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We propose an efficient algorithm for computing the equilibrium of a capital asset pric-24

ing model with heterogeneous investors and short-sale constraints. We show that the25

equilibrium prices of the risky assets in the model are proportional to the Lagrangian26

multipliers of an equivalent dual formulation of the problem. Based on this observation,27

we derive sufficient conditions to guarantee the existence and uniqueness of equilibrium28

and prove the convergence of the algorithm. Numerical examples are also provided to29

illustrate the algorithm.30

Keywords: Equilibrium pricing; aggregate utility function; convex optimization;31

tâtonnement.32

1. Introduction33

The capital asset pricing model (CAPM) proposed in Sharpe (1964), Lintner (1965),34

Mossin (1966) provides a useful instrument for computing asset prices. In its stan-35

dard formulation, investors are assumed to have homogeneous beliefs (i.e., having36

the same expectation and covariance on future payoffs of risky assets) and select37

portfolios based on the mean–variance framework of Markowitz (1952). It is also38

assumed that the market is efficient and trading is frictionless. These assumptions,39
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however, are easily violated in realistic financial markets. For example, heteroge-1

neous private information and incomplete knowledge of prices may cause investors2

to hold different beliefs; moreover, regulators may also impose capital and/or quan-3

titative limits on a temporary basis to restrict or prohibit short sales.4

In an attempt to relax these idealistic assumptions, a variety of modified versions5

of the CAPM model have been proposed in the literature; see, e.g., Diamond and6

Verrecchia (1987), Fama and French (2007), Hong and Stein (2003), Jarrow (1980),7

among many others. Much of this work is carried out from a theoretical perspec-8

tive, focusing primarily on investigating the impact of heterogeneous beliefs and/or9

short-sale constraints on the market equilibrium. In this paper, we propose a com-10

putational algorithm for efficiently determining the equilibrium of a CAPM model.11

Our model has the same structure as that of Jarrow (1980), which involves both het-12

erogeneous investors and short-sale constraints. However, to account for the trading13

limitation that might arise in a partially restricted market, we generalize the model14

of Jarrow (1980) by assuming that the holding of each asset is confined within a15

given convex set. This allows us to specify whether the short selling of a particular16

asset is permissible as well as a quantitative limit on its trading. Unfortunately, this17

generalization leads to additional constraints on the underlying portfolio selection18

problems, rendering an analytical solution to the problem infeasible.19

Our proposed algorithm for finding the equilibrium is inspired by the simple intu-20

ition that the price of an asset should be raised (reduced) whenever there is an excess21

demand (supply) on the market. Thus, at each iteration of the algorithm, an approx-22

imation of the market equilibrium is computed by adjusting the price of each asset in23

the direction of the difference between its demand and supply. The process continues24

until a set of market-clearing prices is obtained. Our algorithm is similar in spirit25

to an iterative price updating scheme called the tâtonnement process, which has26

been proposed in Walras (1954) and studied extensively in general equilibrium the-27

ory (see, e.g., Arrow et al., 1959; Uzawa, 1960; Ginsburgh and Waelbroeck, 1979).28

However, since the tâtonnement process is primarily applied in general exchange29

economies, its convergence is often analyzed under simplifying assumptions tailored30

to economics research. Many of these assumptions, e.g., the weak axiom of revealed31

preference at the equilibrium (Uzawa, 1960), are either difficult to verify or fail to32

hold in our setting due to the lack of an analytical solution to the portfolio selection33

problem and the correlations among risky assets in our pricing model. To the best34

of our knowledge, little research in the current literature has addressed the use of35

tâtonnement to examine equilibrium prices in CAPM-type of problems. Thus, in a36

sense, this work can be viewed as an extension of the application of tâtonnement37

to financial engineering.38

We prove the convergence of the algorithm under mild regularity conditions.39

The idea is to transform the equilibrium problem into an equivalent optimization40

problem through the aggregation of utility functions. Note that a similar approach41

has also been used in Eisenberg (1961) and Chen et al. (2007) to study competitive42

economy equilibria; however, since the utility function employed in our model

1750025-2
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violates the homogeneous property, the results of Eisenberg (1961) and Chen et al.1

(2007) cannot be directly applied to our case. In addition, our model allows short2

selling of assets, whereas the settings considered in Eisenberg (1961) and Chen et al.3

