
Journal of Intelligent & Fuzzy Systems 33 (2017) 3835–3852
DOI:10.3233/JIFS-17701
IOS Press

3835

Combining comparative linguistic

expressions and numerical information

in multi-attribute group decision

making—A simulation-based approach

Shengbao Yaoa,∗ and Jiaqiao Hub

aSchool of Business Administration, Zhongnan University of Economics and Law, Wuhan, China
bDepartment of Applied Mathematics and Statistics, Stony Brook University, New York, USA

Abstract. In multi-attribute group decision making (MAGDM) problems, the information about attribute weights and the

performance ratings of alternatives usually cannot be accurately quantified. This issue has motivated the development of

various MAGDM models based on the fuzzy sets theory. However, these fuzzy MAGDM models mostly rely on using the

extreme or expected values, but ignore the intermediate occurrences in determining the best alternatives. In order to provide

a complete understanding of decision makers’ preference structure, this paper takes a stochastic perspective and proposes

a simulation-based approach to facilitate MAGDM under uncertainty when both quantitative and qualitative attributes are

involved. The approach not only accounts for the incomplete information about the attribute weights during decision making,

but also allows for the use of comparative linguistic expressions to better capture the decision makers’ hesitancy about

linguistic expressions. We apply the proposed approach to electric vehicle charging station site selection problem and

highlight its effectiveness and advantages through an in-depth comparative analysis with some of the existing methods.

Keywords: Multi-attribute group decision making, comparative linguistic expression, incomplete weights, random preference,

Monte Carlo simulation

1. Introduction

Decision-making, which tries to find the best alter-

native(s) from a set of feasible alternatives, is widely

applied in many fields for the purposes of evaluation,

selection, and prioritization. The complexity of real

world problems has necessitated the need to consider

multiple points of view during the decision mak-

ing process. This naturally gives rise to the so-called
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group decision making (GDM) involving two or more

experts (each with his/her own perceptions, attitudes,

and motivation, etc.) who recognize the existence of

a common problem and attempt to reach a collec-

tive decision [1]. As an important category of GDM,

multi-attribute GDM (MAGDM) deals with decision

problems where several experts express their opin-

ions on a set of possible alternatives with respect

to multiple attributes and attempt to find a common

solution.

In MADGM environment, the information about

the attribute weights and the performance ratings of

alternatives is often uncertain, primarily due to the

following causes [2]: (i) unquantifiable information,
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(ii) incomplete information, and (iii) non-obtainable

information. Over the last few decades, a variety of

models have been proposed to deal with MADGM

under uncertainty. In most of these models, the fuzzy

sets theory has been served as an important and use-

ful mean for the decision making problems [3–7]. An

alternative way to handle uncertainty in MAGDM

is the stochastic approaches [8–13], where some

or all of the input parameters of a given problem

are expressed in the form of probability distribu-

tion. Under the framework of stochastic approaches,

simulation can be applied to MADGM under uncer-

tainty. As pointed out in [13], the simulation-based

MAGDM methods can provide a more complete

understanding of possible outcomes during the deci-

sion making process. However, despite the progress

made on using simulation to model the uncertainty

in MAGDM, there are still some important issues

related to these models that remain to be resolved.

First, the uncertainty issue such as hesitancy about

linguistic expressions under qualitative setting has

not been considered in existing simulation-based

MAGDM models. Although subjective attributes are

taken into account in [12], only single linguistic terms

are used by decision makers to articulate their pref-

erences. As pointed out by Rodriguez et al. [14],

however, the experts may think of several terms or

look for more complex linguistic terms that are not

defined in the linguistic term sets. Second, incom-

plete information about attribute weights has not been

incorporated into the models. In current studies, the

attribute weight information is either assumed to be

completely unknown [8] or completely provided by

the decision makers [13]. In practice, however, it is

very likely that this information is in-between the

above two extremes [15, 16]. Hence, the uncertainty

caused by incomplete information about attribute

weights should also be considered in the decision

making process.

Motivated by the above discussion, in this paper we

propose a new simulation-based approach to address

the inherent uncertainties in MAGDM problems. The

proposed approach takes as inputs the decision matri-

ces provided by individual decision maker and the

incomplete information about attribute weights. For

the evaluation of performance rating with respect to

qualitative attributes, the approach allows the deci-

sion makers to use comparative linguistic expressions

to facilitate and increase the flexibility in eliciting

their linguistic judgements. Compared to existing

simulation-based models, the main characteristics of

the proposed approach that lead to its novelty are as

follows: (1) it captures DMs’ hesitancy about linguis-

tic expressions by allowing the use of comparative

linguistic expressions under a general simulation

framework; (2) it samples realizations of attribute

weights from a set of prespecified weight constraints

and thus explicitly takes into account the incom-

plete attribute weight information during the decision

making process; and (3) it is capable of solving

MAGDM problems involving both comparative lin-

guistic expressions and numerical information.

The remainder of this paper is organized as follows.

Section 2 begins with a brief review of approaches

in MAGDM under uncertainty. Section 3 describes

the considered MAGDM problem and summaries the

basic concepts that will be needed in the rest of the

paper. In Section 4, we provide a detailed description

of the proposed simulation based MAGDM approach.

In Section 5, we demonstrate the performance of

the proposed approach on an electric vehicle charg-

ing station site selection problem. A comparison

study is also carried out to illustrate its effective-

ness and benefits. Finally, we conclude the paper in

Section 6.

2. Literature review

2.1. Fuzzy approach in MAGDM under

uncertainty

Ever since its introduction by Zadeh [17], the

fuzzy sets theory has been an powerful tool to deal

with uncertainty in decision making. In particular,

the theory has been integrated with many MAGDM

techniques to address the inherent impreciseness

and subjectiveness during decision making, lead-

ing to the emergence of fuzzy multi-attribute group

decision-making (FMAGDM) methods [2, 6]. Gen-

erally speaking, the fuzzy approach is utilized when

the input parameters of the MAGDM problem are

subjective and vague by using linguistic terms and

membership functions.

The past decades have witnessed many fruitful

studies on MAGDM problems based on the fuzzy

sets theory. For instance, Chen [3] presented an

extension of the TOPSIS (Technique for Order Pref-

erence by Similarity to Ideal Solution) method for

MAGDM under a fuzzy environment. Kahraman

et al. [4] proposed a fuzzy analytic hierarchy process

(AHP) model for determining the weights of the main

attributes in MAGDM. Wang and Lin [18] studied a

method for FMAGDM to select configuration items
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in software development. Ölçer and Odabaşi [19]

proposed a three-stage conceptual model for

FMAGDM and presented a MAGDM technique

under a fuzzy environment for propulsion and

maneuvering system selection. Wu and Chen [20]

presented a method for maximizing deviation for

group multi-attributes decision-making in a linguistic

environment. Pang et al. [21] focused on the con-

sensus problem and proposed an adaptive method

for MAGDM under uncertain linguistic environ-

ment. Chou et al. [22] provided a fuzzy simple

additive weighting system (FSAWS) for solving

facility location selection problems by using objec-

tive/subjective attributes under GDM conditions. Yeh

and Chang [23] presented a fuzzy MAGDM approach

for evaluating decision alternatives involving subjec-

tive judgements made by a group of decision makers.

Li [24] proposed some different distance measures

and developed a method for solving FMAGDM prob-

lems with non-homogeneous information. Liu et al.

[25] presented a method based on ordered weighted

harmonic averaging operators is presented to solve

the multiple attribute group decision making prob-

lems in which the attribute values take the form of

generalized interval-valued trapezoidal fuzzy num-

bers. Samvedi et al. [5] used both fuzzy TOPSIS and

Fuzzy AHP techniques to quantify risks in a supply

chain. It is also worth noting that during the past two

decades, several generalizations of the classic fuzzy

sets have been developed, including type-2 fuzzy sets

[26], intuitionistic fuzzy sets (IFSs) [27, 28], and hes-

itant fuzzy sets [29], some of which have been applied

to the field of FMAGDM [7, 30–36].

