N},
who are granted the transaction permissions at time t. Figure 3
depicts the DSO controller. Here,

p̃t : real-time electricity price,
D̃δ
t : unforecasted load,

at(ki,t) : optimal policy of agent i with charge level ki,
ςt : threshold parameter in transaction trigger policy.

The unforecasted load D̃δ
t is approximated by the deviation of

the real-time load from the day-ahead demand.

 𝑝𝑡 𝐷𝑡
𝛿
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Fig. 3. Distribution System Operator Controller

This paper introduces three transaction trigger policies
π1, π2, π3 and three agent selection policies A,B,C defined
on the state of the grid, including the electricity price and load.
Table II summarizes these policies. Transaction trigger policies

TABLE II
DISTRIBUTION SYSTEM OPERATOR POLICIES

Transaction Trigger Policy
[π1] D̃δt > 0

[π2] D̃δt > 0 and p̃t ≥ θt
[π3] p̃t ≥ ςt, for some deterministic parameter ςt

Agent Selection Policy
[A] P(D̃δt ,N )

[B] P(D̃δt ,N+), where N+ ⊆ N is given by
{i ∈ N s.t. p̃tat(ki,t)−R (θt, at(ki,t)) > 0}.

[C] P(D̃δt ,N ), with the additional constraint∑
i∈Nt

(p̃tat(ki,t)−R(θt, at(ki,t))) > 0.

imply that DSO turns into the transactive market and issues
discharge permissions when the forecasted demand is below
the real-time demand (D̃δ

t > 0), or when the real-time price
is higher than the payoff to be paid to the agent (p̃t ≥ θt),
or when the real-time electricity price (LMP) is higher than a
threshold level (p̃t ≥ ςt).

Agent selection policies are defined by the optimization
problem P

(
D̃δ
t ,N

)
, given by

P
(
D̃δ
t ,N

)
: max
Nt⊆N

f({at(ki,t)}i∈Nt) (2)

s.t.
∑
i∈Nt

at(ki,t) ≤ D̃δ
t .

Here, N def
= {1, 2, · · · , N}, and

N+ def
= {i ∈ N s.t. p̃tat(ki,t)−R (θt, at(ki,t)) > 0} . (3)

In this paper, f({at(ki,t)}i∈Nt)
def
=
∑
i∈Nt at(ki,t). Thus

N ∗t = arg max
Nt⊆N

P
(
D̃δ
t ,N

)
. (4)

Problem (2) is expressed by an integer optimization problem:

max
c1,··· ,cN∈{0,1}

N∑
i=1

ciat(ki,t) s.t.
N∑
i=1

ciat(ki,t) ≤ D̃δ
t . (5)

Thus, for policy [B], the constraints are included

ci (p̃tat(ki,t)−R (θt, at(ki,t))) ≥ 0, i = 1, · · · , N. (6)

Policy [C] imposes the following constraint
N∑
i=1

ci (p̃tat(ki,t)−R (θt, at(ki,t))) ≥ 0. (7)

In the policy [π2], the condition p̃t ≥ θt implies that

p̃t ≥ θt ≥
θt

1 + θta
=
dR(θt, a)

da
,

which yields pta − R(θt, a) is an increasing function of a.
Hence, when the transaction trigger policy [π2] is employed,
the three agent selection policies result in the same N ∗t .

Since the constraints p̃tat(ki,t) − R(θt, at(ki,t)) > 0 for
all i yield

∑N
i=1 p̃tat(ki,t) − R(θt, at(ki,t)) > 0, the level

of collected energy in policy [C] is higher than the level of
collected energy in policy [B].

The transaction trigger policy is contractual, i.e., both DSO
and transactive agents have knowledge about which policy is
applied to transaction trigger permissions. Therefore, while
agents do not have information about the exact time when they
can discharge, they can compute the arrival rate of transaction
permissions given the transaction trigger policy in the contract.

IV. TRANSACTIVE AGENT CONTROL

From a transactive agent’s point of view, transaction per-
missions arrive at random following a Poisson process with
intensity λ. When a discharge permission signal is dispatched
to an agent at time t ∈ [0, T ), he can choose to discharge a at
the payoff R(θt, a).

