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Abstract. Stochastic kriging (SK) and stochastic kriging with gradient estimators (SKG)
are useful methods for effectively approximating the response surface of a simulation
model. In this paper, we show that in a fully sequential setting when all model parameters
are known, the mean squared errors of the optimal SK and SKG predictors are monoton-
ically decreasing as the number of design points increases. In addition, we prove, under
appropriate conditions, that the use of gradient information in the SKG framework gener-
ally improves the prediction performance of SK. Motivated by these findings, we propose
a sequential procedure for adaptively choosing design points and simulation replications
in obtaining SK (SKG) predictors with desired levels of fidelity. We justify the validity of
the procedure and carry out numerical experiments to illustrate its performance.
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1. Introduction
A3
Complex systems arising in supply chain manage-
ment, financial engineering, and telecommunications
frequently require simulation models for performance
estimation. Correct interpretation of simulation out-
puts relies on statistical methods, which often involve
a large number of simulation runs at each system con-
figuration (engineering design). When the cost of sim-
ulation is high and the number of design alternatives is
large, it is often desirable to compromise the accuracy
of a simulation model in favor of good approximations
by using metamodels (i.e., models of simulation mod-
els) to obtain an explicit approximation of simulation
input-output relations. A variety of metamodels have
been studied in the literature, ranging from simple low-
order polynomial regressions to sophisticated models
based on neural networks and radial-basis function
approximations; see, e.g., Barton and Meckesheimer
(2006), Barton (2009), Kleĳnen (2007) and references
therein for a review of different metamodeling tech-
niques. Well-built metamodels consume less resources
than those required by direct simulation and can be
very helpful in expediting the analysis and decision
making process (e.g., Wang 2005, Wang and Shan 2006,
Yang et al. 2011, Chang et al. 2013, Xie et al. 2014).

Kriging is an interpolation-based technique widely
used in developing metamodels. It uses the realization
of a Gaussian random field to model the response sur-
face of an unknown function and has been especially
prominent in the design and analysis of deterministic

simulation experiments; see, e.g., Sacks et al. (1989),
Santner et al. (2003), Wang and Shan (2006), Kleĳnen
(2007, 2009), Viana et al. (2014), Ulaganathan et al.
(2014). In Ankenman et al. (2010), kriging has been
extended to the stochastic setting by explicitly taking
into account the sampling noise inherent in random
simulation. This gives rise to a novel framework called
stochastic kriging (SK) for obtaining metamodels capa-
ble of capturing both intrinsic and extrinsic uncertainty
in the design. More recently, it has been shown in Chen
et al. (2013a), Qu and Fu (2014) that when additional
gradient information is available, the accuracy of meta-
models in SK may be further enhanced by incorporat-
ing gradient estimates, leading to significant improve-
ment in surface prediction.

An important issue in the application of SK and
stochastic kriging with gradient estimators (SKG)
(Chen et al. 2013a) is the selection of design points
in obtaining high-quality metamodels. In practice, this
can be carried out either in a one-shot space-filling way
or through a sequential sampling strategy. The latter
allows the metamodel to be constructed sequentially
as data accumulate so that new design points can be
selected in an adaptive manner based on the updated
metamodel. The benefits of sequential sampling have
been shown in Jin et al. (2002) and Sacks et al. (1989),
under the deterministic simulation setting. In stochas-
tic simulation, however, response values are corrupted
by sampling noise. Thus, a natural question is whether
the added information implied by a new design point
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will actually increase the overall quality of a meta-
model. It is tempting to think that if a large amount
of simulation effort is expended at each design, then a
sequential strategy carefully designed in deterministic
simulation should work equally well in the stochastic
setting. But the key issue to address is how to effec-
tively allocate simulation replications in such a sequen-
tial strategy.

In this paper, we investigate the performance of SK
and SKG metamodels in a fully sequential setting,
where design points are selected one at a time. One
of our main contributions is to show that when all
model parameters are known (or predetermined), the
mean squared error (MSE) of an SK (SKG) predictor
is monotonically decreasing as the number of design
points increases. Thus, an interesting finding of our
study is that the prediction performance of both SK
and SKG models can always be improved by includ-
ing additional design points, regardless of how these
points and simulation replications are allocated. Note
that since SK is an extension of kriging in the stochas-
tic simulation setting, the same monotonicity results
hold also for deterministic kriging models and, conse-
quently, may have immediate applications in analyz-
ing the convergence properties of existing sequential
strategies based on, e.g., optimizing MSE or integrated
MSE (IMSE).

In addition to the above monotonicity results, our
analysis in the SKG case also provides important
insight into the performance gained from using gra-
dient information in the SKG framework. In particu-
lar, by comparing the MSEs of the respective SK and
SKG predictors based on the same set of design points,
we derive closed-form expressions for the reduction
in MSE of SKG over SK under appropriate conditions
on the simulation noises and covariance model. These
lead us to conclude that, compared to SK, the use of
gradient estimators in the SKG framework will in gen-
eral have a positive impact on prediction performance,
resulting in better predictors with smaller MSEs. To
the best of our knowledge, this result has only been
reported in Chen et al. (2013a) under a simplified set-
ting, assuming that gradient information is available
in one coordinate direction and spatial correlations
between distinct design points are negligible.

Based on the monotonicity properties of SK and
SKG, we further propose a design strategy called adap-
tive sequential kriging (ASK) for obtaining an SK (SKG)
metamodel with a prescribed level of accuracy. The
underlying idea is to select the new design point that
achieves the maximum reduction in IMSE at each iter-
ation. To address the simulation allocation issue, we
make the key observation that the quality of an SK
(SKG) predictor at a sampled design point is governed
by the variance of the averaged intrinsic noise at the

point. This suggests a simple rule for allocating sim-
ulation replications, which ensures the overall predic-
tor IMSE to fall below a given threshold as the num-
ber of design points increases. Note that our proposed
procedure for selecting design points resembles the
sequential IMSE approach discussed in Jin et al. (2002)
and Sacks et al. (1989). Thus, by addressing the addi-
tional simulation allocation issue, ASK can essentially
be viewed as an extension of the IMSE approach in
the stochastic simulation setting. Also relevant to our
work is the adaptive exploration-exploitation search
algorithm (AEES) introduced in Ajdari and Mahlooji
(2014). AEES is also sequential in nature and allocates
the simulation budget to design points based on their
estimated intrinsic variances. However, the method
uses a heuristic procedure to balance between explo-
ration and exploitation in searching for new design
points, which is different from ours. We justify the
validity of ASK under the case when all model param-
eters are known. Specifically, by exploiting the mono-
tonicity of SK and SKG, we show that if design points
and simulation replications are allocated according to
ASK, then the resulting predictor will reach a desired
IMSE level in a finite number of iterations. Our pre-
liminary experimental results indicate that our proce-
dure is promising and may significantly outperform
some of the existing approaches based on exploration-
exploitation designs and maximizing MSE.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the notation used in the paper and
outlines the basic mathematical frameworks of SK and
SKG. In Section 3, we establish the monotonicity prop-
erties of SK and SKG predictors and show that SKG
reduces MSE compared to SK. Based on these results,
we introduce the proposed ASK algorithm and jus-
tify its validity in Section 4. We present computational
comparison results in Section 5 and conclude the paper
in Section 6.

2. Stochastic Kriging With and Without
Gradient Estimators

Consider the problem of describing the response sur-
face of an unknown function f (x), x ∈ X, where x
is a vector of design variables and X is a compact
full-dimensional subset of �

d . At each point x, we
assume that the true function value f (x) cannot be
evaluated exactly but can be estimated in a path-wise
manner through stochastic simulation. For computa-
tional tractability, it is also assumed that X is charac-
terized by simple constraints, e.g., box constraints with
known bounding coordinates, so that we have com-
plete knowledge of the underlying design space.

Given a set of design points {x1 , . . . , xk}, after we
replicate ni simulations at each point xi , i � 1, . . . , k,
the performance measures at these k design points can
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be estimated by the vector ȳ� ( ȳ(x1), ȳ(x2), . . . , ȳ(xk))
⊺,

where ȳ(xi)� (1/ni)
∑ni

j�1 y j(xi) and y j(xi) is the simula-
tion output at xi obtained on the jth replication run. In
stochastic kriging, y j(xi) is assumed to take the follow-
ing

A4
form:

y j(xi)� f(xi)
⊺β+ M(xi)+ ǫ j(xi)

� Y(xi)+ ǫ j(xi), (1)

where f: �d → �
p is a vector of user specified basis

functions, β ⊆ �
p is an unknown parameter vector that

needs to be estimated, and M is a realization of a zero
mean second-order stationary random field. Thus, the
response Y(xi) is modeled using a trend term f(xi)

⊺β
representing the mean response value and a noise term
M(xi) quantifying our uncertainty about the unknown
true response at xi . The last term ǫ j(xi) in Equation (1),
often called the intrinsic noise, is primarily used in
stochastic kriging to model the simulation noise in the
jth replication run at xi . Throughout the paper, we
assume that the noise ǫ j(xi) at a design point xi is
independent and identically distributed (i.i.d.) across
replications.

