Page Proof

August 3, 2017 20:7 WSPC/S0217-5959 APJOR 1750025.tex
1 Asia-Pacific Journal of Operational Research
2 Vol. 34, No. 5 (2017) 1750025 ([[fl pages)
3 © World Scientific Publishing Co. & Operational Research Society of Singapore
4 DOI: 10.1142/50217595917500257

5 A Computational Algorithm for Equilibrium

6 Asset Pricing Under Heterogeneous Information

7 and Short-Sale Constraints

8 Jun Tong

9 School of Management, Shanghai University

10 Shanghai 200433, P. R. China

11 Juntongl1@fudan.edu.cn

12 Jian-Qiang Hu

13 Department of Management Science, Fudan University

14 Shanghai 200433, P. R. China

15 hujq@fudan. edu.cn

16 Jiagiao Hu

17 Department of Applied Mathematics and Statistics

18 State University of New York

19 New York 11790, USA

20 Jqghu@ams.sunysb.edu

21 Received

22 Accepted

23 Published

24 We propose an efficient algorithm for computing the equilibrium of a capital asset pric-

25 ing model with heterogeneous investors and short-sale constraints. We show that the

26 equilibrium prices of the risky assets in the model are proportional to the Lagrangian

27 multipliers of an equivalent dual formulation of the problem. Based on this observation,

28 we derive sufficient conditions to guarantee the existence and uniqueness of equilibrium

29 and prove the convergence of the algorithm. Numerical examples are also provided to

30 illustrate the algorithm.

31 Keywords: Equilibrium pricing; aggregate utility function; convex optimization;

32 tatonnement.

33 1. Introduction

34 The capital asset pricing model (CAPM) proposed in|Sharpe (1964),|Lintner (1965),
35 Mossin (1966) provides a useful instrument for computing asset prices. In its stan-
36 dard formulation, investors are assumed to have homogeneous beliefs (i.e., having
37 the same expectation and covariance on future payoffs of risky assets) and select
38 portfolios based on the mean—variance framework of Markowitz (1952). It is also
39 assumed that the market is efficient and trading is frictionless. These assumptions,
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however, are easily violated in realistic financial markets. For example, heteroge-
neous private information and incomplete knowledge of prices may cause investors
to hold different beliefs; moreover, regulators may also impose capital and/or quan-
titative limits on a temporary basis to restrict or prohibit short sales.

In an attempt to relax these idealistic assumptions, a variety of modified versions
of the CAPM model have been proposed in the literature; see, e.g., Diamond and
Verrecchia (1987), Fama and French (2007), Hong and Stein (2003), [Jarrow (1980),
among many others. Much of this work is carried out from a theoretical perspec-
tive, focusing primarily on investigating the impact of heterogeneous beliefs and/or
short-sale constraints on the market equilibrium. In this paper, we propose a com-
putational algorithm for efficiently determining the equilibrium of a CAPM model.
Our model has the same structure as that of|Jarrow (1980), which involves both het-
erogeneous investors and short-sale constraints. However, to account for the trading
limitation that might arise in a partially restricted market, we generalize the model
of Jarrow (1980) by assuming that the holding of each asset is confined within a
given convex set. This allows us to specify whether the short selling of a particular
asset is permissible as well as a quantitative limit on its trading. Unfortunately, this
generalization leads to additional constraints on the underlying portfolio selection
problems, rendering an analytical solution to the problem infeasible.

