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A B S T R A C T

This paper proposes a novel approach for improving the consistency of uncertain 2-tuple linguistic preference

relations (U2TLPRs). In particular, we introduce a new definition of consistency for U2TLPRs and show that the

degree of consistency of a given U2TLPR can be measured explicitly by minimizing its deviation from a con-

sistent U2TLPR. Based on this finding, we provide an iterative algorithm for repeatedly adjusting the consistency

of a U2TLPR to a desired level while taking into account the initial preferences of decision makers. In addition,

by analyzing the structural properties of the algorithm, we further present an improved version of the procedure

for directly obtaining an acceptable U2TLPR without any iteration. Numerical results indicate that the proposed

method is not only simple and efficient in calculation but also effective in preserving the original preference

information provided by decision makers.

1. Introduction

Preference relations (PRs), also known as the judgment matrix or

pairwise comparison matrix, are a popular and powerful tool to model

decision makers’ preferences in decision making. PRs facilitate the ex-

pression of decision makers’ opinions by allowing them to focus on a

pair of elements at a time (Herrera, Herrera-Viedma, & Chiclana, 2001),

making these methods more accurate and preferable than many other

preference modeling techniques (Millet, 1997). The most popular types

of PRs are multiplicative preference relation (Saaty, 1980) and fuzzy

preference relation (Tanino, 1984), the entries of which are numerical

values. There are also PRs capable of handling uncertain and vague

information. Examples of these PRs include fuzzy interval preference

relation (Xu, 2004b), triangular fuzzy preference relation (Van

Laarhoven & Pedrycz, 1983), intuitionistic fuzzy preference relation

(Szmidt & Kacprzyk, 1998; Wu & Chiclana, 2014). In all cases, the

consistency of PRs turns out to be an important aspect of decision

making and needs to be carefully examined to avoid misleading con-

clusions.

The concepts of consistency were first introduced in Saaty (1980)

and Tanino (1984) for classical multiplicative preference relations and

fuzzy preference relations. Since then, the classical definitions of con-

sistency have been evolved and extended to different fuzzy-valued

preference relations (Wang & Chen, 2008; Wang & Tong, 2016; Xu &

Chen, 2008b). In recent years, some new ideas on the consistency of

fuzzy-valued preference relations have also emerged. For example,

Dubois (2011) pointed out that the consistency of fuzzy-valued pre-

ference relations should not be defined directly based on the classical

ones. Liu, Pedrycz, and Zhang (2017) and Liu, Pedrycz, Wang, and

Zhang (2017) also proposed the concept of approximation-consistency

for fuzzy-valued preference relations, which improves upon existing

consistency definitions by incorporating the additive/multiplicative

reciprocal property and is invariant with respect to permutations of

alternatives.

When decision makers only have vague knowledge about alter-

natives and cannot express their preferences with numerical values,

qualitative (as opposed to quantitative) descriptions are used for pair-

wise comparison and the PRs are often stated in terms of linguistic

variables. To support group decision making (GDM) with linguistic

preference relations (LPRs), a variety of consensus reaching models

(Alonso, Pérez, Cabrerizo, & Herrera-Viedma, 2013; Cabrerizo, Alonso,

& Herrera-Viedma, 2009; Cabrerizo, Pérez, & Herrera-Viedma, 2010;

Dong, Xu, Li, & Feng, 2010; Gong, Forrest, & Yang, 2013; Herrera &

Herrera-Viedma, 1996; Herrera-Viedma, Martinez, Mata, & Chiclana,

2005; Li, Dong, Herrera, & Herrera-Viedma, 2017; Mata, Martínez, &

Herrera-Viedma, 2009; Xu & Wu, 2013) and aggregation-and-ranking

approaches (Herrera, Herrera-Viedma, & Verdegay, 1996; Wang &

Chen, 2010; Wu, Li, Li, & Duan, 2009; Xu, 2004a) have been developed.

Moreover, a number of approaches have proposed in literature for

measuring and improving the consistency of LPRs (Alonso, Cabrerizo,
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Chiclana, Herrera, & Herrera-Viedma, 2009; Cabrerizo, Heradio, Pérez,

& Herrera-Viedma, 2010; Cabrerizo, Pérez et al., 2010; Dong, Hong, &

Xu, 2013; Dong, Li, & Herrera, 2015; Dong, Xu, & Li, 2008; Jin, Ni,

Chen, & Li, 2016; Wang & Xu, 2016).

Due to the uncertainty of decision environment and/or the lack of

relevant experience with decision alternatives, the decision makers may

sometimes prefer to use uncertain linguistic variables in specifying

preference relations. For example, when presented with a pair of al-

ternatives, a decision maker may use uncertain linguistic terms such as

“between slightly good and good” to indicate his/her preferences about

different alternatives. This uncertainty in the preference information

has led to the research focusing on GDM with uncertain linguistic

preference relations (ULPRs) (Chen & Lee, 2010; Chen, Zhou, & Han,

2011; Tapia-García, Del Moral, Martínez, & Herrera-Viedma, 2012; Xu,

2006; Xu & Wu, 2013; Zhang & Guo, 2014a; Zhou & Chen, 2013). The

use of ULPRs for modeling expert preference implies the use of Com-

puting with Words (CW). To facilitate this process, the 2-tuple linguistic

representation model (Herrera & Martínez, 2000) has been widely used

in literature due to its advantages over other linguistic models. In

particular, through the use of such a representation model, one can

obtain a U2TLPR derived from a ULPR (Zhang & Guo, 2014b). Conse-

quently, when the decision maker uses ULPR to express his/her pre-

ference, U2TLPR will be an important tool for decision analysis. Un-

fortunately, despite significant progress over the past years on decision

making methods with ULPRs/U2TLPRs, only a few attempts have been

made to address the consistency issue of individual ULPR/U2TLPR. By

applying the consistency of LPRs, Meng, An, and Chen (2016) in-

troduced a definition of consistency for ULPRs. Although the models

they proposed can be used to generate consistent ULPRs, the issue of

how to improve the consistency of a given ULPR remains unaddressed.

Zhang and Guo (2014b) defined the additive consistency of ULPRs and

provided two algorithms to estimate the missing entries in incomplete

ULPRs. Subsequently, they proposed an iterative consistency improving

procedure for U2TLPRs (Zhang & Guo, 2016). In their algorithm, the

computation of consistency index and the consistency improvement of a

U2TLPR in each round are based on a consistent U2TLPR constructed

by using only the −n 1 preference values above the diagonal of the

original U2TLPR provided by decision maker. Since their approach does

not fully utilize the initial preference values provided by decision ma-

kers, the resulting U2TLPR, albeit greatly improved in its consistency,

may share little resemblance to the original U2TLPR.

Note that some preference values in the initial U2TLPR provided by

the decision maker will need to be adjusted in order to improve its

consistency. However, if the improved U2TLPR deviates too much from

the initial U2TLPR, then it may fail to adequately represent the real

preference of the decision maker. Thus, there is often a tradeoff be-

tween improving the consistency level of a U2TLPR and preserving the

initial preference of the decision maker. To address this tradeoff, we

propose a novel optimization-based approach for constructing ULPRs

with desired levels of consistency while effectively retaining the initial

preference information of decision makers. As in Zhang and Guo

(2016), we assume that ULPRs are expressed using a 2-tuple fuzzy

linguistic model in this paper. We introduce a new consistency defini-

tion for U2TLPRs and propose an index to measure their consistency

levels. A linear programming model is subsequently developed to

construct a consistent U2TLPR from an inconsistent one, and we show

that the consistency index of a given U2TLPR can be explicitly calcu-

lated in terms of the solution to the optimization model. In contrast to

the idea employed in Zhang and Guo (2016), our linear programming

model incorporates all the preference values in the original U2TLPR in

searching for a consistent U2TLPR, which in turn leads to the good

performance of the proposed consistency improving algorithm in pre-

serving the initial preference information. We then propose a sequential

procedure that relies on repeatedly solving a sequence of linear pro-

gramming problems to increase the consistency of a U2TLPR to an

acceptable level. In addition, by exploiting the theoretical properties of

the procedure, we construct a much simplified version of the algorithm

that only requires solving the optimization problem once in obtaining a

U2TLPR with a prescribed consistency level. Note that similar to the

algorithm developed in Zhang and Guo (2016), our proposed con-

sistency improving model is also based on the construction of a certain

consistent U2TLPR. However, we argue analytically that among the set

of all consistent U2TLPRs, the consistent U2TLPR obtained by our

method provides the best possible approximation to the initial U2TLPR

and thus implicitly accounts for all the preference values provided by

decision makers.

