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Abstract

This paper considers the problem of maximizing the probability of attaining a prescribed count of arrivals generated by a
point process, by controlling its intensity. Our analysis shows the existence of optimal intensity switching times that are affine
in the arrival count, thereby contributing to the literature on the optimality of affine policies. The optimal intensity control
law is established, along with closed-form expressions for its numerical parameters. Several properties of the value function
are listed as well.
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1. Introduction

This paper considers the problem of controlling the inten-
sity of a point process in order to maximize the probability
that a target number of arrivals is met exactly by a deadline,
assuming the intensity is allowed to vary within a finite range
[1]. The point process is assumed to be a simple point pro-
cess, that is, arrivals happen one at a time. Mathematically,
the problem can be formulated as an optimal point-process
intensity control problem,

V = max
π

Pπ [ST = C|S0 = 0]

= max
π

Eπ [RT (ST )|S0 = 0] , (1)

where the state St represents the count of arrivals during the
time period (0, t], following a point process with controlled
intensity

λt = λπt (St) ∈ [λa, λb], 0 < λa < λb <∞. (2)

The terminal reward function is defined as

RT (ST ) = 1C(ST ) (3)

which is equal to 1 if ST = C and 0 otherwise. The control
law λπt to be optimized is a function of the state St ∈ N and
of the time t ∈ [0, T ].

The number of arrivals during a small time interval (t, t+
dt] follows a Poisson distribution of mean λtdt. At the first-
order, P(St+dt − St = 1) = λtdt + o(dt), P(St+dt − St ≥
2) = o(dt), and P(St+dt − St = 0) = (1 − λtdt) + o(dt) [2].
Thus, while λt is controlled, there is no direct control over
the arrival times (since λb <∞).
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Our interest in (1) stems from the fact that it represents
one of the simplest possible point-process control problems
where the decision is the intensity, and yet its optimal solu-
tion has not been described satisfactorily. What is known is
the existence of an optimal bang-bang intensity policy [1, 3].
The Hamilton-Jacobi-Bellman equations characterizing the
optimal solution to the continuous-time, infinite-dimensional
control problem are known [4]. As a result, solutions to
discretized versions of the problem can be obtained via nu-
merical solution algorithms, developed for instance in [5].
An infinite-dimensional, nonconvex formulation for policy
optimization is known as well [1].

While numerical approaches are applicable, there is value
in pursuing the analysis of the optimal control problem fur-
ther. Additional insights facilitate sensitivity and robustness
studies and suggest approaches to tackle higher-dimensional
problems. Point-process control has applications in areas
such as queueing systems, inventory control, and revenue
management. There is often a direct relationship between
intensities and prices – for instance, [6] hypothesizes a re-
lationship between prices and rate of arrival of customers
to optimize a price-setting policy for selling an inventory of
perishable products. In [7], the authors hypothesize that pro-
ductivity is optimized by receiving the right workload, and
let the manager control the rate of arrival of tasks. Interest
in intensity-control problems is also seen in [8], motivated
by online social network applications where the target state
is a desired user behavior. In our case, as the probability
of meeting a count drops to zero when the count exceeds
the target, (1) captures situations where exceeding a capac-
ity can have catastrophic consequences. These situations
are found in the airline industry, insurance industry, and
electricity industry.
The present paper describes the structure of the optimal

value function, and provides the exact optimal intensity



control policy in closed-form, thereby furnishing a definitive
answer to (1). Namely, given a feasible intensity range
[λa, λb], we establish the existence of a characteristic duration

θ = log(λb/λa)
λb − λa

(4)

that fully describes the optimal policy, in the sense that it is
optimal to have the intensity at time t set to λa if t is below
the critical time T − θ(C − St), and to λb if t exceeds the
critical time T − θ(C − St). The intensity switches back to
λa if there is an arrival at time t but t does not exceed the
critical time of the new state.
The fact that the critical times triggering the intensity

switches from λa to λb are affine in the arrival count is a
remarkable feature of the problem. To the best of our knowl-
edge, this is the first time an intensity policy affine in the
switching times is shown to be optimal, thereby contributing
to the literature on the optimality of affine policies [9]. An
additional pleasant characteristic of the optimal intensity
policy is the availability of a closed-form expression for its
numerical parameters.