The goal of stochastic kriging is to construct a meta-
model that predicts the response Y(x0) at any x0 ∈X.
Let ΣM be a k × k covariance matrix across all de-
sign points x1 , . . . ,xk with its (i , j)th element given by
Cov[M(xi),M(x j)]. Let ΣM(x0 , ·) � (Cov[M(x0),M(x1)],
. . . ,Cov[M(x0),M(xk)])

⊺ represent the spatial covari-
ances between (an un-sampled point) x0 and all design
points. Let Σǫ be the k × k covariance matrix associated
with the intrinsic simulation noise with (i , j)th element
Cov[ǭ(xi), ǭ(x j)], where ǭ(xi) � (1/ni)

∑ni

j�1 ǫ j(xi) for all
i � 1, . . . , k. We also let F� (f(x1), . . . , f(xk))

⊺ be the k × p
matrix of user defined basis functions.

Under the above notation, it has been shown in
Ankenman et al. (2010) that when β,ΣM(x0 , ·) and ΣM

are known, the MSE-optimal predictor is of the form

ŷ(x0)� f(x0)
⊺β+ΣM(x0 , ·)

⊺(ΣM +Σǫ)
−1(ȳ−Fβ) (2)

and the corresponding optimal MSE is given by

MSE( ŷ(x0))

�ΣM(x0 , x0) −ΣM(x0 , ·)
⊺(ΣM +Σǫ)

−1
ΣM(x0 , ·). (3)

On the other hand, when ΣM(x0 , ·) and ΣM are known,
but β is estimated via the generalized least squares esti-
mator, the MSE-optimal predictor becomes (see, e.g.,
Chen et al. 2013b)

ŷ(x0)� f(x0)
⊺β̂+ΣM(x0 , ·)

⊺(ΣM +Σǫ)
−1(ȳ−Fβ̂), (4)

where β̂ � (F⊺(ΣM + Σǫ)
−1F)−1F⊺(ΣM + Σǫ)

−1ȳ, and the
optimal MSE is

MSE( ŷ(x0))�ΣM(x0 , x0) −ΣM(x0 , ·)
⊺(ΣM +Σǫ)

−1

·ΣM(x0 , ·)+ η
⊺(F⊺(ΣM +Σǫ)

−1F)−1η, (5)

where η � f(x0) −F⊺(ΣM +Σǫ)
−1
ΣM(x0 , ·).

Suppose in addition to simulation outputs y j(xi), one
can also obtain unbiased gradient estimates D j(xi) �

(D1
j (xi), . . . ,D

d
j (xi))

⊺ of f (xi) at xi on the jth repli-
cation run. For such a setting, Chen et al. (2013a)
have introduced an augmented kriging model called
stochastic kriging with gradient estimators that explic-
itly incorporates gradient estimators in constructing
an SK predictor. In particular, let ȳ+ be the aug-
mented response vector containing the sample aver-
ages of simulation outputs and gradient estimates, i.e.,

ȳ+
� ( ȳ(x1), . . . , ȳ(xk), D̄

1
(x1), . . . , D̄

1
(xk), . . . , D̄

d
(x1), . . . ,

D̄
d
(xk))

⊺ with D̄
ℓ
(xi)� (1/ni)

∑ni

j�1 D
ℓ
j (xi) for ℓ � 1, . . . , d.

Define F+
�

(
F
Fd

)
, where Fd is a kd × p matrix containing

the partial derivatives of the basis functions. Let Σ+

M

be a covariance matrix representing the spatial covari-
ances between the random field M and partial deriva-
tives of M at all design points, and let Σ+

M(x, ·) be a vec-
tor containing the covariances between x and all design
points. Let Σ+

ǫ be the covariance matrix of the intrinsic
simulation noises involved in estimating true perfor-
mance measures and gradients at all design points. It
has been shown in Chen et al. (2013a) that when β is
known, the MSE-optimal predictor and its correspond-
ing MSE can be obtained under the SKG framework
by replacing ȳ,ΣM ,Σǫ ,ΣM(x, ·), and F in Equations (2)
and (3) with ȳ+ ,Σ+

M ,Σ
+

ǫ ,Σ
+

M(x, ·), and F+, respectively,
whereas when β is estimated, the optimal predictor
and its MSE can be obtained by doing the same substi-
tutions in Equations (4) and (5).

3. Monotonic Performance of SK and
SKG Predictors

In this section, we analyze the performance of SK
and SKG metamodels under the setting where design
points are selected one at a time, e.g., via a sequen-
tial sampling strategy. Our main result is to show that
under both the SK and SKG frameworks, and when
the parameter vector β is either known or estimated
(assuming all other parameters defining the covari-
ance matrices of the intrinsic and extrinsic noise are
fixed constants), the MSE of the corresponding pre-
dictor is monotonically decreasing as the number of
design points increases. Our analysis proceeds in three
steps. First, we prove the monotonicity of SK by con-
necting the MSEs of the respective SK predictors based
on k and k + 1 design points. We give explicit formulas
showing the degree of reduction in MSE when a new
design point is added to the model. Then, we show
that essentially the same technique (i.e., by comparing
the MSEs of SK and SKG predictors based on the same
design points) can be applied to characterize the pos-
sible reduction in MSE of the SKG predictor over the
standard SK predictor. Finally, we present the mono-
tonicity results in the SKG case, the proofs of which
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follow straightforwardly from the derivations used in
the previous step.

The following condition, due to Ankenman et al.
(2010), is assumed throughout our analysis:

Assumption 1. The random field M is a zero mean second-
order stationary Gaussian random field, and the intrinsic
simulation noises ǫ1(xi), ǫ2(xi), . . . are i.i.d. N(0,V(xi)),
independent of ǫ j(xh) for all j and h , i, and independent
of M.

The condition on the random field M implies that the
covariance between M(xi) and M(x j) can be expressed
in the form Cov[M(xi),M(x j)] � τ2RM(d(xi , x j);θ),
where τ2 > 0 is the bounded variance of M(x) at all x,
and RM is the correlation function that depends on the
distance d(xi , x j) between xi and x j and an unknown
parameter vector θ that needs to be estimated. The
independence of the simulation noise across all design
points excludes the use of common random numbers; it
implies that the covariance matrixΣǫ is a positive semi-
definite diagonal matrix. We assume that the correla-
tion function RM(d ,θ) is continuous in its first argu-
ment d and satisfies RM(0,θ)� 1 and limd→∞ RM(d ,θ)�
0. In addition, we also assume that the variance func-
tion V(x) is uniformly bounded for all x ∈X.

Unless otherwise specified, we use the subscript k to
signify the quantities obtained based on a given set of
k design points {x1 , . . . , xk}. Similarly, if a new design
point xk+1 is added to an SK (SKG) model, we will use
the subscript k + 1 to denote any quantity that applies
to the set {x1 , . . . , xk , xk+1}. In addition, any quantity
related to SKG is further distinguished using the “+”
symbol.

3.1. Stochastic Kriging

To show the monotonicity of SK predictors, we need
the following intermediate result.

Lemma 1. If Assumption 1 holds, then the matrix (ΣMk
+

Σǫk
)−1 is positive definite for all k.

Proof. See Section 1 of the online supplement. �

Let x0 be a prediction point, ŷk(x0) be the SK pre-
dictor constructed using Equation (2) based on a set
of k design points {x1 , x2 , . . . , xk}, and let ŷk+1(x0) be
the resulting predictor when a new design point xk+1

is included in the set. The following result shows that
the MSE of ŷk+1(x0) cannot be greater than the MSE
of ŷk(x0).

Theorem 1. Suppose that xk+1 < {x1 , . . . , xk}. For any pre-
diction point x0 ∈ X, let MSE( ŷk(x0)) and MSE( ŷk+1(x0))
denote the MSEs of the predictors ŷk(x0) and ŷk+1(x0) con-
structed using Equation (2). If Assumption 1 holds, then
MSE( ŷk(x0)) ≥ MSE( ŷk+1(x0)).

Proof. See Section 2 of the online supplement. �

The next result shows that the conclusion of The-
orem 1 still holds true when the predictors are con-
structed using Equation (4). Its proof appears in
Section 3 of the online supplement.