Our proposed algorithm for finding the equilibrium is inspired by the simple intu-
ition that the price of an asset should be raised (reduced) whenever there is an excess
demand (supply) on the market. Thus, at each iteration of the algorithm, an approx-
imation of the market equilibrium is computed by adjusting the price of each asset in
the direction of the difference between its demand and supply. The process continues
until a set of market-clearing prices is obtained. Our algorithm is similar in spirit
to an iterative price updating scheme called the tatonnement process, which has
been proposed in[Walras (1954) and studied extensively in general equilibrium the-
ory (see, e.g., |Arrow et all, 1959; [Uzawal, [1960; |Ginsburgh and Waelbroeck, [1979).
However, since the tatonnement process is primarily applied in general exchange
economies, its convergence is often analyzed under simplifying assumptions tailored
to economics research. Many of these assumptions, e.g., the weak axiom of revealed
preference at the equilibrium (Uzawa, 1960), are either difficult to verify or fail to
hold in our setting due to the lack of an analytical solution to the portfolio selection
problem and the correlations among risky assets in our pricing model. To the best
of our knowledge, little research in the current literature has addressed the use of
tatonnement to examine equilibrium prices in CAPM-type of problems. Thus, in a
sense, this work can be viewed as an extension of the application of tdtonnement
to financial engineering.

We prove the convergence of the algorithm under mild regularity conditions.
The idea is to transform the equilibrium problem into an equivalent optimization
problem through the aggregation of utility functions. Note that a similar approach
has also been used in|Eisenberg (1961) and |Chen et all (2007) to study competitive
economy equilibria; however, since the utility function employed in our model
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1 violates the homogeneous property, the results of [Eisenberg (1961) and |Chen et all head.
2 cannot be directly applied to our case. In addition, our model allows short
3 selling of assets, whereas the settings considered in Eisenberé M) and|Chen et all
4 require the bundle of goods purchased by consumers to be non-negative. By
5 analyzing the structural properties of the model, we show that the equilibrium asset
6 prices are the optimal Lagrangian multipliers of the market-clearing constraints
7 normalized by the price of the riskless asset. This implies that our algorithm is
8 essentially a subgradient approach for searching the optimal solution to the dual
9 formulation of the problem (cf., e.g., |B_o_nn.ans_at_alj, |20_0_d; |B_eris_&ka§, |21)Dé) Con-
10 sequently, its theoretical properties, including both convergence and convergence
11 rate, can be investigated using existing results on subgradient methods.
12 In addition to providing an algorithm for asset pricing, we give a simple proof
13 for the existence of equilibrium and provide sufficient conditions to guarantee its
14 uniqueness. The existence of equilibrium in the CAPM has been previously dis-
15 cussed in Nielsen @9&9')7 i (|1_9_9ﬂ), \Allingham (|19_Q].|) Their results assume all
16 investors have homogeneous expectations on return distributions and are primarily
17 based on deriving sufficient conditions to rule out satiation caused by unbounded
18 choice sets that may lead to nonexistence of equilibrium. In contrast, we consider
19 the setting where the choice sets are bounded and investors may have heteroge-
20 neous beliefs on expected returns and covariance matrices. Consequently, our proof
21 technique differs significantly from previous studies based on satiation and relies on
22 exploiting the connection between equilibrium prices and the Lagrangian multipliers
23 of the dual problem. Sufficient conditions on the uniqueness of the equilibrium in the
24 CAPM have also been derived in, e.g., Nielsen (1988), [Hens et al (2002), but again
25 it is still not clear under what conditions a restricted market with heterogenous
26 investors possesses a unique equilibrium.
27 The rest of this paper is organized as follows. We begin with a description of
28 our model in Sec. 2l In Sec.[3, we introduce the proposed algorithm. Its convergence
29 properties are analyzed in Secll Some preliminary numerical results are reported
30 in Sec. Bl Finally, we conclude this paper in Sec.
31 2. The Model
32 Consider a market consisting of K investors, J risky assets, and a riskfree asset. The
33 investors are indexed by k € {1,..., K} and assets are indexed by j € {0,...,J},
34 where j = 0 represents the riskfree asset. We consider a two-period model (t = 0,1).
35 Let p; be the price of asset j at time ¢ = 0 and the random variable X; be its price
36 at t = 1. Let r denote the riskfree interest rate. Initially, at time ¢ = 0, each investor
37 k is assumed to be endowed with n? units of asset j. Thus, the initial wealth of
38 investor k, denoted by W¥(0), can be expressed as

