

1 Asia-Pacific Journal of Operational Research
2 Vol. 34, No. 5 (2017) 1750025 (16 pages)
3 © World Scientific Publishing Co. & Operational Research Society of Singapore
4 DOI: 10.1142/S0217595917500257

5 **A Computational Algorithm for Equilibrium
6 Asset Pricing Under Heterogeneous Information
7 and Short-Sale Constraints**

8 Jun Tong

9 *School of Management, Shanghai University
10 Shanghai 200433, P. R. China
11 juntong11@fudan.edu.cn*

12 Jian-Qiang Hu

13 *Department of Management Science, Fudan University
14 Shanghai 200433, P. R. China
15 hujq@fudan.edu.cn*

16 Jiaqiao Hu

17 *Department of Applied Mathematics and Statistics
18 State University of New York
19 New York 11790, USA
20 jghu@ams.sunysb.edu*

21 Received

22 Accepted

23 Published

24 We propose an efficient algorithm for computing the equilibrium of a capital asset pric-
25 ing model with heterogeneous investors and short-sale constraints. We show that the
26 equilibrium prices of the risky assets in the model are proportional to the Lagrangian
27 multipliers of an equivalent dual formulation of the problem. Based on this observation,
28 we derive sufficient conditions to guarantee the existence and uniqueness of equilibrium
29 and prove the convergence of the algorithm. Numerical examples are also provided to
30 illustrate the algorithm.

31 *Keywords:* Equilibrium pricing; aggregate utility function; convex optimization;
32 tâtonnement.

33 **1. Introduction**

34 The capital asset pricing model (CAPM) proposed in Sharpe (1964), Lintner (1965),
35 Mossin (1966) provides a useful instrument for computing asset prices. In its stan-
36 dard formulation, investors are assumed to have homogeneous beliefs (i.e., having
37 the same expectation and covariance on future payoffs of risky assets) and select
38 portfolios based on the mean-variance framework of Markowitz (1952). It is also
39 assumed that the market is efficient and trading is frictionless. These assumptions,

J. Tong, J.-Q. Hu & J. Hu

however, are easily violated in realistic financial markets. For example, heterogeneous private information and incomplete knowledge of prices may cause investors to hold different beliefs; moreover, regulators may also impose capital and/or quantitative limits on a temporary basis to restrict or prohibit short sales.

In an attempt to relax these idealistic assumptions, a variety of modified versions of the CAPM model have been proposed in the literature; see, e.g., Diamond and Verrecchia (1987), Fama and French (2007), Hong and Stein (2003), Jarrow (1980), among many others. Much of this work is carried out from a theoretical perspective, focusing primarily on investigating the impact of heterogeneous beliefs and/or short-sale constraints on the market equilibrium. In this paper, we propose a computational algorithm for efficiently determining the equilibrium of a CAPM model. Our model has the same structure as that of Jarrow (1980), which involves both heterogeneous investors and short-sale constraints. However, to account for the trading limitation that might arise in a partially restricted market, we generalize the model of Jarrow (1980) by assuming that the holding of each asset is confined within a given convex set. This allows us to specify whether the short selling of a particular asset is permissible as well as a quantitative limit on its trading. Unfortunately, this generalization leads to additional constraints on the underlying portfolio selection problems, rendering an analytical solution to the problem infeasible.

Our proposed algorithm for finding the equilibrium is inspired by the simple intuition that the price of an asset should be raised (reduced) whenever there is an excess demand (supply) on the market. Thus, at each iteration of the algorithm, an approximation of the market equilibrium is computed by adjusting the price of each asset in the direction of the difference between its demand and supply. The process continues until a set of market-clearing prices is obtained. Our algorithm is similar in spirit to an iterative price updating scheme called the *tâtonnement* process, which has been proposed in Walras (1954) and studied extensively in general equilibrium theory (see, e.g., Arrow *et al.*, 1959; Uzawa, 1960; Ginsburgh and Waelbroeck, 1979). However, since the *tâtonnement* process is primarily applied in general exchange economies, its convergence is often analyzed under simplifying assumptions tailored to economics research. Many of these assumptions, e.g., the weak axiom of revealed preference at the equilibrium (Uzawa, 1960), are either difficult to verify or fail to hold in our setting due to the lack of an analytical solution to the portfolio selection problem and the correlations among risky assets in our pricing model. To the best of our knowledge, little research in the current literature has addressed the use of *tâtonnement* to examine equilibrium prices in CAPM-type of problems. Thus, in a sense, this work can be viewed as an extension of the application of *tâtonnement* to financial engineering.

We prove the convergence of the algorithm under mild regularity conditions. The idea is to transform the equilibrium problem into an equivalent optimization problem through the aggregation of utility functions. Note that a similar approach has also been used in Eisenberg (1961) and Chen *et al.* (2007) to study competitive economy equilibria; however, since the utility function employed in our model

 A Computational Algorithm for Equilibrium Asset Pricing

AQ: Please check running head.

1 violates the homogeneous property, the results of Eisenberg (1961) and Chen *et al.*
 2 (2007) cannot be directly applied to our case. In addition, our model allows short
 3 selling of assets, whereas the settings considered in Eisenberg (1961) and Chen *et al.*
 4 (2007) require the bundle of goods purchased by consumers to be non-negative. By
 5 analyzing the structural properties of the model, we show that the equilibrium asset
 6 prices are the optimal Lagrangian multipliers of the market-clearing constraints
 7 normalized by the price of the riskless asset. This implies that our algorithm is
 8 essentially a subgradient approach for searching the optimal solution to the dual
 9 formulation of the problem (cf., e.g., Bonnans *et al.*, 2006; Bertsekas, 2008). Con-
 10 sequently, its theoretical properties, including both convergence and convergence
 11 rate, can be investigated using existing results on subgradient methods.