2.2. Stochastic approach in MAGDM under

uncertainty

An alternative way to handle imprecision and

uncertainty in MAGDM is through the use of stochas-

tic approaches, where some or all of the input

parameters of a given problem are expressed in

the form of probability distribution. Lahdelma and

Salminen [8] suggested a method called Stochastic

Multicriteria Acceptability Analysis (SMAA), which

considers the case where both the weight and attribute

values are inaccurate. The method relies on exploring

the weight space in order to describe the valuations

that would make each alternative the preferred one.

Inaccurate or uncertain criteria values are represented

by probability distributions, based on which confi-

dence factors describing the reliability of the analysis

can be computed. Prato [9] presented a stochastic

multiple attribute evaluation method for selecting

land use policies, in which the stochastic attributes

of outcomes are characterized by probability distri-

butions. To rank land use policies for stakeholder,

different preferences are considered based on inter-

dependent attributes of the policy outcomes. Lafleur

[10] proposed to use the triangular distribution to

describe the weight impreciseness of attributes in the

pairwise comparison matrix of AHP and employed

Monte Carlo simulation to determine the prefer-

ence probabilities of alternatives. Liu et al. [11]

studied an extended TOPSIS method for MAGDM

problems based on probability theory and uncertain

linguistic variables. Mousavi et al. [12] proposed

a fuzzy-stochastic MAGDM approach by aggregat-

ing group preferences into triangular fuzzy numbers.

They used Monte Carlo simulation to obtain prob-

ability distributions representing the performance of

alternatives with respect to attributes. Then, a ranking

technique (VIKOR) for final prioritization of alter-

natives is used. Recently, Hüsamettin [13] presented

a MAGDM technique based on simulation and the

TOPSIS method. In this model, individual prefer-

ences about attribute weights and attribute values are

aggregated into triangular distributions. In addition,

the use of simulation also enables decision mak-

ers to incorporate some decision constraints into the

decision-making process.

It is clear that both the fuzzy approach and the

stochastic approach are viable ways for modeling

imprecision and uncertainty in MAGDM. Regard-

ing the comparison between these two general

approaches, Buckly [37] highlighted that the stochas-

tic approach considers all ways to conduct a task,

whereas the fuzzy approach provides the most opti-

mistic way to accomplish the task. More specifically,

fuzzy MAGDM techniques usually consider either

the worst, best, or the most probable values, which

means that the intermediate occurrences are often

overlooked in determining the best alternatives [13].

Just as Marinoni pointed out [38], assigning extreme

realizations and observing the range of outcomes is

not necessarily a solution as these extreme realiza-

tions are normally rare events with low probabilities

of occurrence. In addition, the frequently used tech-

niques for defuzing fuzzy numbers in FMAGDM may

cause additional information loss and thus limits the

ability of fuzzy techniques to deal with imprecision

and uncertainty [39]. On the other hand, simulation

based multi-attribute group decision making tech-

niques can provide a more complete understanding
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of possible outcomes during the decision making

process.

3. Preliminaries

3.1. Problem description

We consider the following MAGDM problem

under uncertainty: Let A = {A1, A2, · · · , Am} be

a finite set of alternatives, DM = {DM1, DM2,

· · · , DMD} be a group of decision-makers (DMs),

and λ = (λ1, λ2, · · · , λD) be the weight vector of

DMs, where both m and D are positive inte-

gers. We focus on problems with both qualitative

and quantitative attributes (i.e., dealing with lin-

guistic and numerical information) and assume

that each alternative has n (n ≥ 2) attributes, with

n1 (0 < n1 < n) being the number of qualitative

attributes and n − n1 being the number of quan-

titative attributes. Without loss of generality, we

denote by C = {C1, · · · , Cn1 , Cn1+1, · · · , Cn} the

finite set of attributes. Let Xd = (xd
ij)m×n (d =

1, 2, . . . , D) be the decision matrix provided by

decision maker DMd ∈ DM, where xd
ij represents

the performance rating of alternative Ai ∈ A with

respect to attribute Cj ∈ C. Specifically, xd
ij, j ∈

{1, 2, · · · , n1} are comparative linguistic expres-

sions ([40]) and xd
ij, j ∈ {n1 + 1, · · · , n} are crisp

numbers.

Let w = (w1, w2, · · · , wn) be the weight

vector of attributes, where wj ≥ 0, j = 1, 2,

· · · , n,
∑n

j=1 wj =1. The weight vector w is

assumed to be incompletely/partially known in our

model, and the set of the known weight information,

denoted by H , can be expressed through constraints

of one of the following forms [15, 16]: for i /= j,

Form 1. A weak ranking: wi ≥ wj; Form 2. A

strict ranking: wi − wj ≥ αi, αi > 0; Form 3.

A ranking of differences: wi − wj ≥ wk − wl,

for j /= k /= l; Form 4. A ranking with multi-

ples: wi ≥ αiwj, 0 ≤ αi ≤ 1; Form 5. A interval

form: αi ≤ wi ≤ αi + εi, 0 ≤ αi < αi + εi ≤ 1.

Park [41] provided a detailed interpretation as

to when incomplete weight information could

occur in practice. We remark that in the pro-

posed model completely unknown information

about attribute weights can be regarded as a spe-

cial case of incomplete information by setting

H = {w = (w1, . . . , wn) ≥ 0|
∑n

i=1 wi = 1}.
The aim of MAGDM is to select or prioritize these

finite alternatives based on performance assessments

of alternatives, incomplete attribute weights and over-

all group satisfaction.

3.2. Context-free grammar approach and

hesitant fuzzy linguistic term sets

Most fuzzy linguistic approaches handle linguis-

tic terms with defined priori and thus prevent DMs

from utilizing flexible expressions to provide their

preferences. However, in the presence of a high

degree of uncertainty, DMs may hesitate among

different linguistic terms and would prefer to use

more complex linguistic expressions, which cannot

be expressed through the building of classical linguis-

tic approaches. Rodrı́guez et al. [14] proposed the use

of context-free grammar and further extended it [40]

to generate comparative linguistic expressions.

Definition 1. [40] Let GH be context-free grammar

and S = {s0, s1, · · · , sg} be a linguistic term set. The

elements of GH = (VN , VT , I, P) are defined as fol-

lows:

VN = {〈primaryterm〉, 〈compositeterm〉,

〈unaryterm〉, 〈binaryterm〉, 〈conjuction〉},

VT = {lowerthan, greaterthan, atleast, atmost,

between, and, s0, s1, · · · , sg},

I ∈ VN .

P = {I ::= 〈primaryterm〉 | 〈compositeterm〉

〈compositeterm〉 ::= 〈unaryterm〉

〈primaryterm〉 | 〈binaryterm〉

〈primaryterm〉〈conjuction〉〈primaryterm〉

〈primaryterm〉 ::= s0 | s1 | · · · | sg

〈unaryterm〉 ::= lowerthan | greaterthan |

atleast | atmost

〈binaryterm〉 ::= between

〈conjunction〉 ::= and}.

Definition 2. [14] Let S = {s0, s1, · · · , sg} be a lin-

guistic term set. An HFLTS HS on S is an ordered

finite subset of consecutive linguistic terms in S.

A transformation functionEGH capable of convert-

ing the comparative linguistic expressions generated

by the extended context-free grammar GH approach

into HFLTSs is introduced below.
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Definition 3. [40] Let EGH be a function that trans-

forms the linguistic expression ll ∈ Sll obtained by

GH into an HFLTS. S is the linguistic term set used

by GH , and Sll is the expression domain generated

by GH : EGH : Sll → HS .

The linguistic expressions generated by GH using

the production rules can be transformed into an

HFLTS through the following transformations:

– EGH (si) = {si | si ∈ S}
– EGH (atmost si) = {sj | sj ∈ S and sj ≤ si}
– EGH (lowerthan si) = {sj | sj ∈S and sj < si}
– EGH (atleast si) = {sj | sj ∈ S and sj ≥ si}
– EGH (greaterthan si) = {sj | sj ∈ S and sj

> si}
– EGH (between si and sj) = {sk | sk ∈

S and si ≤ sk ≤ sj}.