(2007) require the bundle of goods purchased by consumers to be non-negative. By4

analyzing the structural properties of the model, we show that the equilibrium asset5

prices are the optimal Lagrangian multipliers of the market-clearing constraints6

normalized by the price of the riskless asset. This implies that our algorithm is7

essentially a subgradient approach for searching the optimal solution to the dual8

formulation of the problem (cf., e.g., Bonnans et al., 2006; Bertsekas, 2008). Con-9

sequently, its theoretical properties, including both convergence and convergence10

rate, can be investigated using existing results on subgradient methods.11

In addition to providing an algorithm for asset pricing, we give a simple proof12

for the existence of equilibrium and provide sufficient conditions to guarantee its13

uniqueness. The existence of equilibrium in the CAPM has been previously dis-14

cussed in Nielsen (1989), Nielsen (1990), Allingham (1991). Their results assume all15

investors have homogeneous expectations on return distributions and are primarily16

based on deriving sufficient conditions to rule out satiation caused by unbounded17

choice sets that may lead to nonexistence of equilibrium. In contrast, we consider18

the setting where the choice sets are bounded and investors may have heteroge-19

neous beliefs on expected returns and covariance matrices. Consequently, our proof20

technique differs significantly from previous studies based on satiation and relies on21

exploiting the connection between equilibrium prices and the Lagrangian multipliers22

of the dual problem. Sufficient conditions on the uniqueness of the equilibrium in the23

CAPM have also been derived in, e.g., Nielsen (1988), Hens et al. (2002), but again24

it is still not clear under what conditions a restricted market with heterogenous25

investors possesses a unique equilibrium.26

The rest of this paper is organized as follows. We begin with a description of27

our model in Sec. 2. In Sec. 3, we introduce the proposed algorithm. Its convergence28

properties are analyzed in Sec.4. Some preliminary numerical results are reported29

in Sec. 5. Finally, we conclude this paper in Sec. 6.30

2. The Model31

Consider a market consisting of K investors, J risky assets, and a riskfree asset. The32

investors are indexed by k ∈ {1, . . . , K} and assets are indexed by j ∈ {0, . . . , J},33

where j = 0 represents the riskfree asset. We consider a two-period model (t = 0, 1).34

Let pj be the price of asset j at time t = 0 and the random variable Xj be its price35

at t = 1. Let r denote the riskfree interest rate. Initially, at time t = 0, each investor36

k is assumed to be endowed with nk
j units of asset j. Thus, the initial wealth of37

investor k, denoted by W k(0), can be expressed as38

W k(0) =

J
∑

j=1

nk
j pj + nk

0p0.

1750025-3
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At t = 0, investors can rebalance the position of their assets according to their1

own preferences. Denoted by φk
j the position of asset j held by investor k after the2

rebalancing. Throughout this paper, we assume that the holding of an asset φk
j is3

constrained within a given (nonempty) closed convex set Ωk
j for all j = 1, . . . , J .4

This permits us to impose quantitative limits on asset allocations. For example, if5

the short selling of asset j is prohibited, then one can simply set Ωk
j = [0,∞). It is6

easy to see that the wealth of investor k at t = 1 can be expressed as7

W k(1) =

J
∑

j=1

φk
j Xj + φk

0 ,

where we have normalized X0 to 1 for simplicity (this is equivalent to setting p0 =8

1/(1 + r)).9

As in the standard CAPM, the preference of an investor is measured by the10

mean-variance utility function (Markowitz, 1952)11

Uk(W k(1)) = Ek[W k(1)] −
αk

2
Vark[W k(1)], (1)

where αk > 0 is a constant that measures the degree of risk aversion, and Ek[·] and12

Vark[·] are the expectation and variance taken with respect to the distribution of13

investor k’s belief regarding asset payoffs, which may differ across investors. Thus,14

by substituting W k(1) into (1), the optimal portfolio selection problem of investor15

k can be stated as follows:16

(O1) max
φk

0
,...,φk

J

J
∑

j=1

φk
j Ek[Xj] + φk

0 −
αk

2

J
∑

i=1

J
∑

j=1

φk
j φk

i σk
ji (2)

subject to

J
∑

j=1

φk
j pj + φk

0p0 =

J
∑

j=1

nk
j pj + nk

0p0, (3)