12 In addition to providing an algorithm for asset pricing, we give a simple proof
 13 for the existence of equilibrium and provide sufficient conditions to guarantee its
 14 uniqueness. The existence of equilibrium in the CAPM has been previously dis-
 15 cussed in Nielsen (1989), Nielsen (1990), Allingham (1991). Their results assume all
 16 investors have homogeneous expectations on return distributions and are primarily
 17 based on deriving sufficient conditions to rule out satiation caused by unbounded
 18 choice sets that may lead to nonexistence of equilibrium. In contrast, we consider
 19 the setting where the choice sets are bounded and investors may have heteroge-
 20 neous beliefs on expected returns and covariance matrices. Consequently, our proof
 21 technique differs significantly from previous studies based on satiation and relies on
 22 exploiting the connection between equilibrium prices and the Lagrangian multipliers
 23 of the dual problem. Sufficient conditions on the uniqueness of the equilibrium in the
 24 CAPM have also been derived in, e.g., Nielsen (1988), Hens *et al.* (2002), but again
 25 it is still not clear under what conditions a restricted market with heterogenous
 26 investors possesses a unique equilibrium.

27 The rest of this paper is organized as follows. We begin with a description of
 28 our model in Sec. 2. In Sec. 3, we introduce the proposed algorithm. Its convergence
 29 properties are analyzed in Sec. 4. Some preliminary numerical results are reported
 30 in Sec. 5. Finally, we conclude this paper in Sec. 6.

31 **2. The Model**

32 Consider a market consisting of K investors, J risky assets, and a riskfree asset. The
 33 investors are indexed by $k \in \{1, \dots, K\}$ and assets are indexed by $j \in \{0, \dots, J\}$,
 34 where $j = 0$ represents the riskfree asset. We consider a two-period model ($t = 0, 1$).
 35 Let p_j be the price of asset j at time $t = 0$ and the random variable X_j be its price
 36 at $t = 1$. Let r denote the riskfree interest rate. Initially, at time $t = 0$, each investor
 37 k is assumed to be endowed with n_j^k units of asset j . Thus, the initial wealth of
 38 investor k , denoted by $W^k(0)$, can be expressed as

$$W^k(0) = \sum_{j=1}^J n_j^k p_j + n_0^k p_0.$$

J. Tong, J.-Q. Hu & J. Hu

1 At $t = 0$, investors can rebalance the position of their assets according to their
 2 own preferences. Denoted by ϕ_j^k the position of asset j held by investor k after the
 3 rebalancing. Throughout this paper, we assume that the holding of an asset ϕ_j^k is
 4 constrained within a given (nonempty) closed convex set Ω_j^k for all $j = 1, \dots, J$.
 5 This permits us to impose quantitative limits on asset allocations. For example, if
 6 the short selling of asset j is prohibited, then one can simply set $\Omega_j^k = [0, \infty)$. It is
 7 easy to see that the wealth of investor k at $t = 1$ can be expressed as

$$W^k(1) = \sum_{j=1}^J \phi_j^k X_j + \phi_0^k,$$

8 where we have normalized X_0 to 1 for simplicity (this is equivalent to setting $p_0 =$
 9 $1/(1+r)$).

10 As in the standard CAPM, the preference of an investor is measured by the
 11 mean-variance utility function (Markowitz, 1952)

$$U^k(W^k(1)) = E^k[W^k(1)] - \frac{\alpha^k}{2} \text{Var}^k[W^k(1)], \quad (1)$$

12 where $\alpha^k > 0$ is a constant that measures the degree of risk aversion, and $E^k[\cdot]$ and
 13 $\text{Var}^k[\cdot]$ are the expectation and variance taken with respect to the distribution of
 14 investor k 's belief regarding asset payoffs, which may differ across investors. Thus,
 15 by substituting $W^k(1)$ into (1), the optimal portfolio selection problem of investor
 16 k can be stated as follows:

$$(O_1) \quad \max_{\phi_0^k, \dots, \phi_J^k} \quad \sum_{j=1}^J \phi_j^k E^k[X_j] + \phi_0^k - \frac{\alpha^k}{2} \sum_{i=1}^J \sum_{j=1}^J \phi_j^k \phi_i^k \sigma_{ji}^k \quad (2)$$

$$\text{subject to} \quad \sum_{j=1}^J \phi_j^k p_j + \phi_0^k p_0 = \sum_{j=1}^J n_j^k p_j + n_0^k p_0, \quad (3)$$

$$\phi_j^k \in \Omega_j^k, \quad j = 1, \dots, J,$$

17 where σ_{ji}^k signifies investor k 's belief of the covariance between assets i and j . We
 18 assume throughout this paper that the covariance matrix $\Sigma^k = [\sigma_{ji}^k]_{J \times J}$ is positive
 19 definite for all $k = 1, \dots, K$. Note that the left-hand side of the equality constraint
 20 (3) represents the total wealth of investor k right after asset rebalancing, and this
 21 should be the same as his/her initial wealth.

Let $P = (p_1, \dots, p_J)^\top$, $X = (X_1, \dots, X_J)^\top$, $\Phi^k = (\phi_1^k, \dots, \phi_J^k)^\top$, and $N^k = (n_0^k, \dots, n_J^k)^\top$. Similar to Sun (2003), the following definition provides a useful characterization of the market equilibrium price.

25 **Definition 2.1.** A vector $P^* \in \mathbb{R}^J$ is called an equilibrium price of the market if
 26 there exist $\Phi^{k*} \in \mathbb{R}^J$ for $k = 1, \dots, K$ such that

27 (1) Φ^{k*} solves the optimization problem (O_1) at $P = P^*$ for $k = 1, \dots, K$, and

AQ: Not present
in Ref. list.

A Computational Algorithm for Equilibrium Asset Pricing

$$1 \quad (2) \quad \sum_{k=1}^K \Phi^{k*} = \sum_{k=1}^K N^k.$$

2 Condition (2) in the above definition is often called the market-clearing condition
3 or conservation equation for market equilibrium in economics.