3.3. 2-tuple linguistic representation model

In order to compute with words without loss of

information, Herrera and Martı́nez [42] proposed a

2-tuple linguistic representation model based on the

concept of symbolic translation. The model uses a

2-tuple (si, αi) to represent linguistic information,

where si is a linguistic term belonging to the prede-

fined linguistic term set and αi ∈ [−0.5, 0.5) denotes

the symbolic translation. Specifically, the 2-tuple lin-

guistic representation model is defined as follows:

Definition 4. [42] Let S = {s0, s1, ..., sg} be a linguis-

tic term set and β ∈ [0, g] be a value representing the

result of a symbolic aggregation operation, then the

2-tuple that expresses the equivalent information to

β is obtained with the following function:

� : [0, g] 	→ S × [−0.5, 0.5)

�(β) = (si, αi),

where i = round(β) and αi = β − i. Note that

“round” is the usual rounding operator, si has the

closest index label to β, and αi is the value of the

symbolic translation.

Based on the above definition, a linguistic term can

be viewed as a 2-tuple linguistic by adding a value 0

to it as symbolic translation. That is, si ∈ S ⇒ (si, 0).

Unless otherwise specified, we will use 2-tuple lin-

guistic representations instead of linguistic terms

throughout the paper.

Definition 5. [42] Let S = {s0, s1, ..., sg} be a lin-

guistic term set and (si, αi) be a 2-tuple, there exists

a function

�−1 : S × [−0.5, 0.5) 	→ [0, g]

�−1((si, αi)) = i + αi = β

that uniquely transforms a 2-tuple into its equivalent

numerical value β ∈ [0, g].

Definition 6. [42] Let x = {(s1, α1), (s2, α2), · · · ,

(sn, αn)} be a set of 2-tuples and W = {w1, · · · , wn}
be their associated weights. The 2-tuple weighted

average x is defined as

x = �

(∑n
i=1 �−1(si, αi) · wi

∑n
i=1 wi

)

. (1)

3.4. Random preference derived from HFLTS

This subsection introduces the concept of random

preference for HFLTS [43], which will be used to

handle HFLTSs in the proposed simulation-based

framework.

In our MAGDM context, the linguistic assess-

ments xd
ij about qualitative attributes are articulated

by comparative linguistic expressions (including

single linguistic terms) generated by the context-

free grammar. The linguistic assessment xd
ij will

be expressed in terms of HFLTS and denoted by

Hd
ij , where i = 1, 2, · · · , m, j = 1, 2, · · · , n1, d =

1, 2, · · · , D. The HFLTS, Hd
ij , is a subset of the lin-

guistic term set S, which represents expert DMd
′s

uncertain judgment for alternative Ai with respect to

attribute Cj . For simplicity, we use �(S) to denote

the family of all HFLTSs defined over the linguistic

term set S.

When expert DMd provides his/her judgment for

the performance of alternative Ai with respect to

attribute Cj , a probability distribution of his/her opin-

ion on �(S) can be derived as

p�(S)(H | Ai, Cj, DMd) =

{

1, if H = Hd
ij ;

0, otherwise,

where i = 1, 2, · · · , m, j = 1, 2, · · · , n1, and d =
1, 2, · · · , D. Yan et al. [43] pointed out that the proba-

bility distribution p�(S)(H | Ai, Cj, DMd) is nothing

but a basic probability assignment in the sense of

Shafer [44]. We then can use the so-called pignistic

transformation method [45] to obtain the least prej-

udiced distribution over the linguistic term set S for

alternative Ai on attribute Cj under expert DMd as

follows:
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pS(sk | Ai, Cj, DMd)

=
p�(S)(H | Ai, Cj, DMd)

|Hd
ij|

=

{

1/|Hd
ij|, if sk ∈ Hd

ij ;

0, otherwise,
(2)

where i = 1, 2, · · · , m, j = 1, 2, · · · , n1, and d =
1, 2, · · · , D.

Yan et al. [43] remarked that such a probability

distribution can be viewed as the prior probabil-

ity that the expert DMd believes that the linguistic

term sk ∈ S is appropriate enough to describe the

performance of alternative Ai on attribute Cj . For

notational convenience, pS(sk | Ai, Cj, DMd) will

be denoted by pd
ij(sk). Under such a formulation, for

each alternative Ai, each expert DMd generates a vec-

tor of n1 individual random preferences, denoted by

(Pd
i1, P

d
i2, · · · , Pd

in1
), with

Pd
ij = [pd

ij(s0), pd
ij(s1), · · · , pd

ij(sg)], (3)

where i = 1, 2, · · · , m, j = 1, 2, · · · , n1, d = 1, 2,

· · · , D.

3.5. Triangular distribution

The triangular distribution is often used to express

the uncertainty of outcomes when the actual distri-

bution of a random variable cannot be determined

[13]. It is intuitive to non-statistically minded DMs

and appears well suited for GDM/MAGDM envi-

ronments due to its simplicity in capturing multiple

preferences [46]. The triangular distribution is spec-

ified by three parameters: minimum (L), maximum

(H), and most probable (M) value. Given a random

variate U drawn from the uniform distribution over

the interval (0, 1), it can be shown that the random

variate

T =

{

L +
√

U(H − L)(M − L), if U < M−L
H−L

H −
√

(1 − U)(H − L)(H − M), if U > M−L
H−L

.
(4)

has a triangular distribution with parameters L, M,

and H .

4. A simulation based approach for MAGDM

problems

4.1. The proposed framework

The proposed approach starts by collecting infor-

mation about weights of DMs, weights of attributes

and attribute performance of each alternative with

respect to each attribute. As mentioned before, it

is assumed in our model that the information about

attribute weights is partially known. In addition, DMs

may also provide their assessments about the per-

formance of alternatives using comparative linguistic

expressions for qualitative attributes.

We adopt a probability based interpretation of the

MAGDM problem and solve it by employing Monte

Carlo simulation. The framework of the proposed

approach is depicted in Fig. 1. The proposed approach

consists of three main stages: Transformation −→
Simulation −→ Selection. Since the MAGDM prob-

lem will be analyzed by Monte Carlo simulation, the

information about attribute performance of alterna-

tives provided by individual DM is aggregated into

probability distributions in the first stage. Specif-

ically, for the assessment of each alternative with

respect to each qualitative attribute, comparative lin-

guistic expressions provided by DMs are aggregated

into random preferences, whereas numerical numbers

provided by DMs are aggregated into triangular dis-

tributions. Then in the second stage, the Monte Carlo

simulation is repeated N times. In each simulation,

a random decision matrix is generated by sampling

from the random preferences and the triangular dis-

tributions formed in stage 1. Additionally, a random

weight vector of attributes is generated by uniformly

sampling from the space characterized by the par-

tial information available on attribute weights. Then,

the alternatives are ranked by solving the generated

multi-attribute decision making problem. At the end

of each simulation replication run, the rankings of

alternatives are recorded. Finally, based on the results

of N simulation runs, the ultimate rankings of alter-

natives is determined by using a particular measure

in the last stage. The detailed steps of the proposed

approach are described in the following subsection.

4.2. Description of the proposed approach

Setting up the Problem

Step 1: Specify attributes, alternatives and DMs:

In this step, a set of attributes C = {C1, · · · , Cn}, a set

of alternatives A = {A1, A2, · · · , Am} and a group of

decision makers DM = {DM1, DM2, · · · , DMD}
with respect to the decision problem are determined.