The presentation is organized as follows. Section 2 recalls
the optimality conditions for the intensity control problem.
Section 3 describes the structure of the optimal value func-
tion, which represents the probability of reaching the target
count under the optimal intensity policy, given the current
information. Section 4 establishes the optimality of the affine
intensity policy. Section 5 illustrates the results, and Section
6 concludes.

2. Optimality conditions

Optimality conditions for the stated problem are well
known, see e.g. Chapter VII §2 in [4], and lead to the
conclusion that there exists an optimal policy such that
λπt (St) ∈ {λa, λb}. Our statement slightly differs from [4]
in that we use directional derivatives, while [4] assumes the
differentiability of the value function.

Let VT−t(s) = Prob(ST = C | ST−t = s) under an optimal
policy. From the properties of simple point processes, for a
small dt > 0, it holds that Prob(St+dt−St = 1) = λdt+o(dt),
Prob(St+dt − St ≥ 2) = o(dt), and Prob(St+dt − St = 0) =
1− λdt+ o(dt). Therefore, by backward induction,

VT−(t+dt)(s)
= sup
λ∈[λa,λb]

[
∑∞
n=0 Prob(ST−t − ST−(t+dt) = n)VT−t(s+ n)]

= sup
λ∈[λa,λb]

[(1− λdt)VT−t(s) + λdtVT−t(s+ 1) + o(dt)],

VT−(t+dt)(s)− VT−t(s)
= sup
λ∈[λa,λb]

[λdt(VT−t(s+ 1)− VT−t(s)) + o(dt)]. (5)

The o(dt) term can be considered to be independent of
λ, as |VT−t(s)| ≤ 1 for all s and the supremum is over a
compact interval. Dividing both sides by dt = 1/m, letting

m→∞, and invoking the uniform convergence of fm(λ) =
λ(VT−t(s+1)−VT−t(s))+o(1/m) to f(λ) = λ(VT−t(s+1)−
VT−t(s)) at least locally over [λa, λb], this relation becomes
∂VT−t(s)/∂t = supλ∈[λa,λb][λ(VT−t(s+1)−VT−t(s))], where
∂VT−t(s)/∂t = limdt→0+ [VT−(t+dt)(s)−VT−t(s)]/dt denotes
the derivative in the direction of an increasing time-to-go. As
f(λ) is linear in λ, the optimum is attained at the boundary
of the feasibility set and we have

∂VT−t(s)/∂t = λa(VT−t(s+ 1)− VT−t(s))
if VT−t(s+ 1)− VT−t(s) < 0,

∂VT−t(s)/∂t = λb(VT−t(s+ 1)− VT−t(s))
if VT−t(s+ 1)− VT−t(s) > 0. (6)

We have VT−t(s) = 0 for s ≥ C + 1, since the target is
missed forever if exceeded. At t = 0 we have VT−0(C) = 1
and VT−0(s) = 0 for s 6= C. The choice of λ where VT−t(s+
1) − VT−t(s) = 0 is inconsequential as far as optimality is
concerned.

3. Unimodality properties

We first show by induction that for each fixed time T − t,
the sequence {VT−t(s)}s=0,1,... over the states s is unimodal.

Proposition 1. For each time T − t there exists a critical
state C∗T−t such that VT−t(s− 1) ≤ VT−t(s) for s ≤ C∗T−t ,
and VT−t(s) ≥ VT−t(s+ 1) for s ≥ C∗T−t .

Proof. The property is true for t = 0 with C∗T−0 = C,
since for any k ≥ 1 we have 0 = VT (C − k) ≤ VT (C) = 1 ≥
VT (C + k) = 0. Suppose this is true at time T − t. Then at
time T − (t + dt), from (5) it is optimal to choose λ = λb
at states s ≤ C∗T−t − 1, and λ = λa at states s ≥ C∗T−t.
Furthermore, (i) At states s ≥ C∗T−t we have

VT−(t+dt)(s)
= (1− λadt)VT−t(s) + (λadt)VT−t(s+ 1) + o(dt)
≥ (1− λadt)VT−t(s+ 1) + (λadt)VT−t(s+ 2) + o(dt)
= VT−(t+dt)(s+ 1),

using VT−t(C∗T−t) ≥ VT−t(s) ≥ VT−t(s + 1) ≥ VT−t(s+ 2)
from the induction hypothesis. This establishes
VT−(t+dt)(s) ≥ VT−(t+dt)(s+ 1) for states s ≥ C∗T−t .