φk
j ∈ Ωk

j , j = 1, . . . , J,

where σk
ji signifies investor k’s belief of the covariance between assets i and j. We17

assume throughout this paper that the covariance matrix Σk = [σk
ji]J×J is positive18

definite for all k = 1, . . . , K. Note that the left-hand side of the equality constraint19

(3) represents the total wealth of investor k right after asset rebalancing, and this20

should be the same as his/her initial wealth.21

Let P = (p1, . . . , pJ)⊺, X = (X1, . . . , XJ)⊺, Φk = (φk
1 , . . . , φk

J )⊺, and Nk =22

(nk
1 , . . . , nk

J )⊺. Similar to Sun (2003), the following definition provides a useful char-23

acterization of the market equilibrium price.24

Definition 2.1. A vector P ∗ ∈ ℜJ is called an equilibrium price of the market if25

there exist Φk∗ ∈ ℜJ for k = 1, . . . , K such that26

(1) Φk∗ solves the optimization problem (O1) at P = P ∗ for k = 1, . . . , K, and27
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(2)
∑K

k=1
Φk∗ =

∑K

k=1
Nk.1

Condition (2) in the above definition is often called the market-clearing condition2

or conservation equation for market equilibrium in economics.3

3. The Algorithm4

Note that φk
0 can be expressed in terms of φk

1 , . . . , φk
J based on (3). By substituting5

(3) into (2) and removing terms that are constants with respect to decision variables,6

we obtain the following optimization problem equivalent to (O1):7

(O2) max
φk

j
∈Ωk

j
,j=1,...,J

J
∑

j=1

(

Ek[Xj ] −
pj

p0

)

φk
j −

αk

2

J
∑

i=1

J
∑

j=1

σk
jiφ

k
j φk

i .

Consider a recursive procedure that generates a sequence of price vectors8

{Pn}∞n=0, where Pn = (pn,1, . . . , pn,J)⊺ is an approximation of the equilibrium price9

P ∗ obtained at the nth iteration. Let Φk∗
n = (φk∗

n,1, . . . , φ
k∗
n,J )⊺ be the solution to the10

optimal portfolio selection problem (O2) when P is replaced with Pn. Intuitively,11
∑K

k=1
φk∗

n,j can be viewed as the market demand for asset j under price pn,j whereas12

∑K

k=1
nk

j is the total supply of asset j. It is reasonable to speculate that if pn,j is13

lower than the equilibrium price, there will be an excess demand on the market, i.e.,14

∑K

k=1
φk∗

n,j −
∑K

k=1
nk

j > 0. Similarly, a price pn,j that is higher than the equilib-15

rium would result in excess supply, leading to
∑K

k=1
φk∗

n,j −
∑K

k=1
nk

j < 0. Thus, to16

enforce pn,j to stay close to the equilibrium, its value should be adjusted depending17

on the sign of the direction of the difference
∑K

k=1
φk∗

n,j −
∑K

k=1
nk

j . In vector form,18

this suggests the following iterative formula for updating asset prices:19

Pn+1 = Pn + an

∑K

k=1
Φk∗

n −
∑K

k=1
Nk

‖
∑K

k=1
Φk∗

n −
∑K

k=1
Nk‖

, (4)

where ‖ · ‖ is the Euclidean norm and an ∈ (0, 1) is a step size/gain parameter that20

controls the amount of adjustment at each step. We assume that the step size an21

satisfies22

∞
∑

n=0

an = ∞ and

∞
∑

n=0

a2
n < ∞, (5)

which is a standard condition used in analyzing the convergence of gradient-like23

descent algorithms (see, e.g., Spall, 2003).24

Our proposed algorithm is conceptually very simple and is stated below.25

An algorithm for equilibrium asset pricing in CAPM:26

Step 0: Specify an initial price vector Pn, a gain sequence {an}∞n=0, and a tolerance27

level ε > 0. Set the iteration counter n = 0.28

Step 1: Solve the portfolio selection problem (O2) for P = Pn and obtain Φk∗
n for29

all k.30

1750025-5
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Step 2: Update the price vector according to (4).1

Step 3: If ‖
∑K

k=1
Φk∗

n −
∑K

k=1
Nk‖ ≤ ε, then terminate; otherwise set n = n + 12

and go to Step 1.3

At Step 1 of the algorithm, a number of standard numerical methods can be4

applied to solve the portfolio optimization problem. In particular, since problem5