4 **3. The Algorithm**

5 Note that ϕ_0^k can be expressed in terms of $\phi_1^k, \dots, \phi_J^k$ based on (3). By substituting
6 (3) into (2) and removing terms that are constants with respect to decision variables,
7 we obtain the following optimization problem equivalent to (O_1) :

$$(O_2) \max_{\phi_j^k \in \Omega_j^k, j=1, \dots, J} \sum_{j=1}^J \left(E^k[X_j] - \frac{p_j}{p_0} \right) \phi_j^k - \frac{\alpha^k}{2} \sum_{i=1}^J \sum_{j=1}^J \sigma_{ji}^k \phi_j^k \phi_i^k.$$

8 Consider a recursive procedure that generates a sequence of price vectors
9 $\{P_n\}_{n=0}^{\infty}$, where $P_n = (p_{n,1}, \dots, p_{n,J})^{\top}$ is an approximation of the equilibrium price
10 P^* obtained at the n th iteration. Let $\Phi_n^{k*} = (\phi_{n,1}^{k*}, \dots, \phi_{n,J}^{k*})^{\top}$ be the solution to the
11 optimal portfolio selection problem (O_2) when P is replaced with P_n . Intuitively,
12 $\sum_{k=1}^K \phi_{n,j}^{k*}$ can be viewed as the market demand for asset j under price $p_{n,j}$ whereas
13 $\sum_{k=1}^K n_j^k$ is the total supply of asset j . It is reasonable to speculate that if $p_{n,j}$ is
14 lower than the equilibrium price, there will be an excess demand on the market, i.e.,
15 $\sum_{k=1}^K \phi_{n,j}^{k*} - \sum_{k=1}^K n_j^k > 0$. Similarly, a price $p_{n,j}$ that is higher than the equilib-
16 rium would result in excess supply, leading to $\sum_{k=1}^K \phi_{n,j}^{k*} - \sum_{k=1}^K n_j^k < 0$. Thus, to
17 enforce $p_{n,j}$ to stay close to the equilibrium, its value should be adjusted depending
18 on the sign of the direction of the difference $\sum_{k=1}^K \phi_{n,j}^{k*} - \sum_{k=1}^K n_j^k$. In vector form,
19 this suggests the following iterative formula for updating asset prices:

$$P_{n+1} = P_n + a_n \frac{\sum_{k=1}^K \Phi_n^{k*} - \sum_{k=1}^K N^k}{\|\sum_{k=1}^K \Phi_n^{k*} - \sum_{k=1}^K N^k\|}, \quad (4)$$

20 where $\|\cdot\|$ is the Euclidean norm and $a_n \in (0, 1)$ is a step size/gain parameter that
21 controls the amount of adjustment at each step. We assume that the step size a_n
22 satisfies

$$\sum_{n=0}^{\infty} a_n = \infty \quad \text{and} \quad \sum_{n=0}^{\infty} a_n^2 < \infty, \quad (5)$$

23 which is a standard condition used in analyzing the convergence of gradient-like
24 descent algorithms (see, e.g., Spall, 2003).

25 Our proposed algorithm is conceptually very simple and is stated below.

26 An algorithm for equilibrium asset pricing in CAPM:

27 **Step 0:** Specify an initial price vector P_n , a gain sequence $\{a_n\}_{n=0}^{\infty}$, and a tolerance
28 level $\varepsilon > 0$. Set the iteration counter $n = 0$.

29 **Step 1:** Solve the portfolio selection problem (O_2) for $P = P_n$ and obtain Φ_n^{k*} for
30 all k .

J. Tong, J.-Q. Hu & J. Hu

1 **Step 2:** Update the price vector according to (4).

2 **Step 3:** If $\|\sum_{k=1}^K \Phi_n^{k*} - \sum_{k=1}^K N^k\| \leq \varepsilon$, then terminate; otherwise set $n = n + 1$
3 and go to Step 1.

4 At Step 1 of the algorithm, a number of standard numerical methods can be
5 applied to solve the portfolio optimization problem. In particular, since problem
6 (O_2) is convex, we have had success with using the convex programming (CVX)
7 package provided in MATLAB. Note that (O_2) needs to be solved for all investors.
8 So, the complexity of Step 1 grows linearly with the number of investors. For large
9 problems, the computation can be expedited using a straightforward parallel imple-
10 mentation of the algorithm.

11 **4. Convergence Analysis**

12 In this section, we show that the sequence of price vectors $\{P_n\}$ generated by the
13 algorithm converges to an equilibrium price P^* . This result is established based on
14 an interesting connection between P^* and the optimal Lagrangian multipliers of the
15 dual problem of an equivalent formulation of (O_1) .

16 **Theorem 4.1.** *Assume an equilibrium price P^* exists. The portfolio selection prob-
17 lems (O_1) at $P = P^*$ for $k = 1, \dots, K$ have the same optimal solutions as the
18 following problem:*

$$(O_3) \quad \max_{\phi_1^k, \dots, \phi_J^k} \sum_{k=1}^K \left(\sum_{j=1}^J \phi_j^k E^k[X_j] - \frac{\alpha^k}{2} \sum_{i=1}^J \sum_{j=1}^J \sigma_{ji}^k \phi_j^k \phi_i^k \right)$$

$$\text{subject to } \sum_{k=1}^K \phi_j^k = \sum_{k=1}^K n_j^k, \quad j = 1, \dots, J$$

$$\phi_j^k \in \Omega_j^k, \quad j = 1, \dots, J, \quad k = 1, \dots, K.$$

19 **Proof.** Since the portfolio selection problems (O_1) are solved independently for
20 each investor, their solutions jointly solve the following (equivalent) optimization
21 problem:

$$\max \quad \sum_{k=1}^K \left(\sum_{j=1}^J \phi_j^k E^k[X_j] + \phi_0^k - \frac{\alpha^k}{2} \sum_{i=1}^J \sum_{j=1}^J \sigma_{ji}^k \phi_j^k \phi_i^k \right) \quad (6)$$

$$\text{subject to } \sum_{j=1}^J \phi_j^k p_j + \phi_0^k p_0 = \sum_{j=1}^J n_j^k p_j + n_0^k p_0, \quad k = 1, \dots, K, \quad (7)$$

$$\phi_j^k \in \Omega_j^k, \quad j = 1, \dots, J, \quad k = 1, \dots, K.$$

22 Now consider the case when the market is at equilibrium ($P = P^*$). By Defini-
23 tion 2.1, the optimal solutions Φ^{k*} for $k = 1, \dots, K$ must satisfy the market-clearing

A Computational Algorithm for Equilibrium Asset Pricing

1 condition

$$\sum_{k=1}^K \Phi^{k*} = \sum_{k=1}^K N^k. \quad (8)$$

2 In addition, we have from (7) that

$$\phi_0^{k*} = \frac{1}{p_0} \left(\sum_{j=1}^J n_j^k p_j^* + n_0^k p_0 - \sum_{j=1}^J \phi_j^{k*} p_j^* \right). \quad (9)$$