(ii) At states s ≤ C∗T−t − 1, we have

VT−(t+dt)(s− 1)
= (1− λbdt)VT−t(s− 1) + (λbdt)VT−t(s) + o(dt)
≤ (1− λbdt)VT−t(s) + (λbdt)VT−t(s+ 1) + o(dt)
= VT−(t+dt)(s),

using VT−t(s − 1) ≤ VT−t(s) ≤ VT−t(s + 1) ≤ VT−t(C∗T−t)
from the induction hypothesis. This establishes
VT−(t+dt)(s− 1) ≤ VT−(t+dt)(s) for states s ≤ C∗T−t − 1.

(iii) At state s = C∗T−t, we can have either VT−(t+dt)(s− 1)
≤ VT−(t+dt)(s) (and thus we set C∗T−(t+dt) = C∗T−t) or
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VT−(t+dt)(s−1) > VT−(t+dt)(s) (and thus we set C∗T−(t+dt) =
C∗T−t − 1).
Together, (i-ii-iii) prove the claim.

Regarding the evolution of the critical state C∗T−t over the
time-to-go t, the property C∗T−(t+dt) ∈ {C

∗
T−t − 1, C∗T−t}

shows that C∗T−t is nonincreasing in t. This leads to the
conclusion that VT−t(s) is unimodal in t for each state s:

Proposition 2. For each fixed state s ≥ 0, there exists a
critical time-to-go t∗s such that VT−t(s) is nondecreasing over
t ∈ [0, t∗s) and nonincreasing over t ∈ [t∗s, T ].

Proof. For any fixed state s, having s ≥ C∗T−t implies
s ≥ C∗T−(t+dt) since C∗T−t ≥ C∗T−(t+dt). This implies that
we can define for each state s a critical time-to-go

t∗s = inf{t ∈ [0, T ] : s ≥ C∗T−t}

such that s ≤ C∗T−t − 1 over t ∈ [0, t∗s) and s ≥ C∗T−t
over t ∈ [t∗s, T ]. In the time-to-go interval [0, t∗s) we have
VT−t(s) ≤ VT−t(s + 1) by definition of C∗T−t, and thus by
(6), λb is optimal. In the interval [t∗s, T ] we have VT−t(s) ≥
VT−t(s+ 1) by definition of C∗T−t, and thus λa is optimal.
Referring back to (6) again, for each s we have

∂VT−t(s)/∂t ≥ 0 over [0, t∗s) and then ∂VT−t(s)/∂t ≤ 0 over
[t∗s, T ], showing that VT−t(s) as a function of t is unimodal,
and attains its maximum at t∗s.

A key property of the critical time-to-go is that it is
nonincreasing in the state:

Proposition 3. It holds that s ≤ s′ implies t∗s ≥ t∗s′ .

Proof. By definition of t∗s, we have s′ ≥ s ≥ C∗T−t∗s . Then
by definition of t∗s′ we have s′ ≥ C∗T−t∗

s′
for some C∗T−t∗

s′
≥

C∗T−t∗s . As CT−t is nonincreasing in t, we have t∗s′ ≤ t∗s .

4. Optimal intensity policy

Consider the reachable space E = {(t, k) ∈ R × Z : t ∈
[0, T ], k ≤ C} of pairs (t, k) where t is the time-to-go (which
physically decreases from T to 0) and k is the count-to-go
(which physically starts at k = C and then is decremented
of one unit at each arrival). Let Ea, Eb denote the subsets
of E where it is optimal to choose λa and λb respectively.
The key result of the paper is that the optimal switching
times from λa to λb are affine in the count-to-go:

Proposition 4. The boundary between the regions Ea, Eb
is described by the indifference line

t = kθ, θ = log(λb/λa)
λb − λa

.

In terms of the physical time T−t and arrival count s = C−k
at time T − t, an optimal intensity policy is

λπT−t(s) =
{
λa if T − t < T − (C − s)θ,
λb if T − t ≥ T − (C − s)θ. (7)

The remainder of the section is concerned with establishing
the proposition. The originality of the approach is that
we proceed by induction over the states, rather than by
induction backward in time, as usually done in dynamic
programming. This is technically possible because along
sample paths, with probability 1 the count of arrivals is
nondecreasing.

It will be convenient to set

ρa = λa
λb − λa

, ρb = λb
λb − λa

. (8)

We start from state s = C. At this state, the optimal
intensity is λ = λa. From

∂VT−t
∂t

(C) = λa(0−VT−t(C)) and
the initial condition VT−0(C) = 1, we find

VT−t(C) = e−λat for 0 ≤ t ≤ T.