J
wk(0) = Zn?pj + nkpo.
j=1
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At t = 0, investors can rebalance the position of their assets according to their
own preferences. Denoted by ¢§ the position of asset j held by investor k after the
rebalancing. Throughout this paper, we assume that the holding of an asset ¢§ is
constrained within a given (nonempty) closed convex set Q? forall j =1,...,J.
This permits us to impose quantitative limits on asset allocations. For example, if
the short selling of asset j is prohibited, then one can simply set Qf = [0,00). It is
easy to see that the wealth of investor k£ at ¢t = 1 can be expressed as

J
WHL) =) 65X, + o6,
j=1
where we have normalized X, to 1 for simplicity (this is equivalent to setting pg =
1/(1+r)).
As in the standard CAPM, the preference of an investor is measured by the
mean-variance utility function (Markowitz, |1952)

URWh) = EF WD) - %kVark[W’“(l)L (1)

where o* > 0 is a constant that measures the degree of risk aversion, and E*[] and
Var®[-] are the expectation and variance taken with respect to the distribution of
investor k’s belief regarding asset payoffs, which may differ across investors. Thus,
by substituting W*(1) into (), the optimal portfolio selection problem of investor
k can be stated as follows:

J kI
a
(O1)  max D SEX)+ef - D dfdio) (2)
PoPs G4 i=1 j=1
J J
subject to Z qﬁfpj + Btpo = Zn?pj + ngpo, (3)
j=1 j=1

pheQl j=1,...,J

where a}“i signifies investor k’s belief of the covariance between assets i and j. We
assume throughout this paper that the covariance matrix % = [a}“i] JxJ 1S positive
definite for all k =1, ..., K. Note that the left-hand side of the equality constraint
(3) represents the total wealth of investor k right after asset rebalancing, and this
should be the same as his/her initial wealth.

Let P = (p1,...,p))T, X = (¥=q.,X))T, ®* = (¢%,...,¢")T, and NF =
(nk,...,n%)T. Similar toSunl (2003) Q following definition provides a useful char-
acterization of the market equilibrium price.

Definition 2.1. A vector P* € R/ is called an equilibrium price of the market if
there exist ®** € R/ for k =1,..., K such that

(1) ®** solves the optimization problem (O;) at P = P* for k =1,..., K, and
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K K
1 (2) X5 Pk = pIy N*.
2 Condition (2) in the above definition is often called the market-clearing condition
3 or conservation equation for market equilibrium in economics.
4 3. The Algorithm
5 Note that ¢’§ can be expressed in terms of ¢¥, ..., ¢§ based on (@). By substituting
6 B) into (@) and removing terms that are constants with respect to decision variables,
7 we obtain the following optimization problem equivalent to (O1):
J »; ok I
00, s S5 (B] - ok - 5 Y-S okt
¢§eﬂ§,j:1,...,J; Topo) 2 ;; A
8 Consider a recursive procedure that generates a sequence of price vectors
9 {P.}5% o, where P, = (Pn1,---,Pn,s)7 is an approximation of the equilibrium price
10 P* obtained at the nth iteration. Let ®F* = ( f;fl, cee quLfJ)T be the solution to the
11 optimal portfolio selection problem (O2) when P is replaced with P,. Intuitively,
12 Zszl ﬁ*J can be viewed as the market demand for asset j under price p, ; whereas
13 Zszl nf is the total supply of asset j. It is reasonable to speculate that if p, ; is
14 lower than the equilibrium price, there will be an excess demand on the market, i.e.,
15 S ok — ST nk > 0. Similarly, a price p,; that is higher than the equilib-
16 rium would result in excess supply, leading to ZkK:1 ’fL*J — Eszl n? < 0. Thus, to
17 enforce p,, ; to stay close to the equilibrium, its value should be adjusted depending
18 on the sign of the direction of the difference 74, ¢&*; — 371 | n*. In vector form,
19 this suggests the following iterative formula for updating asset prices:

K N K
Dkt ‘I’ﬁ — D k=1 N*

Poi1=P,+a 4

T e i, N W

20 where || - || is the Euclidean norm and a,, € (0,1) is a step size/gain parameter that

21 controls the amount of adjustment at each step. We assume that the step size a,
22 satisfies

ianzoo and iai<oo, (5)
n=0 n=0

23 which is a standard condition used in analyzing the convergence of gradient-like
24 descent algorithms (see, e.g., [Spall, 2003).

25 Our proposed algorithm is conceptually very simple and is stated below.

26 An algorithm for equilibrium asset pricing in CAPM:

27 Step 0: Specify an initial price vector P, a gain sequence {a, }22 , and a tolerance
28 level € > 0. Set the iteration counter n = 0.

29 Step 1: Solve the portfolio selection problem (O3) for P = P, and obtain ®* for
30 all k.
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Step 2: Update the price vector according to ().
Step 3: If szKzl L Zle NF|| < ¢, then terminate; otherwise set n = n + 1
and go to Step 1.

At Step 1 of the algorithm, a number of standard numerical methods can be
applied to solve the portfolio optimization problem. In particular, since problem
(O2) is convex, we have had success with using the convex programming (CVX)
package provided in MATLAB. Note that (O2) needs to be solved for all investors.
So, the complexity of Step 1 grows linearly with the number of investors. For large
problems, the computation can be expedited using a straightforward parallel imple-
mentation of the algorithm.

4. Convergence Analysis

In this section, we show that the sequence of price vectors {P,} generated by the
algorithm converges to an equilibrium price P*. This result is established based on
an interesting connection between P* and the optimal Lagrangian multipliers of the
dual problem of an equivalent formulation of (Oy).

Theorem 4.1. Assume an equilibrium price P* exists. The portfolio selection prob-
lems (01) at P = P* for k = 1,..., K have the same optimal solutions as the
following problem:

K [ J g J

(03)  max_ S [STeFEFX;] - %Zzafiqs?qsf

1 ¢K
Deo?r g=1 \ j=1 i=1 j=1

kooj=1,...,J

TLJ,

gl

K
subject to Z gbf =
k=1

pheQh, j=1,...,J k=1..K

Proof. Since the portfolio selection problems (O7) are solved independently for
each investor, their solutions jointly solve the following (equivalent) optimization
problem:

K [ J e JJ
, e
max > | D GBI H66 - 5 3 Y ano)er (6)
k=1 \j=1 i=1 j=1
J J
subject to qufpj + Pkpo = anpj +nkpo, k=1,... K, (7)
Jj=1 j=1

phe@h, j=1,...,J k=1,. K.

Now consider the case when the market is at equilibrium (P = P*). By Defini-
tion2T], the optimal solutions ®** for k = 1, ..., K must satisfy the market-clearing
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condition

K

K
D ok =3 "Nk (8)
k=1

k=1

In addition, we have from () that
1 (2 J
o= — | D_nip; +nipo— Yo |- (9)
Po \ 5= j=1
Summing ([@) over k =1,..., K and using Eq. (§) we have
K K
D= 16 (10)
k=1 k=1

Finally, substituting (I0) into (B) and dropping the constant term Zle nk, we
obtain the following equivalent optimization problem at P = P*:

K J Oék J
k ok k ik k
max PTE X — — lopfoyto)
$EEQF j=1,.... k=1,... K ; =’ X5l = 3 e
K K
subject to Z(I’k = ZN’“,
k=1 k=1
which completes the proof. O

Observe that (Os) only depends on the means and variances of returns but not
explicitly on P*. Therefore, it is natural to look at the connection between P* and
(O3). To this end, we introduce the Lagrangian multipliers A = (Ay,...,As)T for
the equality constraints in (Os). The Lagrangian function is thus given by

K J J
L((I)la .- "(I)K7/\) = Z ZQS;CEIC[XJ] - % Zzafzqsquf

1750025-7
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Denote by (®*,..., ®%*) the optimal solution to (O3) and A* the optimal solution
to its dual problem
min max L(®Y, ..., ®5 )\, (11)
AeRT PR eQF k=1,...,K
where QF = QF x ... x Q% The next theorem gives an explicit formula relating P*
to the optimal Lagrangian multipliers \* and provides sufficient conditions for P*
to be unique.

