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Combining comparative linguistic
expressions and numerical information
in multi-attribute group decision
making—A simulation-based approach
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Abstract. In multi-attribute group decision making (MAGDM) problems, the information about attribute weights and the
performance ratings of alternatives usually cannot be accurately quantified. This issue has motivated the development of
various MAGDM models based on the fuzzy sets theory. However, these fuzzy MAGDM models mostly rely on using the
extreme or expected values, but ignore the intermediate occurrences in determining the best alternatives. In order to provide
a complete understanding of decision makers’ preference structure, this paper takes a stochastic perspective and proposes
a simulation-based approach to facilitate MAGDM under uncertainty when both quantitative and qualitative attributes are
involved. The approach not only accounts for the incomplete information about the attribute weights during decision making,
but also allows for the use of comparative linguistic expressions to better capture the decision makers’ hesitancy about
linguistic expressions. We apply the proposed approach to electric vehicle charging station site selection problem and
highlight its effectiveness and advantages through an in-depth comparative analysis with some of the existing methods.

Keywords: Multi-attribute group decision making, comparative linguistic expression, incomplete weights, random preference,

Monte Carlo simulation

1. Introduction

Decision-making, which tries to find the best alter-
native(s) from a set of feasible alternatives, is widely
applied in many fields for the purposes of evaluation,
selection, and prioritization. The complexity of real
world problems has necessitated the need to consider
multiple points of view during the decision mak-
ing process. This naturally gives rise to the so-called
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group decision making (GDM) involving two or more
experts (each with his/her own perceptions, attitudes,
and motivation, etc.) who recognize the existence of
a common problem and attempt to reach a collec-
tive decision [1]. As an important category of GDM,
multi-attribute GDM (MAGDM) deals with decision
problems where several experts express their opin-
ions on a set of possible alternatives with respect
to multiple attributes and attempt to find a common
solution.

In MADGM environment, the information about
the attribute weights and the performance ratings of
alternatives is often uncertain, primarily due to the
following causes [2]: (i) unquantifiable information,
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(i1) incomplete information, and (iii) non-obtainable
information. Over the last few decades, a variety of
models have been proposed to deal with MADGM
under uncertainty. In most of these models, the fuzzy
sets theory has been served as an important and use-
ful mean for the decision making problems [3-7]. An
alternative way to handle uncertainty in MAGDM
is the stochastic approaches [8-13], where some
or all of the input parameters of a given problem
are expressed in the form of probability distribu-
tion. Under the framework of stochastic approaches,
simulation can be applied to MADGM under uncer-
tainty. As pointed out in [13], the simulation-based
MAGDM methods can provide a more complete
understanding of possible outcomes during the deci-
sion making process. However, despite the progress
made on using simulation to model the uncertainty
in MAGDM, there are still some important issues
related to these models that remain to be resolved.
First, the uncertainty issue such as hesitancy about
linguistic expressions under qualitative setting has
not been considered in existing simulation-based
MAGDM models. Although subjective attributes are
taken into account in [12], only single linguistic terms
are used by decision makers to articulate their pref-
erences. As pointed out by Rodriguez et al. [14],
however, the experts may think of several terms or
look for more complex linguistic terms that are not
defined in the linguistic term sets. Second, incom-
plete information about attribute weights has not been
incorporated into the models. In current studies, the
attribute weight information is either assumed to be
completely unknown [8] or completely provided by
the decision makers [13]. In practice, however, it is
very likely that this information is in-between the
above two extremes [15, 16]. Hence, the uncertainty
caused by incomplete information about attribute
weights should also be considered in the decision
making process.

Motivated by the above discussion, in this paper we
propose a new simulation-based approach to address
the inherent uncertainties in MAGDM problems. The
proposed approach takes as inputs the decision matri-
ces provided by individual decision maker and the
incomplete information about attribute weights. For
the evaluation of performance rating with respect to
qualitative attributes, the approach allows the deci-
sion makers to use comparative linguistic expressions
to facilitate and increase the flexibility in eliciting
their linguistic judgements. Compared to existing
simulation-based models, the main characteristics of
the proposed approach that lead to its novelty are as

follows: (1) it captures DMs’ hesitancy about linguis-
tic expressions by allowing the use of comparative
linguistic expressions under a general simulation
framework; (2) it samples realizations of attribute
weights from a set of prespecified weight constraints
and thus explicitly takes into account the incom-
plete attribute weight information during the decision
making process; and (3) it is capable of solving
MAGDM problems involving both comparative lin-
guistic expressions and numerical information.