(O2) is convex, we have had success with using the convex programming (CVX)6

package provided in MATLAB. Note that (O2) needs to be solved for all investors.7

So, the complexity of Step 1 grows linearly with the number of investors. For large8

problems, the computation can be expedited using a straightforward parallel imple-9

mentation of the algorithm.10

4. Convergence Analysis11

In this section, we show that the sequence of price vectors {Pn} generated by the12

algorithm converges to an equilibrium price P ∗. This result is established based on13

an interesting connection between P ∗ and the optimal Lagrangian multipliers of the14

dual problem of an equivalent formulation of (O1).15

Theorem 4.1. Assume an equilibrium price P ∗ exists. The portfolio selection prob-16

lems (O1) at P = P ∗ for k = 1, . . . , K have the same optimal solutions as the17

following problem:18

(O3) max
φ1

1
,...,φK

J

K
∑

k=1





J
∑

j=1

φk
j Ek[Xj ] −

αk

2

J
∑

i=1

J
∑

j=1

σk
jiφ

k
j φk

i





subject to

K
∑

k=1

φk
j =

K
∑

k=1

nk
j , j = 1, . . . , J

φk
j ∈ Ωk

j , j = 1, . . . , J, k = 1, . . . , K.

Proof. Since the portfolio selection problems (O1) are solved independently for19

each investor, their solutions jointly solve the following (equivalent) optimization20

problem:21

max
K

∑

k=1





J
∑

j=1

φk
j Ek[Xj ] + φk

0 −
αk

2

J
∑

i=1

J
∑

j=1

σk
jiφ

k
j φk

i



 (6)

subject to

J
∑

j=1

φk
j pj + φk

0p0 =

J
∑

j=1

nk
j pj + nk

0p0, k = 1, . . . , K, (7)

φk
j ∈ Ωk

j , j = 1, . . . , J, k = 1, . . . , K.

Now consider the case when the market is at equilibrium (P = P ∗). By Defini-22

tion 2.1, the optimal solutions Φk∗ for k = 1, . . . , K must satisfy the market-clearing23

1750025-6
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condition1

K
∑

k=1

Φk∗ =

K
∑

k=1

Nk. (8)

In addition, we have from (7) that2

φk∗
0 =

1

p0





J
∑

j=1

nk
j p∗j + nk

0p0 −
J

∑

j=1

φk∗
j p∗j



. (9)

Summing (9) over k = 1, . . . , K and using Eq. (8) we have3

K
∑

k=1

φk∗
0 =

K
∑

k=1

nk
0 . (10)

Finally, substituting (10) into (6) and dropping the constant term
∑K

k=1
nk

0 , we4

obtain the following equivalent optimization problem at P = P ∗:5

max
φk

j ∈Ωk
j ,j=1,...,J,k=1,...,K

K
∑

k=1





J
∑

j=1

φk
j Ek[Xj] −

αk

2

J
∑

i=1

J
∑

j=1

σk
jiφ

k
j φk

i





subject to

K
∑

k=1

Φk =

K
∑

k=1

Nk,

which completes the proof.6

Observe that (O3) only depends on the means and variances of returns but not7

explicitly on P ∗. Therefore, it is natural to look at the connection between P ∗ and8

(O3). To this end, we introduce the Lagrangian multipliers λ = (λ1, . . . , λJ)⊺ for9

the equality constraints in (O3). The Lagrangian function is thus given by10

L(Φ1, . . . ,ΦK , λ) =

K
∑

k=1





J
∑

j=1

φk
j Ek[Xj ] −

αk

2

J
∑

i=1

J
∑

j=1

σk
jiφ

k
j φk

i





+
J

∑

j=1

λj

(

K
∑

k=1

φk
j −

K
∑

k=1

nk
j

)

=
K

∑

k=1





J
∑

j=1

φk
j Ek[Xj ] −

αk

2

J
∑

i=1

J
∑

j=1

σk
jiφ

k
j φk

i

+

J
∑

j=1

λjφ
k
j −

J
∑

j=1

λjn
k
j



.