Theorem 4.2. There exists an equilibrium price vector given by P* = —poA*.
Furthermore, if Qf = [0,00) and Zszl nf # 0 for all j = 1,...,J, then P* is
UNLQUE.

Proof. Since ¥¥ are assumed to be positive definite, (O3) is a concave optimization
problem, and its dual formulation (Il) is always convex (cf., e.g.,Bertsekas, [2008).
Their optimal solutions are given by (®'*,... ®K*) and A\*, respectively. Thus,
according to the primal-dual principle, ®** must also solve the following problem:

J

max Z Z¢> E*X,] - a—ZZUﬂqb o +Z)\* — 3 ik
{ofeasy i, 121 \ G 21131 j=1
Note that in the above problem, both the objective function and constraints are
separable. Therefore, the optimization can be carried out by solving K independent
subproblems
max Zgz) (B¥[X;]+ A7) ot iakqﬁk Eook=1,...K, (12)
{¢?€Qk}}llj 1 2 =1 =1 Ty T et
where we have removed the constant term. Comparing (I2) with (Oz), we conclude
that there exist a set of equilibrium prices given by P; = —PoA; for all j.

Let P* be any equilibrium price vector. By Theorem @I ®**, k =1,..., K are
also optimal solutions to (O3) at P*. Define M = {1,...,J}. Under the condition
QF = [0, 00) for all j, let I, = {j|¢* = 0} be the set of 1ndlces of active constraints
and I = M\I}. Clearly, I, = 0 indicates that ®** = 0. If I, # (), then ¢J j eIy
must solve the following degenerated version of (O2) by setting gbf =0forallj € I:

o ,

k P\ x « k K ik

max E (E [Xj]__j)¢j 2 § OO

ok el Po RS

J
J€lk i,j€Iy

Since qbé?* lies in the interior of Qf for all j € I, the first order necessary condition
for optimality shows that

kx k\—1 k ~

where X; = (X;,j € Iy)T, P¥ = (p},j € I)T, and ®k* = (¢k*, j € ;)T are the
k k
respective subvectors of X, P*, and ®** with indices belonging to I, and E’I? =
k
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1 [Ufi]i,je 1, is the corresponding principal submatrix of $¥. Rearranging ([3), we get
Bx k kyk gk
Pp = po(E"[X}] — o"Sf ®F7). (14)
2 Finally, since Zle nf # 0 for j =1,...,J by assumption, it is not difficult to see
3 that UZZI I, = M. Thus by (I4), the entire price vector P* is uniquely determined
4 by ®** k =1,..., K. Because ®** k = 1,..., K is the unique optimal solution to
5 (O3), P* must also be unique. O
6 We have the following convergence theorem for the proposed algorithm.
7 Theorem 4.3. If the gain sequence {ay} satisfies ([B), then the sequence of price
8 vectors { P, }22, generated by the algorithm converges to an equilibrium price vector
9 P* at a sub-linear rate.
10 Proof. Denote g(A) as the objective function in the dual formulation (), i.e.,
\) = max L(®, ..., oK ). 15
9N Bk ek k=1, K ( ) (15)
11 The following subgradient algorithm (see, e.g.,/Bonnans et al), 2006) can be applied
12 to search for the optimal \* of (II)):
dn,
A+l = Ap — Gy 16
A 1)
13 where )\, is an estimate of A* at the nth iteration, a, = a,/po is a step size
14 satisfying (@), and d,, is a subgradient of g(\) at A,. From ([H) and according to
15 Proposition 6.1.1 in [Bertsekas (2008), an obvious choice of d,, is given by
K K
dy =) ®h—> NF, (17)
k=1 k=1
16 where ®F k =1,..., K is the optimal solution to (I5) at A = A,,.
17 Now set P, = —po\,. We see that ®F also solves (O2) at P, for k =1,..., K.
18 Substituting A, = —% and (I7) into (IG)), we obtain
K K
_ Dk B5 = D NP
Pn+1 - Pn + an K & K Bl
12 k=1 5 — 2pmy N
19 This implies that our proposed algorithm is identical to a subgradient method for
20 minimizing the function g(A). From the results in subgradient optimization theory
21 (see, e.g., Bonnans et all, 2006), the sequence {\,}52; generated by (0] converges
22 to A* at a sub-linear rate. This observation, together with the result of Theorem A2}
23 implies that {P,} will converge to —A*pg at the same rate. O