3 Summing (9) over $k = 1, \dots, K$ and using Eq. (8) we have

$$\sum_{k=1}^K \phi_0^{k*} = \sum_{k=1}^K n_0^k. \quad (10)$$

4 Finally, substituting (10) into (6) and dropping the constant term $\sum_{k=1}^K n_0^k$, we
5 obtain the following equivalent optimization problem at $P = P^*$:

$$\begin{aligned} & \max_{\phi_j^k \in \Omega_j^k, j=1, \dots, J, k=1, \dots, K} \sum_{k=1}^K \left(\sum_{j=1}^J \phi_j^k E^k[X_j] - \frac{\alpha^k}{2} \sum_{i=1}^J \sum_{j=1}^J \sigma_{ji}^k \phi_j^k \phi_i^k \right) \\ & \text{subject to} \quad \sum_{k=1}^K \Phi^k = \sum_{k=1}^K N^k, \end{aligned}$$

6 which completes the proof. \square

7 Observe that (O_3) only depends on the means and variances of returns but not
8 explicitly on P^* . Therefore, it is natural to look at the connection between P^* and
9 (O_3) . To this end, we introduce the Lagrangian multipliers $\lambda = (\lambda_1, \dots, \lambda_J)^\top$ for
10 the equality constraints in (O_3) . The Lagrangian function is thus given by

$$\begin{aligned} L(\Phi^1, \dots, \Phi^K, \lambda) &= \sum_{k=1}^K \left(\sum_{j=1}^J \phi_j^k E^k[X_j] - \frac{\alpha^k}{2} \sum_{i=1}^J \sum_{j=1}^J \sigma_{ji}^k \phi_j^k \phi_i^k \right) \\ &\quad + \sum_{j=1}^J \lambda_j \left(\sum_{k=1}^K \phi_j^k - \sum_{k=1}^K n_j^k \right) \\ &= \sum_{k=1}^K \left(\sum_{j=1}^J \phi_j^k E^k[X_j] - \frac{\alpha^k}{2} \sum_{i=1}^J \sum_{j=1}^J \sigma_{ji}^k \phi_j^k \phi_i^k \right. \\ &\quad \left. + \sum_{j=1}^J \lambda_j \phi_j^k - \sum_{j=1}^J \lambda_j n_j^k \right). \end{aligned}$$

J. Tong, J.-Q. Hu & J. Hu

1 Denote by $(\Phi^{1*}, \dots, \Phi^{K*})$ the optimal solution to (O_3) and λ^* the optimal solution
2 to its dual problem

$$\min_{\lambda \in \mathbb{R}^J} \max_{\Phi^k \in \Omega^k, k=1, \dots, K} L(\Phi^1, \dots, \Phi^K, \lambda), \quad (11)$$

3 where $\Omega^k \doteq \Omega_1^k \times \dots \times \Omega_J^k$. The next theorem gives an explicit formula relating P^*
4 to the optimal Lagrangian multipliers λ^* and provides sufficient conditions for P^*
5 to be unique.

6 **Theorem 4.2.** *There exists an equilibrium price vector given by $P^* = -p_0 \lambda^*$.
7 Furthermore, if $\Omega_j^k = [0, \infty)$ and $\sum_{k=1}^K n_j^k \neq 0$ for all $j = 1, \dots, J$, then P^* is
8 unique.*

9 **Proof.** Since Σ^k are assumed to be positive definite, (O_3) is a concave optimization
10 problem, and its dual formulation (11) is always convex (cf., e.g., Bertsekas, 2008).
11 Their optimal solutions are given by $(\Phi^{1*}, \dots, \Phi^{K*})$ and λ^* , respectively. Thus,
12 according to the primal-dual principle, Φ^{k*} must also solve the following problem:

$$\max_{\{\phi_j^k \in \Omega_j^k\}_{j,k=1}^{J,K}} \sum_{k=1}^K \left(\sum_{j=1}^J \phi_j^k E^k[X_j] - \frac{\alpha^k}{2} \sum_{i=1}^J \sum_{j=1}^J \sigma_{ji}^k \phi_j^k \phi_i^k + \sum_{j=1}^J \lambda_j^* \phi_j^k - \sum_{j=1}^J \lambda_j^* n_j^k \right).$$

13 Note that in the above problem, both the objective function and constraints are
14 separable. Therefore, the optimization can be carried out by solving K independent
15 subproblems

$$\max_{\{\phi_j^k \in \Omega_j^k\}_{j=1}^J} \sum_{j=1}^J \phi_j^k (E^k[X_j] + \lambda_j^*) - \frac{\alpha^k}{2} \sum_{i=1}^J \sum_{j=1}^J \sigma_{ji}^k \phi_j^k \phi_i^k, \quad k = 1, \dots, K, \quad (12)$$

16 where we have removed the constant term. Comparing (12) with (O_2) , we conclude
17 that there exist a set of equilibrium prices given by $p_j^* = -p_0 \lambda_j^*$ for all j .

18 Let \tilde{P}^* be any equilibrium price vector. By Theorem 4.1, $\Phi^{k*}, k = 1, \dots, K$ are
19 also optimal solutions to (O_2) at \tilde{P}^* . Define $M = \{1, \dots, J\}$. Under the condition
20 $\Omega_j^k = [0, \infty)$ for all j , let $I_k = \{j | \phi_j^{k*} = 0\}$ be the set of indices of active constraints
21 and $\hat{I}_k = M \setminus I_k$. Clearly, $\hat{I}_k = \emptyset$ indicates that $\Phi^{k*} = 0$. If $\hat{I}_k \neq \emptyset$, then $\phi_j^{k*}, j \in \hat{I}_k$
22 must solve the following degenerated version of (O_2) by setting $\phi_j^k = 0$ for all $j \in I_k$:

$$\max_{\phi_j^k, j \in \hat{I}_k} \sum_{j \in \hat{I}_k} \left(E^k[X_j] - \frac{\tilde{p}_j^*}{p_0} \right) \phi_j^k - \frac{\alpha^k}{2} \sum_{i,j \in \hat{I}_k} \sigma_{ji}^k \phi_j^k \phi_i^k.$$