The attributes are application-dependent, and brain-

storming exercises may be required to determine the

attributes for a particular application. Furthermore,

the type of each attribute, i.e., qualitative attribute
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Fig. 1. Framework of the proposed approach.
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Table 1

Description of variables and symbols

Variables/symbols Description

Xd decision matrix provided by decision maker Dd

xd
ij performance of Ai with respect to Cj provided by Dd

lldij comparative linguistic expression provided by Dd for Xd
ij

Hd
ij HFLTS derived from lldij

Pd
ij = [pd

ij(s0, . . . , p
d
ij(sg)] individual random preference derived from Hd

ij

PC
ij = [pC

ij (s0, . . . , p
C
ij (sg)] collective random preference aggregated from Pd

ij

TC
ij = (tC1ij

, tC2ij
, tC3ij

) parameters of the aggregated triangular distribution

Gt decision matrix generated in the tth round

stij single linguistic term generated for a qualitative attribute in Gt

rt
ij numerical number generated for a quantitative attribute in Gt

NGt normalized non-homogeneous decision matrix in the tth round

zt
ij normalized value of rt

ij in NGt

(stij, α
t
ij) linguistic 2-tuple obtained by transforming zt

ij

H the feasible weight space

wt = (wt
1, w

t
2, · · · , wt

n)T random weight vector by sampling from W in the tth round

xt
i overall performance (a linguistic 2-tuple) of alternative Ai

βt
i the equivalent numerical value corresponding to xt

i

Ris number of times that Ai is ranked as the sth best alternative

MSRi mean stochastic rank of alternative Ai

SIi stochastic rank index of alternative Ai

or quantitative attribute, should also be specified. In

addition, the weight vector λ = (λ1, λ2, · · · , λD) of

decision makers should also be determined in this

step.

Step 2: Evaluate performance of alterna-

tives: A linguistic term set S = {s0, s1, · · · , sg}
should be determined for evaluating the perfor-

mance of alternatives with respect to qualitative

attributes. Multi-attribute decision matrices

Xd = (xd
ij)m×n(d = 1, 2, · · · , D) are created

based on the DMs’ opinion. The element xd
ij(i =

1, 2, · · · , m; j = 1, 2, · · · , n; d = 1, 2, · · · , D) in

decision matrices Xd indicates the performance

rating of alternative Ai with respect to attribute

Cj provided by Dd . For qualitative attributes, the

performance of alternatives is expressed using

comparative linguistic expressions generated by the

context-free grammar; for quantitative attributes, the

performance of alternatives is evaluated by using

crisp numbers.

Step 3: Articulate the incomplete information

about attribute weights. In the third step, incom-

plete information about the weights of attributes

is determined by DMs or experts. In practice,

the set of known weight information can be

constructed by the Forms 1-5 given in subsec-

tion 3.1. Let w = (w1, w2, · · · , wn) ∈ H be the

weight vector of attributes, where wj ≥ 0, j =

1, 2, · · · , n,
∑n

j=1 wj = 1, H is the set of the known

weight information. It is assumed that all DMs or

experts agree on the incomplete information H about

the weights of attributes.

Transforming information

Step 4: Aggregate individual evaluations into

probability distributions: In this step, the individual

evaluations about the performance of each alternative

with respect to each attribute are aggregated into a

probability distribution. This is carried out as follows:

Step 4.1: Aggregate comparative linguistic expres-

sions into random preferences: Let lldij be the

comparative linguistic expression provided by DMd

for the performance of the alternative Ai with respect

to a qualitative attribute Cj . The transformation of

lldij into a collective random preference PC
ij consists

of three steps (shown in Fig. 2).

In the first step, using the function EGH , the

comparative linguistic expression lldij is transformed

into HFLTS Hd
ij . Then, the individual random

preference Pd
ij = [pd

ij(s0), pd
ij(s1), · · · , pd

ij(sg)] can

be obtained from equation (2). At the last step,

the individual random preferences are aggre-

gated into a collective random preference PC
ij =

[pC
ij (s0), pC

ij (s1), · · · , pC
ij (sg)], where the kth element

pC
ij (sk)(k = 0, 1, · · · , g) is determined by the follow-

ing equation:
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Fig. 2. Transforming comparative linguistic expressions into collective random preference.

pC
ij (sk) =

D
∑

d=1

λdp
d
ij(sk) k = 0, 1, · · · , g. (5)

Step 4.2: Aggregate numerical numbers into tri-

angular distributions: The individual evaluations

of DMs for quantitative attributes are aggregated

into triangular distributions. This is performed in

a similar way as described in [13, 23]. Let TC
ij =

(tC1ij, t
C
2ij, t

C
3ij) be the parameters of the aggregated tri-

angular probability density function representing the

group performance rating of an alternative Ai (i =
1, 2, · · · , m) with respect to attribute Cj (j = n1 +
1, · · · , n). The parameters of the triangular distribu-

tion can then be calculated as follows:

tC1ij = mindx
d
ij, (6)

tC2ij = n

√

√

√

√

d
∏

d=1

xd
ij, (7)

tC3ij = maxdx
d
ij. (8)

Monte Carlo simulation

Step 5: Monte Carlo simulation: The simulation

component consists of N rounds of simulation runs.

In each round, a multi-attribute decision-making

problem is generated and a ranking of alternative

is derived by using a deterministic decision method.

Based on the results of the N runs, the ultimate rank-

ing of alternatives is determined.

Step 5.1: Generate a random decision matrix:

At the beginning of each round, a multi-attribute

decision matrix is generated by sampling from the

aggregated probability distributions obtained in step

4. In the generated decision matrix, the performance

of each alternative on each attribute is either a single

linguistic term (for a qualitative attribute) or a crisp

number (for a quantitative attribute). Let Gt be the

generated decision matrix in the tth round:

Gt =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

st11 · · · st1n1
rt

1(n1+1) · · · rt
1n

st21 · · · st2n1
rt

2(n1+1) · · · rt
2n

...
. . .

...
...

. . .
...

sti1 · · · stin1
rt
i(n1+1) · · · rt

in

...
. . .

...
...

. . .
...

stm1 · · · stmn1
rt
m(n1+1) · · · rt

mn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where stij ∈ S, i = 1, 2, · · · , m, j = 1, 2, · · · , n1; rt
ij

is a crisp value, i = 1, 2, · · · , m, j = n1 + 1, · · · , n.

We remark that the single linguistic term stij (j =
1, 2, . . . , n1) representing the value of alternative

Ai (i ∈ {1, 2, . . . , m}) with respect to a qualitative

attribute Cj is generated by the collective random

preference PC
ij and the numerical value rt

ij (j = n1 +
1, . . . , n) is generated from the triangular distribu-

tion TC
ij .

Step 5.2: Normalize the generated numerical

attribute values: For the generated performance of

alternatives with respect to the quantitative attributes,

normalization is essential to eliminate the com-

putational difficulties caused by incommensurable

attributes. Let Jb ⊆ {n1 + 1, · · · , n} be the index

set of benefit attributes and Jc ⊆ {n1 + 1, · · · , n}
be the index set of cost attributes. For the gener-

ated attribute value rt
ij(j ∈ {n1 + 1, · · · , n}) in the

tth (t = 1, 2, · · · , N) round, we can obtain the nor-

malized value zt
ij ∈ [0, 1] by the following 0 − 1

normalization method:

zt
ij =

rt
ij − minir

t
ij

maxir
t
ij − minir

t
ij

i = 1, 2, · · · , m; j ∈ Jb,

zt
ij =

maxir
t
ij − rt

ij

maxir
t
ij − minir

t
ij

i = 1, 2, · · · , m; j ∈ Jc. (9)
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Fig. 3. Transforming numerical number into linguistic 2-tuple.

After normalization, the decision matrix is then

converted into the following matrix:

NGt =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

st11 · · · st1n1
zt

1(n1+1) · · · zt
1n

st21 · · · st2n1
zt

2(n1+1) · · · zt
2n

...
. . .

...
...

. . .
...

sti1 · · · stin1
zt
i(n1+1) · · · zt

in

...
. . .

...
...

. . .
...

stm1 · · · stmn1
zt
m(n1+1) · · · zt

mn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where stij ∈ S, i = 1, 2, · · · , m, j = 1, 2, · · · , n1; zt
ij

is numerical number in the interval [0, 1], i =
1, 2, · · · , m, j = n1 + 1, · · · , n.

Step 5.3: Unify the non-homogeneous informa-

tion: In order to facilitate the ranking of the

alternatives in the tth round, the non-homogeneous

information in the decision matrix NGt will first

needs to be unified. Motivated by the idea proposed

by Herrera and Martı́nez [47], we transform linguistic

and numerical information into linguistic 2-tuples in

our approach. For a single linguistic term stij ∈ S (i =
1, 2, · · · , m, j = 1, 2, · · · , n1) in NGt , we can easily

obtain the corresponding linguistic 2-tuple as (stij, 0).