The rest of this paper is organized as follows. Section 2 summaries

the basic concepts of the 2-tuple linguistic representation model and

U2TLPRs. In Section 3, we introduce a new consistency definition and

propose a consistency index for U2TLPRs. An optimization model is

then developed, based on which an iterative consistency improving

algorithm, along with its simplified non-iterative version, is proposed.

Numerical examples and a comparison study are presented in Section 4

to illustrate the performance of the proposed method. Finally, we

conclude the paper in Section 5.

2. Preliminaries

This section reviews the basic necessary knowledge on the 2-tuple

linguistic representation model and uncertain 2-tuple linguistic pre-

ference relations.

2.1. 2-tuple linguistic representation model

In order to compute with words, Herrera and Martínez (2000)

proposed a 2-tuple linguistic representation model based on the concept

of symbolic translation. The model uses a 2-tuple s α( , )i i to represent

linguistic information, where si is a linguistic term belonging to the

predefined linguistic term set and ∈ −α [ 0.5,0.5)i denotes the symbolic

translation. Specifically, the 2-tuple linguistic representation model is

defined as follows.

Definition 1 (Herrera and Martínez, 2000). Let = …S s s s{ , , , }g0 1 be a

linguistic term set with odd cardinality and ∈β g[0, ] be a value

representing the result of a symbolic aggregation operation, then the

2-tuple that expresses the equivalent information to β is obtained with

the following function:

↦ × −
=
g S

β s α

∆: [0, ] [ 0.5,0.5)

∆( ) ( , ),i i

where =i round β( ) and = −α β ii . Note that “round” is the usual round

operator, si has the closest index label to β, and αi is the value of the

symbolic translation.Obviously, a linguistic term ∈s Si can be viewed

as a 2-tuple linguistic s( ,0)i . Unless otherwise specified, we will use 2-

tuple linguistic representations instead of linguistic terms throughout

the paper.

Definition 2 (Herrera and Martínez, 2000). Let = …S s s s{ , , , }g0 1 be as

before and s α( , )i i be a 2-tuple, there exists a function

× − ↦
= + =

−
−

S g

s α i α β

∆ : [ 0.5,0.5) [0, ]

∆ (( , ))i i i

1

1

that uniquely transforms a 2-tuple into its equivalent numerical value

∈β g[0, ].We also refer to Herrera and Martínez (2000) for the

operations on linguistic 2-tuples without loss of information.

2.2. Uncertain 2-tuple linguistic variables and uncertain 2-tuple linguistic

preference relations

Definition 3 (Zhang and Guo, 2016). Let = …S s s s{ , , , }g0 1 be as before,

then − +l l[ , ] is called an uncertain 2-tuple linguistic variable if

= = ∈ × −− − − + + +l s α l s α S( , ), ( , ) [ 0.5,0.5) and ⩽− +s s .For the
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operations on uncertain 2-tuple linguistic variables, we refer to Zhang

and Guo (2016). Based on the uncertain 2-tuple linguistic variables,

Zhang and Guo (2016) proposed the following definition of uncertain 2-

tuple linguistic preference relation.

Definition 4 (Zhang and Guo, 2016). Let = …S s s s{ , , , }g0 1 be as

before, then a matrix = ×L l( )ik n n is called an Uncertain

2-tuple Linguistic Preference Relation (U2TLPR) if

= ⩽ + = + = = =− + − + − − − + − + − − − +l l l l l l l l l g l l s[ , ], ,∆ ( ) ∆ ( ) ∆ ( ) ∆ ( ) , ( ,0)ik ik ik ik ik ik ki ik ki ii ii g
1 1 1 1

/2 ,

where lik is an uncertain 2-tuple linguistic variable indicating the

preference degree of the alternative xi over xk, and

∈ × − ∈− +l l S i k N, [ 0.5,0.5), ,ik ik .It is easy to see that the reciprocal

property is implied in the definition of U2TLPRs. In addition, because

linguistic terms are essentially a special case of 2-tuple linguistic terms,

U2TLPRs can be viewed as a generalization of LPRs.

Definition 5 (Zhang and Guo, 2016). Let = …S s s s{ , , , }g0 1 be as before,

and let = − + ×P p p([ , ])ik ik n n and = − + ×Q q q([ , ])ik ik n n be two U2TLPRs defined

on S. The deviation measure between P and Q is defined as

∑ ∑= − − + −
=

−

= +
− − − − − + − +d P Q

gn n
p q p q( , )

1

( 1)
(|∆ ( ) ∆ ( )| |∆ ( ) ∆ ( )|).

i

n

k i

n

ik ik ik ik
1

1

1

1 1 1 1

(1)

Note that the deviation measure satisfies ⩽ ⩽d P Q0 ( , ) 1. Moreover, a

small value of d P Q( , ) indicates a high degree of similarity between P

and Q, whereas a large (close to one) value of d P Q( , ) signals a strong

discrepancy between P and Q. Thus, Eq. (1) can be used as an indicative

measure to determine the resemblance between two U2TLPRs.

3. An optimization-based consistency improving approach

In this section, we begin by introducing a new definition of con-

sistency for U2TLPRs. Then we show that the consistency index of a

given U2TLPR can be measured by minimizing its deviation to a con-

sistent U2TLPR. Finally, we propose an iterative algorithm for adjusting

the consistency of a U2TLPR, analyze its theoretical properties, and

present a non-iterative improved version of the algorithm.

3.1. The consistency of U2TLPRs

Generally speaking, the consistency of preference relations can be

defined from two perspectives (Xu, Wan, Wang, Dong, & Zeng, 2016).

One type of definitions is built upon the so-called transitivity property

of preference relations (Alonso et al., 2009; Cabrerizo, Heradio et al.,

2010), and the other type is based on the connections between the

elements of preference relations and the priority weights (Jin et al.,

2016; Xu & Chen, 2008b; Xu, Li, & Wang, 2014). According to the

transitivity, some consistency definitions for U2TLPRs have been pro-

posed in literature Meng et al. (2016) and Zhang and Guo (2014b).

However, to the best of our knowledge, there is no consistency defini-

tion for U2TLPRs based on the priority weights. In this section, moti-

vated by the definition of additive consistency for interval fuzzy pre-

ference relations (Xu & Chen, 2008b; Xu et al., 2014), we begin by

introducing a new definition of consistency for U2TLPRs, which serves

as a basis for the proposed consistency improving approach.

Definition 6. Let = − + ×L l l([ , ])ik ik n n be a U2TLPR, if there exist a vector

= …W w w w( , , , )n T
1 2 satisfying ∑ = ⩾ = …= w w i n1, 0( 1,2, , )

i

n
i i1

and a

scalar parameter >β 0 such that

⩽ + − ⩽ ∀ = …− − − +l g β w w l i k n∆ ( ) 0.5 ( ) ∆ ( ) , 1,2, , ,ik i k ik
1 1 (2)

then we call L an additively consistent U2TLPR.

As we can see from Definition 6, the additive consistency of

U2TLPRs is defined by extending the additive consistency of interval-

valued preference relations (Xu & Chen, 2008b). The basic idea is to

characterize the consistency of U2TLPRs based on a consistent 2-tuple

linguistic preference relation. We remark that there are some different

ideas on the definition of consistency for interval-valued preference

relations. Krejčí (2017) argued that for some additively consistent in-

terval-valued preference relations, there may not exist a vector sa-

tisfying the normalization equation∑ = ⩾ = …= w w i n1, 0( 1,2, , )
i

n
i i1 , and

one should use the normalization condition − ⩽w w| | 1i j proposed by

Tanino (1984) to define the additive consistency for interval-valued

preference relations. Liu, Peng, Yu, and Zhao (2018) pointed out that

interval-valued preference relations are inconsistent in essence and

propose the concept of additive approximation-consistency of interval-

valued preference relations to incorporate the additive property and

permutations of alternatives.