23 Since ϕ_j^{k*} lies in the interior of Ω_j^k for all $j \in \hat{I}_k$, the first order necessary condition
24 for optimality shows that

$$\Phi_{\hat{I}_k}^{k*} = \frac{1}{\alpha^k p_0} (\Sigma_{\hat{I}_k}^k)^{-1} (p_0 E^k[X_{\hat{I}_k}] - \tilde{P}_{\hat{I}_k}^*), \quad (13)$$

25 where $X_{\hat{I}_k} = (X_j, j \in \hat{I}_k)^\top$, $\tilde{P}_{\hat{I}_k}^* = (\tilde{p}_j^*, j \in \hat{I}_k)^\top$, and $\Phi_{\hat{I}_k}^{k*} = (\phi_j^{k*}, j \in \hat{I}_k)^\top$ are the
26 respective subvectors of X , \tilde{P}^* , and Φ^{k*} with indices belonging to \hat{I}_k , and $\Sigma_{\hat{I}_k}^k =$

A Computational Algorithm for Equilibrium Asset Pricing

1 $[\sigma_{ji}^k]_{i,j \in I_k}$ is the corresponding principal submatrix of Σ^k . Rearranging (13), we get

$$2 \tilde{P}_{\hat{I}_k}^* = p_0 (E^k[X_{\hat{I}_k}] - \alpha^k \Sigma_{\hat{I}_k}^k \Phi_{\hat{I}_k}^{k*}). \quad (14)$$

3 Finally, since $\sum_{k=1}^K n_j^k \neq 0$ for $j = 1, \dots, J$ by assumption, it is not difficult to see
4 that $\bigcup_{k=1}^K \hat{I}_k = M$. Thus by (14), the entire price vector \tilde{P}^* is uniquely determined
5 by $\Phi^{k*}, k = 1, \dots, K$. Because $\Phi^{k*}, k = 1, \dots, K$ is the unique optimal solution to
 (O_3) , \tilde{P}^* must also be unique. \square

6 We have the following convergence theorem for the proposed algorithm.

7 **Theorem 4.3.** *If the gain sequence $\{a_n\}$ satisfies (5), then the sequence of price
8 vectors $\{P_n\}_{n=0}^{\infty}$ generated by the algorithm converges to an equilibrium price vector
9 P^* at a sub-linear rate.*

10 **Proof.** Denote $g(\lambda)$ as the objective function in the dual formulation (11), i.e.,

$$g(\lambda) = \max_{\Phi^k \in \Omega^k, k=1, \dots, K} L(\Phi^1, \dots, \Phi^K, \lambda). \quad (15)$$

11 The following subgradient algorithm (see, e.g., Bonnans *et al.*, 2006) can be applied
12 to search for the optimal λ^* of (11):

$$13 \lambda_{n+1} = \lambda_n - \tilde{a}_n \frac{d_n}{\|d_n\|}, \quad (16)$$

14 where λ_n is an estimate of λ^* at the n th iteration, $\tilde{a}_n = a_n/p_0$ is a step size
15 satisfying (5), and d_n is a subgradient of $g(\lambda)$ at λ_n . From (15) and according to
Proposition 6.1.1 in Bertsekas (2008), an obvious choice of d_n is given by

$$16 d_n = \sum_{k=1}^K \Phi_n^k - \sum_{k=1}^K N^k, \quad (17)$$

17 where $\Phi_n^k, k = 1, \dots, K$ is the optimal solution to (15) at $\lambda = \lambda_n$.

18 Now set $P_n = -p_0 \lambda_n$. We see that Φ_n^k also solves (O_2) at P_n for $k = 1, \dots, K$.
Substituting $\lambda_n = -\frac{P_n}{p_0}$ and (17) into (16), we obtain

$$19 P_{n+1} = P_n + a_n \frac{\sum_{k=1}^K \Phi_n^k - \sum_{k=1}^K N^k}{\|\sum_{k=1}^K \Phi_n^k - \sum_{k=1}^K N^k\|}.$$

20 This implies that our proposed algorithm is identical to a subgradient method for
21 minimizing the function $g(\lambda)$. From the results in subgradient optimization theory
22 (see, e.g., Bonnans *et al.*, 2006), the sequence $\{\lambda_n\}_{n=1}^{\infty}$ generated by (16) converges
23 to λ^* at a sub-linear rate. This observation, together with the result of Theorem 4.2,
implies that $\{P_n\}$ will converge to $-\lambda^* p_0$ at the same rate. \square

J. Tong, J.-Q. Hu & J. Hu

5. Numerical Examples

In this section, we provide some examples to illustrate the performance of our algorithm. In all examples, we set the riskfree interest rate $r = 0.1$, $p_0 = 1$, and $X_0 = 1 + r$. In the implementation of the algorithm, the initial price vector P_0 is set to the arithmetic average of the expected returns of all investors, the gain parameter is taken to be of the form $a_n = a/(n + A)^\beta$ recommended in Spall (2003), where, unless otherwise specified, we set $a = 1$, $A = 100$ and $\beta = 0.51$. The portfolio selection problem (O_2) is solved at each iteration by applying the convex programming package (CVX) in MATLAB. All computational results were obtained on a Intel Dual-Core 2.5GHz CPU Windows machine with 4GB of RAM.

5.1. Testing convergence

Example 1. This example is directly taken from Jarrow (1980). Suppose the market consists of two investors and two stocks. Both individuals have identical risk aversion coefficients given by $\alpha^1 = \alpha^2 = 1$. At $t = 0$, the two investors have endowed shares $N^1 = (1, 0)^\top$ and $N^2 = (0, 1)^\top$ and the following beliefs:

$$E^1[X] = (2, 1)^\top, \quad E^2[X] = (1, 3)^\top, \quad \Sigma^1 = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} \quad \text{and} \quad \Sigma^2 = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}.$$

We consider both cases when short sales are allowed and when short sales are prohibited. Table 1 shows the equilibrium prices and optimal asset allocations obtained by our algorithm under these two respective cases (with error tolerance $\varepsilon = 0.001$). These results conform very well with the analytical solutions reported in Jarrow (1980).^a

To illustrate the convergence behavior of the algorithm, we take the case when short sales are prohibited and consider the approximation error $e_n \doteq \|P_n - P^*\|$ obtained at successive iterations of (4), where P^* is the true equilibrium price vector given by $(10/11, 20/11)^\top$ (see Jarrow (1980)). Figure 1(a) plots the error e_n as a function of the number of algorithm iterations. The figure clearly shows the convergence of the algorithm to P^* , with the approximation error e_n approaching zero as the number of iteration increases.