Theorem 2. Suppose that xk+1 < {x1 , . . . , xk}. For any pre-
diction point x0 ∈ X, let MSE( ŷk(x0)) and MSE( ŷk+1(x0))

denote the MSEs of the predictors ŷk(x0) and ŷk+1(x0) con-
structed using Equation (4). If Assumption 1 holds and Fk

has full column rank, then MSE( ŷk(x0)) ≥ MSE( ŷk+1(x0)).

3.2. Stochastic Kriging with Gradient Estimators

Let ȳ+ and D̄
ℓ
(xi) � (1/ni)

∑ni

j�1 D
ℓ
j (xi) be defined as in

Section 2. In the SKG framework proposed in Chen
et al. (2013a), each (partial) gradient estimator D

ℓ
j (xi),

ℓ � 1, . . . , d, is assumed to take the form

D
ℓ
j (xi)�

∂Y(xi)

∂xℓ
+ ζℓj (xi)�

(
∂f(xi)

∂xℓ

)⊺
β+
∂M(xi)

∂xℓ
+ ζℓj (xi)

� Dℓ(xi)+ ζ
ℓ
j (xi), (6)

where ζℓj (xi), ℓ � 1, . . . ,d are the simulation noises as-
sociated with gradient estimators at xi . We sepa-
rate the averaged simulation responses from gradi-
ent estimators in the augmented response vector ȳ+

and rewrite it as: ȳ+
� (ȳ⊺ ,D̄

⊺
)⊺, where ȳ � ( ȳ(x1),

. . . , ȳ(xk))
⊺ and D̄ � (D̄

1
(x1), . . . ,D̄

1
(xk), . . . ,D̄

d
(x1), . . . ,

D̄
d
(xk))

⊺. It is easily seen that when gradient infor-
mation is incorporated, the sum of the spatial covari-
ance matrix Σ+

M (between M and its partial deriva-
tives) and the simulation noise covariance matrix Σ+

ǫ

is simply the covariance matrix of the augmented
response vector ȳ+, i.e., Σ+

M + Σ
+

ǫ � E[(ȳ+−E[ȳ+]) ×

(ȳ+−E[ȳ+])⊺]. Let Σy ,d �E[(ȳ−E[ȳ])(D̄−E[D̄])⊺] be the
k × kd cross-covariance matrix between the averaged
simulation responses and gradient estimators. Denote
by Σd ,d � E[(D̄−E[D̄])(D̄−E[D̄])⊺] the kd × kd covari-
ance matrix of the averaged gradient estimators at
all design points. For a given prediction point x,
we define the covariance vector between x and all
design points asΣ+

M(x, ·)�(ΣM(x, ·)⊺ ,ΣM,d(x, ·)
⊺)⊺, where

ΣM,d(x, ·)� (Cov[Y(x),D1(x1)], . . . ,Cov[Y(x),D1(xk)], . . . ,
Cov[Y(x),Dd(x1)], . . . ,Cov[Y(x),Dd(xk)])

⊺ andΣM(x, ·)�
(Cov[Y(x),Y(x1)], . . . ,Cov[Y(x),Y(xk)])

⊺. We also let
F+

� (F⊺ ,F⊺
d
)⊺, where Fd � (∂f(x1)/∂x11 , . . . , ∂f(xk)/∂xk1 ,

. . . , ∂f(x1)/∂x1d , . . . , ∂f(xk)/∂xkd)
⊺. We make the follow-

ing assumptions in our subsequent analysis.

Assumption 2. The simulation noises associated with the
gradient estimators ζℓ1(xi), . . . , ζ

ℓ
ni
(xi) are i.i.d. with mean

zero and variance V ℓζ (xi) , Var(ζℓj (xi)) for ℓ � 1, . . . , d,
independent of the random process M and its derivative pro-
cesses. In addition, V ℓζ (x) is uniformly bounded on X for

all ℓ, and the noises ǫl(xi) and ζℓ
h
(x j) are independent for all

i , j and l , h.
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Assumption 3. The mean function f(x)⊺β is differentiable
and the second-order mixed derivative of RM(d(xi , x j),θ)
exists and is continuous.

Note that under Assumptions 1 and 2, noise terms
with different replication indices or design points are
assumed to be independent, and correlation only exists
between ǫ j(xi) and ζℓj (xi) at the same design point xi

within the same replication j. Assumption 3 guaran-
tees that the Gaussian process M has differentiable
sample paths and ensures the validity of (6). By the
linearity of the differential operator, the first order par-
tial derivative process Dℓ(xi), ℓ � 1, . . . , d of Y(xi) is also
Gaussian; see e.g., Chen et al. (2013a). Thus, it is natural
to also assume the following condition.

Assumption 4. The vector (Y(x1), . . . ,Y(xk),D
1(x1), . . . ,

D1(xk), . . . ,D
d(x1), . . . ,D

d(xk))
⊺ has a joint normal distri-

bution with covariance matrix Σ+

Mk
.

The main results of this section are given in Theo-
rems 3 and 4, which state that a k-point predictor con-
structed under the SKG framework performs at least
as well as the standard SK predictor based on the
same design points. Since the comparison is made with
respect to the same set of points, we omit the sub-
script k in these theorems for simplicity.

Theorem 3. Let ŷ(x) be the SK predictor constructed
using (2) and let ŷ+(x) be the SKG predictor obtained by
substituting ȳ+, Σ+

M , Σ+

ǫ , Σ
+

M(x, ·), and F+ for ȳ, ΣM , Σǫ,
ΣM(x, ·), and F in Equation (2). If Assumptions 1–4 hold,
then MSE( ŷ(x)) ≥ MSE( ŷ+(x)) for any x ∈X.

Proof. See Section 4 of the online supplement. �

The following result shows that the conclusion of
Theorem 3 still holds true when SKG predictors are
constructed using Equation (4). Its proof is given in
Section 5 of the online supplement.

Theorem 4. Let ŷ(x) be the SK predictor constructed using
(4) and ŷ+(x) be the SKG predictor obtained by substitut-
ing ȳ+ ,Σ+

M ,Σ
+

ǫ ,Σ
+

M(x, ·), and F+ for ȳ,ΣM ,Σǫ ,ΣM(x, ·),
and F in Equation (4). If F has full column rank and
Assumptions 1–4 hold, then MSE( ŷ(x)) ≥ MSE( ŷ+(x)) for
any x ∈X.

Given a set of design points {x1 , . . . , xk}, consider
a prediction point x0 < {x1 , . . . , xk}. Let ŷ+

k
(x0) be the

SKG predictor constructed using Equation (2) based
on the set of k design points {x1 , . . . , xk} and ŷ+

k+1
(x0)

be the resulting predictor when a new design point
xk+1 is included in the set. We now establish the mono-
tonic performance of the SKG predictor by showing
that ŷ+

k+1
(x0) has a smaller MSE than ŷ+

k
(x0).

Similar to Section 3.1, let ȳ+

k+1
be the augmented

response vector when k + 1 design points are avail-
able. In ȳ+

k+1
, we separate the averaged response and

gradient estimators at xk+1 from those of the rest k

design points. In particular, we define ȳ+

1 � ( ȳ(xk+1),

D̄
1
(xk+1), . . . , D̄

d
(xk+1))

⊺ and write

ȳ+

k+1 �
(
ȳ(x1), . . . , ȳ(xk+1), D̄

1
(x1), . . . , D̄

1
(xk+1), . . . ,

D̄
d
(x1), . . . , D̄

d
(xk+1)

)⊺

�

(
ȳ(x1), . . . , ȳ(xk), D̄

1
(x1), . . . , D̄

d
(xk),

ȳ(xk+1), D̄
1
(xk+1), . . . , D̄

d
(xk+1)

)⊺

�

(
ȳk

+⊺ , ȳ1
+⊺
)⊺
.