The transformation from numerical values zt
ij(i =

1, 2, · · · , m, j = n1 + 1, · · · , n) ∈ [0, 1] to linguis-

tic 2-tuples can be realized by using the following

equation:

�(χ(τ(zt
ij))) = (stij, α

t
ij),

where the functions τ, χ and � are defined as

in [47]. The transformation process is shown in

Fig. 3.

Step 5.4: Generate a random weight vector of

attributes. In this step, a random weight vector

wt = (wt
1, w

t
2, · · · , wt

n)T is generated by sampling

from the convex polytope of the feasible weight

space H , which is characterized by linear con-

straints and the natural constraints
∑n

j=1 wt
j =

1, wt
j ≥ 0 (j = 1, 2, · · · , n). Wand and Zionts [48]

proposed a procedures for generating weights that

satisfy general linear constraints. According to the

procedure, we can obtain a random weight vector

wt = (wt
1, w

t
2, · · · , wt

n)T by sampling from H in the

tth round of the simulation. The details are given

below:

(i) Enumerate the extreme points of the poly-

tope of the feasible weight space H , E1, E2,

· · · , EL, where El (l = 1, 2, · · · , L) is a real

n−vector.

(ii) Generate an L−vector (kt
1, k

t
2, · · · , kt

L) uni-

formly distributed over K = {(k1, k2, · · · ,

kL) | kl ≥ 0,
∑L

l=1 kl = 1}. To do this, L − 1

random numbers are first independently gener-

ated from the uniform distribution on [0, 1] and

then ranked. Suppose the the ranked numbers

are 1 ≥ vt
L−1 ≥ vt

l−2 ≥ · · · , vt
2 ≥ vt

1 ≥ 0. We

then let kt
1 = vt

1, k
t
2 = vt

2 − vt
1, · · · , kt

L−1 =
vt
L−1 − vt

L−2, k
t
L = 1 − vt

L−1.

(iii) Generate the weight vector wt =
∑L

l=1 kt
lEl.

Step 5.5: Calculate overall performance of each

alternative: Let xt
i be the overall performance

of alternative Ai (i = 1, 2, · · · , n). Based on the

weighted aggregation operator (Equation (1)), we can

obtain xt
i as follows:

xt
i = �

⎛

⎝

n
∑

j=1

wt
j�

−1(stij, α
t
ij)

⎞

⎠ . (10)

Note that xt
i obtained by (10) is a linguistic 2-tuple

that indicates the overall performance of alternative

Ai. In this step, other operators or decision methods

can also be used to aggregate the attribute values of

each alternative.

Step 5.6: Rank the alternatives: In order to rank the

alternatives, we transform the overall performance xt
i

into an equivalent numerical value βt
i by the following

equation:

βt
i = �−1(xt

i). (11)

The numerical value βt
i (i = 1, 2, · · · , n) can be

used as a ranking index of alternatives Ai (i =
1, 2, · · · , n) at the tth round. The larger the value

βt
i is, the better the alternative Ai will be. At the

end of each simulation, the ranking of alternatives

is recorded.

Selection of the best alternative

Step 6: Calculate rank indices: In order to deter-

mine the alternatives’ ultimate preference order, a

measure is used to handle the information about the

ranking counts of the N simulation runs. We adopt the

Mean Stochastic Rank (MSR) and Stochastic Rank
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Index (SI) suggested by [49]. Let MSRi and SIi repre-

sent the MSR and SI of alternative Ai, respectively.

Denote by Ris the number of times that alternative

Ai is ranked as the sth best alternative during the N

simulation runs. Let MSRmax and MSRmin be the

respective highest and lowest possible MSR values.

Equations (12)-(13) give the explicit formulas for

calculating these values.

MSRi =
1

m

n
∑

i=1

(sRis), (12)

SIi =
MSRi − MSRmin

MSRmax − MSRmin

, (13)

where MSRmax = N, MSRmin = N
m

.

Step 7: Rank the alternatives: The ranking of the

alternatives can be obtained according to the values

of SIi. The smaller the SIi (i = 1, 2, · · · , n) values,

the better the alternative Ai (i = 1, 2, · · · , n) is. In

some cases, the difference between the SI values of

two alternatives can be very small. As mentioned in

[13, 49], this difference can be better distinguished

by increasing the number of simulation replication

runs.

5. Illustrative example and comparative

analysis

5.1. An illustrative example

Electric vehicle charging station (EVCS) is a fun-

damental element in an infrastructure that provides

the energy required for electric vehicles. Efficient,

convenient and economic EVCS can enhance the con-

sumers’ willingness to buy electric vehicles and thus

promote the success of the industry [50, 51]. As part

of the EVCS construction plan, the EVCS site selec-

tion is very important and may have significant impact

on the service quality and operational efficiency of

EVCS. Therefore, it is necessary to employ proper

method to determine the optimal EVCS site.

In this illustrative example, we consider a group

of 10 DMs who are trying to select an appropriate

site for EVCS. DMs have identified five alterna-

tive sites (A1 − A5) and six attributes (C1 − C6) to

evaluate them. The six attributes are listed as fol-

lows: C1: Traffic convenience; C2: Harmonization

of EVCS with the development planning of urban

road network and power grid; C3: Environment dam-

age; C4: Emission reduction; C5: Construction cost;

C6: Annual operation and maintenance cost. Let

w = (w1, w2, w3, w4, w5, w6) be the weight vector

of attributes, satisfying wi ≥ 0 (i = 1, 2, · · · , 6) and
∑6

i=1 wi = 1. The attribute weights are not known

with complete certainty and are characterized by the

following constraints:

– w1, w2, w5, w6 ≥ 0.1; w3, w4 ≥ 0.2;

– w6 ≤ w5;

– w5 + w6 ≤ w1 + w2 ≤ w3 + w4.

Thus, the incomplete information about these

weights can be written as H = {(w1, w2, w3, w4,

w5, w6) | w1, w2, w5, w6 ≥ 0.1; w3, w4 ≥ 0.2; w6

≤ w5; w5 + w6 ≤ w1 + w2 ≤w3 + w4; w1 + w2 +
w3 + w4 + w5 + w6 = 1}. Since no additional prior

information is available, the weight vector w is

assumed to be uniformly distributed on H in the

Monte Carlo simulation.

The DMs are required to evaluate the performances

of each alternative with respect to each attribute based

on their personal judgments. It is not difficult to

see that both quantitative attributes and qualitative

attributes are involved in this multi-attribute decision-

making problem. In particular, C1, C2, C3 and C4 are

qualitative attributes, and C5 and C6 are quantitative.

As mentioned before, the DMs declare their judg-

ments by using comparative linguistic expressions

generated by the context-free grammar for qualita-

tive attributes. On the other hand, numerical numbers

are used to evaluate the performance of quantitative

attributes. Table 2 gives an example of the decision

matrix provided by one DM. To save space, decision

matrices provided by other DMs are omitted.