A test was also performed to try to empirically observe the established asymptotic rate of the algorithm. Note that since this is a small-sized problem, we have used a (different) fast decay rate $\beta = 1$ in the test and run the algorithm for a large number of iterations to better highlight its asymptotic behavior. Figure 1(b) shows the ratio of errors e_{n+1}/e_n versus the number of algorithm iterations. From the figure, we see that the error ratio oscillates from one iteration to another. We believe that this oscillatory behavior is primarily due to the choice of the gain sequence. In

^aThe difference between our results and those in Jarrow (1980) is because that Jarrow assumes $p_0 = 1/(1 + r)$ and $X_0 = 1$, whereas we have used $p_0 = 1$, $X_0 = 1 + r$ in our experiment. If we set $p_0 = 1/(1 + r)$ instead, then the results will be identical.

A Computational Algorithm for Equilibrium Asset Pricing

Table 1. Two investors and two stocks.

Case		Investor 1	Investor 2	Equilibrium price
With short sales	stock 1	1.667	-0.667	1.061
	stock 2	-0.833	1.833	1.667
Without short sales	stock 1	1.000	0.000	0.909
	stock 2	0.000	1.000	1.818

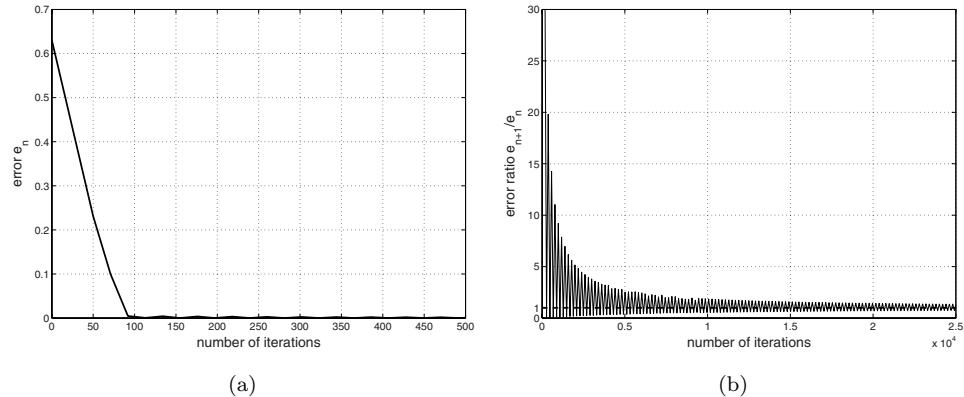


Fig. 1. Convergence of the algorithm.

1 particular, when the search is close to the equilibrium price, the magnitude of the
 2 gain sequence $\{a_n\}$ becomes large relative the magnitude of $\frac{\sum_{k=1}^K \Phi_n^k - \sum_{k=1}^K N^k}{\|\sum_{k=1}^K \Phi_n^k - \sum_{k=1}^K N^k\|}$
 3 (see Eq. (4)), which causes the estimate P_n to bounce around in a small neighborhood
 4 of P^* . Nevertheless, we see that as the gain a_n diminishes (when the number of
 5 iterations gets large), the amplitude of the oscillation decreases and the error ratio
 6 gradually approaches one. This supports the sub-linear convergence rate claimed in
 7 Theorem 4.3.

8 **Example 2.** We consider the market consists of three investors and four stocks.
 9 All investors have identical risk aversion coefficients $\alpha^1 = \alpha^2 = \alpha^3 = 1$. They
 10 have initial endowments $N^1 = (1, 1, 0, 0)^\top$, $N^2 = (0, 0, 1, 0)^\top$, $N^3 = (0, 0, 0, 1)^\top$ and
 11 beliefs $E^1[X] = (3, 4, 1, 4)^\top$, $E^2[X] = (1, 2, 3, 3)^\top$, $E^3[X] = (2, 1, 4, 2)^\top$, and

$$(\Sigma^1; \Sigma^2; \Sigma^3) = \begin{pmatrix} 1 & 1 & 1 & 1 & | & 3 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & | & 1 & 2 & 1 & 1 & 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 & | & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 3 & | & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

12 Note that in contrast to Example 1, this is a comparatively high dimensional
 13 (three investors and four stocks) problem that can no longer be easily solved analyt-
 14 ically using the KKT condition (see, e.g., Jarrow (1980)). From the results reported
 15 in Table 2, we observe that the prices of risky assets may either rise (stocks 2 and 3)

J. Tong, J.-Q. Hu & J. Hu

Table 2. Three investors and four stocks.

Case		Investor 1	Investor 2	Investor 3	Equilibrium
With short sales	stock 1	1.584	-0.591	0.007	0.962
	stock 2	1.271	0.089	-0.361	0.716
	stock 3	-1.409	1.220	1.190	1.706
	stock 4	0.496	0.405	0.098	0.969
Without short sales	stock 1	0.857	0.000	0.143	0.779
	stock 2	0.857	0.143	0.000	0.909
	stock 3	0.000	0.143	0.857	1.948
	stock 4	0.429	0.571	0.000	0.909

1 or fall (stocks 1 and 4) due to short-sale restrictions. This is also consistent with
2 the findings of Jarrow (1980).

3 **5.2. Comparison results**

4 In this subsection, we apply our algorithm to larger problem instances and compare
5 its performance with those of the branch-and-bound method and the interior-point
6 quadratic programming algorithm.