An optimal policy of a risk-neutral transactive agent is
determined by maximizing total expected payoff over [0, T ].
This results in the following dynamic optimization problem

max
xπ∈X0

E

ZT−∑
`=1

R
(
θτ`,0 , x

π
τ`−1,0

− xπτ`,0
) ∣∣∣ xπ0 = k

 , (8)
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with the optimal objective value V0(k). The expectation in (8)
is over the Poisson process {Zs}s≥0. Here, X0 is the set of
all nonnegative real-valued, right-continuous with left limits,
decreasing process xπ = {xπt }t∈[0,T ] adapted to the filtration
{Ft}t>0. The process xπ represents the charge level under the
agent policy π. The random variable ZT− is the number of
transaction permission arrivals {Zs}s≥0 over the time interval
[0, T ). Assumption R(θt, 0) = 0 yields V0(0) = 0.

The optimal value functions Vt(k) of this Markov Decision
Process (MDP) satisfy the dynamic programming equation:

Vt(k) = E
[
max
a∈Ak

{
R(θτ1,t , a) + Vτ1,t(k − a)

}
· 1τ1,t<T

]
, (9)

where the expectation is over the time τ1,t of the next
transaction permission.

Various properties for the value function and optimal policy
at(k) are established in [12], and an approach to compute the
optimal value function is proposed. As the agent receives a
transaction permission at time t when the available capacity is
k, the optimal discharge amount, at(k), is given by

at(k) = arg max
a∈Ak

{R(θt, a) + Vt(k − a)} . (10)

V. DATA

The data from New York Independent System Operator
(NYISO), Zone K-Long Island (LONGIL), from 1-Jan-2016
to 31-Dec-2016 is used. Real-Time Locational Based Marginal
Price (LBMP) data is used to approximate the time-varying
payoff parameter {θt}t. Fig. 4(a) illustrates the daily real-
time electricity price averaged over a month, for January and
July (the months with highest and lowest temperature in Long
Island). Smoothing filters such as moving average with some
span coefficient can be used to smooth out the curves, which
cast as {θt}t, see Fig. 4(b) for moving average with span 24.

The real-time load and day-ahead load data sets are em-
ployed to approximate the unforecasted demand D̃δ

t , i.e.,
D̃δ
t = max{0, D̃t − E[D̃t]}, where E[D̃t] is approximated

by the day-ahead hourly demand. The mean of D̃δ
t varies from

30.56 and 41.61 in Jan and Mar, respectively, to 97.00 and
98.37 in Jul. and Aug in 2016.

Figure 4(c) illustrates D̃δ
t for one day 7-Jan-2017. Transac-

tion trigger policies for this day are depicted in Figures 5(a)-
5(c). Figure 7 shows arrival rates per hour for two days, 16-
Jan-2016 and 16-Jul-2016 from the policy [π3] are illustrated
in .

For each transaction trigger policy, the corresponding hourly
transaction permission arrival rate averaged over all days of
one month are computed in Table III.

VI. SIMULATION RESULTS

The following criteria are used to assess the nonbinding
transactive energy market:

• Collected Energy by DSO : Et =
∑
i∈N∗

t
at(ki,t). (11)

• Cost Saving for DSO : Jt = ptEt −
∑
i∈N∗

t

R(θt, at(ki,t)). (12)

• Payoff of the ith agent :
∫
t∈[0,T ]

R(θt, ai)1i∈N∗
t
dt. (13)

TABLE III
PERMISSION INTENSITY PER TRANSACTION TRIGGER POLICY

Jan Feb Mar Apr May Jun
λπ1 5.25 7.02 5.28 3.48 4.46 5.17
λπ2 2.04 2.00 1.99 1.56 1.92 2.13
λπ3 4.29 3.31 0.92 1.96 1.36 2.44

Jul Aug Sep Oct Nov Dec
λπ1 5.27 7.06 4.35 6.94 6.85 6.53
λπ2 2.59 2.81 1.63 2.07 2.00 2.82
λπ3 5.44 6.68 3.11 0.94 1.99 8.04

TABLE IV
ANNUAL PAYOFF [$] OF AGENTS FOR EACH DSO POLICY.

Transaction Agent
Trigger Selection Agent Agent Agent Agent Agent
Policy Policy 1 2 3 4 5

π1 [A] 7,302 10,111 12,693 15,025 17,212
π1 [B] 4,726 6,873 8,976 10,962 12,872
π1 [C] 5,251 7,332 9,282 11,115 12,869
π2 [A] 4,777 6,392 7,755 8,929 9,991
π3 [A] 4,322 5,830 7,154 8,305 9,374
π3 [B] 3,691 5,075 6,321 7,431 8,499
π3 [C] 3,839 5,194 6,406 7,483 8,500

We consider a market with N = 5 transactive agents, with
capacities Kcap

1 = 10, Kcap
2 = 15, Kcap

3 = 20, Kcap
4 = 25,

and Kcap
5 = 30. This study assumes that the transactive agents

compute their controls at(ki) corresponding to λπi in Table III
per month. The initial charge level per day is set to ki,0 = Kcap

i .
Table IV summarizes the payoff of the agents for the entire

2016 under each DSO policy. The cost savings of DSO
∑
t Jt

and total energy collected
∑
tEt are reported in Tables V

and VI. Detailed payoffs of the agents per month are depicted
in Fig. 8 for policy π2.