The remainder of this paper is organized as follows.
Section 2 begins with a brief review of approaches
in MAGDM under uncertainty. Section 3 describes
the considered MAGDM problem and summaries the
basic concepts that will be needed in the rest of the
paper. In Section 4, we provide a detailed description
of the proposed simulation based MAGDM approach.
In Section 5, we demonstrate the performance of
the proposed approach on an electric vehicle charg-
ing station site selection problem. A comparison
study is also carried out to illustrate its effective-
ness and benefits. Finally, we conclude the paper in
Section 6.

2. Literature review

2.1. Fuzzy approach in MAGDM under
uncertainty

Ever since its introduction by Zadeh [17], the
fuzzy sets theory has been an powerful tool to deal
with uncertainty in decision making. In particular,
the theory has been integrated with many MAGDM
techniques to address the inherent impreciseness
and subjectiveness during decision making, lead-
ing to the emergence of fuzzy multi-attribute group
decision-making (FMAGDM) methods [2, 6]. Gen-
erally speaking, the fuzzy approach is utilized when
the input parameters of the MAGDM problem are
subjective and vague by using linguistic terms and
membership functions.

The past decades have witnessed many fruitful
studies on MAGDM problems based on the fuzzy
sets theory. For instance, Chen [3] presented an
extension of the TOPSIS (Technique for Order Pref-
erence by Similarity to Ideal Solution) method for
MAGDM under a fuzzy environment. Kahraman
et al. [4] proposed a fuzzy analytic hierarchy process
(AHP) model for determining the weights of the main
attributes in MAGDM. Wang and Lin [18] studied a
method for FMAGDM to select configuration items
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in software development. Olcer and Odabasi [19]
proposed a three-stage conceptual model for
FMAGDM and presented a MAGDM technique
under a fuzzy environment for propulsion and
maneuvering system selection. Wu and Chen [20]
presented a method for maximizing deviation for
group multi-attributes decision-making in a linguistic
environment. Pang et al. [21] focused on the con-
sensus problem and proposed an adaptive method
for MAGDM under uncertain linguistic environ-
ment. Chou et al. [22] provided a fuzzy simple
additive weighting system (FSAWS) for solving
facility location selection problems by using objec-
tive/subjective attributes under GDM conditions. Yeh
and Chang [23] presented a fuzzy MAGDM approach
for evaluating decision alternatives involving subjec-
tive judgements made by a group of decision makers.
Li [24] proposed some different distance measures
and developed a method for solving FMAGDM prob-
lems with non-homogeneous information. Liu et al.
[25] presented a method based on ordered weighted
harmonic averaging operators is presented to solve
the multiple attribute group decision making prob-
lems in which the attribute values take the form of
generalized interval-valued trapezoidal fuzzy num-
bers. Samvedi et al. [5] used both fuzzy TOPSIS and
Fuzzy AHP techniques to quantify risks in a supply
chain. It is also worth noting that during the past two
decades, several generalizations of the classic fuzzy
sets have been developed, including type-2 fuzzy sets
[26], intuitionistic fuzzy sets (IFSs) [27, 28], and hes-
itant fuzzy sets [29], some of which have been applied
to the field of FMAGDM [7, 30-36].

2.2. Stochastic approach in MAGDM under
uncertainty

An alternative way to handle imprecision and
uncertainty in MAGDM is through the use of stochas-
tic approaches, where some or all of the input
parameters of a given problem are expressed in
the form of probability distribution. Lahdelma and
Salminen [8] suggested a method called Stochastic
Multicriteria Acceptability Analysis (SMAA), which
considers the case where both the weight and attribute
values are inaccurate. The method relies on exploring
the weight space in order to describe the valuations
that would make each alternative the preferred one.
Inaccurate or uncertain criteria values are represented
by probability distributions, based on which confi-
dence factors describing the reliability of the analysis