1750025-7
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Denote by (Φ1∗, . . . ,ΦK∗) the optimal solution to (O3) and λ∗ the optimal solution1

to its dual problem2

min
λ∈ℜJ

max
Φk∈Ωk,k=1,...,K

L(Φ1, . . . ,ΦK , λ), (11)

where Ωk .
= Ωk

1 × · · · ×Ωk
J . The next theorem gives an explicit formula relating P ∗

3

to the optimal Lagrangian multipliers λ∗ and provides sufficient conditions for P ∗
4

to be unique.5

Theorem 4.2. There exists an equilibrium price vector given by P ∗ = −p0λ
∗.6

Furthermore, if Ωk
j = [0,∞) and

∑K

k=1
nk

j �= 0 for all j = 1, . . . , J, then P ∗ is7

unique.8

Proof. Since Σk are assumed to be positive definite, (O3) is a concave optimization9

problem, and its dual formulation (11) is always convex (cf., e.g., Bertsekas, 2008).10

Their optimal solutions are given by (Φ1∗, . . . ,ΦK∗) and λ∗, respectively. Thus,11

according to the primal-dual principle, Φk∗ must also solve the following problem:12

max
{φk

j
∈Ωk

j
}J,K

j,k=1

K
∑

k=1





J
∑

j=1

φk
j Ek[Xj ] −

αk

2

J
∑

i=1

J
∑

j=1

σk
jiφ

k
j φk

i +

J
∑

j=1

λ∗
jφ

k
j −

J
∑

j=1

λ∗
jn

k
j



.

Note that in the above problem, both the objective function and constraints are13

separable. Therefore, the optimization can be carried out by solving K independent14

subproblems15

max
{φk

j
∈Ωk

j
}J

j=1

J
∑

j=1

φk
j (Ek[Xj ] + λ∗

j ) −
αk

2

J
∑

i=1

J
∑

j=1

σk
jiφ

k
j φk

i , k = 1, . . . , K, (12)

where we have removed the constant term. Comparing (12) with (O2), we conclude16

that there exist a set of equilibrium prices given by p∗j = −p0λ
∗
j for all j.17

Let P̃ ∗ be any equilibrium price vector. By Theorem 4.1, Φk∗, k = 1, . . . , K are18

also optimal solutions to (O2) at P̃ ∗. Define M = {1, . . . , J}. Under the condition19

Ωk
j = [0,∞) for all j, let Ik = {j|φk∗

j = 0} be the set of indices of active constraints20

and Îk = M\Ik. Clearly, Îk = ∅ indicates that Φk∗ = 0. If Îk �= ∅, then φk∗
j , j ∈ Îk21

must solve the following degenerated version of (O2) by setting φk
j = 0 for all j ∈ Ik:22

max
φk

j
,j∈Îk

∑

j∈Îk

(

Ek[Xj] −
p̃∗j
p0

)

φk
j −

αk

2

∑

i,j∈Îk

σk
jiφ

k
j φk

i .

Since φk∗
j lies in the interior of Ωk

j for all j ∈ Îk, the first order necessary condition23

for optimality shows that24

Φk∗
Îk

=
1

αkp0

(Σk

Îk
)−1(p0E

k[X
Îk

] − P̃ ∗
Îk

), (13)

where X
Îk

= (Xj , j ∈ Îk)⊺, P̃ ∗
Îk

= (p̃∗j , j ∈ Îk)⊺, and Φk∗
Îk

= (φk∗
j , j ∈ Îk)⊺ are the25

respective subvectors of X , P̃ ∗, and Φk∗ with indices belonging to Îk, and Σk

Îk

=26

1750025-8
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[σk
ji]i,j∈Ik

is the corresponding principal submatrix of Σk. Rearranging (13), we get1

P̃ ∗
Îk

= p0

(

Ek[X
Îk

] − αkΣk

Îk
Φk∗

Îk

)

. (14)

Finally, since
∑K

k=1
nk

j �= 0 for j = 1, . . . , J by assumption, it is not difficult to see2

that
⋃k

k=1
Îk = M . Thus by (14), the entire price vector P̃ ∗ is uniquely determined3

by Φk∗, k = 1, . . . , K. Because Φk∗, k = 1, . . . , K is the unique optimal solution to4

(O3), P̃ ∗ must also be unique.5

We have the following convergence theorem for the proposed algorithm.6

Theorem 4.3. If the gain sequence {an} satisfies (5), then the sequence of price7

vectors {Pn}∞n=0 generated by the algorithm converges to an equilibrium price vector8

P ∗ at a sub-linear rate.9

Proof. Denote g(λ) as the objective function in the dual formulation (11), i.e.,10

g(λ) = max
Φk∈Ωk,k=1,...,K

L(Φ1, . . . ,ΦK , λ). (15)