For brevity, we also define the following notation:

Σ
+

Mk+1
+Σ

+

ǫk+1
� E[(ȳ+

k+1 −E[ȳ+

k+1])(ȳ
+

k+1 −E[ȳ+

k+1])
⊺],

Σ
+

Mk
+Σ

+

ǫk
� E[(ȳ+

k −E[ȳ+

k ])(ȳ
+

k −E[ȳ+

k ])
⊺],

Σ
+

k , 1 � E[(ȳ+

k −E[ȳ+

k ])(ȳ
+

1 −E[ȳ+

1 ])
⊺],

Σ
+

1, 1 � E[(ȳ+

1 −E[ȳ+

1 ])(ȳ
+

1 −E[ȳ+

1 ])
⊺],

Σ
+

Mk+1
(x, ·)

�

(
Cov(Y(x),Y(x1)), . . . ,Cov(Y(x),Y(xk)),

Cov(Y(x),D1(x1)), . . . ,Cov(Y(x),D1(xk)),

. . . ,Cov(Y(x),Dd(x1)), . . . ,Cov(Y(x),Dd(xk)),

Cov(Y(x),Y(xk+1)),Cov(Y(x),D1(xk+1)),

. . . ,Cov(Y(x),Dd(xk+1))
)⊺

,
(
Σ

+

Mk
(x, ·)⊺ ,Σ+

M1
(x, ·)⊺

)⊺
, (7)

F+

k+1 �

(
f(x1), . . . , f(xk+1),

∂f(x1)

∂x1

, . . . ,
∂f(xk+1)

∂x1

, . . . ,

∂f(x1)

∂xd

, . . . ,
∂f(xk+1)

∂xd

)⊺

�

(
f(x1), . . . , f(xk),

∂f(x1)

∂x1

, . . . ,
∂f(xk)

∂x1

, . . . ,
∂f(x1)

∂xd

,

. . . ,
∂f(xk)

∂xd

, f(xk+1),
∂f(xk+1)

∂x1

, . . . ,
∂f(xk+1)

∂xd

)⊺

, (F+

k
⊺
,F+

1
⊺
)⊺ . (8)

Note that in (7), Σ+

Mk
(x, ·) is a k(d + 1) × 1 vector and

Σ
+

M1
(x, ·) is a (d + 1)×1 vector, and in (8), F+

k is a k(d + 1)
× p matrix and F+

1 is a (d + 1) × p matrix.

Corollary 1. Suppose that xk+1 < {x1 , . . . , xk}. For any pre-
diction point x0 ∈ X, let ŷ+

k
(x0) and ŷ+

k+1
(x0) be SKG pre-

dictors constructed using Equation (2). If Assumptions 1–4
hold, then MSE( ŷ+

k
(x0)) ≥ MSE( ŷ+

k+1
(x0)).

Proof. The proof follows straightforwardly by replac-
ing MSE( ŷ(x)), MSE( ŷ+(x)), (Σ+

M +Σ
+

ǫ ), (ΣM +Σǫ), Σy , d ,
Σd , d , Σ+

M(x, ·), ΣM(x, ·), and ΣM, d(x, ·) in the proof of
Theorem 3 with MSE( ŷ+

k
(x0)), MSE( ŷ+

k+1
(x0)), (Σ

+

Mk+1
+

Σ
+

ǫk+1
), (Σ+

Mk
+Σ

+

ǫk
), Σ+

k , 1
, Σ+

1, 1, Σ
+

Mk+1
(x0 , ·), Σ

+

Mk
(x0 , ·), and

Σ
+

M1
(x0 , ·), respectively. We omit the details. �

Similarly, when SKG predictors are constructed by
using Equation (4), we have the same monotonicity
property.
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Corollary 2. Suppose that xk+1 < {x1 , . . . , xk}. For any pre-
diction point x0 ∈ X, let ŷ+

k
(x0) and ŷ+

k+1
(x0) be SKG pre-

dictors constructed using Equation (4). If Assumptions 1–4
hold and F+

k has full column rank, then MSE( ŷ+

k
(x0)) ≥

MSE( ŷ+

k+1
(x0)).

Proof. The proof is identical to the proof of Theorem 4
with MSE( ŷ+

k
(x0)), MSE( ŷ+

k+1
(x0)), (Σ

+

Mk+1
+Σ

+

ǫk+1
), (Σ+

Mk
+

Σ
+

ǫk
), Σ+

k , 1
, Σ+

1, 1, Σ
+

Mk+1
(x0 , ·), Σ

+

Mk
(x0 , ·), Σ

+

M1
(x0 , ·), F+

k+1, F+

k ,
F+

1 replacing MSE( ŷ(x)), MSE( ŷ+(x)), (Σ+

M +Σ
+

ǫ ), (ΣM +

Σǫ), Σy , d , Σd , d , Σ+

M(x, ·), ΣM(x, ·), ΣM, d(x, ·), F+, F, Fd . �

4. An Adaptive Sequential Kriging Method
Given a set of design points {x1 , . . . , xk} and the num-
bers of simulation replications {n1 , . . . , nk} allocated to
each point, let ỹk(x) be the SK predictor (i.e., ỹk(x) ,
ŷk(x)) or SKG predictor (i.e., ỹk(x) , ŷ+

k
(x)) constructed

using (4). Since ỹk(x) aims to provide a global fit of an
unknown response surface, the integrated MSE (IMSE)

IMSE(k) ,

∫

x∈X

MSE( ỹk(x)) dx (9)

serves as a useful criterion to measure the quality of
the model over the design space. In the setting when
the total simulation budget N is fixed and the num-
ber of design points K is specified, Ankenman et al.
(2010) propose a two-stage design strategy that uses
a small number m of predetermined design points to
estimate model parameters (e.g., V(x), τ2, and θ) and
then jointly selects the rest of the K − m design points
and allocation of replications to minimize an estimated
IMSE. To avoid solving a high-dimensional non-linear
optimization problem at the second stage, the authors
recommend

A5
choosing the remaining design points in

a space-filling way. Thus, the emphasis of the strat-
egy is focused on efficient allocation of simulation
replications.

In this section, we consider the alternative setting
of sequentially selecting design points and simulation
replications in order to attain a desired IMSE target
ε > 0. To address the simulation allocation issue, we
show in Section 4.1 that under both the SK and SKG
frameworks, the optimal predictor MSE at a design
point xi is dominated by the variance of the averaged
intrinsic noise at xi

MSE( ỹk(xi)) ≤
V(xi)

ni

. (10)

In addition, the MSE is continuous in the sense that
MSE( ỹk(x)) will stay close to MSE( ỹk(xi)) for any new
location x sufficiently close to xi . Consequently, to
ensure the overall IMSE to fall below a given thresh-
old ε (as the number of design points becomes large),
it is sufficient to have MSE( ỹk(xi)) < ε/|X| at all sam-
pled design points xi , where |X| is the volume of X.

This, together with (10), leads to the condition ni �

⌈(V(xi)|X|)/ε⌉, suggesting that ni should be chosen
A6
proportionally to the intrinsic variance at xi , where ⌈a⌉
indicates the smallest integer that is greater than a.

Motivated by the monotonicity results derived in
Section 3, once the number of simulation replica-
tions at a design point is determined, we consider
an adaptive sequential approach that maximizes the
difference between successive IMSEs at each itera-
tion. In particular, given {x1 , . . . , xk} and {n1 , . . . , nk},
we consider selecting the next design point xk+1 with
nk+1 � ⌈(V(xk+1)|X|)/ε⌉ replications allocated to it that
achieves the maximum reduction in IMSE at each
iteration:

xk+1 � argmax
x∈X

(IMSE(k) − IMSE(k + 1))

� argmax
x∈X

∫

x0∈X

(MSE( ỹk(x0)) −MSE( ỹk+1(x0))) dx0

� argmin
x∈X

∫

x0∈X

MSE( ỹk+1(x0)) dx0 , (11)

where MSE( ỹk+1(x0)) (and hence IMSE(k+1)) is viewed
as a function of the new location x. The last equality
follows because MSE( ỹk(x0)) is constant with respect to
the decision variable x.

The above discussion assumes that the intrinsic
variance function V(x) is known. In practice, it can
be estimated by applying the approach outlined in
Ankenman et al. (2010), which uses the standard
(deterministic) kriging method to fit a spatial corre-
lation model of the form V(x) � σ2

+ Z(x) with Z
being another mean zero stationary random field that
is independent of M. Specifically, since V(x) is not
directly observable, the intrinsic variance V(xi) at a
design point xi is replaced by its sample variance cal-
culated using the ni simulation observations at xi . The
estimates of V(xi) are then used in (4) to construct
an optimal MSE predictor V̂(x) by simply ignoring
the intrinsic noise. Once V̂(x) is obtained, the rest of
the parameters (β, τ2 ,θ) can be estimated in the way
described in Ankenman et al. (2010) by constructing
the log-likelihood function and then applying a stan-
dard non-linear optimization algorithm to search for
the maximum likelihood estimators of (β, τ2 ,θ). The
same techniques can also be used to estimate the model
parameters in the SKG framework; we refer the reader
to Chen et al. (2013a) for more details.

To summarize, we proposed the following strategy,
which we refer to as adaptive sequential kriging (ASK),
for obtaining experiment designs in constructing an SK
(SKG) predictor with a predefined level of accuracy:

Step 0. Specify an IMSE target ε > 0, a set of initial
space-filling design points {x1 , . . . , xm}, and numbers
of simulation replications {n1 , . . . , nm}. Collect output
performance measures (including gradient informa-
tion if using SKG) at each xi . Set k � m.
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Step 1. Fit V̂ (and V̂ ℓζ for all ℓ) and construct MLEs

(β̂k , τ̂
2
k
, θ̂k) using all performance measures collected

thus far.
Step 2. Choose the next design point xk+1 as

xk+1 � argmin
x∈X

∫

x0∈X

�MSE( ỹk+1(x0)) dx0 ,

where �MSE( ỹk+1(x0)) is an estimator of MSE( ỹk+1(x0));
see Remark 3.