We remark that for a consistent fuzzy preference relation

= ×R r( )ik n n, Xu and Chen (2008a) reasoned that the relationship be-

tween the elements of R and the corresponding priority vector

= …W w w w( , , , )n T
1 2 can be represented by = − +r w w0.5( ) 0.5ik i k . How-

ever, Shen, Chyr, Lee, and Lin (2009) later pointed out that this relation

may not hold true in general. Instead, it has been shown in Xu, Da, and

Wang (2011) that for an additively consistent fuzzy preference relation,

there exists a constant >β 0 such that relation can be expressed as

= − +r β w w( ) 0.5ik i k . They suggested setting the value of β to either n/2

(Xu et al., 2011) or −n( 1)/2 (Xu, Da, & Liu, 2009), both of which have

been shown to yield better performance than the case =β 0.5. Conse-

quently, for additively consistent U2TLPRs, we suggest setting =β ng/2

or = −β n g( 1) /2 in Definition 6 (see also Section 4.1).

Note that since U2TLPR satisfies the reciprocal property, Eq. (2) is

equivalent to the following equation:

⩽ + − ⩽ <− − − +l g β w w l i k∆ ( ) 0.5 ( ) ∆ ( ) .ik i k ik
1 1 (3)

Therefore, it is sufficient to only check the upper or lower triangular

elements of a U2TLPR for additive consistency.

The following definition, motivated by Dong et al. (2008) and Dong,

Li, Chiclana, and Herrera-Viedma (2016), provides a useful measure for

characterizing the consistency degree of a U2TLPR.

Definition 7. Let = − + ×L l l([ , ])ik ik n n be a U2TLPR and Pn be the set of all

×n n consistent U2TLPRs, then we call

= ∈CI L d L P( ) min ( , )
P Pn (4)

the consistency index of L.

In Definition 7, the consistency index of a U2TLPR is defined as its

smallest deviation from the collection of all consistent U2TLPRs. Thus,

the matrix P that solves (4) is a consistent U2TLPR that shares the

strongest resemblance to L. Clearly, the smaller the value of CI L( ) is,

the more consistent L will be, and if =CI L( ) 0, then L itself will be

consistent. Unfortunately, although this definition is intuitive and

conceptually appealing, directly calculating the index in practice re-

quires solving a high-dimensional nonlinear optimization problem,

which can be very challenging. Below, we address this computational

issue by formulating an auxiliary linear programming model and

showing that the consistency index given by (4) can be conveniently

obtained in terms of the solution to the linear programming problem.

The key observation is that an inconsistent U2TLPR = − + ×L l l([ , ])ik ik n n

can be made to satisfy the following relaxed version of Eq. (3) by in-

troducing two additional deviation variables <− +d d i k, ( )ik ik :

− ⩽ + − ⩽ +− − − − + +l d g β w w l d∆ ( ) 0.5 ( ) ∆ ( ) ,ik ik i k ik ik
1 1 (5)

where −dik and <+d i k( )ik are both non-negative real numbers. Notice

that (5) can be viewed as an extension of (3) and reduces to it when

both −dik and <+d i k( )ik are set to zero. Thus, smaller values of the de-

viation variables signify a higher degree of conformity of

= − + ×L l l([ , ])ik ik n n to a consistent U2TLPR. This intuition gives rise to the

following linear optimization model −M( 1):

S. Yao, J. Hu Computers & Industrial Engineering 117 (2018) 181–190
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∑ ∑
−

= +

⎧

⎨
⎪⎪

⎩
⎪⎪

+ − ⩾ − <
+ − ⩽ + <
− ⩾ + ⩽ <

+ +⋯+ =
⩾ = … ⩾ <

=

−

= +
− +

− − −
− + +

− − − − + +

− +

M

Min Z d d

s t

g β w w l d i k

g β w w l d i k

l d l d g i k

w w w

w i n d d i k

( 1)

( )

. .

0.5 ( ) ∆ ( ) ,

0.5 ( ) ∆ ( ) ,

∆ ( ) 0, ∆ ( ) ,

1

0, 1,2, , ; , 0, .

i

n

k i

n

ik ik

i k ik ik

i k ik ik

ik ik ik ik

n

i ik ik

1

1

1

1

1

1 1

1 2

In model −M( 1), the objective is to minimize the sum of all devia-

tion variables, so that the original preference information of the deci-

sion makers can be retained to the largest possible extent. The first two

constraints are the restrictions on the weight vector and the deviation

variables posed by Eq. (5). The third constraint stipulates that the ad-

justed preference values should lie in the domain of uncertain linguistic

variables. Note that the model does not explicitly consider the partici-

pation of decision makers, who may provide additional preference in-

formation during the consistency improving process. Such information

can usually be encoded in the form of constraints on the deviation

variables − ∗dik
, , <+ ∗d i k( )ik

, and thus be incorporated into model −M( 1).
Let <− ∗ + ∗d d i k, ( )ik ik

, , and = …∗w i n( 1,2, , )i be the optimal solution to

the model −M( 1) and ∗Z be the corresponding optimal objective func-

tion value, i.e.,

∑ ∑= +∗
=

−

= +
− ∗ + ∗Z d d( ).

i

n

k i

n

ik ik

1

1

1

, ,

For a given U2TLPR = − + ×L l l([ , ])ik ik n n, a new U2TLPR = − + ×L l l([ , ])ik ik n n

will be constructed based on the optimal solution to −M( 1):

= − = + <− − − − ∗ + − + + ∗l l d l l d i k∆(∆ ( ) ), ∆(∆ ( ) ), ,ik ik ik ik ik ik
1 , 1 ,

(6)

= − = − <− − + + − −
l g l l g l i k∆( ∆ ( )), ∆( ∆ ( )), .ki ik ki ik

1 1 (7)

The following result shows that the constructed U2TLPR L is ad-

ditively consistent.

Theorem 1. For a given U2TLPR = − + ×L l l([ , ])ik ik n n , let ∗Z be the optimal

value of the model −M( 1). The U2TLPR = − + ×L l l([ , ])ik ik n n constructed

according to (6) and (7) is additively consistent.

Proof. Let <− ∗ + ∗d d i k, ( )ik ik
, , be the components of the optimal solution to

model −M( 1). According to the optimality of the solution, there exist a

vector …∗ ∗ ∗w w w( , , , )n
T

1 2 and >β 0 satisfying

⎧

⎨
⎪⎪

⎩
⎪⎪

+ − ⩾ − <
+ − ⩽ + <
− ⩾ + ⩽ <

+ +⋯+ =
⩾ = … ⩾ <

∗ ∗ − − − ∗
∗ ∗ − + + ∗

− − − ∗ − + + ∗
∗ ∗ ∗
∗ − ∗ + ∗

g β w w l d i k

g β w w l d i k

l d l d g i k

w w w

w i n d d i k

0.5 ( ) ∆ ( ) ,

0.5 ( ) ∆ ( ) ,

∆ ( ) 0, ∆ ( ) ,

1

0, 1,2, , ; , 0, .

i k ik ik

i k ik ik

ik ik ik ik

n

i ik ik

1 ,

1 ,

1 , 1 ,

1 2
, ,

Therefore, we have from Eqs. (6) and (7) that, ∀ = …i k n, 1,2, , ,

⩽ + − ⩽− − ∗ ∗ − +
l g β w w l∆ ( ) 0.5 ( ) ∆ ( ),ik i k ik

1 1

which means = − + ×L l l([ , ])ik ik n n is additively consistent by Definition 6.

This completes the proof of Theorem 1. □

Theorem 1 not only provides a way to determine the consistency of

a U2TLPR (when =∗Z 0), but also shows how to construct a consistent

U2TLPR from an inconsistent one. The next result further indicates that

among the set of all consistent U2TLPRs, the constructed L has the

smallest deviation to the original L.