At state s = C − 1, we have λπT−t(s) = λb for 0 ≤ t <
t1 and λπT−t(s) = λa for t1 ≤ t ≤ T , for some t1 to be
determined. This structure holds thanks to Propositions 2
and 3: VT−t(C−1) starts from 0 at t = 0 and increases over t
until it meets VT−t(C) at t = t1, reaching its maximum and
triggering the switch to λb while VT−t(C) keeps decreasing.
The solution over 0 ≤ t ≤ t1 must satisfy ∂VT−t

∂t
(C −

1) = λb(VT−t(C) − VT−t(C − 1)), with initial condition
VT−0(C − 1) = 0. We find

VT−t(C − 1) = ρb[e−λat − e−λbt]
= ρbe

−λat(1− e−(λb−λa)t) for 0 ≤ t ≤ t1.

The time t1 is precisely when VT−t(C − 1) = VT−t(C),
which corresponds to ∂VT−t(C − 1)/∂t = 0. This condi-
tion translates to e−λatρb[1 − e−(λb−λa)t] = e−λat, that is,
ρb[1 − e−(λb−λa)t1 ] = 1, that is, e−(λb−λa)t1 = λa/λb, that
is,

t1 = log(λb)− log(λa)
λb − λa

:= θ.

Note the maximum v̄C−1 := VT−t1(C − 1) = (λa/λb)ρa .
The solution over t1 ≤ t ≤ T must satisfy ∂VT−t

∂t
(C − 1)

= λa(VT−t(C)− VT−t(C − 1)), with VT−t1(C − 1) = v̄C−1.
We find

VT−t(C − 1)
= (λat)e−λat + (1− λat1)e−λat for t1 ≤ t ≤ T.

We proceed with state s = C − 2. At this state we have
λπT−t(s) = λb for 0 ≤ t < t2 and λπT−t(s) = λa for t2 ≤ t ≤ T ,
for some t2 ≥ t1. The solution over 0 ≤ t ≤ t2 must satisfy
∂VT−t
∂t

(C−2) = λb(VT−t(C−1)−VT−t(C−2)), with initial
condition VT−0(C − 1) = 0. The solution restricted to
0 ≤ t ≤ t1 is

VT−t(C − 2)
= ρ2

b [e−λat − e−λbt(1 + t(λb − λa))]
= ρ2

be
−λat[1− e−(λb−λa)t(1 + (λb − λa)t)] for 0 ≤ t ≤ t1.
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At t1 we have VT−t1(C−2) = (λa/λb)ρaρb(1−ρa log(λb/λa)).
The solution restricted to t1 ≤ t ≤ t2, using the value of
VT−t1(C − 2) as the boundary condition, is

VT−t(C − 2) = ρb[λate−λat + e−λat(1− ρa − λat1)
+ e−λbt(ρb − λbt1)] for t1 ≤ t ≤ t2.

The time t2 corresponds to the maximum of VT−t(C − 2)
over t ≥ t1. The condition ∂VT−t(C−2)/∂t = 0 corresponds
to finding the solution t = t2 satisfying

1
λb − λa

[
e−λatλ2

a(1− t(λb − λa) + log(λb/λa))−

e−λbtλ2
b(1− log(λb/λa))

]
= 0.

With t = 2t1, we have e−λatλ2
a = (λae−λat1)2 =

(λbe−λbt1)2 = e−λbtλ2
b , and also 1−t(λb−λa)+log(λb/λa) =

1−2 log(λb/λa)+log(λb/λa) = 1− log(λb/λa), showing that
the solution is

t2 = 2t1 = 2θ.

The value of the maximum is v̄C−2 := VT−t2(C − 2) =
(λa/λb)2ρa [1− ρa log(λa/λb)].

Finally, the solution restricted to t2 ≤ t ≤ T must satisfy
∂VT−t
∂t

(C − 2) = λa(VT−t(C − 1) − VT−t(C − 2)), with
VT−t1(C − 2) = v̄C−2. We find

VT−t(C − 2) = (λat)2

2 e−λat + (1− λat1)e−λat(1 + λat)

for t2 ≤ t ≤ T.