Step 3. Allocate nk+1 � ⌈(V̂(xk+1)|X|)/ε⌉ replications
to xk+1, collect output performance measures at xk+1,

and calculate �MSE( ỹk+1(x0)) by incorporating the new
design point xk+1 into the current model.

Step 4. If �IMSE(k + 1) , ∫x0∈X
�MSE( ỹk+1(x0)) dx0 ≤ ε,

then terminate; otherwise set k � k +1 and go to step 1.

Remark 1. When IMSE is used as an error measure,
the prediction performance depends on the volume
of the design space (see (9)). However, in practice, it
might be desirable to have a performance measure that
does not rely on X. One simple choice of such a mea-
sure is to consider the average IMSE (AIMSE) obtained
by normalizing the IMSE with respect to the volume
of the design space |X|. It is easy to see that if the
desired accuracy ε in the initialization step of ASK is
instead specified using AIMSE, then the choice of nk+1

at Step 3 simplifies to nk+1 � ⌈V̂(xk+1)/ε⌉, which no
longer depends on |X|. The two performance measures
IMSE and AIMSE are only different in terms of their
implementations, but are equivalent in theory.

Remark 2. In (deterministic) kriging, the estimation of
model parameters requires the calculation of the deter-
minant and inverse of the covariance matrixΣM . Some-
times, e.g., when some design points are very close
to each other, ΣM may become ill-conditioned or near-
singular, leading to numerical instability or a signifi-
cant loss of accuracy in parameter estimation. Note that
since Σǫ(xk+1 , xk+1) � V(xk+1)/nk+1, the choice of nk+1 at
Step 3 leads to an almost constant simulation precision
at all sampled design points. In view of (3) and (5),
this effect is equivalent to introducing a nugget ε in the
model, where ε corresponds to a prescribed AIMSE
threshold (see Remark 1). Thus, to avoid the parame-
ter estimation issue, the value of ε can be selected to
ensure that the matrix ΣM + εI is well-conditioned. For
example, one approach as discussed in Ranjan et al.
(2011) is to choose ε such that the condition number of
ΣM + ǫI is smaller than a certain prescribed (very large)
threshold. In our numerical experiments conducted in
Section 5, we set ε to 0.01, which keeps the matrix
ΣM + εI far from being ill-conditioned.

Remark 3. Recall from (11) that at any candidate
design point x, the number of simulation replica-
tions at x is predetermined by ⌈(V(x)|X|)/ε⌉ so that

MSE( ỹk+1(x0)), as well as IMSE(k + 1), can be viewed
as a function of x. However, since the model param-
eters are estimated, the IMSE(k + 1) in (11) is esti-
mated at Step 2 of the algorithm via the inte-

gral ∫x0∈X
�MSE( ỹk+1(x0)) dx0, where at a given point x,

�MSE( ỹk+1(x0)) is the plug-in estimator of MSE( ỹk+1(x0))
obtained by replacing in (5) the true intrinsic variance
V(x) with V̂(x) and the true model parameters β, τ2,
and θ with their corresponding MLEs β̂k , τ̂

2
k
, and θ̂k .

The value of the integral can then be approximated by
numerical integration (e.g., Gaussian quadrature; see
Section 5) or Monte Carlo methods.

Remark 4. Note that although the plug-in estimator
�MSE( ỹk+1(x0)) is easy to implement, a potential draw-
back of the estimator is that it tends to underestimate
the true predictor MSE (when taking into account the
fact that model parameters are estimated; see, e.g.,
den Hertog et al. 2006). Consequently, the true predic-

tor IMSE may also be underestimated by �IMSE(k + 1)
at Step 4, causing early stopping of the algorithm. It
is very difficult to theoretically quantify the estima-

tion error of �IMSE(k + 1). If the early stopping issue
is of practical concern, a parameterized bootstrapping
method can be employed to obtain an empirical esti-
mate of the correct predictor MSE at Step 4; we refer
the reader to den Hertog et al. (2006) for more details.

4.1. Validity of ASK

In this section, we justify the validity of the proposed
ASK algorithm under the idealized setting when all
model parameters are known. In particular, by exploit-
ing the monotonicity properties derived in Section 3,
we show that if the design points and simulation repli-
cations are sequentially determined according to the
ASK procedure, then the IMSE of the resulting pre-
dictor can be made smaller than a given threshold by
increasing the number of design points.

To establish our main result, we state a list of lem-
mas and corollaries, which show that under both the
SK and SKG frameworks and when either β is known
or estimated, the optimal predictor MSE at a sampled
design point xi is always upper bounded by the right-
hand-side of (10); moreover, for a design point xi with a
small MSE value, the MSE at any point in the vicinity of
xi will also stay small. The proofs of these results can be
found in the online supplement. Not surprisingly, these
results are consistent with our understanding of deter-
ministic kriging models where the predictor variance
is zero at all design locations; see, e.g., Vazquez and
Bect (2010). Note that for simplicity, we have assumed
a constant trend model f(x)⊺β� β (i.e., p � 1, f(x)� 1 ∀x
and F� 1k) in our analysis.

Lemma 2. Given a set of design points {x1 , . . . , xk}, let
ŷ(x) be the SK predictor constructed using (2). Let Br(x)
be an open ball centered at x with radius r > 0. For any
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xi ∈ {x1 , . . . , xk} and ε > 0, if Assumption 1 holds and ni >
V(xi)/ε, then (a) MSE( ŷ(xi)) < ε; (b) there exists an ri > 0
such that MSE( ŷ(x)) < ε for all x ∈ Bri

(xi) ∩X.

Corollary 3. Given a set of design points {x1 , . . . , xk}, let
ŷ(x) be the SK predictor constructed using (4). For any
xi ∈ {x1 , . . . , xk} and ε > 0, if Assumption 1 holds and ni >
V(xi)/ε, then (a) MSE( ŷ(xi)) < ε; (b) there exists an ri > 0
such that MSE( ŷ(x)) < ε for all x ∈ Bri

(xi) ∩X.

Lemma 3. Given a set of design points {x1 , . . . , xk}, let
ŷ+(x) be the SKG predictor constructed using (2). For any
xi ∈ {x1 , . . . , xk} and ε > 0, if Assumptions 1–4 hold and
ni > V(xi)/ε, then (a) MSE( ŷ+(xi)) < ε; (b) there exists an
ri > 0 such that MSE( ŷ+(x)) < ε for all x ∈ Bri

(xi) ∩X.

Corollary 4. Given a set of design points {x1 , . . . , xk}, let
ŷ+(x) be the SKG predictor constructed using (4). For any
xi ∈ {x1 , . . . , xk} and ε > 0, if Assumptions 1–4 hold and
ni > V(xi)/ε, then (a) MSE( ŷ+(xi)) < ε; (b) there exists an
ri > 0 such that MSE( ŷ+(x)) < ε for all x ∈ Bri

(xi) ∩X.

Proof. Follows directly from Corollary 3 and Theo-
rem 4. �

The previous results indicate that for every design
point xi generated by ASK, there exists an open ball
Bri

(xi) so that the MSE at any point in the ball can be
made small. Intuitively, since ASK minimizes IMSE at
each step, new design points should be chosen in the
complement of the union of these open balls. Thus, as
new points are generated, the collection of open balls
increases and will cover the entire (compact) design
space in finite time, at which point the desired IMSE
target is attained. This intuition leads to the following
main theorem of this section. Its proof appears in Sec-
tion 9 of the online supplement.

Theorem 5. Let x1 , x2 , . . . be the sequence of design points
generated by the ASK algorithm and ε > 0 be a given toler-
ance. Suppose that Assumptions 1–4 hold and the number
of simulation replications ni > (V(xi)|X|)/ε for all i, then
limk→∞ IMSE(k) ≤ ε.

5. Numerical Examples
In this section, we conduct some computational exper-
iments to illustrate the performance of the proposed
ASK procedure. We consider two sets of examples: an
M/M/1 queue and five deterministic functions with
added noise. In both cases, the performance of ASK is
compared with those of AEES and the sequential MSE
(SMSE) approach adapted from deterministic simu-
lation. AEES uses an adaptive weighing approach to
maintain a balance between explorative and exploita-
tive

A7
searches of the design space and allocates a sim-

ulation budget to design points proportionate to their
estimated intrinsic variances. SMSE employs the same
simulation allocation rule as in ASK but adaptively
selects the design point that achieves the maximum

MSE at each step. In both ASK and SMSE, the optimal
design point selection problem is solved using a global
optimization algorithm proposed in Hu and Hu (2011).