Theorem 2. Let L be a U2TLPR and L be the corresponding U2TLPR

constructed by (6) and (7), then

= ∈d L L d L P( , ) min ( , ).
P Pn (8)

Proof. By Theorem 1, we know that L is a consistent U2TLPR, i.e.,

∈L Pn. Now proceed by contradiction and assume that

> ∈d L L d L P( , ) min ( , )
p Pn

. This implies the existence of another consistent

U2TLPR = ∈− + ×P p p P([ , ])ik ik n n n
0 0 0 such that <d L P d L L( , ) ( , )0 . Thus, it

follows from Definition 5 that

∑ ∑
∑ ∑

− + −

< − + −
=

−

= +
− − − − − + − +

=

−

= +
− − − − − + − +

l p l p

l l l l

(|∆ ( ) ∆ ( )| |∆ ( ) ∆ ( )|)

(|∆ ( ) ∆ ( )| |∆ ( ) ∆ ( )|).

i

n

k i

n

ik ik ik ik

i

n

k i

n

ik ik ik ik

1

1

1

1 1 0 1 1 0

1

1

1

1 1 1 1

Since − =− − − − − ∗l l d|∆ ( ) ∆ ( )|ik ik ik
1 1 , and −− + − +

l l|∆ ( ) ∆ ( )|ik ik
1 1 = + ∗dik

, , we have

∑ ∑ ∑ ∑− + − <
+ =

=

−

= +
− − − − − + − +

=

−

= +
− ∗

+ ∗ ∗

l p l p d

d Z

(|∆ ( ) ∆ ( )| |∆ ( ) ∆ ( )|) (

) .

i

n

k i

n

ik ik ik ik
i

n

k i

n

ik

ik

1

1

1

1 1 0 1 1 0

1

1

1

,

,
(9)

In addition, because = − + ×P p p([ , ])ik ik n n
0 0 0 is consistent, there exists

= …W w w w( , , , )n
T0

1
0

2
0 0 such that

⩽ ⩽ + − ⩽ ⩽− − − +p g β w w p g0 ∆ ( ) 0.5 ( ) ∆ ( ) ,ik i k ik
1 0 0 0 1 0

(10)

where < ∑ = ⩾ = …=i k w w i n, 1, 0( 1,2, , )
i

n
i i1
0 0 and >β 0.

We can construct a feasible solution to model −M( 1) based on the

weight vectorW 0. Let

= − − ⩾ <
= − − < <

⩾− − − − − − −

<− − − − − − −
IK i k l l p i k

IK i k l l p i k

{( , )|∆ ( ) |∆ ( ) ∆ ( )| 0, },

{( , )|∆ ( ) |∆ ( ) ∆ ( )| 0, },

ik ik ik

ik ik ik

1 1 1 0

1 1 1 0

= + − ⩽ <
= + − > <

⩽+ − + − + − +

>+ − + − + − +
IK i k l l p g i k

IK i k l l p g i k

{( , )|∆ ( ) |∆ ( ) ∆ ( )| , },

{( , )|∆ ( ) |∆ ( ) ∆ ( )| , }.

ik ik ik

ik ik ik

1 1 1 0

1 1 1 0

Let <− +d d i k, ( )ik ik
,0 ,0 be chosen as follows:

= ⎧
⎨⎩

− ∈
∈

− − − − − ⩾−
− ∗ <−

d
l p i k IK

d i k IK

|∆ ( ) ∆ ( )| ( , )

( , ) ;
ik

ik ik

ik

,0
1 1 0

,
(11)

= ⎧
⎨⎩

− ∈
∈

+ − + − + ⩽+
+ ∗ >+

d
l p i k IK

d i k IK

|∆ ( ) ∆ ( )| ( , )

( , ) ,
ik

ik ik

ik

,0
1 1 0

,
(12)

where <− ∗ + ∗d d i k, ( )ik ik
, , solve the minimization problem −M( 1) for L.

For an index pair ∈ ⩾−i k IK( , ) , it is not difficult to see that

− = − − ⩽− − − − − − − − − − −l d l l p p∆ ( ) ∆ ( ) |∆ ( ) ∆ ( )| ∆ ( )ik ik ik ik ik ik
1 ,0 1 1 1 0 1 0 . On the other

hand, when ∈ <−i k IK( , ) , because ⩾− −p∆ ( ) 0ik
1 0 and the fact that

− − <− − − − − −l l p∆ ( ) |∆ ( ) ∆ ( )| 0ik ik ik
1 1 1 0 , it is readily seen that

⩽− − − −l p∆ ( ) ∆ ( )ik ik
1 1 0 . This further implies − =− − −l d∆ ( )ik ik

1 ,0

− ⩽ ⩽− − − ∗ − − − −l d l p∆ ( ) ∆ ( ) ∆ ( )ik ik ik ik
1 , 1 1 0 . Therefore, we obtain

− ⩽ <− − − − −l d p i k∆ ( ) ∆ ( ), .ik ik ik
1 ,0 1 0

(13)

On the other hand, according to the definition of ⩾−IK and the op-

timality of − ∗dik
, , we know that

− ⩾ <− − −l d i k∆ ( ) 0, .ik ik
1 ,0

(14)

Similarly, it can be derived that

+ ⩾ <− + + − +l d p i k∆ ( ) ∆ ( ), ,ik ik ik
1 ,0 1 0

(15)

+ ⩽ <− + +l d g i k∆ ( ) , .ik ik
1 ,0

(16)

By Eq. (10) and Eqs. (11)–(16), we have

⎧

⎨
⎪⎪

⎩
⎪⎪

+ − ⩾ − <
+ − ⩽ + <
− ⩾ + ⩽ <

+ +⋯+ =
⩾ = … ⩾ <

− − −
− + +

− − − − + +

− +

g β w w l d i k

g β w w l d i k

l d and l d g i k

w w w

w i n d d i k

0.5 ( ) ∆ ( ) ,

0.5 ( ) ∆ ( ) ,

∆ ( ) 0 ∆ ( ) ,

1

0, 1,2, , ; , 0, ,

i k ik ik

i k ik ik

ik ik ik ik

n

i ik ik

0 0 1 ,0

0 0 1 ,0

1 ,0 1 ,0

1
0

2
0 0

0 ,0 ,0

which implies that <− +d d i k, ( )ik ik
,0 ,0 , together with = …W w w w( , , , )n

T0
1
0

2
0 0 ,

constitute a feasible solution to model −M( 1).
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For ∈ <−i k IK( , ) , we know that ⩽ < −− ∗ − − − − − −d l l p∆ ( ) |∆ ( ) ∆ ( )|ik ik ik ik
, 1 1 1 0 ,

and similarly ⩽ − < −+ ∗ − + − + − +d g l l p∆ ( ) |∆ ( ) ∆ ( )|ik ik ik ik
, 1 1 1 0 for ∈ >+i k IK( , ) .

Therefore, the corresponding objective function value of the feasible

solution <− +d d i k, ( )ik ik
,0 ,0 can be written as

∑ ∑ ∑
∑ ∑
∑ ∑ ∑

= + = −

+ + −

+ < −

+ −

=

−

= +
− +

∈
− − − −

∈
− ∗

∈
− + − +

∈
+ ∗

=

−

= +
− − − −

− + − +

⩾−

<− ⩽+

>+

Z d d l p

d l p

d l p

l p

( ) |∆ ( ) ∆ ( )|

|∆ ( ) ∆ ( )|

(|∆ ( ) ∆ ( )|

|∆ ( ) ∆ ( )|).

i

n

k i

n

ik ik
i k IK

ik ik

i k IK
ik

i k IK
ik ik

i k IK
ik

i

n

k i

n

ik ik

ik ik

0

1

1

1

,0 ,0

( , )

1 1 0

( , )

,

( , )

1 1 0

( , )

,

1

1

1

1 1 0

1 1 0
(17)

Finally, by Eqs. (9) and (17), we obtain

∑ ∑
∑ ∑

< − + − <

+ =
=

−

= +
− − − − − + − +

=

−

= +
− ∗ + ∗ ∗

Z l p l p

d d Z

(|∆ ( ) ∆ ( )| |∆ ( ) ∆ ( )|)

( ) .

i

n

k i

n

ik ik ik ik

i

n

k i

n

ik ik

0

1

1

1

1 1 0 1 1 0

1

1

1

, ,

This contradicts with the fact that ∗Z is the optimal value of model

−M( 1). Hence, we conclude that = ∈d L L d L P( , ) min ( , )P Pn . This com-

pletes the proof of the theorem. □

As a direct consequence of Theorem 2, the consistency index of a

U2TLPR L defined in Definition 7 can be calculated via the following

equation:

= = −
∗

CI L d L L
Z

gn n
( ) ( , )

( 1)
,

where L is the U2TLPR constructed based on (6) and (7), which has the

smallest deviation from L.