1750025-9
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5. Numerical Examples

In this section, we provide some examples to illustrate the performance of our
algorithm. In all examples, we set the riskfree interest rate r = 0.1, po = 1, and
Xo = 14 r. In the implementation of the algorithm, the initial price vector P,
is set to the arithmetic average of the expected returns of all investors, the gain
parameter is taken to be of the form a, = a/(n + A)® recommended in Spall
(2003)), where, unless otherwise specified, we set a = 1, A = 100 and § = 0.51.
The portfolio selection problem (O3) is solved at each iteration by applying the
convex programming package (CVX) in MATLAB. All computational results were
obtained on a Intel Dual-Core 2.5GHz CPU Windows machine with 4GB of RAM.

5.1. Testing convergence

Example 1. This example is directly taken from [Jarrow (1980). Suppose the mar-
ket comnsists of two investors and two stocks. Both individuals have identical risk
aversion coefficients given by a! = a? = 1. At t = 0, the two investors have endowed
shares N* = (1,0)T and N2 = (0,1)T and the following beliefs:

E'X]=(2,1)7, FE*X]=(1,3)T, 21:@ ;) and EQ:G 1)

We consider both cases when short sales are allowed and when short sales are pro-
hibited. Table[ll shows the equilibrium prices and optimal asset allocations obtained
by our algorithm under these two respective cases (with error tolerance £ = 0.001).
These results conform very well with the analytical solutions reported in Jarrow

(1980).2
To illustrate the convergence behavior of the algorithm, we take the case when
short sales are prohibited and consider the approximation error e, = ||P, — P*||

obtained at successive iterations of (@), where P* is the true equilibrium price
vector given by (10/11,20/11)T (see lJarrow (1980)). Figure [I[(a) plots the error e,
as a function of the number of algorithm iterations. The figure clearly shows the
convergence of the algorithm to P*, with the approximation error e, approaching
zero as the number of iteration increases.

A test was also performed to try to empirically observe the established asymp-
totic rate of the algorithm. Note that since this is a small-sized problem, we have
used a (different) fast decay rate 8 = 1 in the test and run the algorithm for a large
number of iterations to better highlight its asymptotic behavior. Figure [(b) shows
the ratio of errors e,,11/e, versus the number of algorithm iterations. From the fig-
ure, we see that the error ratio oscillates from one iteration to another. We believe
that this oscillatory behavior is primarily due to the choice of the gain sequence. In

aThe difference between our results and those in Llarrow (1980) is because that Jarrow assumes
po =1/(14r) and Xo = 1, whereas we have used pg = 1, Xo = 1+ r in our experiment. If we set
po = 1/(1 + r) instead, then the results will be identical.
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Table 1. Two investors and two stocks.