We apply the proposed simulation-based approach

to rank the alternatives. All steps of the approach were

implemented using MATLAB. Given the information

provided by the DMs, the first stage is to transform

the individual evaluations into probability distribu-

tions. According to the method presented in step

4.1 of the proposed approach, comparative linguis-

tic expressions lldij(d = 1, 2, . . . , D) are transformed

into individual random preference Pd
ij by using the

function EGH and Equation (2). Further, apply-

ing Equation (5), we can aggregate the individual

random preferences into collective random prefer-

ences which are shown in Table 3. In Table 3, the

vector in each row represents a probability distribu-

tion over the linguistic term set S = {s0, s1, · · · , sg},
indicating the aggregated performance of the corre-

sponding attribute value. For instance, the random

preference in second row of the table, i.e., PC
11 =
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Table 2

An example of one DM’s Performance ratings of alternatives on attributes

xd
ij C1 C2 C3 C4 C5 C6

A1 greaterthan s3 between s2 and s4 s1 atleast s4 420 39

A2 lowerthan s4 s3 atleast s4 greaterthan s2 380 36

A3 atleast s3 greaterthan s2 s4 between s3 and s4 440 51

A4 s3 s4 lessthan s3 greaterthan s3 430 42

A5 between s3 and s5 greaterthan s3 s2 between s2 and s4 385 40

Table 3

Aggregated random preferences for attributes C1, C2, C3 and C4

pC
ij s0 s1 s2 s3 s4 s5 s6

PC
11 0.000 0.000 0.100 0.100 0.533 0.133 0.133

PC
21 0.100 0.233 0.233 0.283 0.050 0.050 0.050

PC
31 0.100 0.100 0.100 0.400 0.100 0.100 0.100

PC
41 0.080 0.180 0.180 0.480 0.080 0.000 0.000

PC
51 0.100 0.100 0.160 0.227 0.227 0.127 0.060

PC
12 0.075 0.075 0.215 0.215 0.340 0.040 0.040

PC
22 0.100 0.100 0.100 0.400 0.300 0.000 0.000

PC
32 0.075 0.075 0.175 0.425 0.150 0.050 0.050

PC
42 0.000 0.000 0.000 0.367 0.467 0.167 0.000

PC
52 0.040 0.040 0.207 0.207 0.307 0.100 0.100

PC
13 0.100 0.100 0.400 0.400 0.000 0.000 0.000

PC
23 0.000 0.000 0.133 0.233 0.300 0.167 0.167

PC
33 0.000 0.000 0.300 0.350 0.250 0.050 0.050

PC
43 0.133 0.433 0.433 0.000 0.000 0.000 0.000

PC
53 0.075 0.075 0.407 0.207 0.127 0.060 0.060

PC
14 0.000 0.000 0.133 0.183 0.450 0.117 0.117

PC
24 0.100 0.100 0.200 0.200 0.200 0.100 0.100

PC
34 0.000 0.000 0.300 0.133 0.233 0.233 0.100

PC
44 0.090 0.090 0.090 0.090 0.507 0.067 0.067

PC
54 0.000 0.000 0.200 0.600 0.200 0.000 0.000

(0.000, 0.000, 0.100, 0.100, 0.533, 0.133, 0.133), is

a probability distribution over S, which represents

the aggregated performance of alternative A1 with

respect to attribute C1. We can see that PC
11(s0) =

PC
11(s1) = 0, which means that the group does not

give a rating of s0 and s1 for the performance of

alternative A1 on attribute C1.

For quantitative attributes C5 and C6, individual

numerical evaluations can be aggregated into triangu-

lar distributions. For example, suppose that attribute

values of sites A1 with respect to attribute C5 assessed

by 10 DMs are 420, 400, 430, 400, 420, 420, 440,

430, 415 and 430, respectively. By using Equations

(6), (7) and (8), we have t115 = 400, t215 = 420.32

and t315 = 440. Therefore, the aggregated triangu-

lar distribution of A1 with respect to C5 is TC
15 =

(t115, t215, t315) = (400.00, 420.32, 440.00). All the

parameters of the aggregated triangular distributions

are shown in Table 4.

Given the random preferences and triangular dis-

tributions, Monte Carlo simulation is then repeated

N times at the second stage. In the tth simulation

Table 4

Parameters of aggregated triangular distributions for attributes

C5 and C6

TC
ij t1i5 t2i5 t3i5 t1i6 t2i6 t3i6

A1 400.00 420.32 440.00 39.00 40.48 43.00

A2 360.00 373.39 390.00 35.00 36.93 42.00

A3 410.00 436.62 460.00 38.00 45.92 51.00

A4 400.00 417.40 430.00 40.00 44.06 46.00

A5 365.00 386.87 400.00 37.00 40.36 43.00

run, a decision matrix is randomly generated from

the corresponding aggregated random preference and

triangular distribution. A particular realization of the

matrix is shown in Table 5. At the same time, a ran-

dom weight vector is also generated by sampling

from the space H following the procedure outlined in

step 5.4. The generated weight vector in the tth run

is given as

wt = (0.163, 0.122, 0.276, 0.218, 0.112, 0.109).

A normalization is subsequently performed

to eliminate computational problems caused by
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Table 5

Random decision matrix Gt in round t

C1 C2 C3 C4 C5 C6

A1 s3 s0 s1 s4 426.3380 39.5985

A2 s5 s4 s2 s4 378.0720 37.3414

A3 s1 s2 s6 s5 435.4156 43.4902

A4 s1 s4 s2 s4 404.3874 44.8468

A5 s3 s3 s2 s3 371.5935 41.6251

Table 6

The unified decision matrix in round t

C1 C2 C3 C4 C5 C6

A1 (s3, 0) (s0, 0) (s5, 0) (s4, 0) (s1, −0.1468) (s4, 0.1956)

A2 (s5, 0) (s4, 0) (s4, 0) (s4, 0) (s5, 0.3911) (s6, 0)

A3 (s1, 0) (s2, 0) (s0, 0) (s5, 0) (s0, 0) (s1, 0.0843)

A4 (s1, 0) (s4, 0) (s4, 0) (s4, 0) (s3, −0.0830) (s0, 0)

A5 (s3, 0) (s3, 0) (s4, 0) (s3, 0) (s6, 0) (s3, −0.4244)

incommensurable attributes. Since the construction

cost and annual operation and maintenance cost are

both cost attributes, Equation (9) is used to normal-

ize the generated performance of alternatives with

respect to C5 and C6. Then, the non-homogeneous

information in the normalized decision matrix is

unified into linguistic 2-tuples by using the method

described in step 5.3 of the proposed approach.

The unified decision matrix in iteration t is given

in Table 6. Using Equations (10) and (11), we can

obtain the overall performance xt
i and the corre-

sponding numerical value βt
i of each alternative.

The computational details are reported in Table 7.

From the values given in Table 7, we can see

that the ranking of alternatives in tth iteration is:

A2 ≻ A5 ≻ A1 ≻ A4 ≻ A3. Accordingly, the rank

counts R21, R52, R13, R44, R35 are all increased by

one in this iteration.

Based on the results of N = 10000 runs, we can

convert the rank counts Ris into MSRi and SIi by

using Equations (12) and (13). Ris, MSRi and SIi of

the alternatives are reported in Table 8. According

to the value SIi in Table 8, we obtain the ulti-

mate ranking of the alternatives: A5 ≻ A1 ≻ A2 ≻
A4 ≻ A3.

The proposed simulation based approach was

performed by varying the number of simulation repli-

cations from 50 to 10000. The obtained SI values of

alternatives in each of the respective cases are given in

Table 8

Rank counts of alternatives

Ris A1 A2 A3 A4 A5

Ri1 2601 2402 124 1160 3713

Ri2 2791 2115 337 2064 2693

Ri3 2518 2125 762 2743 1852

Ri4 1696 2335 1815 2821 1333

Ri5 394 1023 6962 1212 409

MSRi 4898.2 5492.4 9030.8 6172.2 4406.4

SIi 0.3623 0.4365 0.8788 0.5215 0.3008

Table 9

Statistical regularity of different simulation runs

N= 50 100 200 500 1000 5000 10000

SI1 0.395 0.310 0.378 0.366 0.362 0.358 0.362

SI2 0.370 0.443 0.423 0.418 0.420 0.436 0.437

SI3 0.885 0.878 0.868 0.882 0.875 0.884 0.879

SI4 0.555 0.488 0.523 0.531 0.530 0.518 0.522

SI5 0.295 0.383 0.310 0.305 0.313 0.304 0.301

Table 9. From Table 9, we can see that the ranking of

all alternatives becomes consistent after the N = 200

case.