3.2. An iterative consistency improving algorithm for U2TLPRs

In practice, it is obviously desirable to have an L that is additively

consistent; however, note that whenCI L( ) is large, this may come at the

expense of losing the original preference information contained in L,

resulting in non-informative or even misleading conclusions during

decision making. Consequently, in this section we try to strike a balance

between consistency improvement and preference preservation. Similar

to Saaty (1980), the idea is not to insist on the absolute consistency of a

U2TLPR, but rather to use a pre-specify threshold CI and consider a

U2TLPR to be of an acceptable consistency level whenever its con-

sistency index falls below CI . This induces a tradeoff in choosing be-

tween small values of CI to enhance the consistency of a U2TLPR and

large values of CI to prevent it from deviating too much from the ori-

ginal U2TLPR. An appropriate choice of the threshold can be de-

termined based on the prior knowledge of the problem at hand. Once a

given threshold CI is specified, we propose the following algorithm for

obtaining a U2TLPR with the desired consistency level:

Algorithm 1. Input: A U2TLPR = − + ×L l l([ , ])ik ik n n, a consistency index

threshold CI , an adjustment parameter ∈λ (0,1).

Output: the adjusted U2TLPR ̃ ̃=∼ − +
×L l l([ , ])ik ik n n satisfying

⩽∼
CI L CI( ) .

Step 1: Let =h 0 and = =− + ×L l l([ , ])ik ik n n0 ,0 ,0
− + ×l l([ , ])ik ik n n.

Step 2: Solve the optimization model −M( 1) for U2TLPR Lh. Let

<− ∗ + ∗d d i k, ( )ik h ik h,
,

,
, be the optimal solution and ∗Zh be the corresponding

optimal value. If =∗Z 0h , let =CI L( ) 0h and go to step 5; Otherwise

calculate CI L( )h as follows:

= −
∗

CI L
Z

gn n
( )

( 1)
.h

h

(18)

Step 3: If ⩽CI L CI( )h , go to step 5; Otherwise, construct a con-

sistent U2TLPR = − + ×L l l[ , ])h ik h ik h n n, , , where for all <i k,

= − = +− − − − ∗ + − + + ∗l l d l l d∆(∆ ( ) ), ∆(∆ ( ) ),ik h ik h ik h ik h ik h ik h,
1

, ,
,

,
1

, ,
,

(19)

= − = −− − + + − −
l g l l g l∆( ∆ ( )), ∆( ∆ ( )).ki h ik h ki h ik h,

1
, ,

1
, (20)

Step 4: Adjust Lh as follows:

= − ++− − − − −
l λ l λ l∆((1 )∆ ( ) ∆ ( )),ik h ik h ik h, 1

1
,

1
, (21)

= − +++ − + − +
l λ l λ l∆((1 )∆ ( ) ∆ ( )).ik h ik h ik h, 1

1
,

1
, (22)

Set = +h h 1 and go to step 2.

Step 5: Let = =∼ ∼
L L CI L CI L, ( ) ( )h h . Return the adjusted preference

relation
∼
L and

∼
CI L( ).

At each iteration of Algorithm 1, a new U2TLPR +Lh 1 is obtained in

step 4 as the weighted sum of the current Lh and a consistent U2TLPR

Lh constructed based on Lh. Intuitively, the use of the adjustment

parameter λ forces +Lh 1 to stay close to the consistent U2TLPR Lh while,

on the other hand, ensures that its difference from the current Lh is only

incremental. Notice that an excessively large value of λ may render the

algorithm to terminate prematurely, resulting in an “overly consistent”

U2TLPR (i.e., with a consistency index value that is much smaller than

the prescribed threshold CI ) that deviates significantly from the initial

U2TLPR. Thus, in order to prevent too much initial preference in-

formation from being lost during the construction of U2TLPRs, the use

of large values of λ in the algorithm is not recommended.

3.3. Properties of Algorithm 1

In this subsection, we discuss the properties of the proposed con-

sistency improving algorithm.

Theorem 3. Let = − + ×L l l([ , ])ik ik n n be a given U2TLPR. At each iteration h,

let <− ∗ + ∗d d i k, ( )ik h ik h,
,

,
, be the components of the optimal solution to the model

−M( 1) and L{ }h be the consistent U2TLPR constructed at Step 3 of Algorithm

1. Then − − ∗λ d(1 ) ik h,
, and − <+ ∗λ d i k(1 ) ,ik h,

, are the components of the optimal

solution to the model −M( 1) in the +h( 1)th iteration. Moreover, we have

= = = = …+ − + ×L L L l l h([ , ]) for all 0,1,2, ,h h ik ik n n1 (23)

where

= − = + <− − − − ∗ + − + + ∗l l d l l d i k∆(∆ ( ) ), ∆(∆ ( ) ), .ik ik ik ik ik ik
1

,0
, 1

,0
,

Proof. Since − ∗dik h,
, , and + ∗dik h,

, are the components of the optimal solution

to optimization model −M( 1) obtained at iteration h, there exists a

vector …∗ ∗ ∗w w w( , , , )n
T

1 2 satisfying

⎧

⎨
⎪⎪

⎩
⎪⎪

+ − ⩾ − <
+ − ⩽ + <
− ⩾ + ⩽ <

+ +⋯+ =
⩾ = … ⩾ <

∗ ∗ − − − ∗
∗ ∗ − + + ∗

− − − ∗ − + + ∗
∗ ∗ ∗
∗ − ∗ + ∗

g β w w l d i k

g β w w l d i k

l d and l d g i k

w w w

w i n d d i k

0.5 ( ) ∆ ( ) ,

0.5 ( ) ∆ ( ) ,

∆ ( ) 0 ∆ ( ) ,

1

0, 1,2, , ; , 0, .

i k ik h ik h

i k ik h ik h

ik ik h ik ik h

n

i ik h ik h

1
, ,

,

1
, ,

,

1
,
, 1

,
,

1 2

,
,

,
,

(24)

On the other hand, we have from Eqs. (19) and (20) that

= − +
= − + −
= −

− +− − − − −
− − − − − ∗

− − − ∗

l λ l λ l

λ l λ l d

l λd

∆ ( ) (1 )∆ ( ) ∆ ( )

(1 )∆ ( ) (∆ ( ) )

∆ ( ) .

ik h ik h ik h

ik h ik h ik h

ik h ik h

1
, 1

1
,

1
,

1
,

1
, ,

,

1
, ,

,
(25)

Similarly,

= +− ++ − + + ∗l l λd∆ ( ) ∆ ( ) .ik h ik h ik h
1

, 1
1

, ,
,

(26)

The following relation can then be obtained from (24)–(26):

⎧
⎨⎩

+ − ⩾ − − <
+ − ⩽ + − <

∗ ∗ − +− − ∗
∗ ∗ − + + ∗

g β w w l λ d i k

g β w w l λ d i k

0.5 ( ) ∆ ( ) (1 ) ,

0.5 ( ) ∆ ( ) (1 ) , .

i k ik h ik h

i k ik h ik h

1
, 1 ,

,

1
, ,

,
(27)

Next define

= − = − <+− ∗ − ∗ ++ ∗ + ∗d λ d d λ d i k(1 ) , (1 ) , ( ).ik h ik h ik h ik h, 1
,

,
,

, 1
,

,
,

(28)
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We now show that +− ∗dik h, 1
, , ⩾++ ∗d 0ik h, 1

, <i k( ), together with the weights

vector …∗ ∗ ∗w w w( , , , )n
T

1 2 , constitutes an optimal solution to model (M-1) at

iteration +h 1.