Case Investor 1  Investor 2  Equilibrium price
. stock 1 1.667 —0.667 1.061
With short sales stock 2 —0.833 1.833 1.667
. stock 1 1.000 0.000 0.909
Without short sales | (1 9 0.000 1.000 1.818

0.7,

0.6

0.5F

n

| !
’ * " * nuzrur:)ber g?Oitera;‘t)Jons * oo ° * nur‘nber of iterat}jns ’ xtoz‘ﬁ
(a) (b)
Fig. 1. Convergence of the algorithm.
1 particular, when the search is close to the equilibrium price, the magnitude of the
K k K k
2 gain sequence {a,} becomes large relative the magnitude of Ié’;‘fl i}j: E’;fl xk”
k=1 n k=1
3 (see Eq. @), which causes the estimate P, to bounce around in a small neighbor-
4 hood of P*. Nevertheless, we see that as the gain a,, diminishes (when the number of
5 iterations gets large), the amplitude of the oscillation decreases and the error ratio
6 gradually approaches one. This supports the sub-linear convergence rate claimed in
7 Theorem E3]
8 Example 2. We consider the market consists of three investors and four stocks.
9 All investors have identical risk aversion coefficients a! = a? = o = 1. They
10 have initial endowments N! = (1,1,0,0)T, N2 = (0,0,1,0)T, N3 = (0,0,0,1)T and
11 beliefs E1[X] = (3,4,1,4)T, E?[X] = (1,2,3,3)T, E3[X] = (2,1,4,2)T, and
111 13 11 121 11
o 12 1 1'1 2 1 111 3 1 1
ohEhy?) = : :
(--)1131;1111;1121
11131 1131111
12 Note that in contrast to Example 1, this is a comparatively high dimensional
13 (three investors and four stocks) problem that can no longer be easily solved analyt-
14 ically using the KKT condition (see, e.g.,lJarrow (1980)). From the results reported
15 in Table 2] we observe that the prices of risky assets may either rise (stocks 2 and 3)

1750025-11
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Table 2. Three investors and four stocks.

Case Investor 1 Investor 2 Investor 3  Equilibrium
stock 1 1.584 —0.591 0.007 0.962
. stock 2 1.271 0.089 —0.361 0.716
With short sales stock 3 —1.409 1.220 1.190 1.706
stock 4 0.496 0.405 0.098 0.969
stock 1 0.857 0.000 0.143 0.779
. stock 2 0.857 0.143 0.000 0.909
Without short sales | (e 13 0.000 0.143 0.857 1.948
stock 4 0.429 0.571 0.000 0.909
1 or fall (stocks 1 and 4) due to short-sale restrictions. This is also consistent with
2 the findings of [Jarrow (1980).
3 5.2. Comparison results

4 In this subsection, we apply our algorithm to larger problem instances and compare
5 its performance with those of the branch-and-bound method and the interior-point
6 quadratic programming algorithm.

7 The branch-and-bound algorithm is popular in handling equilibrium problems
8 that can be transformed into mathematical programming problems with comple-
9 mentarity constraints. To apply the algorithm, we first formulate our model as a
10 complementarity-constrained problem of the form
K K
min ok -y " NF
LT PR

1
subject to afLFRF — (,ﬁ — —P) — M=o,

ek =0, i=1,...,J; k=1,....K
Pe®’/, dF>0, N>0, k=1,....K

11 and then transform it into the following equivalent mixed integer programming
12 problem (see|Hu et all, 12012):

min
P{®Fk A} E

K K
Sty
k=1 k=1

. . 1 .
subject to aFLFOF — (,ﬁ — —P) —M\=o,
Po
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2F e {0,1},

Pe®R/, d*>0N\N>0, k=1,... K,

1 where 5\? and (Ef represent the upper bounds on )\f and gbf. The problem can then
2 be solved by using the standard branch-and-bound algorithm. In our numerical
3 experiments, the bounding constants 5\? and (ﬁf are set to 1,000 for all ¢ and k,
4 and we have used the commercial optimization package CPLEX to implement the
5 algorithm.