5.2. Comparative study

In this subsection, we apply the proposed approach

to an example adopted in Chen et al. [52] and compare

its performance with that of the model developed in

[52]. This example involves the evaluation of univer-

sity faculty for tenure and promotion. In particular,

the attributes used by a university are teaching (C1),

research (C2), and service (C2), which carry unknown

weighting vectors. Suppose that 5 candidates xi (i =
1, 2, 3, 4, 5) need to be evaluated by 10 experts E =
{e1, e2, . . . , e10} under these three attributes. Due to

the uncertainty involved in evaluating the candidates,

the experts may either use single linguistic terms or

comparative linguistic expressions to provide their

preferences. Thus, the problem can be viewed as

a special case of the problems considered in this

paper by letting n1 = n and H = {(w1, · · · , wn) |
wj ≥ 0,

∑n
j=1 wj = 1} in our model. According

to the decision matrix constructed on the basis of

the proportional comparative linguistic pairs Pllτij =
(llτij, p

τ
ij) in [52], we can use the proposed approach

to solve the MAGDM problem.

Table 7

The overall performances of alternatives in round t

A1 A2 A3 A4 A5

xt
i (s3, 0.2952) (s5, −0.4633) (s2, −0.3860) (s3, −0.0457) (s4, −0.4328)

βt
i 3.2952 4.5367 1.6140 2.9543 3.5672
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Table 10

Transformed random preferences

Pij s0 s1 s2 s3 s4 s5 s6

P11 0.000 0.000 0.000 0.100 0.400 0.400 0.100

P21 0.150 0.150 0.000 0.000 0.000 0.600 0.100

P31 0.040 0.040 0.207 0.432 0.232 0.025 0.025

P41 0.117 0.117 0.177 0.177 0.177 0.177 0.060

P51 0.000 0.000 0.000 0.100 0.333 0.333 0.233

P12 0.067 0.067 0.200 0.250 0.250 0.117 0.050

P22 0.060 0.060 0.260 0.118 0.218 0.158 0.125

P32 0.000 0.200 0.500 0.000 0.100 0.100 0.100

P42 0.000 0.000 0.100 0.100 0.300 0.300 0.200

P52 0.100 0.100 0.100 0.400 0.300 0.000 0.000

P13 0.000 0.000 0.200 0.350 0.350 0.050 0.050

P23 0.040 0.040 0.040 0.115 0.115 0.575 0.075

P33 0.000 0.000 0.167 0.392 0.192 0.125 0.125

P43 0.133 0.133 0.208 0.075 0.175 0.175 0.100

P53 0.000 0.000 0.000 0.325 0.125 0.275 0.275

In step 4 of our approach, for the attribute value

of alternative xi (i = 1, 2, · · · , m) with respect to

attribute Cj (j = 1, 2, · · · , n), the individual com-

parative linguistic expressions lldij (d = 1, 2, · · · , D)

are aggregated into a random preference PC
ij of

the group. Similarly, in [52], the proportional

comparative linguistic pairs Pllτij = (llτij, p
τ
ij) (τ =

1, 2, · · · , Ŵ) are transformed into a proportional

hesitant fuzzy linguistic term set (PHFLTS) P
ij
HS

. In

fact, both PC
ij and P

ij
HS

can be considered as the prob-

ability distributions over the linguistic term set S =
{s0, s1, · · · , sg}, indicating the collective preferences

about the performance of alternative xi with respect

to attribute Cj . Assuming that each DM in the group

are equally important, we can obtain the random pref-

erences reported in Table 10 by using the method in

step 4 of our approach. The corresponding PHFLTSs

are listed in the matrix Rp = (R1
p, R2

p, R3
p) in [52].

For the majority of the entries in the two matrices,

we find there are differences between the probability

distributions obtained by these two different meth-

ods of transformation. In fact, a closer analysis of the

transformation algorithm in [52] shows that, if the

formula in step 4 of the algorithm in [52], i.e.,

pij
τ = pτ

ij/(�Ŵ
τ=1ϕ

ij
τ pτ

ij) τ = 1, 2, · · · , Ŵ (14)

is replaced by the following equation:

pij
τ = pτ

ij/ϕ
ij
τ τ = 1, 2, · · · , Ŵ, (15)

then the probability distributions obtained will be

identical to those of Table 10. In the following, we

argue that Equation (15) is more reasonable than

Equation (14) in terms of calculating the propor-

tions (probability) of linguistic term sτk
in EGH (llτij).

Notice that �Ŵ
τ=1p

τ
ij = 1. Thus, each linguistic term

sτk
in EGH (llτij) should share the same proportion

of llτij . Since the number of elements of EGH (llτij)

is ϕ
ij
τ , we can calculate the proportion for linguis-

tic term sτk
in EGH (llτij) by using Equation (15) if

there is no additional information. In fact, if Equa-

tion (14) is replaced by Equation (15), then the

transformation algorithm in [52] is equivalent to the

transformation method in step 4 in our approach.

Moreover, the relative importance of DMs can be

considered in our method. However, in [52], each

DM is assumed to be equally important due to the

fact that the proportional comparative linguistic pair

Pllτij = (llτij, p
τ
ij) (τ = 1, 2, · · · , Ŵ) is obtained by

simply combining individual comparative linguistic

expressions.

After the completion of information transforma-

tion, Monte Carlo simulation is conducted in order

to rank the alternatives. By using the proposed

approach, we obtain the information about the rank

counts and the ultimate ranking of the alternatives,

which is reported in Table 11 (the numbers before

the slash). Table 11 also shows the simulation results

based on the transformed decision matrix in [52].

From Table 11, we see that the ranking of the

alternatives is A2 ≻ A5 ≻ A1 ≻ A4 ≻ A3 when the

decision matrix is transformed using the algorithm in

[52]. This ranking is the same as that in [52], which

implies that there is no difference in ranking of alter-

natives between the simulation based approach and

the operator based approach in this problem. How-

ever, we can see that the ranking is A5 ≻ A2 ≻ A1 ≻
A4 ≻ A3 if the proposed approach is applied. Obvi-

ously, the reverse in the ranking order between A2

and A5 is mainly attributed to the use of different
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Table 11

Rank counts of alternatives

Ris A1 A2 A3 A4 A5

Ri1 1520/1493 3107/3374 815/847 1866/1939 2692/2347

Ri2 2258/2293 2265/2222 1000/1091 1764/1830 2713/2564

Ri3 2799/2765 1537/1442 1622/1715 1729/1667 2313/2411

Ri4 2210/2188 1302/1320 3002/3000 1977/1780 1509/1712

Ri5 1213/1261 1789/1642 3561/3347 2664/2784 773/966

SIi 0.4835/0.4858 0.4100/0.3909 0.6874/0.6727 0.5452/0.5410 0.3740/0.4096

ranking 3/3 2/1 5/5 4/4 1/2

Table 12

Comparison with the related MAGDM approaches

Performance ratings Attribute weights Method Final results

Proposed approach comparative linguistic

expressions and real numbers

completely unknown or

partially known

stochastic distribution for possible rankings

Mousavi’s approach [12] single linguistic term known(linguistic term) stochastic distribution for possible rankings

Bayram’s approach [13] real numbers completely known stochastic distribution for possible rankings

Zhang’s approach [53] heterogeneous information completely unknown or

partially known

fuzzy single ranking

transformation methods. Since the improvement in

the method of transformation is meaningful, it can

be concluded that the ranking results obtained by our

approach is more reasonable than that of [52]. More

importantly, the rank counts shown in Table 11 may

also be important for DMs because they reveal the dis-

tribution information among the ranking alternatives,

which is not available in other approaches.

In order to demonstrate the relationship and dif-

ferences between the proposed approach and other

MAGDM approaches under uncertain environment

and emphasize the advantages and characteristics of

the proposed method, in the following we further

compare the proposed approach with the related latest

work on MAGDM [12, 13, 53]. Based on the anal-

ysis of different approaches, the comparison results

are listed in Table 12.

As mentioned in the introduction, Monte Carlo

simulation has been used to deal with MAGDM

under uncertain environment in literature. In partic-

ular, in [12] and [13], different stochastic MAGDM

approaches are developed to handle MAGDM prob-

lem, which motivate the proposed approach in

our work. As shown in Table 12, the differences

between the proposed approach and the methods

developed in [12] and [13] are obvious. First of

all, our proposal captures DMs’ hesitancy about

linguistic expressions by allowing the use of com-

parative linguistic expressions under a simulation

framework. In the framework of simulation, the pro-

posed approach can combine comparative linguistic

expressions and numerical information in MAGDM.