Figure 6 depicts the averaged realized arrival rates by the
agents and λπis computed from the transaction trigger policies
in Table III. Among the three policies, the transaction trigger
policy π2 offers an arrival rate closer to the nominal one.

VII. DISCUSSION AND CONCLUSIONS

The following observations are made from the simulation
results. From Table IV, the amounts received by the agents is
generally higher with π1. Indeed the arrival rates under π1 are
higher, see Table III. Interestingly, the amounts grow less than
proportionally with the agent capacities, indicating the system
favors agents with a relative smaller capacity. This conclusion
holds for any combination of DSO policies.

The policy π2 is the most attractive for the DSO, given the
total cost savings J , see Tables VI and V. From Fig.6, we
observe that π2 is the policy for which the realized arrival rate
is closest to the nominal rate. The policy π2 remains attractive
in terms of total payoff received by each agent, ranging from
about 4000 to 10000 depending on the capacity. Compared to
π3, the amounts per month are also more stable with π2.

We conclude that the among the set of policies investigated in
this paper, the two policies π2 and π1[A] have more favorable
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Fig. 4. Real-time prices to compute payoff parameters {θt}t. Real-time load versus Day-ahead load (D̃δt ).
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Fig. 5. Transaction trigger policies for one day (7-Jan-2016). In [π3], the threshold parameter is set to ςt=35 [$/MWh] for all t.
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Fig. 6. Hourly Realized Arrival Rate versus Nominal Arrival Rate for various DSO Policies.
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Fig. 7. Operation Permission Arrival Rates per Hour for 16-Jan-2016 and
16-Jul-2016, for transaction trigger policy [π3] with ςt= 35 [$/MWh].

properties. Both are able to offer a realized permission arrival
rate close to the expected arrival rates. Policy π2 brings the
DSO the highest cost saving while policy π1[A] brings the
agents the most total and stable payoff.
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TABLE V
TOTAL COLLECTED ENERGY PER MONTH (E), MAXIMUM COLLECTED ENERGY PER TRANSACTION (∆max), TOTAL COST SAVING FOR DSO (J)

Month
Jan
July

12m Total

Agent Selection Policy [A]
E [MWh] ∆max [MWh] J [$]
2302.70 8.20 4602
1799.50 5.16 4932

26,658.30 35,525

Agent Selection Policy [B]
E [MWh] ∆max [MWh] J [$]
1990.92 9.77 6950
1682.80 6.34 6091

22,098.16 50,735

Agent Selection Policy [C]
E [MWh] ∆max [MWh] J [$]
2024.02 9.72 6751
1700.23 5.83 5933

22,463.91 49,706

(a) Transaction Trigger Policy [π1]

Month
Jan
Jul

12m Total

Agent Selection Policy [A]
E [MWh] ∆max [MWh] J [$]
1580.73 13.59 8800
1280.97 5.62 5359

15,299.58 78,164

Agent Selection Policy [B]
E [MWh] ∆max [MWh] J [$]
1575.41 13.59 8881
1175.94 5.86 6000

14,620.56 80,786

Agent Selection Policy [C]
E [MWh] ∆max [MWh] J [$]
1578.44 13.59 8854
1199.20 5.80 5903

14,700.70 80,572

(b) Transaction Trigger Policy [π3]

TABLE VI
TOTAL COLLECTED ENERGY PER MONTH (E), MAXIMUM COLLECTED

ENERGY PER TRANSACTION (∆max), TOTAL COST SAVING FOR DSO (J)

Month
Jan
Feb
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
Dec
Total

Agent Selection Policy [A]
E [MWh] ∆max [MWh] J [$]
1869.56 29.11 15323
1524.88 20.89 10105
2615.56 41.16 6061
2735.34 69.61 4967
2161.06 32.64 4076
2314.17 39.81 11331
1549.17 9.34 10256
1609.56 13.12 17680
1116.12 25.45 6747
1818.20 16.05 4737
1616.77 5.45 5711
1757.19 4.69 7727

22,687.59 104,722

Transaction Trigger Policy [π2]
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Fig. 8. Agents’ Payoffs per Month for Transaction Trigger Policy [π2].
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