7 The branch-and-bound algorithm is popular in handling equilibrium problems
8 that can be transformed into mathematical programming problems with comple-
9 mentarity constraints. To apply the algorithm, we first formulate our model as a
10 complementarity-constrained problem of the form

$$\min_{P, \{\Phi^k, \lambda^k\}_{k=1}^K} \left\| \sum_{k=1}^K \Phi^k - \sum_{k=1}^K N^k \right\|$$

subject to $\alpha^k \Sigma^k \Phi^k - \left(\mu^k - \frac{1}{p_0} P \right) - \lambda^k = 0,$

$$\lambda_i^k \phi_i^k = 0, \quad i = 1, \dots, J; \quad k = 1, \dots, K$$

$$P \in \Re^J, \quad \Phi^k \geq 0, \quad \lambda^k \geq 0, \quad k = 1, \dots, K$$

11 and then transform it into the following equivalent mixed integer programming
12 problem (see Hu *et al.*, 2012):

$$\min_{P, \{\Phi^k, \lambda^k\}_{k=1}^K} \left\| \sum_{k=1}^K \Phi^k - \sum_{k=1}^K N^k \right\|$$

subject to $\alpha^k \Sigma^k \Phi^k - \left(\mu^k - \frac{1}{p_0} P \right) - \lambda^k = 0,$

$$0 \leq \lambda_i^k \leq \bar{\lambda}_i^k z_i^k,$$

$$0 \leq \phi_i^k \leq (1 - z_i^k) \bar{\phi}_i^k,$$

A Computational Algorithm for Equilibrium Asset Pricing

$$z_i^k \in \{0, 1\},$$

$$P \in \mathfrak{R}^J, \quad \Phi^k \geq 0, \lambda^k \geq 0, \quad k = 1, \dots, K,$$

1 where $\bar{\lambda}_i^k$ and $\bar{\phi}_i^k$ represent the upper bounds on λ_i^k and ϕ_i^k . The problem can then
 2 be solved by using the standard branch-and-bound algorithm. In our numerical
 3 experiments, the bounding constants $\bar{\lambda}_i^k$ and $\bar{\phi}_i^k$ are set to 1,000 for all i and k ,
 4 and we have used the commercial optimization package CPLEX to implement the
 5 algorithm.

6 The use of quadratic programming is motivated by the result of Theorem 4.2,
 7 which states that the equilibrium price vector P^* only differs from the optimal
 8 solution to the dual formulation (11) of (O_3) by a constant factor $-p_0$. Since (O_3)
 9 is a quadratic programming problem, the problem along with its dual (11) can be
 10 conveniently solved using the interior-point quadratic programming algorithm of
 11 the package CVX in MATLAB. The equilibrium price P^* can then be obtained by
 12 simply multiplying the resulting optimal solution λ^* to (11) by $-p_0$.

13 Table 3 shows the performance of the three comparison algorithms on four test
 14 cases with varying numbers of investors and risky assets. Note that since we have
 15 used a sequential implementation of our algorithm, the portfolio selection problem
 16 (O_2) needs to be solved K times in succession at each iteration. Therefore, we have
 17 used a relatively large error tolerance level $\varepsilon = 0.1$ to avoid excessive long running
 18 times of the algorithm when K is large.

19 From the table, we see that both branch-and-bound and the quadratic program-
 20 ming algorithm significantly outperform our algorithm when the market is small.
 21 In particular, in the $(5, 5)$ case, the two alternative algorithms are able to produce
 22 highly accurate solutions in under one second. However, since the worst case com-
 23 plexity of branch-and-bound is the same as that of exhaustive search, the algorithm
 24 may quickly become impractical as the problem size increases. We see that even in
 25 the $(10, 10)$ case, branch-and-bound fails to produce an acceptable solution within
 26 a reasonable amount of time. On the other hand, the quadratic programming algo-
 27 rithm is much more competitive and can be applied to solve relatively large problem
 28 instances with up to a hundred of investors and assets. The complexity of quadratic
 29 programming is generally polynomial in the number of decision variables. Thus, as
 30 the problem size increases from $(10, 10)$ to $(100, 100)$, the number of decision vari-
 31 ables grows by a factor of 1,000, leading to a drastic increase in the running time

Table 3. Comparison results with branch-and-bound and quadratic programming.

(K, J)	Our algorithm		Branch-and-bound		Quadratic programming	
	Time (s)	Error	Time (s)	Error	Time (s)	Error
(5,5)	11.40	0.084	0.54	0	0.93	1.588×10^{-10}
(10,10)	24.26	0.083	N/A	N/A	0.54	4.209×10^{-11}
(100,100)	212.52	0.089	N/A	N/A	178.01	2.404×10^{-10}
(1,000,100)	4060.01	0.079	N/A	N/A	N/A	N/A

J. Tong, J.-Q. Hu & J. Hu

1 of the algorithm. Note that a straightforward implementation of the quadratic pro-
2 gramming algorithm requires the explicit specification and storage of the positive
3 definition matrix appearing in the objective function. This can be an issue for large
4 problems. For example, the algorithm fails to run successfully on the (1,000, 100)
5 case because the size of the matrix reaches $10^5 \times 10^5$, which exceeds the memory
6 capacity of the computer. In contrast, Table 3 shows that the performance of our
7 algorithm is less susceptible to the increases in problem dimension. We see that as
8 the problem size increases from (5, 5) to (100, 100), the running time of the algorithm
9 grows roughly linearly with K . In the (1,000, 100) case, our algorithm terminates in
10 a few tens of iterations with an approximation error of 0.079. This suggests that the
11 computational time of our algorithm is primarily dominated by the time required
12 to solve the K portfolio selection problems. Consequently, the performance of the
13 algorithm can be dramatically improved by employing a parallel implementation
14 scheme that solves the K portfolio selection problems simultaneously.

15 **6. Conclusion**

16 In this paper, we have introduced an algorithm for computing the equilibrium of
17 a capital asset pricing model with heterogeneous investors and market restrictions.
18 The algorithm is not only conceptually simple but also effective and easy to imple-
19 ment. A central contribution of this paper is to prove that our algorithm is essen-
20 tially a subgradient approach for a dual formulation of the problem. We show that
21 the equilibrium prices in our model actually turn out to be the scaled versions of
22 the Lagrangian multipliers of a dual formulation of the problem. This key result
23 enables us to prove the existence of equilibrium, identify sufficient conditions to
24 guarantee its uniqueness, and establish convergence properties of the algorithm.

25 **Acknowledgments**

26 The authors thank the associate editor and three anonymous reviewers for their
27 many helpful comments and suggestions, which have led to a substantially improved
28 paper. This work was supported by the National Natural Science Foundation of
29 China (NSFC) Under Grants 71571048 and 71071040, by the Science and Tech-
30 nology Agency of Sichuan Province Under Grant 2014GZX0002, by the Program
31 for Professor of Special Appointment (Eastern Scholar) at Shanghai Institution
32 of Higher Learning. The work of Jiaqiao Hu was supported by the U.S. National
33 Science Foundation Under Grant CMMI-1634627.