At this point, we have established that VT−t(C−i) attains
its maximum over t at ti = iθ for i = 0, 1, 2. To generalize the
reasoning to all states and all times, we proceed inductively.
Suppose that VT−t(C − i) attains its maximum over t at
ti = iθ for i = 0, . . . , k. Under this assumption, the value
function can be expressed as follows. For convenience, we
index vectors and matrices starting from the index 0. Let
xt ∈ RC+1 be the vector with elements

xtk = VT−t(C − k) for k = 0, . . . , C. (9)

The initial conditions at t = 0 impose x00 = 1 and x0k = 0
for k = 1, . . . , C. Let A` ∈ R(C+1)×(C+1) for ` = 0, 1, . . . , C
be the matrix with nonzero elements (A`)ii = −λa for i =
0, . . . , `, (A`)i,i−1 = λa for i = 1, . . . , `, and (A`)ii = −λb
and (A`)i,i−1 = λb for i = `+ 1, . . . , C.

In matrix form, the differential equations for VT−t(C − k)
are expressed as ∂xt/∂t = A`xt over `θ ≤ t ≤ (`+1)θ. Thus,
the value function backwards in time has the dynamics of a
linear switched system [10] with switching times iθ, and we
have, using matrix exponentials,

xt = exp(A`(t− `θ)) exp(A`−1θ) . . . exp(A0θ)x0, (10)
` = min(C, bt/θc).

Now, we show that VT−t(C−(k+1)) attains its maximum
over t at tk+1 = (k + 1)θ. From the differential equation

valid for tk ≤ t ≤ tk+1, where tk+1 is to be determined, we
have xt = exp(Ak(t− tk))xtk and consequently

∂xt
∂t

= Ak[exp(Ak(t− tk))]xtk , tk ≤ t ≤ tk+1. (11)

We have to show that (∂xt/∂t)k+1 = (Ak(exp(Ak(t −
kθ)) exp(Ak−1θ) . . . exp(A0θ)x0))k+1 = 0 at t = tk+1. By
inspection of Ak, this means that the elements k and k+1 of
xt = [exp(Ak(t − kθ)) exp(Ak−1θ) . . . exp(A0θ)]x0 should
be equal at t = tk+1.

We proceed by verification. Based on the conjecture that
tk+1 = (k + 1)θ, we calculate the expression of xt at t =
(k + 1)θ for the relevant states. Our result, valid with
θ = (log(λb/λa))/(λb − λa), is the following. Define

ck+1,j := j(−(k + 1))j−1 + (−(k + 1))j

j! .

For a given k + 1 and 0 ≤ i ≤ k + 1, one has

VT−tk+1(C − i) = xtk+1,i

= [exp(Akθ) exp(Ak−1θ) . . . exp(A0θ)x0]i

= (λa/λb)(k+1)ρa

i∑
j=0

ck+1,j (−λaθ)j

= (λa/λb)(k+1)ρa

i∑
j=0

(
1− j

k + 1

)
((k + 1)λaθ)j

j! . (12)

To find this, we focused on the element xtk+1,k+1. We evalu-
ated the matrix exponential products using symbolic compu-
tations for a few k’s, and then tried to identify the pattern
behind the numerical coefficients ck+1,j of the terms of the
sum over j. Namely, we find that the coefficients ck+1,j for
(xtk+1)k+1 are produced by the generating function

g(z) = (1 + z)e−(k+1)z,

and from there we obtain the analytical form of coefficients
via ck+1,j = ∂jg(z)/∂zj

j!

∣∣∣
z=0

.
Observe now that setting i = k or i = k + 1 leads to the

same value of the sum over j = 0, . . . , i, since the factor
(1− j/(k+ 1)) is zero at j = k+ 1. This completes the proof
that (xtk+1,k) = (xtk+1,k+1). Therefore, we have established
the optimality of the policy (7), completing the proof of
Proposition 4.
As a side note, while the expression of VT−tk (C − i)) for

i = 0, . . . , k has been established in the course of the proof
(by reading (12) with k replacing k + 1), with a similar
approach we can establish the expression of VT−tk (C− i) for
i = k + 1:

xtk,i|i=k+1 =
(
λa
λb

)kρa i−1∑
j=0

[λb
λa

(i− j)ij−1(−ρa)i−j

+ (k − j)kj−1 (1− (−ρa)i−j
) ] (λaθ)j

j! . (13)
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Knowing the optimal policy, we can compute VT−t(C − k)
over tk ≤ t ≤ T recursively for k = 0, . . . , C, by find-
ing functions VT−t(C − k) such that ∂VT−t

∂t
(C − k) =

λa(VT−t(C−(k−1))−VT−t(C−k)), subject to the boundary
condition VT−tk (C − k) = VT−tk (C − (k − 1)). The general
solution of this problem, restricted to T − t ∈ [0, T − kθ], is

VT−t(C − k) = (λat)k

k! e−λat + (1− λaθ)e−λat
k−1∑
j=0

(λat)j

j! .