The following subgradient algorithm (see, e.g., Bonnans et al., 2006) can be applied11

to search for the optimal λ∗ of (11):12

λn+1 = λn − ãn

dn

‖dn‖
, (16)

where λn is an estimate of λ∗ at the nth iteration, ãn = an/p0 is a step size13

satisfying (5), and dn is a subgradient of g(λ) at λn. From (15) and according to14

Proposition 6.1.1 in Bertsekas (2008), an obvious choice of dn is given by15

dn =

K
∑

k=1

Φk
n −

K
∑

k=1

Nk, (17)

where Φk
n, k = 1, . . . , K is the optimal solution to (15) at λ = λn.16

Now set Pn = −p0λn. We see that Φk
n also solves (O2) at Pn for k = 1, . . . , K.17

Substituting λn = −Pn

p0

and (17) into (16), we obtain18

Pn+1 = Pn + an

∑K

k=1
Φk

n −
∑K

k=1
Nk

‖
∑K

k=1
Φk

n −
∑K

k=1
Nk‖

.

This implies that our proposed algorithm is identical to a subgradient method for19

minimizing the function g(λ). From the results in subgradient optimization theory20

(see, e.g., Bonnans et al., 2006), the sequence {λn}∞n=1 generated by (16) converges21

to λ∗ at a sub-linear rate. This observation, together with the result of Theorem 4.2,22

implies that {Pn} will converge to −λ∗p0 at the same rate.23
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5. Numerical Examples1

In this section, we provide some examples to illustrate the performance of our2

algorithm. In all examples, we set the riskfree interest rate r = 0.1, p0 = 1, and3

X0 = 1 + r. In the implementation of the algorithm, the initial price vector P04

is set to the arithmetic average of the expected returns of all investors, the gain5

parameter is taken to be of the form an = a/(n + A)β recommended in Spall6

(2003), where, unless otherwise specified, we set a = 1, A = 100 and β = 0.51.7

The portfolio selection problem (O2) is solved at each iteration by applying the8

convex programming package (CVX) in MATLAB. All computational results were9

obtained on a Intel Dual-Core 2.5GHz CPU Windows machine with 4GB of RAM.10

5.1. Testing convergence11

Example 1. This example is directly taken from Jarrow (1980). Suppose the mar-12

ket consists of two investors and two stocks. Both individuals have identical risk13

aversion coefficients given by α1 = α2 = 1. At t = 0, the two investors have endowed14

shares N1 = (1, 0)⊺ and N2 = (0, 1)⊺ and the following beliefs:15

E1[X ] = (2, 1)⊺, E2[X ] = (1, 3)⊺, Σ1 =

(

1 1

1 3

)

and Σ2 =

(

3 1

1 1

)

.

We consider both cases when short sales are allowed and when short sales are pro-16

hibited. Table 1 shows the equilibrium prices and optimal asset allocations obtained17

by our algorithm under these two respective cases (with error tolerance ε = 0.001).18

These results conform very well with the analytical solutions reported in Jarrow19

(1980).a20

To illustrate the convergence behavior of the algorithm, we take the case when21

short sales are prohibited and consider the approximation error en
.
= ‖Pn − P ∗‖22

obtained at successive iterations of (4), where P ∗ is the true equilibrium price23

vector given by (10/11, 20/11)⊺ (see Jarrow (1980)). Figure 1(a) plots the error en24

as a function of the number of algorithm iterations. The figure clearly shows the25

convergence of the algorithm to P ∗, with the approximation error en approaching26

zero as the number of iteration increases.27

A test was also performed to try to empirically observe the established asymp-28

totic rate of the algorithm. Note that since this is a small-sized problem, we have29

used a (different) fast decay rate β = 1 in the test and run the algorithm for a large30

number of iterations to better highlight its asymptotic behavior. Figure 1(b) shows31

the ratio of errors en+1/en versus the number of algorithm iterations. From the fig-32

ure, we see that the error ratio oscillates from one iteration to another. We believe33

that this oscillatory behavior is primarily due to the choice of the gain sequence. In34

aThe difference between our results and those in Jarrow (1980) is because that Jarrow assumes
p0 = 1/(1 + r) and X0 = 1, whereas we have used p0 = 1, X0 = 1 + r in our experiment. If we set
p0 = 1/(1 + r) instead, then the results will be identical.
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Table 1. Two investors and two stocks.