Note that by Eqs. (24) and (27), +− ∗dik h, 1
, , ⩾++ ∗d 0ik h, 1

, <i k( ), and the

vector …∗ ∗ ∗w w w( , , , )n
T

1 2 form a feasible solution to model −M( 1) at itera-

tion +h 1 with the corresponding objective function value

∑ ∑ ∑ ∑= + = − +
= −

+∗
=

−

= +
+− ∗ ++ ∗

=

−

= +
− ∗ + ∗

∗

Z d d λ d d

λ Z

( ) (1 ) ( )

(1 ) .

h
i

n

k i

n

ik h ik h
i

n

k i

n

ik h ik h

h

1
1

1

1
, 1
,

, 1
,

1

1

1
,
,

,
,

(29)

Let +−dik h, 1, ++dik h, 1 <i k( ), and …w w w( , , , )n T
1 2 be the components of an-

other arbitrary feasible solution to −M( 1) at iteration +h 1 satisfying

the following constraints:

⎧

⎨
⎪⎪

⎩
⎪⎪

+ − ⩾ − <
+ − ⩽ + <

− ⩾ + ⩽ <
+ +⋯+ =
⩾ = … ⩾ <

− +− +−
− ++ ++

− +− +− − ++ ++

+− ++

g β w w l d i k

g β w w l d i k

l d l d g i k

w w w

w i n d d i k

0.5 ( ) ∆ ( ) ,

0.5 ( ) ∆ ( ) ,

∆ ( ) 0,∆ ( ) ,

1,

0, 1,2, , ; , 0, .

i k ik h ik h

i k ik h ik h

ik h ik h ik h ik h

n

i ik h ik h

1
, 1 , 1

1
, 1 , 1

1
, 1 , 1

1
, 1 , 1

1 2

, 1 , 1 (30)

From (25) and (26), (30) can be equivalently written as

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

+ − ⩾ − −
+ − ⩽ + +

− − ⩾
+ + ⩽

+ +⋯+ =
⩾ = … ⩾ <

− − − ∗ +−
− + + ∗ ++

− − − ∗ +−
− + + ∗ ++

− +− + ++

g β w w l λd d

g β w w l λd d

l λd d

l λd d g

w w w

w i n d d d d i k

0.5 ( ) ∆ ( ) ,

0.5 ( ) ∆ ( ) ,

∆ ( ) 0,

∆ ( ) ,

1,

0, 1,2, , ; , , , 0, ,

i k ik h ik h ik h

i k ik h ik h ik h

ik h ik h ik h

ik h ik h ik h

n

i ik ik h ik h ik h

1
, ,

,
, 1

1
, ,

,
, 1

1
, ,

,
, 1

1
, ,

,
, 1

1 2

, 1 , , 1

which implies that = +− − ∗ +−d λd dik h ik h ik h,
,0

,
,

, 1, = ++ + ∗ ++d λd dik h ik h ik h,
,0

,
,

, 1 <i k( ),

and …w w w( , , , )n T
1 2 also form a feasible solution to −M( 1) at iteration h.

In addition, since − ∗dik h,
, and <+ ∗d i k( )ik h,

, are both optimal at iteration h, it

follows that

∑ ∑
∑ ∑

+ + + ⩾

+
=

−

= +
− ∗ +− + ∗ ++

=

−

= +
− ∗ + ∗

λd d λd d

d d

[( ) ( )]

( ).

i

n

k i

n

ik h ik h ik h ik h

i

n

k i

n

ik h ik h

1

1

1
,
,

, 1 ,
,

, 1

1

1

1
,
,

,
,

(31)

Rearranging the terms in (31) yields

∑ ∑ ∑ ∑+ ⩾ − + = −
=

=

−

= +
+− ++

=

−

= +
− ∗ + ∗ ∗

+∗

d d λ d d λ Z

Z

( ) (1 ) ( ) (1 )

,

i

n

k i

n

ik h ik h
i

n

k i

n

ik h ik h h

h

1

1

1
, 1 , 1

1

1

1
,
,

,
,

1

where the last equality follows from (29). This proves the optimality of

+− ∗dik h, 1
, , ⩾++ ∗d 0ik h, 1

, <i k( ), and …∗ ∗ ∗w w w( , , , )n
T

1 2 at iteration +h 1.
To show (23), note that we have from Eqs. (19) and (21) that

= −
= − + −
= − + −

+− − +− +− ∗
− − − − −

+− ∗
− − − −

+− ∗

l l d

λ l λ l d

λ l λ l d

∆(∆ ( ) )

∆(∆ (∆((1 )∆ ( ) ∆ ( ))) )

∆((1 )∆ ( ) ∆ ( ) ).

ik h ik h ik h

ik h ik h ik h

ik h ik h ik h

, 1
1

, 1 , 1
,

1 1
,

1
, , 1

,

1
,

1
, , 1

,

By Eqs. (19) and (28), we can further obtain that

= − + − − −
= − + − − −
= −
=

+− − − − − − − ∗ − ∗
− − − − − ∗ − ∗

− − − ∗
−

l λ l λ l d λ d

λ l λ l d λ d

l d

l

∆((1 )∆ ( ) ∆ (∆(∆ ( ) )) (1 ) )

∆((1 )∆ ( ) (∆ ( ) ) (1 ) )

∆(∆ ( ) )

.

ik h ik h ik h ik h ik h

ik h ik h ik h ik h

ik h ik h

ik h

, 1
1

,
1

, ,
,

,
,

1
,

1
, ,

,
,
,

1
, ,

,

,

By using a similar argument, it can be seen that =++ +
l lik h ik h, 1 , . Conse-

quently, we conclude that =+L Lh h1 .

Finally, by applying the definition of L0 in Algorithm 1, we have

= = = − <
= = = + <

+− − − − − − ∗

++ + + − + + ∗
l l l l d i k

l l l l d i k

∆(∆ ( ) ), ,

∆(∆ ( ) ), ,

ik h ik h ik ik ik

ik h ik h ik ik ik

, 1 , ,0
1

,0
,

, 1 , ,0
1

,0
,

which completes the proof of the second claim. □

Theorem 3 shows that the constructed consistent U2TLPR remains

unchanged in successive iterations of Algorithm 1. Thus, the recursions

in Eq. (28) imply that the optimal solution to model −M( 1) at iteration h

can be directly obtained from the initial − ∗dik,0
, and + ∗dik,0

, as

= − = − <− ∗ − ∗ + ∗ + ∗d λ d d λ d i k(1 ) , (1 ) ( ).ik h
h

ik ik h
h

ik,
,

,0
,

,
,

,0
,

(32)

Moreover, the improved U2TLPR =+ +− ++L l l([ , ])h ik h ik h1 , 1 , 1 at iteration h

can also be determined from (25) and (26) as follows:

= − − − <
= + − − <

+− − − + − ∗

++ − + + + ∗
l l λ d i k

l l λ d i k

∆(∆ ( ) [1 (1 ) ] ),

∆(∆ ( ) [1 (1 ) ] ), .

ik h ik
h

ik

ik h ik
h

ik

, 1
1 1

,0
,

, 1
1 1

,0
,

(33)

Theorem 4. At each iteration h of Algorithm 1, let = …∗Z h( 0,1, )h be the

optimal objective function value of model −M( 1). Then the following results

hold:

(i) = −∗ ∗Z λ Z(1 )h
h

0 ;

(ii) the consistency index of the modified U2TLPR obtained at iteration h is

= −
−

∗CI L
λ

gn n
Z( )

(1 )

( 1)
;h

h

0
(34)

(iii) the number of algorithm iterations required to obtain a U2TLPR within

a desired consistency level CI is given by

⎜ ⎟= ⎛
⎝

⎡
⎢⎢

− ⎤
⎥⎥
⎞
⎠− ∗h

CIg n n

Z
max 1, log

( 1)
,min λ1

0 (35)

where ⌈ ⌉X is the smallest integer that is no less than X.