In all comparison procedures, the SK (SKG) pre-
dictors are constructed using an (unknown) constant
trend model with a Gaussian correlation function
RM(d(xi , x j),θ)� exp(−Σd

ℓ�1θℓ(xiℓ−x jℓ)
2), where θℓ and

xiℓ are the respective ℓth components ofθ and xi . There
are many other choices of the correlation function; the
interested reader is referred to Xie et al. (2010) for an
empirical analysis on how the choice of correlation
function may affect the prediction quality of a krig-
ing model. The variance functions V and V ℓζ are fitted
using the standard kriging models assuming the same
correlation structure. Since the true response curves of
all test functions are known, the performance of a pre-
dictor is measured by the average integrated squared
error (AISE), defined by

AISE�

∫
x∈X

( f (x) − ŷ(x))2 dx

|X|
, (12)

which compares the true response value with the
metamodel-predicted response value. Throughout our
experiments, the integral in (12) and those in Steps 2
and 4 of the algorithm are evaluated by a 7-point Gaus-
sian quadrature rule. For example, a one dimensional
integral ∫

b
a g(x) dx is approximated by the weighted

sum 1
2
(b − a)

∑7
i�1 wi g(

1
2
(b − a)xi +

1
2
(a + b)), whereas

in two dimensions, ∫
b
a ∫

d
c g(x , y) dx dy ≈ 1

4
(b − a) ×

(d − c)
∑7

i�1

∑7
j�1 wi w j g(

1
2
(b − a)xi +

1
2
(a + b), 1

2
(d − c)yi +

1
2
(c + d)), where the quadrature points xi , yi and

weights wi , i � 1, . . . , 7canbe foundin,e.g.,Abramowitz
and Stegun (1972). A similar rule can be given for a
3-dimensional region.

5.1. An M/M/1 Queueing Example
This example is taken from Ankenman et al. (2010).
Consider an M/M/1 queue with service rate 1 and
arrival rate x ∈ (0, 1). Let f (x) be the long run expected
number of customers in system. Elementary queueing
theory shows that f (x)� x/(1−x). Our goal is to model
the response surface f (x) over the domain [0.05, 0.95]
in a stochastic simulation setting. For a given arrival
rate x, the response value f (x) can be estimated via
the time-average f̄ (x)� (1/t) ∫ t

0 Ns(x) ds by performing
a single simulation run, where Ns is the number of
observed customers in system at time s.

In the implementation of ASK, we have used an
AIMSE target of 0.01 and 5 initial space-filling design
points over [0.05, 0.95]. The same 5 initial points are
also used in both AEES and SMSE. At each initial
design point, we perform 100 independent simulation
runs of length t � 1,000 time units. Each simulation run
is initiated by sampling from the steady-state distribu-
tion to eliminate the initial transience. Thus, it is rea-
sonable to assume that the estimator f̄ (x) is unbiased.
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Table 1.
A9
AISEs (Mean± SE) Obtained and the Respective

Numbers of Simulation Replications and Design Points
(Mean± SE) Required by ASK, AEES, and SMSE on the
M/M/1 Queueing Example When the AIMSE Reaches 0.01

ASK AEES SMSE

AISE 9.4e−3± 5.8e−4 4.4e−3± 2.5e−4 1.3e−2± 1.6e−3
# replications 754.3± 78.9 1,984.5± 32.2 924.2± 13.7
# design points 13± 0.3 25± 0.5 19± 0.5

Note. All results are based on 100 independent runs.

Table 2. AISEs (Mean± SE) Obtained and the Respective
Numbers of Simulation Replications and Design Points
(Mean± SE) Required by ASK, AEES, and SMSE on the
M/M/1 Queueing Example When the AISE Reaches 0.01

ASK AEES SMSE

AISE 7.3e−3± 5.7e−4 9.4e−3± 5.5e−4 8.9e−3± 4.6e−4
# replications 786.3± 69.4 1,674.2± 23.4 1,239.8± 20.3
# design points 14± 0.5 23± 0.4 23± 0.5

Note. All results are based on 100 independent runs.

Each comparison algorithm is then repeated indepen-
dently 100 times.

A8
Table 1 shows the AISE values obtained, along with

the numbers of simulation replications and design
points required by these procedures upon termination.
From the table, we see that the mean AISE obtained by
ASK upon stopping is very close to the AIMSE target,
whereas those obtained by AEES and SMSE are slightly
different from the AIMSE target. Therefore, in order to
have a fair efficiency comparison, we have performed
another experiment that runs each algorithm until the
true AISE drops below 0.01. The performances of the
three algorithms are reported in Table 2. In Figure 1(a),
we also plot the mean AISEs (in logarithmic scale)
obtained by these procedures as functions of the num-
ber of new design points selected. The fitted response
surfaces (averaged over 100 runs) are plotted in Fig-
ure 1(b).

From the figure, we observe that all three algorithms
show a similar initial improvement in AISE. As the
number of design points increases, the performance
of ASK is consistently improving and surpasses the
other two competing algorithms after about five design
points. AEES shows a very slow improvement in AISE
when the number of design points is less than 13.
We conjecture that this is related to the rapid increase
of the response surface f (x) when the arrival rate x
becomes large (say exceeds 0.9). The search for new
design points in AEES relies on a discretization method
that resembles the space-filling strategy. Thus, when
the number of design points is small, a coarse dis-
cretization of the design space may cause the algorithm
to fail to capture the extreme trend of f (x) over small

intervals (when x is large), leading to poor initial per-
formance. Table 2 shows that ASK terminates with the
smallest mean AISE value by using the least numbers
of simulation replications and design points. Note that
both ASK and SMSE use the same simulation alloca-
tion rule and differ only in the way the design points
are selected. This indicates that, in addition to the allo-
cation of simulation replications, careful selection of
design points is equally important and may have a sig-
nificant impact on predictor quality.

It is also interesting to observe in Figure 1(a) that the
mean AISE curve of AEES does not exhibit a monotone
decrease as the number of design points increases. This
is because in all three algorithms, model parameters
are constantly adjusted based on available information
obtained from sampled design points. Thus, a change
in the model parameter estimates may lead to a tem-
porary increase in IMSE. This does not contradict the
monotonicity results of Section 3, which are established
under fixed model parameters.

Since in ASK, all model parameters are sequen-
tially estimated, an experiment is also performed on
the queueing example to examine the robustness of
the performance of ASK with respect to the parame-
ter estimation error. In particular, we approximate the
true model parameters by sampling 50 space-filling
design points over the design space (again 100 inde-
pendent simulation replications are assigned to each
point generated) and then constructing the MLEs of
model parameters using all performance measures col-
lected. We then fix the parameter estimates (treating
them as true model parameters) and run the ASK algo-
rithm until the true AISE drops below 0.01. Figure 2
shows the performance of ASK as the number of design
points increases. The numbers of total simulation repli-
cations consumed and design points added are also
reported in Table 3. Figure 2 clearly indicates the mono-
tonicity of the AISE of the SK predictor with respect to
the number of design points added, which conforms
well with our theoretical findings obtained in Section 3.
In addition, we see from Table 3 that both the num-
ber of replication runs and number of design points
added are smaller but very close to the correspond-
ing entries shown in Table 2. This suggests that use of
true model parameters can result in additional compu-
tational efficiency gains, but the consequence of using
estimated parameters in the proposed ASK algorithm
is not significant.

5.2. Deterministic Examples with Added Noise

We consider the following set of benchmark functions
(see, e.g., Ajdari and Mahlooji 2014, Qu and Fu 2014)
in our experiments. Problems (1)–(4) are highly non-
linear with multiple extreme values, so predicting the
true response surfaces of these functions is difficult;
whereas problem (5) is a smooth function aimed at
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Figure 1.
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illustrating the performance of the algorithms in three

dimensions.

(1) y(x) � f (x) + ǫ(x), x � (x1 , x2)⊺ ∈ [−1, 1] × [−1, 1],
where f (x) � 4x2

1 − 2.1x4
1 + x6

1/3 + x1x2 − 4x2
2 + 4x4

2 and

ǫ(x) ∼�(0,V(x)).
(2) y(x) � f (x) + ǫ(x), x � (x1 , x2)⊺ ∈ [−1, 1] × [−1, 1],

where f (x) � x1 sin(πx2) + x2 sin(πx1) and ǫ(x) ∼
�(0,V(x)).