6 The use of quadratic programming is motivated by the result of Theorem [£2]
7 which states that the equilibrium price vector P* only differs from the optimal
8 solution to the dual formulation () of (O3) by a constant factor —pg. Since (O3)
9 is a quadratic programming problem, the problem along with its dual () can be
10 conveniently solved using the interior-point quadratic programming algorithm of
11 the package CVX in MATLAB. The equilibrium price P* can then be obtained by
12 simply multiplying the resulting optimal solution A* to (II)) by —po.

13 Table B shows the performance of the three comparison algorithms on four test
14 cases with varying numbers of investors and risky assets. Note that since we have
15 used a sequential implementation of our algorithm, the portfolio selection problem
16 (O2) needs to be solved K times in succession at each iteration. Therefore, we have
17 used a relatively large error tolerance level € = 0.1 to avoid excessive long running
18 times of the algorithm when K is large.

19 From the table, we see that both branch-and-bound and the quadratic program-
20 ming algorithm significantly outperform our algorithm when the market is small.
21 In particular, in the (5,5) case, the two alternative algorithms are able to produce
22 highly accurate solutions in under one second. However, since the worst case com-
23 plexity of branch-and-bound is the same as that of exhaustive search, the algorithm
24 may quickly become impractical as the problem size increases. We see that even in
25 the (10, 10) case, branch-and-bound fails to produce an acceptable solution within
26 a reasonable amount of time. On the other hand, the quadratic programming algo-
27 rithm is much more competitive and can be applied to solve relatively large problem
28 instances with up to a hundred of investors and assets. The complexity of quadratic
29 programming is generally polynomial in the number of decision variables. Thus, as
30 the problem size increases from (10, 10) to (100, 100), the number of decision vari-
31 ables grows by a factor of 1,000, leading to a drastic increase in the running time

Table 3. Comparison results with branch-and-bound and quadratic programming.

Our algorithm Branch-and-bound Quadratic programming
(K,J) Time (s) | Error | Time((s) Error Time (s) Error
(5,5) 11.40 | 0.084 0.54 0 0.93 | 1.588 x 10710
(10,10) 24.26 | 0.083 N/A N/A 0.54 | 4.209 x 10~ 11
(100,100) 212.52 | 0.089 N/A N/A 178.01 | 2.404 x 10~ 10
(1,000,100) | 4060.01 | 0.079 N/A N/A N/A N/A
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of the algorithm. Note that a straightforward implementation of the quadratic pro-
gramming algorithm requires the explicit specification and storage of the positive
definition matrix appearing in the objective function. This can be an issue for large
problems. For example, the algorithm fails to run successfully on the (1,000, 100)
case because the size of the matrix reaches 10° x 10°, which exceeds the memory
capacity of the computer. In contrast, Table [3 shows that the performance of our
algorithm is less susceptible to the increases in problem dimension. We see that as
the problem size increases from (5, 5) to (100, 100), the running time of the algorithm
grows roughly linearly with K. In the (1,000, 100) case, our algorithm terminates in
a few tens of iterations with an approximation error of 0.079. This suggests that the
computational time of our algorithm is primarily dominated by the time required
to solve the K portfolio selection problems. Consequently, the performance of the
algorithm can be dramatically improved by employing a parallel implementation
scheme that solves the K portfolio selection problems simultaneously.

6. Conclusion

In this paper, we have introduced an algorithm for computing the equilibrium of
a capital asset pricing model with heterogeneous investors and market restrictions.
The algorithm is not only conceptually simple but also effective and easy to imple-
ment. A central contribution of this paper is to prove that our algorithm is essen-
tially a subgradient approach for a dual formulation of the problem. We show that
the equilibrium prices in our model actually turn out to be the scaled versions of
the Lagrangian multipliers of a dual formulation of the problem. This key result
enables us to prove the existence of equilibrium, identify sufficient conditions to
guarantee its uniqueness, and establish convergence properties of the algorithm.
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