Proof. The first claim (i) follows directly from Eq. (32), in particular,

∑ ∑
∑ ∑

= +

= − + −
= −

∗
=

−

= +
− ∗ + ∗

=

−

= +
− ∗ + ∗

∗

Z d d

λ d λ d

λ Z

( )

[(1 ) (1 ) ]

(1 ) .

h

i

n

k i

n

ik h ik h

i

n

k i

n

h
ik

h
ik

h

1

1

1

,
,

,
,

1

1

1

,0
,

,0
,

0

(ii) Using Eq. (18) and the result from part (i), we immediately

arrive at

= = − = −
−

∗ ∗CI L d L L
gn n

Z
λ

gn n
Z( ) ( , )

1

( 1)

(1 )

( 1)
.h h h h

h

0

(iii) Applying part (ii) of the theorem, we have ⩽CI L CI( )h

whenever ⩽−
−

∗Z CI
λ

gn n

(1 )

( 1) 0

h
. Solving the latter inequality for h, we get

⩾ −
−
∗h log λ

CIg n n

Z1
( 1)

0
. Since h is a positive integer, the minimum number

of iterations required is thus given by = ⎛⎝ ⎡⎢ ⎤⎥⎞⎠−
−
∗h max 1, logmin λ

CIg n n

Z1
( 1)

0
.

□

3.4. An improved non-iterative version of Algorithm 1

Theorem 4 shows that at any iteration = …h 1,2, of Algorithm 1, the

optimal solution to model −M( 1), the constructed consistent U2TLPR,

and the improved U2TLPR along with its associated consistency index

can all be found directly from the values of CI L λ, , and the initial ∗Z0 .

Thus, repeatedly solving the optimization model −M( 1) at each itera-

tion of Algorithm 1 is not needed and could in fact lead to unnecessary

waste of computational effort. This naturally suggests the following

non-iterative version of Algorithm 1, where the optimization model
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−M( 1) is only solved once at the beginning:

Algorithm 2. Input: A U2TLPR = − + ×L l l([ , ])ik ik n n, a consistency index

threshold CI , an adjustment parameter ∈λ (0,1).

Output: the adjusted U2TLPR ̃ ̃=∼ − +
×L l l([ , ])ik ik n n satisfying

⩽∼
CI L CI( ) .

Step 1: Solve the optimization model −M( 1) for the given U2TLPR

L. Let ∗Z0 be the optimal objective function value to model −M( 1). If

=∗Z 00 , set =∼
L L and =∼

CI L( ) 0, go to step 4; Otherwise, go to step 2.

Step 2: Calculate the required number of iterations hmin from Eq.

(35).

Step 3: Set =h hmin and calculate the improved U2TLPR
∼
L using Eq.

(33). Calculate the consistency index of U2TLPR
∼
L using Eq. (34).

Step 4: Return the adjusted U2TLPR
∼
L and its consistency index∼

CI L( ).

4. Illustrative example and comparative analysis

In this section, we begin with a simple example to illustrate the

application of the proposed procedure, followed by a computational

comparison analysis to highlight its benefits and advantages in pre-

ference preservation.

4.1. An illustrative example

Construction projects are often very complex and may be exposed to

many risk sources due to the involvement of different contracting

parties (e.g., owners, designers, contractors, and suppliers) and addi-

tional economic, social, and environmental concerns. Therefore, effec-

tive risk management in construction projects is critical in achieving

project objectives. In particular, there is a need for developing a

quantitative risk assessment process to manage all types of risks. The

aim of this case study is to determine the relative importance of the

following five risk factors involved in a construction project: quality

(x1), time (x2), cost (x3), safety (x4), and environmental sustainability

(x5). During the process, the project manager is asked to evaluate

the five factors through pairwise comparison by using the linguistic

term set =S s extremelylow s verylow s low s slightly low s fair s{ : ; : ; : ; : ; : ; :0 1 2 3 4 5

slightly high s high s very high s extremely high; : ; : ; : }6 7 8 . Based on his

judgment, a U2TLPR L shown in (36) is obtained. The proposed con-

sistency improving model then is employed to solve this problem.

=
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

L

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

4 4 1 2 6 7 4 5 5 6

6 7 4 4 3 4 2 3 6 7

1 2 4 5 4 4 6 7 4 5

3 4 5 6 1 2 4 4 2 3

2 3 1 2 3 4 5 6 4 4

(36)

We apply Algorithm 2 to solve the problem. In this example, the

following set of parameters is used: = =β ng( )/2 20, =λ 0.3, and

=CI 0.03. Note that the optimization model −M( 1) will only need to be

solved once at the beginning. We obtained the optimal positive devia-

tions are =+ ∗d 1.33112,0
, , =− ∗d 2.14013,0

, , =+ ∗d 0.52923,0
, , =+ ∗d 2.66924,0

, ,

=− ∗d 0.33125,0
, , =− ∗d 0.86034,0

, , =+ ∗d 0.14035,0
, and =+ ∗d 1.00045,0

, . The corre-

sponding optimal objective function value is =∗Z 9.0000 , and the con-

sistency index of L0 is CI L( )0 =0.056. This allows us to directly com-

pute the required number of algorithm iterations via (35):

⎜ ⎟= ⎛
⎝

⎡
⎢⎢

× × − × ⎤
⎥⎥
⎞
⎠ =h max 1, log

0.03 8 (5 1) 5

9
2.min 0.7

Thus, an adjusted U2TLPR L2 with the desired consistency level can also

be immediately obtained from (33). For example, the (1,2)th entry of L2

can be computed as follows:

= − − − = − − − × =
=

− − − − ∗l l λ d

s

∆(∆ ( ) [1 (1 ) ] ) ∆(1 [1 (1 0.3) ] 0) ∆(1)

( ,0)

h
12,2

1
12 12,0

, 2

1

min ;

= + − − = + − − ×
= = −

+ − + + ∗l l λ d

s

∆(∆ ( ) [1 (1 ) ] ) ∆(2 [1 (1 0.3) ] 1.331)

∆(2.679) ( , 0.321)

h
12,2

1
12 12,0

, 2

3

min .

The detailed steps for computing other preference values are similar

and thus omitted. The output U2TLPR of Algorithms 2 is an adjusted

U2TLPR =∼
L L2 (shown in (37)).

The consistency index associated with
∼
L can be computed via (34)

without resorting to the specific form of
∼
L :

= = −
× × − =∼

CI L CI L( ) ( )
(1 0.3)

8 5 (5 1)
0.028.2

2

As a part of the optimal solution to model −M( 1), the following

weight vector is derived in this example:

=∗W (0.2119,0.2454,0.2189,0.1619,0.1619), which means the ranking of

the risk factors is ≻ ≻ ≻ ∼x x x x x2 3 1 4 5.

To investigate the impact of the choice of the parameter β on the

consistency results, a test is performed by running Algorithm 2 with

different β values. Table 1 shows the weight vectors derived under

different choices of β values. We observe from the table that when the

value of β is very large (e.g., =β 10,000), then all wi’s are close to

n1/ (0.2). Moreover, the larger the value of β is, the smaller the differ-

ences among the components of the weight vector. Although the values

of the derived weights are affected by the value of β, the ranking of the

weights remains unchanged ( ≻ ≻ ≻ ∼x x x x x2 3 1 4 5), except for those

cases when β is either very small or very large. This shows that the

ranking of the alternatives is not sensitive to the choice of β. In practice,

we suggest setting the value of β either to ng/2 or −n g( 1) /2, as re-

commended in Section 3.1.

4.2. Comparison analysis

To further illustrate the proposed consistency improving approach,

we consider some computational experiments on an example taken

from Zhang and Guo (2016) and compare the performance of our

Table 1

The derived weights corresponding to different β values.

β w1 w2 w3 w4 w5

4 0.2778 0.3536 0.2996 0.0278 0.0412

8 0.2308 0.2846 0.2730 0.1058 0.1058

16 0.2149 0.2567 0.2237 0.1524 0.1524

20 0.2119 0.2454 0.2189 0.1619 0.1619

24 0.2099 0.2379 0.2158 0.1682 0.1682

100 0.2024 0.2091 0.2038 0.1924 0.1924

1000 0.2000 0.2012 0.2004 0.1992 0.1992

10,000 0.2000 0.2001 0.2001 0.1999 0.1999

=
⎛

⎝

⎜
⎜
⎜
⎜

− −
−

− −
− −

−

⎞

⎠

⎟
⎟
⎟
⎟

∼
L

[(s ,0),(s ,0)] [(s ,0),(s , 0.321)] [(s , 0.091),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0.321),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0.270)] [(s ,0),(s ,0.361)] [(s , 0.169),(s ,0)]

[(s ,0),(s ,0.091)] [(s , 0.270),(s ,0)] [(s ,0),(s ,0)] [(s , 0.439),(s ,0)] [(s ,0),(s ,0.071)]

[(s ,0),(s ,0)] [(s , 0.361),(s ,0)] [(s ,0),(s ,0.439)] [(s ,0),(s ,0)] [(s ,0),(s , 0.490)]

[(s ,0),(s ,0)] [(s ,0),(s ,0.169)] [(s , 0.071),(s ,0)] [(s ,0.490),(s ,0)] [(s ,0),(s ,0)]

4 4 1 3 5 7 4 5 5 6

5 7 4 4 3 4 2 4 6 7

1 3 4 5 4 4 6 7 4 5

3 4 4 6 1 2 4 4 2 4

2 3 1 2 3 4 4 6 4 4 (37)
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algorithms with that of the method proposed in Zhang and Guo (2016).