Case Investor 1 Investor 2 Equilibrium price

With short sales
stock 1 1.667 −0.667 1.061
stock 2 −0.833 1.833 1.667

Without short sales
stock 1 1.000 0.000 0.909
stock 2 0.000 1.000 1.818
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Fig. 1. Convergence of the algorithm.

particular, when the search is close to the equilibrium price, the magnitude of the1

gain sequence {an} becomes large relative the magnitude of
P

K
k=1

Φ
k
n −

P

K
k=1

Nk

‖
P

K
k=1

Φk
n −

P

K
k=1

Nk‖
2

(see Eq. (4)), which causes the estimate Pn to bounce around in a small neighbor-3

hood of P ∗. Nevertheless, we see that as the gain an diminishes (when the number of4

iterations gets large), the amplitude of the oscillation decreases and the error ratio5

gradually approaches one. This supports the sub-linear convergence rate claimed in6

Theorem 4.3.7

Example 2. We consider the market consists of three investors and four stocks.8

All investors have identical risk aversion coefficients α1 = α2 = α3 = 1. They9

have initial endowments N1 = (1, 1, 0, 0)⊺, N2 = (0, 0, 1, 0)⊺, N3 = (0, 0, 0, 1)⊺ and10

beliefs E1[X ] = (3, 4, 1, 4)⊺, E2[X ] = (1, 2, 3, 3)⊺, E3[X ] = (2, 1, 4, 2)⊺, and11

(

Σ1 Σ2 Σ3
)

=









1 1 1 1

1 2 1 1

1 1 3 1

1 1 1 3

3 1 1 1

1 2 1 1

1 1 1 1

1 1 1 3

2 1 1 1

1 3 1 1

1 1 2 1

1 1 1 1









.

Note that in contrast to Example 1, this is a comparatively high dimensional12

(three investors and four stocks) problem that can no longer be easily solved analyt-13

ically using the KKT condition (see, e.g., Jarrow (1980)). From the results reported14

in Table 2, we observe that the prices of risky assets may either rise (stocks 2 and 3)15
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Table 2. Three investors and four stocks.

Case Investor 1 Investor 2 Investor 3 Equilibrium

With short sales

stock 1 1.584 −0.591 0.007 0.962
stock 2 1.271 0.089 −0.361 0.716
stock 3 −1.409 1.220 1.190 1.706
stock 4 0.496 0.405 0.098 0.969

Without short sales

stock 1 0.857 0.000 0.143 0.779

stock 2 0.857 0.143 0.000 0.909
stock 3 0.000 0.143 0.857 1.948
stock 4 0.429 0.571 0.000 0.909

or fall (stocks 1 and 4) due to short-sale restrictions. This is also consistent with1

the findings of Jarrow (1980).2

5.2. Comparison results3

In this subsection, we apply our algorithm to larger problem instances and compare4

its performance with those of the branch-and-bound method and the interior-point5

quadratic programming algorithm.6

The branch-and-bound algorithm is popular in handling equilibrium problems7

that can be transformed into mathematical programming problems with comple-8

mentarity constraints. To apply the algorithm, we first formulate our model as a9

complementarity-constrained problem of the form10

min
P,{Φk,λk}K

k=1

∥

∥

∥

∥

∥

K
∑

k=1

Φk −
K

∑

k=1

Nk

∥

∥

∥

∥

∥

subject to αkΣkΦk −

(

µk −
1

p0

P

)

− λk = 0,

λk
i φk

i = 0, i = 1, . . . , J ; k = 1, . . . , K

P ∈ ℜJ , Φk ≥ 0, λk ≥ 0, k = 1, . . . , K

and then transform it into the following equivalent mixed integer programming11

problem (see Hu et al., 2012):12

min
P,{Φk,λk}K

k=1

∥

∥

∥

∥

∥

K
∑

k=1

Φk −
K

∑

k=1

Nk

∥

∥

∥

∥

∥

subject to αkΣkΦk −

(

µk −
1

p0

P

)