(3) y(x) � f (x) + ǫ(x), x � (x1 , x2)⊺ ∈ [−1, 1] × [−1, 1],
where f (x) � 3(1 − x1)2 exp(−x2

1 − (x2 + 1)2) − 10(x1/5 −

x3
1 − x5

2)exp(−x2
1 − x2

2) − 1
3

exp(−(x1 + 1)2 − x2
2) and ǫ(x) ∼

�(0,V(x)).
(4) y(x) � f (x) + ǫ(x), x � (x1 , x2)⊺ ∈ [−10, 10] ×

[−10, 10], where f (x) � 1 + x2
1/4,000 + x2

2/4,000 −
cos(x1) cos(x2/

√
2) and ǫ(x) ∼�(0,V(x)).

(5) y(x) � f (x) + ǫ(x), x � (x1 , x2 , x3)⊺ ∈ [−1, 1] ×
[−1, 1] × [−1, 1], where f (x) � x2

1 + x2x3 and ǫ(x) ∼
�(0,V(x)).

We implement ASK, AEES, and SMSE under both
the SK and SKG frameworks on examples (1)–(5). In
the SKG case, we assume that noisy gradient estimates
�
ℓ
j (x) � ∂ f (x)/∂xℓ + ζ

ℓ
j (x) are available at x on the jth

simulation replication, where ζℓj (x) ∼�(0,Vζ(x)) for ℓ �
1, . . . , d. To investigate the impact of different variance
functions on the performance of ASK, we consider two
sets of variance functions in our experiments: in the
SK case, V1(x) � 0.1| f (x)| + 0.1 and V2(x) � 0.2| f (x)| +
0.1; in the SKG case, V(x) � 0.2| f (x)| + 0.1, Vζ1

(x) �
0.5| f (x)| + 0.1 and Vζ2

(x) � | f (x)| + 0.1. We have exper-
imented with different numbers of initial space-filling
designs and found empirically that the performance of
the algorithms is not sensitive to this choice, provided
that these numbers are not chosen too small so that sen-
sible estimates of model parameters can be obtained.

Table 3. AISEs (Mean± SE) Obtained and the Respective
Numbers of Simulation Replications and Design Points
(Mean± SE) Required by ASK (Assuming True Model
Parameters Are Known) When the AISE Reaches 0.01

AISE # replications # design points

8.3e−3± 6.3e−4 731.0± 62.4 13± 0.6

Note. All results are based on 100 independent runs.
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Table 4. Mean AISEs± SE (Mean #design Points± SE) Obtained When the Estimated AIMSE Reaches 0.01
Under the SK Framework with Different Noise Variance Functions

V(x) Fcn. ASK AEES SMSE

V1 (1) 1.8e−2± 4.4e−3 (13± 0.3) 1.9e−2± 3.8e−3 (15± 0.4) 1.5e−2± 4.9e−3 (18± 0.4)

(2) 1.3e−2± 3.1e−3 (12± 0.6) 1.5e−2± 4.3e−3 (12± 0.4) 7.3e−3± 2.7e−4 (20± 0.6)

(3) 1.0e−2± 4.6e−3 (21± 0.8) 6.3e−3± 1.1e−4 (33± 0.4) 1.4e−2± 3.7e−3 (22± 0.5)

(4) 1.0e−2± 3.5e−3 (55± 1.2) 7.8e−3± 8.1e−4 (130± 2.6) 9.9e−3± 2.2e−4 (150± 2.8)

(5) 8.5e−3± 3.5e−4 (9± 0.3) 2.8e−2± 3.5e−3 (10± 0.4) 1.2e−2± 1.5e−3 (10± 0.3)

V2 (1) 1.6e−2± 4.1e−3 (15± 0.5) 1.8e−2± 6.8e−3 (17± 0.3) 1.8e−2± 5.2e−3 (19± 0.5)

(2) 1.0e−2± 3.8e−3 (14± 0.6) 1.4e−2± 2.4e−3 (14± 0.5) 7.8e−3± 3.1e−4 (19± 0.6)

(3) 1.4e−2± 5.5e−3 (21± 1.4) 7.8e−3± 3.0e−4 (36± 1.9) 1.3e−2± 3.7e−3 (25± 0.6)

(4) 9.7e−3± 3.2e−4 (56± 2.3) 6.8e−3± 1.2e−4 (137± 5.4) 8.8e−3± 3.8e−4 (154± 5.6)

(5) 9.4e−3± 2.6e−4 (9± 0.5) 2.5e−2± 1.6e−3 (10± 0.3) 3.0e−2± 2.6e−3 (7± 1.1)

Note. All results are based on 100 independent runs.

Table 5. Mean AISEs± SE (Mean #design Points± SE) Obtained When the Estimated AIMSE Reaches 0.01
Under the SKG Framework with Different Noise Variance Functions

Vζ(x) Fcn. ASK AEES SMSE

Vζ1 (1) 9.8e−3± 5.6e−4 (5± 0.6) 9.4e−3± 7.2e−4 (11± 0.6) 1.5e−2± 1.5e−3 (7± 0.8)

(2) 1.3e−2± 6.7e−4 (5± 0.3) 1.5e−2± 2.0e−3 (12± 0.3) 6.0e−3± 4.7e−4 (7± 0.6)

(3) 7.0e−3± 6.2e−4 (7± 0.3) 5.6e−3± 5.2e−4 (12± 0.3) 9.8e−3± 8.3e−4 (9± 0.4)

(4) 8.6e−3± 1.6e−4 (47± 1.1) 9.5e−3± 2.3e−4 (78± 2.2) 9.6e−3± 8e−4 (65± 1.3)

(5) 9.5e−3± 5.8e−4 (7± 0.4) 1.0e−2± 5.2e−4 (8± 0.6) 9.5e−3± 6.9e−4 (7± 0.5)

Vζ2 (1) 8.5e−3± 5.5e−3 (7± 0.5) 1.1e−2± 8.3e−4 (11± 0.6) 7.1e−3± 6.4e−4 (8± 0.7)

(2) 1.0e−2± 6.3e−4 (5± 0.4) 1.8e−2± 1.5e−3 (12± 0.3) 7.6e−3± 9.0e−4 (7± 0.8)

(3) 9.1e−3± 9.0e−4 (7± 0.5) 6.7e−3± 5.0e−4 (17± 1.1) 9.1e−3± 8.1e−4 (9± 0.6)

(4) 9.6e−3± 2.0e−4 (49± 0.3) 1.1e−2± 5.2e−4 (80± 0.9) 9.0e−3± 1.5e−4 (75± 1.8)

(5) 8.9e−3± 3.0e−4 (11± 0.5) 9.3e−3± 3.8e−4 (13± 0.4) 9.1e−3± 4.2e−4 (11± 0.4)

Note. All results are based on 100 independent runs.

In the experiments considered in this section, we set
the number of initial space-filling designs to 10 under
SK and 5 under SKG, which work reasonably well in
all test cases. For a general rule of thumb on selecting
the number of design points in an initial experiment,
we refer the reader to Loeppky et al. (2009). At each
initial point, 30 replications are allocated to evaluate
the function performance. We stop all three algorithms

when the estimate �IMSE falls below ε � 0.01|X|, which
corresponds to an estimated AIMSE target of 0.01.

In Tables 4 and 5, we record the mean AISEs obtained
and the numbers of additional design points required
by the three algorithms on each of the respective test
cases. Test results indicate that ASK delivers supe-
rior performance over the other two competing algo-
rithms in all cases, in the sense that it reaches the
desired accuracy by using the least number of design
points. In addition, note that the AISEs obtained by the
three algorithms are reasonably close to the prescribed
AIMSE threshold. In particular, we see that in ASK,
the actual mean AISEs are smaller than 0.01 in 15 out
of the 20 cases, and those AISE values that are larger
than the AIMSE threshold mostly occur in the SK case

when the number of design points is relatively small.
This suggests that, as compared to AISE, the influence
of using the estimated AIMSE as a stopping criterion
to measure the predictor performance is typically not
significant provided that the number of design points
is not very small.

To further compare the computational efficiency of
ASK, AEES, and SMSE, we use the AISE as a stop-
ping criterion and continue running each algorithm
until the AISE drops below 0.01. Figures 3–6 show the
performance of these algorithms by plotting the mean
AISE curves (in logarithmic scale) as functions of the
numbers of added design points in each of the respec-
tive test cases. Tables 6 and 7 give the numbers of simu-
lation replications consumed by different algorithms to
attain the desired AISE level. It is easy to observe that
ASK outperforms, or at least shows comparable perfor-
mance to, AEES and SMSE in terms of both the number
of simulation replications and the number of design
points used. In addition, we see that under the SKG
framework, the numbers of design points required by
ASK to achieve the AISE target are generally between
10 and 54 (including the initial points), which are much
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Figure 3. Performance of ASK, AEES, and SMSE Under the SK Framework on Test Functions (1)–(3)
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Figure 4. Performance of ASK, AEES, and SMSE Under the SK Framework on Test Functions (4)–(5)
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smaller than those required in the SK case (generally
between 19 and 66). This empirically illustrates the ben-
efit of using gradient information for improving the
prediction performance of kriging metamodels. How-
ever, to rigorously quantify the potential reductions in
the numbers of design points and simulation replica-
tions as a result of using SKG as opposed to SK can be
very difficult, and is clearly an open issue that merits
further investigation.