(14)

The result can be verified by checking that VT−t(C − k)
satisfies the differential equations and that the bound-
ary conditions hold, for k = 0, 1, . . . , C. The expression
e−λat

∑k−1
j=0 (λat)j/j! in (14) coincides with the cumulative

distribution function of a Poisson random variable of mean
λat evaluated at k − 1. It can thus also be evaluated as
Q(k, λat) where Q(k, x) =

∫∞
x
uk−1e−udu

/∫∞
0 uk−1e−udu

is the upper regularized gamma function.
If T ≥ θC, we obtain the optimal value (1) by setting

k = C and t = T in (14):

V = (λaT )C

C! e−λaT + (1− λaθ)Q(C, λaT ) if T ≥ θC.

If T < θC, the value function can be obtained via (10).

5. Numerical Illustration

The solution for the case λa = 0.3, λb = 0.8, C = 5,
T = 15 is illustrated on Figure 1. Figure 1a depicts the
optimal policy and can be read as follows. Being at time t
in state s corresponds to the point (t, s). The passage of
time increases t, while the random arrivals increment s (or
equivalently decrement k). Having (t, s) on a continuous line
indicates that the intensity λa is optimal. Having (t, s) on a
dashed line indicates that the intensity λb is optimal. The
critical times are indicated with dots. The dot markers are
connected by a line to emphasize the affine dependence in s.
Figure 1b depicts the value function Vt(C − k), which

represents the optimal probability of meeting the count C
at time T , given that the count is s = C − k at time t.
The optimal intensities can be read from the continuous
or dashed line convention. Initially t = 0 and k = C = 5.
If the curve relative to a count-to-go k is above the curve
relative to k − 1, the intensity λa is used to maximize the
probability of staying on the curve k. If the curve relative
to k is below the curve relative to k − 1, the intensity λb is
used to maximize the probability of jumping to the curve
k − 1. Figure 1c is Figure 1b but with a logarithmic scale
for the value function.

6. Discussion

As a function of k, the value function VT−t(C − k) coin-
cides with the probability of having k arrivals during the
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(a) Optimal intensity policy λπt (s), with k = C − s
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(b) Optimal Probability Pπ(ST = C | St = C − k)
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Figure 1: Solution for λa = 0.3, λb = 0.8, target C = 5, horizon T = 15.
k = C − s is the count-to-go. Continuous lines indicate that λ = λa
under the optimal policy, dashed lines indicate λ = λb.

remaining period of duration t. Given the form of the opti-
mal policy, we can decompose t into [t0, t1), [t1, t2), . . . , [tm, t)
where t` = `θ and m = min(C, bt/θc). Equation (10) can
then be interpreted as follows: the elements i, j ≥ 0 of the
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matrix M` := exp(A`θ) is the probability of reaching state
C − j at time T − θ` while starting from state C − i at
time T − θ(`+ 1). M`,ij also represents the probability of
N` = j− i arrivals during the period (T − t`+1, T − t`], while
starting from state C − i at time T − θ(`+ 1).
We conclude the paper with two conjectures.

Conjecture 1. VT−t(C − k) is log-concave in t.

Conjecture 1 is illustrated in Figure 1c, which suggests
that the functions t 7→ log Vt(C − k) are concave. The
conjecture is true when λa = λb = λ, since in this case
xtk = VT−t(C − k) = e−λt(λt)k/k!. One verifies that
xt,k+1/xtk ≤ xtk/xt,k−1, which shows that for each fixed t,
the sequence xtk in k is log-concave. From there one verifies
that ∂2 log VT−t(s)/∂t2 ≤ 0, and finally, VT−t(s) log-concave
in t implies Vt(s) log-concave in t.

Conjecture 2. An optimal intensity policy with switching
times affine in the positive count-to-go exists when the ter-
minal reward 1C(ST ) is extended to the 0-1 indicator for
ST ∈ {C,C + 1, . . . , C + r}.

Conjecture 2 originates from tests on discrete-time numer-
ical approximations. We do not know if a new characteristic
duration θ can be found in closed-form.
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