− λk = 0,

0 ≤ λk
i ≤ λ̄k

i zk
i ,

0 ≤ φk
i ≤ (1 − zk

i )φ̄k
i ,
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zk
i ∈ {0, 1},

P ∈ ℜJ , Φk ≥ 0, λk ≥ 0, k = 1, . . . , K,

where λ̄k
i and φ̄k

i represent the upper bounds on λk
i and φk

i . The problem can then1

be solved by using the standard branch-and-bound algorithm. In our numerical2

experiments, the bounding constants λ̄k
i and φ̄k

i are set to 1,000 for all i and k,3

and we have used the commercial optimization package CPLEX to implement the4

algorithm.5

The use of quadratic programming is motivated by the result of Theorem 4.2,6

which states that the equilibrium price vector P ∗ only differs from the optimal7

solution to the dual formulation (11) of (O3) by a constant factor −p0. Since (O3)8

is a quadratic programming problem, the problem along with its dual (11) can be9

conveniently solved using the interior-point quadratic programming algorithm of10

the package CVX in MATLAB. The equilibrium price P ∗ can then be obtained by11

simply multiplying the resulting optimal solution λ∗ to (11) by −p0.12

Table 3 shows the performance of the three comparison algorithms on four test13

cases with varying numbers of investors and risky assets. Note that since we have14

used a sequential implementation of our algorithm, the portfolio selection problem15

(O2) needs to be solved K times in succession at each iteration. Therefore, we have16

used a relatively large error tolerance level ε = 0.1 to avoid excessive long running17

times of the algorithm when K is large.18

From the table, we see that both branch-and-bound and the quadratic program-19

ming algorithm significantly outperform our algorithm when the market is small.20

In particular, in the (5, 5) case, the two alternative algorithms are able to produce21

highly accurate solutions in under one second. However, since the worst case com-22

plexity of branch-and-bound is the same as that of exhaustive search, the algorithm23

may quickly become impractical as the problem size increases. We see that even in24

the (10, 10) case, branch-and-bound fails to produce an acceptable solution within25

a reasonable amount of time. On the other hand, the quadratic programming algo-26

rithm is much more competitive and can be applied to solve relatively large problem27

instances with up to a hundred of investors and assets. The complexity of quadratic28

programming is generally polynomial in the number of decision variables. Thus, as29

the problem size increases from (10, 10) to (100, 100), the number of decision vari-30

ables grows by a factor of 1,000, leading to a drastic increase in the running time31

Table 3. Comparison results with branch-and-bound and quadratic programming.

Our algorithm Branch-and-bound Quadratic programming

(K, J) Time (s) Error Time (s) Error Time (s) Error

(5,5) 11.40 0.084 0.54 0 0.93 1.588 × 10−10

(10,10) 24.26 0.083 N/A N/A 0.54 4.209 × 10−11

(100,100) 212.52 0.089 N/A N/A 178.01 2.404 × 10−10

(1,000,100) 4060.01 0.079 N/A N/A N/A N/A
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of the algorithm. Note that a straightforward implementation of the quadratic pro-1

gramming algorithm requires the explicit specification and storage of the positive2

definition matrix appearing in the objective function. This can be an issue for large3

problems. For example, the algorithm fails to run successfully on the (1,000, 100)4

case because the size of the matrix reaches 105 × 105, which exceeds the memory5

capacity of the computer. In contrast, Table 3 shows that the performance of our6

algorithm is less susceptible to the increases in problem dimension. We see that as7

the problem size increases from (5, 5) to (100, 100), the running time of the algorithm8

grows roughly linearly with K. In the (1,000, 100) case, our algorithm terminates in9

a few tens of iterations with an approximation error of 0.079. This suggests that the10

computational time of our algorithm is primarily dominated by the time required11

to solve the K portfolio selection problems. Consequently, the performance of the12

algorithm can be dramatically improved by employing a parallel implementation13

scheme that solves the K portfolio selection problems simultaneously.14

6. Conclusion15

In this paper, we have introduced an algorithm for computing the equilibrium of16

a capital asset pricing model with heterogeneous investors and market restrictions.17

The algorithm is not only conceptually simple but also effective and easy to imple-18

ment. A central contribution of this paper is to prove that our algorithm is essen-19

tially a subgradient approach for a dual formulation of the problem. We show that20

the equilibrium prices in our model actually turn out to be the scaled versions of21

the Lagrangian multipliers of a dual formulation of the problem. This key result22

enables us to prove the existence of equilibrium, identify sufficient conditions to23

guarantee its uniqueness, and establish convergence properties of the algorithm.24
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