can be computed. Prato [9] presented a stochastic
multiple attribute evaluation method for selecting
land use policies, in which the stochastic attributes
of outcomes are characterized by probability distri-
butions. To rank land use policies for stakeholder,
different preferences are considered based on inter-
dependent attributes of the policy outcomes. Lafleur
[10] proposed to use the triangular distribution to
describe the weight impreciseness of attributes in the
pairwise comparison matrix of AHP and employed
Monte Carlo simulation to determine the prefer-
ence probabilities of alternatives. Liu et al. [11]
studied an extended TOPSIS method for MAGDM
problems based on probability theory and uncertain
linguistic variables. Mousavi et al. [12] proposed
a fuzzy-stochastic MAGDM approach by aggregat-
ing group preferences into triangular fuzzy numbers.
They used Monte Carlo simulation to obtain prob-
ability distributions representing the performance of
alternatives with respect to attributes. Then, a ranking
technique (VIKOR) for final prioritization of alter-
natives is used. Recently, Hiisamettin [13] presented
a MAGDM technique based on simulation and the
TOPSIS method. In this model, individual prefer-
ences about attribute weights and attribute values are
aggregated into triangular distributions. In addition,
the use of simulation also enables decision mak-
ers to incorporate some decision constraints into the
decision-making process.

It is clear that both the fuzzy approach and the
stochastic approach are viable ways for modeling
imprecision and uncertainty in MAGDM. Regard-
ing the comparison between these two general
approaches, Buckly [37] highlighted that the stochas-
tic approach considers all ways to conduct a task,
whereas the fuzzy approach provides the most opti-
mistic way to accomplish the task. More specifically,
fuzzy MAGDM techniques usually consider either
the worst, best, or the most probable values, which
means that the intermediate occurrences are often
overlooked in determining the best alternatives [13].
Just as Marinoni pointed out [38], assigning extreme
realizations and observing the range of outcomes is
not necessarily a solution as these extreme realiza-
tions are normally rare events with low probabilities
of occurrence. In addition, the frequently used tech-
niques for defuzing fuzzy numbers in FMAGDM may
cause additional information loss and thus limits the
ability of fuzzy techniques to deal with imprecision
and uncertainty [39]. On the other hand, simulation
based multi-attribute group decision making tech-
niques can provide a more complete understanding
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of possible outcomes during the decision making
process.

3. Preliminaries
3.1. Problem description

We consider the following MAGDM problem
under uncertainty: Let A = {A1, A, ---, A} be
a finite set of alternatives, DM = {DM, DM,

, DMp} be a group of decision-makers (DMs),
and A = (A1, A2, -+, Ap) be the weight vector of
DMs, where both m and D are positive inte-
gers. We focus on problems with both qualitative
and quantitative attributes (i.e., dealing with lin-
guistic and numerical information) and assume
that each alternative has n (n > 2) attributes, with
n1 (0 < ny; < n) being the number of qualitative
attributes and n — n; being the number of quan-
titative attributes. Without loss of generality, we
denote by C ={Cy,---,Cy, Cyy41, -+, Cy} the
finite set of attributes. Let X9 = (xflj)mxn d=
1,2,..., D) be the decision matrix provided by
decision maker DM; € DM, where x% represents
the performance rating of alternative A; € A with
respect to attribute C; € C. Specifically, x%-, j€E
{1,2,---,n} are comparative linguistic expres-
sions ([40]) and x¢ jef{n +1, ,n} are crisp
numbers.

Let w=(w;, w2, ---,w,) be the weight
vector of attributes, where w; >0, j=1,2,

-,n, Z _yw; =1. The weight vector w is
assumed to be incompletely/partially known in our
model, and the set of the known weight information,
denoted by H, can be expressed through constraints
of one of the following forms [15, 16]: for i # j,
Form 1. A weak ranking: w; > w;; Form 2. A
strict ranking: w; —w; > a;, o; > 0; Form 3.
A ranking of differences: w; —w; > wi — wy,
for j# k #1; Form 4. A ranking with multi-
ples: w; > a;w;,0 <a; <1; Form 5. A interval
form: o <w <o+6,0<a <o+ <1.
Park [41] provided a detailed interpretation as
to when incomplete weight information could
occur in practice. We remark that in the pro-
posed model completely unknown information
about attribute weights can be regarded as a spe-
cial case of incomplete information by setting
H={w=wi,...,wy) >0[> 7w =1}

The aim of MAGDM is to select or prioritize these
finite alternatives based on performance assessments

l]’

of alternatives, incomplete attribute weights and over-
all group satisfaction.

3.2. Context-free grammar approach and
hesitant fuzzy linguistic term sets

Most fuzzy linguistic approaches handle linguis-
tic terms with defined priori and thus prevent DMs
from utilizing flexible expressions to provide their
preferences. However, in the presence of a high
degree of uncertainty, DMs may hesitate among
different linguistic terms and would prefer to use
more complex linguistic expressions, which cannot
be expressed through the building of classical linguis-
tic approaches. Rodriguez et al. [14] proposed the use
of context-free grammar and further extended it [40]
to generate comparative linguistic expressions.