Let =X x x x x x x{ , , , , , }1 2 3 4 5 6 be the set of six decision alternatives. The de-

cision maker expressed the preference information using a U2TLPR

which is given by L in Zhang and Guo (2016). Here, denote this original

U2TLPR as LZh.

The algorithm implemented in Zhang and Guo (2016) uses the

following parameters: =CI 0.08 and =λ 0.6. A consistent U2TLPR,

denoted by ∗LZh (shown in (38)), is then constructed, based on which the

algorithm terminates in two iterations, yielding an improved U2TLPR∼
LZh (denoted as L2 in Zhang & Guo (2016)) with the desired consistency

level. Note that similar to the algorithm proposed in Zhang and Guo

(2016), the main idea of our consistency improving approach is also

based on iterating towards a consistent U2TLPR. However, our algo-

rithm takes a different approach by solving the optimization problem

−M( 1), leading to a consistent U2TLPR ∗L (shown in (39)) that differs

significantly from ∗LZh. One important issue to note here is the difference

between ∗d L L( , )Zh and ∗d L L( , )Zh Zh . Indeed, from the deviation measure

(1), we see that =∗d L L( , ) 0.0250Zh , whereas =∗d L L( , ) 0.1375Zh Zh . This

shows that, although both ∗LZh and ∗L are consistent U2TLPRs derived

from the same initial LZh, the U2TLPR ∗L obtained by our approach is

closer to the initial LZh. As mentioned in Section 1, the construction of

the consistent U2TLPR is conducted in Zhang and Guo (2016) by using

only the −n 1 preference values above the main diagonal of the initial

U2TLPR LZh, and the rest − −n n( 1)( 2)/2 preference values in the upper

triangular part of LZh are not considered. Thus, the resulting improved

U2TLPR usually does not fully reflect the original preferences of the

decision maker. In contrast, our approach implicitly takes into account

all the preference values in the original U2TLPR by searching for a

consistent U2TLPR ∗L that provides the closest distance to LZh. More-

over, Theorem 2 further suggests that ∗L minimizes the deviation be-

tween LZh and any consistent U2TLPR.

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∗L

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

Zh

4 4 4 5 2 4 2 5 3 7 3 8

3 4 4 4 2 3 2 4 3 6 3 7

4 6 5 6 4 4 4 5 5 7 5 8

3 6 4 6 3 4 4 4 5 6 5 7

1 5 2 5 1 3 2 3 4 4 4 5

0 5 1 5 0 3 1 3 3 4 4 4

(38)

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∗L

s s[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [( ,0),( ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

[(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)] [(s ,0),(s ,0)]

4 4 4 5 2 4 4 6 4 6 2 5

3 4 4 4 2 3 4 8 2 4 4 5

4 6 5 6 4 4 4 5 3 5 6 7

2 4 0 4 3 4 4 4 4 6 5 6

2 4 4 6 3 5 2 4 4 4 4 5

3 6 3 4 1 2 2 3 3 4 4 4

(39)

Since ∗L minimizes the deviation between LZh and any consistent

U2TLPR, our algorithm has better performance in preference pre-

servation in comparison with the consistency improving algorithm

proposed by Zhang and Guo (2016). To evaluate the performance of

different algorithms in terms of preference preservation, we run both

algorithms using different threshold values CI . Table 2 shows the

comparison results. As we can see from the table, with the same

threshold CI , the improved U2TLPR (
∼
L ) generated by our algorithm is

always closer to the initial U2TLPR than that obtained by the algorithm

of Zhang and Guo (2016). This empirically illustrates the advantage of

the proposed algorithm in preference preservation. It is worth noting

that when ⩾CI 0.0250, the U2TLPR produced by our algorithm coin-

cides with the initial U2TLPR, which explains why =∼
d L L( , ) 0Zh for

=CI 0.08,0.06 and 0.04 in Table 2. This suggests that the parameter CI

in the proposed algorithm should not be chosen too large. In practice,

we recommend to set the value ofCI between 0 and 0.06. With regard to

the determination of the threshold CI , we will conduct further research

by using methods such as simulation analysis in future work.

The computational complexity is an important criterion to evaluate

a consistency improving approach. In the algorithm of Zhang and Guo

(2016), an improved U2TLPR is updated based on a consistent U2TLPR

constructed at each iteration. So the computational complexity of their

algorithm is proportional to the number of algorithm iterations. When

the size of the problem is large and/or the parameters λ and CI are

small, such an iterative procedure could be computationally expensive,

as it may take many iterations to produce an acceptable U2TLPR. On

the other hand, since our proposed algorithm (Algorithm 2) is non-

iterative, its complexity is not susceptible to the choices of algorithm

parameters, making the algorithm faster and more efficient in handling

large problem instances.

5. Conclusions

Maintaining the satisfactory consistency of decision makers’ pre-

ference relations is critical to ensure accurate and reliable conclusions

in decision making. This paper presents a new optimization-based ap-

proach to address the consistency improving issue when preferences are

expressed using U2TLPRs. In particular, we have introduced a new

consistency definition for U2TLPRs and proposed an index to measure

their degree of consistency. We have then presented an optimization

model and shown that the solution to this model can not only be em-

ployed to determine whether a given U2TLPR is consistent but also be

used to compute its consistency index by minimizing its deviation from

the set of all consistent U2TLPRs. Since consistency improving will

inevitably alter the initial preference values, maintaining the con-

sistency of a U2TLPR often conflicts with the goal of preserving the

original preference information of the decision maker. Thus, another

major contribution of this paper is the development of an iterative al-

gorithm that aims to balance between consistency improvement and

preference preservation. The algorithm takes an unacceptable con-

sistent U2TLPR as input and generates an adjusted U2TLPR with a

desired consistency level while effectively retaining the preference in-

formation expressed by the decision maker. In addition, theoretical

analysis of the algorithm shows that there are structural properties that

can be further exploited to allow us to arrive at an equivalent yet much

more efficient implementation of the algorithm. Computational results

on two numerical examples conform well to our theoretical findings,

indicating superior performance of the proposed algorithms over an

existing method in preserving the preference information.

Although the proposed approach is advantageous in preserving the

original preference information given by decision maker, it does not

consider the additional preference information that the decision maker

may provide in the consistency improving process. Therefore, how to

make use of the additional preference information provided by the

decision maker is an important research issue worthy of further in-

vestigation. Some other future research topics include: (1) the extension

of the approach to the additive consistency of U2TLPRs based on the

idea of approximation-consistency (Liu et al., 2018); (2) the develop-

ment of a systematic approach to automatically determine appropriate

consistency thresholds in the proposed procedure; and (3) the in-

tegration of the proposed consistency improving model and consensus

Table 2

Comparison of distances between the improved U2TLPRs and the initial U2TLPR corresponding to different CI values.

CI 0.08 0.06 0.04 0.02 0.01 0.008 0.006 0.004

∼
d L L( , )Zh

0.0000 0.0000 0.0000 0.0075 0.0164 0.0190 0.0208 0.0220

∼
d L L( , )Zh Zh

0.0880 0.0880 0.1078 0.1200 0.1310 0.1310 0.1340 0.1340
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reaching model (Cabrerizo et al., 2015; Xu, Cabrerizo, & Herrera-

Viedma, 2017) in GDM.
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