However, the approach developed in [12] is only

applicable to MAGDM problem where the decision

makers describe a value for an alternative with respect

to an attribute by the use of linguistic variables. On

the other hand, the method in [13] is only capable

of solving MAGDM problems where attribute values

and weights are described in crisp numbers. Sec-

ondly, the proposed approach can effectively deal

with MAGDM problems with incomplete informa-

tion about attributes. In our work, attribute weights

are assumed to be partially known, whereas they are

completely known in [13] and known as linguis-

tic variables in [12]. In addition, we remark that if

attribute weights are completely unknown, the pro-

posed approach is still valid because the weight vector

of attributes can be regarded as a random vector

uniformly distributed over the simplex H = {w =
(w1, w2, . . . , wn) ≥ 0|

∑n
i=1 wi = 1}.

In [53], a deviation model is developed to handle

heterogeneous MAGDM problems with incomplete

weight information in which the decision information

is expressed in multiple formats of attribute values

(such as real numbers, interval numbers, and linguis-

tic variables). In fact, the fuzzy approach is adopted to

model uncertainty in the considered MCGDM prob-

lem. Notice that the output of the decision model

is a single ranking of alternatives in [53]. For the

MAGDM problem under uncertainty, a single rank-

ing of alternatives may have limitations for decision

making because because it cannot reflect the possibil-

ities and distribution of the ranking of alternatives. In

the proposed simulation-based approach, the output

is the distribution information for possible rankings,

which can provide a more complete understanding of



3850 S. Yao and J. Hu / Combining comparative linguistic expressions and numerical information

possible outcomes for MAGDM under uncertainty.

This is also the main feature of the simulation-based

approach, which distinguishes itself from the fuzzy

approach.

6. Conclusions

In real world MAGDM, DMs often do not have

complete knowledge about the attribute weights and

the performance ratings of alternatives due to the

complexity of the decision problems and the limita-

tion of human cognitive ability. Thus, how to model

the uncertainty and imprecision in the decision mak-

ing problems is a challenging issue in MAGDM. This

paper proposes a novel simulation based approach

for MAGDM under uncertainty. The approach is

divided into three stage: transformation, simulation,

and selection, each of which consists of multiple

steps.

Compared with the decision making methods

based on fuzzy set theory, the advantage of pro-

posed approach lies in its ability to provide a

complete understanding of alternatives’ preference

structure. The main contributions of this work are

as follows. First, the DMs hesitancy about linguis-

tic expressions for performance ratings with respect

to qualitative attributes is well modeled under the

proposed simulation framework. In the proposed

approach, the comparative linguistic expressions gen-

erated by context-free grammar are used by DMs

to express their preference. Then, individual com-

parative linguistic expressions are aggregated into

random preferences over the linguistic term set,

which are used as inputs to Monte Carlo simulation.

This distinguishes our work from previous studies

[12] that consider qualitative attributes in simulation

based MAGDM approaches. Second, by treating the

attribute weight vector as a random vector uniformly

distributed over the space characterized by weight

constraints, the proposed approach provides a viable

way to cope with the incomplete information about

attributes weights. Third, the proposed approach can

be used to solve MAGDM problems in which both

quantitative attributes and qualitative attributes are

involved. Although many models have been proposed

in the literature to solve MAGDM involving both

qualitative and quantitative attributes, most of these

models are established from the fuzzy viewpoint. The

proposed simulation based approach can provide a

more complete understanding of alternatives’ prefer-

ence structure.

For future research, utilizing other multi-attribute

decision making methods, such as TOPSIS and

VIKOR, to rank the alternatives in the stage of Monte

Carlo simulation is suggested to improve the overall

performance of the proposed approach. In addition,

developing effective algorithms for unifying non-

homogenous information about attribute values will

also be helpful for further validating the effectiveness

of the proposed approach.
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[32] F.E. Boran, S. Genç, M. Kurt and D. Akay, A multi-criteria

intuitionistic fuzzy group decision making for supplier

selection with topsis method, Expert Systems with Appli-

cations 36(8) (2009), 11363–11368.

[33] K. Devi and S.P. Yadav, A multicriteria intuitionistic fuzzy

group decision making for plant location selection with

electre method, The International Journal of Advanced

Manufacturing Technology 66(9-12) (2013), 1219–1229.

[34] M. Xia, Z. Xu and N. Chen, Some hesitant fuzzy aggregation

operators with their application in group decision making,

Group Decision and Negotiation 22(2) (2013), 259–279.

[35] F. Jin, Z. Ni, H. Chen, Y. Li and L. Zhou, Multiple attribute

group decision making based on interval-valued hesitant

fuzzy information measures, Computers & Industrial Engi-

neering 101 (2016), 103–115.

[36] P. Liu, S. Chen and J. Liu, Multiple attribute group decision

making based on intuitionistic fuzzy interaction parti-

tioned bonferroni mean operators, Information Sciences 411

(2017), 98–121.

[37] J. Buckley, Stochastic versus possibilistic programming,

Fuzzy Sets and Systems 34(2) (1990), 173–177.

[38] O. Marinoni, Benefits of the combined use of stochastic

multicriteria evaluation with principal components analysis,

Stochastic Environmental Research and Risk Assessment

20(5) (2006), 319–334.

[39] H.-S. Lee, A fuzzy multi-criteria decision making model

for the selection of the distribution center, in: International

Conference on Natural Computation, Springer, 2005, pp.

1290–1299.

[40] R.M. Rodrı́guez, L. Martinez and F. Herrera, A group

decision making model dealing with comparative linguis-

tic expressions based on hesitant fuzzy linguistic term sets,

Information Sciences 241 (2013), 28–42.

[41] K.S. Park, Mathematical programming models for char-

acterizing dominance and potential optimality when

multicriteria alternative values and weights are simulta-

neously incomplete, IEEE Transactions on Systems, Man,

and Cybernetics-part a: Systems and Humans 34(5) (2004),

601–614.

[42] F. Herrera and L. Martı́nez, A 2-tuple fuzzy linguistic

representation model for computing with words, IEEE

Transactions on Fuzzy Systems 8(6) (2000), 746–752.

[43] H.-B. Yan, T. Ma and V.-N. Huynh, On qualitative multiat-

tribute group decision making and its consensus measure:

A probability based perspective, Omega 70 (2017), 94–117.

[44] G. Shafer, et al., A mathematical theory of evidence, Vol. 1,

Princeton University Press Princeton, 1976.

[45] P. Smets and R. Kennes, The transferable belief model,

Artificial Intelligence 66(2) (1994), 191–234.

[46] T.S. Glickman and F. Xu, The distribution of the product

of two triangular random variables, Statistics & Probability

Letters 78(16) (2008), 2821–2826.



3852 S. Yao and J. Hu / Combining comparative linguistic expressions and numerical information

[47] F. Herrera and L. Martinez, An approach for combin-

ing linguistic and numerical information based on the

2-tuple fuzzy linguistic representation model in decision-

making, International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems 8(05) (2000), 539–562.

[48] J. Wang and S. Zionts, Random-weight generation in mul-

tiple criteria decision models, Space 1 (2006), 1–10.

[49] O. Marinoni, A stochastic spatial decision support system

based on promethee, International Journal of Geographical

Information Science 19(1) (2005), 51–68.

[50] H.-Y. Mak, Y. Rong and Z.-J.M. Shen, Infrastructure

planning for electric vehicles with battery swapping, Man-

agement Science 59(7) (2013), 1557–1575.

[51] S. Guo and H. Zhao, Optimal site selection of elec-

tric vehicle charging station by using fuzzy topsis based

on sustainability perspective, Applied Energy 158 (2015),

390–402.

[52] Z.-S. Chen, K.-S. Chin, Y.-L. Li and Y. Yang, Proportional

hesitant fuzzy linguistic term set for multiple criteria group

decision making, Information Sciences 357 (2016), 61–87.

[53] X. Zhang, Z. Xu and H. Wang, Heterogeneous multiple

criteria group decision making with incomplete weight

information: A deviation modeling approach, Information

Fusion 25 (2015), 49–62.