34 **References**

35 Allingham, M (1991). Existence theorems in the capital asset pricing model. *Econometrica*,
36 59, 1169–1174.
37 Arrow, KJ, HD Block and L Hurwicz (1959). On the stability of the competitive equilib-
38 rium, II. *Econometrica*, 21, 82–109.

A Computational Algorithm for Equilibrium Asset Pricing

1 Beber, A and M Pagano (2013). Short-selling bans around the world: Evidence from the
2 2007–09 crisis. *The Journal of Finance*, 68, 343–381.

3 Bertsekas, DP (2008). In *Nonlinear Programming*, 2nd edn., pp. 620–624. Massachusetts:
4 Athena Scientific.

5 Bonnans, J, JC Gilbert, C Lemaréchal and CA Sagastizábal (2006). In *Numerical
6 Optimization: Theoretical and Practical Aspects*, 2nd edn., pp. 127–128. Berlin Hei-
7 delberg: Springer-Verlag.

8 Chen, L, Y Ye and J Zhang (2007). A note on equilibrium pricing as convex optimization.
9 *Internet and Network Economics, Third International Workshop*, 4858, 7–16.

10 Diamond, DW and RE Verrecchia (1987). Constraints on short-selling and asset price
11 adjustment to private information. *Journal of Financial Economics*, 18, 277–311.

12 Eisenberg, E (1961). Aggregation of utility functions. *Management Science*, 7, 337–350.

13 Fama, EF and KR French (2007). Disagreement, tastes, and asset prices. *Journal of Finan-
14 cial Economics*, 83, 667–689.

15 Ginsburgh, V and J Waelbroeck (1979). A note on the simultaneous stability of
16 tâtonnement processes for computing equilibria. *International Economic Review*,
17 20, 367–380.

18 Hens, T, J Laitenberger and A Löffler (2002). Two remarks on the uniqueness of equilibria
19 in the CAPM. *Journal of Mathematical Economics*, 37, 123–132.

20 Hong, H and JC Stein (2003). Differences of opinion, short-sales constraints, and market
21 crashes. *Review of Financial Studies*, 16, 487–525.

22 Hu, J, JE Mitchell, J-S Pang and B Yu (2012). On linear programs with linear complemen-
23 tarity constraints. *Journal of Global Optimization*, 53, 29–51.

24 Jarrow, R (1980). Heterogeneous expectations, restrictions on short sales, and equilibrium
25 asset prices. *The Journal of Finance*, 35, 1105–1113.

26 Lintner, J (1965). The valuation of risk assets and the selection of risky investments in stock
27 portfolios and capital budgets. *The Review of Economics and Statistics*, 47, 13–37.

28 Markowitz, H (1952). Portfolio selection. *The Journal of Finance*, 7, 77–91.

29 Mossin, J (1966). Equilibrium in a capital asset market. *Econometrica*, 34, 768–783.

30 Nielsen, LT (1988). Uniqueness of equilibrium in the classical capital asset pricing model.
31 *Journal of Financial and Quantitative Analysis*, 23, 329–336.

32 Nielsen, LT (1989). Asset market equilibrium with short-shelling. *Review of Economic
33 Studies*, 56, 467–474.

34 Nielsen, LT (1990). Existence of equilibrium in CAPM. *Journal of Economic Theory*,
35 52, 223–231.

36 Sharpe, WF (1964). Capital asset prices: A theory of market equilibrium under conditions
37 of risk. *The Journal of Finance*, 19, 425–442.

38 Spall, JC (2003). In *Introduction to Stochastic Search and Optimization*, pp. 162–164. New
39 Jersey: John Wiley & Sons.

40 Sun, N and Z Yang (2003). *Annals of Economics and Finance*, 4, 51–71.

41 Uzawa, H (1960). Walras' Tâtonnement in the theory of exchange. *The Review of Economic
42 Studies*, 27, 182–194.

43 Walras, L (1954). In *Elements of Pure Economics*, Homewood Irwin: Trans. W. Jaffe.

44 Yang, B, EC Chang and J Wang (2006). Asset prices under short-sale constraints. *Working
45 Paper*, MIT Sloan School of Management.

J. Tong, J.-Q. Hu & J. Hu

1 Biography

2 **Jun Tong** received his B.S. degree in mathematics and applied mathematics from
3 Shanghai University in 2006, the M.S. degree in operations research and cybernetics
4 from Fudan University in 2008, and the PhD degree in management science and
5 engineering from Fudan University in 2017. Dr. Tong's research interests include
6 portfolio selection, capital asset pricing and risk management. He is currently a
7 Postdoctoral Fellow in the school of management at Shanghai University.

8 **JianQiang Hu** is a Professor with the Department of Management Science, School
9 of Management, Fudan University. He received his B.S. degree in applied mathemat-
10 ics from Fudan University, China, and M.S. and PhD degrees in applied mathemat-
11 ics from Harvard University. He was an Associate Professor with the Department
12 of Mechanical Engineering and the Division of Systems Engineering at Boston Uni-
13 versity before joining Fudan University. His research interests include discrete-event
14 stochastic systems, simulation, stochastic optimization, with applications towards
15 supply chain management, financial engineering, and healthcare. He has published
16 over 80 research papers and is a co-author of the book, *Conditional Monte Carlo:*
17 *Gradient Estimation and Optimization Applications* (Kluwer Academic Publish-
18 ers, 1997), which won the 1998 Outstanding Simulation Publication Award from
19 INFORMS College on Simulation. He has been on editorial board of *Automatica*,
20 *OR Transactions*, *Operation Research*, and *IIE Transaction on Design and Manu-*
21 *facturing*.

22 **Jiaqiao Hu** received the B.S. degree in automation from Shanghai Jiao Tong Uni-
23 versity in 1997, the M.S. degree in applied mathematics from the University of
24 Maryland, Baltimore County, in 2001, and the PhD degree in electrical engineering
25 from the University of Maryland, College Park, in 2006. Since 2006, he has been
26 with the Department of Applied Mathematics and Statistics at the State University
27 of New York, Stony Brook, where he is currently an Associate Professor. Dr. Hu's
28 research interests include Markov Decision Process, simulation-based optimization,
29 applied probability, and stochastic modeling and analysis. He is currently associate
30 editors of *Operations Research* and *IIE Transactions*.