Another observation is that, from Figures 3, 4 and
Table 6, the mean numbers of simulation replications
in the SK case become larger when the noise variance
increases, whereas the numbers of added design points
required by each algorithm are very close under differ-
ent noise variance functions. An intuitive explanation
is that in all three algorithms, the number of simula-
tion replications is chosen proportional to the intrinsic

noise variance, which leads to an almost constant sim-
ulation estimation precision at all design points. Thus,
a change in the noise variance will mainly impact the
overall number of simulation replications consumed,
but may have little influence on the selection of design
points. We also find from Table 6 that when the vari-
ability in simulation responses is increased by a factor
of 2 (i.e., when the variance function is changed from V1

to V2), the number of simulation replications required
by SK increases by a factor of between 1.1 and 2.9. In
contrast, a two-fold increase in the variance of gradi-
ent estimates in the SKG case (i.e., from Vζ1

to Vζ2
in

Table 7) merely results in a 0.5% to 30% increase in
the number of simulation runs. This seems to suggest
that the variability in gradient estimates tends to have
a smaller influence on the algorithm performance than
the variability in simulation responses. Of course, a



Wang and Hu: Monotonicity of Stochastic Kriging Metamodels
14 INFORMS Journal on Computing, 2017, vol. 00, no. 0, pp. 1–17, © 2017 INFORMS

Figure 5. Performance of ASK, AEES, and SMSE Under the SKG Framework on Test Functions (1)–(3)

–1.5

–2.0

–3.0

–4.0

–5.0

–2.5

–3.5

–4.5

lo
g
(A

IS
E

)
EX1 with type 1 gradient noise

0 2 4 6 8 10 12

Number of points added

–1

–3

–5

1

0

–2

–4

lo
g
(A

IS
E

)

0 2 4 6 8 10 12

Number of points added

EX3 with type 1 gradient noise

–1

–3

–5

1

0

–2

–4

lo
g
(A

IS
E

)

0 105 15

Number of points added

EX3 with type 2 gradient noise

–3.0

–4.0

–5.0

–2.5

–3.5

–4.5

lo
g
(A

IS
E

)

0 5 10 15

Number of points added

EX2 with type 1 gradient noise

–3.0

–4.0

–5.0

–2.5

–3.5

–4.5

lo
g
(A

IS
E

)

0 5 10 15

Number of points added

EX2 with type 2 gradient noise

–1.5

–2.0

–3.0

–4.0

–5.0

–2.5

–3.5

–4.5

lo
g
(A

IS
E

)

0 2 4 6 8 10 1412

Number of points added

EX1 with type 2 gradient noise

ASK

AEES

SMSE



Wang and Hu: Monotonicity of Stochastic Kriging Metamodels
INFORMS Journal on Computing, 2017, vol. 00, no. 0, pp. 1–17, © 2017 INFORMS 15

Figure 6. Performance of ASK, AEES, and SMSE Under the SKG Framework on Test Functions (4)–(5)
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Table 6. Mean #simulation Replications± SE (Mean #design Point± SE) Required to Reach an AISE of at
Least 0.01 for Different Algorithms Under the SK Framework with Different Noise Variance Functions

V(x) Fcn. ASK AEES SMSE

V1 (1) 839.7± 8.1 (27± 1.1) 1,504.3± 16.8 (29± 0.9) 1,009.5± 13.9 (30± 1.2)
(2) 561.6± 5.4 (16± 0.6) 1,279.9± 11.9 (26± 0.4) 553.0± 4.0 (16± 0.5)
(3) 898.9± 13.0 (23± 0.6) 1,471.7± 31.3 (26± 0.3) 1,079.9± 16.9 (28± 0.6)
(4) 1,467.4± 15.1 (57± 2.4) 2,513.4± 45.2 (121± 3.3) 3,410.7± 6.1 (153± 3.2)
(5) 470.8± 5.7 (9± 0.4) 1,229.4± 4.0 (27± 0.6) 589.9± 9.0 (14± 0.7)

V2 (1) 1,132.2± 23.6 (28± 0.5) 2,048.0± 31.4 (30± 0.6) 1,514± 31.1 (33± 0.5)
(2) 636.4± 7.9 (15± 0.4) 1,648.5± 17.7 (26± 0.5) 614.3± 7.3 (15± 0.5)
(3) 1,354.2± 20.9 (27± 0.6) 2,264.0± 35.9 (30± 0.4) 1,663.0± 23.7 (30± 0.5)
(4) 4,213.2± 15.2 (58± 3.2) 4,505.4± 58.7 (121± 2.7) 5,035.0± 13.2 (154± 2.8)
(5) 563.2± 14.6 (10± 0.7) 1,592.1± 11.9 (28± 0.5) 836.3± 21.7 (18± 0.4)

Note. All results are based on 100 independent runs.
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Table 7. Mean #simulation Replications± SE (Mean #design Point± SE) Required to Reach an AISE of at
Least 0.01 for Different Algorithms Under the SKG Framework with Different Gradient Noise Variance
Functions

Vζ(x) Fcn. ASK AEES SMSE

Vζ1 (1) 333.4± 0.9 (6± 0.7) 369.9± 0.8 (12± 0.4) 554.7± 0.9 (8± 0.5)
(2) 373.9± 1.4 (6± 0.4) 575.3± 1.4 (18± 0.7) 276.4± 0.5 (5± 0.7)
(3) 437.5± 2.9 (7± 0.7) 428.1± 1.5 (13± 0.6) 775.6± 4.1 (10± 0.6)
(4) 2,111.7± 27.9 (47± 1.2) 2,187.7± 2.5 (78± 2.1) 2,758.7± 16.5 (66± 1.4)
(5) 375.8± 4.1 (8± 0.3) 405.0± 0.8 (9± 0.5) 520.0± 5.2 (8± 0.5)

Vζ2 (1) 359.4± 1.1 (7± 0.5) 408.1± 1.3 (14± 0.3) 554.4± 1.0 (8± 0.6)
(2) 375.5± 1.4 (6± 0.6) 601.6± 1.4 (19± 0.5) 389.6± 0.5 (8± 0.6)
(3) 456.3± 4.2 (8± 0.4) 518.3± 1.2 (17± 0.7) 891.1± 2.2 (9± 0.7)
(4) 2,192.3± 18.8 (49± 0.5) 2,276.0± 9.3 (81± 1.1) 3,194.0± 3 (75± 2.2)
(5) 493.6± 13.5 (11± 0.4) 551.6± 4.0 (13± 0.6) 736.1± 11.0 (11± 0.7)

Note. All results are based on 100 independent runs.

more comprehensive study needs to be carried out to
confirm this finding.

6. Conclusion
In this paper, we have investigated the performance of
SK and SKG metamodels in a fully sequential setting.
Our main contributions are the theoretical findings
that the MSE of an SK (SKG) predictor is monotonically
decreasing in the number of design points and that
the use of available gradient information in SKG can
in general lead to improved prediction performance.
These findings not only complement existing results
in the (stochastic) kriging literature, but may also have
utility in the design and analysis of sequential sam-
pling procedures under both SK and SKG frameworks.
In particular, we have proposed a new design proce-
dure called adaptive sequential kriging for adaptively
selecting design points and simulation allocations in
obtaining an SK (SKG) predictor with a prescribed
level of accuracy. By exploiting the monotonicity of SK
and SKG, we have theoretically justified the validity
of the proposed procedure. Our preliminary numer-
ical results indicate that ASK may yield high-quality
SK (SKG) predictors within a small number of simu-
lation replications and provide superior performance
over some of the existing procedures.

It should be noted that the monotonicity results
established in this paper rely critically on the spe-
cific forms of the optimal predictor MSEs, which
are derived under the assumption that the model
parameters are either perfectly known or predeter-
mined. Unfortunately, this assumption is rarely sat-
isfied in practice. When model parameters are esti-
mated using simulation samples, these parameters
themselves become random variables, in which case
the monotonicity results hold with respect to the plug-
in estimators of the MSEs (conditional on the estimates
based on previous design points), but may not hold
for the true MSEs. Thus, an important future research

topic is to investigate whether this idealistic assump-
tion of known model parameters can be removed and
to what extent the monotonicity results can be general-
ized when the true parameters are replaced with their
estimates.
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