Definition 1. [40] Let G i be context-free grammar
and S = {so, 51, - - - , 5S¢} be a linguistic term set. The
elements of Gz = (Vy, Vr, I, P) are defined as fol-
lows:
Vn = {{primaryterm), (compositeterm),
(unaryterm), (binaryterm), (conjuction)},
Vr = {lowerthan, greaterthan, atleast, atmost,
between, and, so, s1, - -+ , Sg},
I €Vy.
= {I ::= (primaryterm) | (compositeterm)
(compositeterm) ::= (unaryterm)
(primaryterm) | (binaryterm)
(primaryterm)(conjuction)(primaryterm)
(primaryterm) =50 | 51| --- | g
(

unaryterm) ::= lowerthan | greaterthan |

atleast | atmost
(binaryterm) ::= between

(conjunction) ::= and}.

Definition 2. [14] Let S = {so, s1, - - - , s} be a lin-
guistic term set. An HFLTS Hg on S is an ordered
finite subset of consecutive linguistic terms in S.

A transformation function E ,; capable of convert-
ing the comparative linguistic expressions generated
by the extended context-free grammar G g approach
into HFLTSs is introduced below.
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Definition 3. [40] Let E¢,, be a function that trans-
forms the linguistic expression Il € Sy obtained by
G g into an HFLTS. § is the linguistic term set used
by Gy, and S is the expression domain generated
by Gu: Eg,, : Sy — Hs.

The linguistic expressions generated by G i using
the production rules can be transformed into an
HFLTS through the following transformations:

- Egu(s)) ={si|si €S}
— Egy(atmost s;) = {sj | sj € Sand sj < s;}
— Egy(lowerthan s;) = {sj | sje S and s; < s;}
— Egy(atleast s;) = {sj | s; € S and s; > s;}
— Egy(greaterthan s;) = {s; | s; € S and s;
> si}
— Egy(between s; and sj) = {s | si €
S and s; < s; < sj}.

3.3. 2-tuple linguistic representation model

In order to compute with words without loss of
information, Herrera and Martinez [42] proposed a
2-tuple linguistic representation model based on the
concept of symbolic translation. The model uses a
2-tuple (s, @;) to represent linguistic information,
where s; is a linguistic term belonging to the prede-
fined linguistic term set and «; € [—0.5, 0.5) denotes
the symbolic translation. Specifically, the 2-tuple lin-
guistic representation model is defined as follows:

Definition4. [42] Let S = {so, 51, ..., S¢} be alinguis-
tic term set and B € [0, g] be a value representing the
result of a symbolic aggregation operation, then the
2-tuple that expresses the equivalent information to
B is obtained with the following function:

A :[0,g]— S x[-0.5,0.5)
A(B) = (si, @),

where i =round(B) and «; = B —i. Note that
“round” is the usual rounding operator, s; has the
closest index label to B, and «; is the value of the
symbolic translation.

Based on the above definition, a linguistic term can
be viewed as a 2-tuple linguistic by adding a value 0
toitas symbolic translation. Thatis, s; € S = (s;, 0).
Unless otherwise specified, we will use 2-tuple lin-
guistic representations instead of linguistic terms
throughout the paper.

Definition 5. [42] Let S = {so, 51, ..., 5¢} be a lin-
guistic term set and (s;, ;) be a 2-tuple, there exists
a function

A7 S x [-0.5,0.5) — [0, g]
AN i) =i+a=p

that uniquely transforms a 2-tuple into its equivalent
numerical value g € [0, g].

Definition 6. [42] Let x = {(s1, 1), (s2, a2), - - -,
(sn, ay)} be a set of 2-tuples and W = {wy, - -+, wy}
be their associated weights. The 2-tuple weighted
average X is defined as

n —1/.. N . .
T A (Zi—l %n (Sll;}(.xl) w,> . 0
i=1 Wi

3.4. Random preference derived from HFLTS

This subsection introduces the concept of random
preference for HFLTS [43], which will be used to
handle HFLTSs in the proposed simulation-based
framework.

In our MAGDM context, the linguistic assess-
ments xfj about qualitative attributes are articulated
by comparative linguistic expressions (including
single linguistic terms) generated by the context-
free grammar. The linguistic assessment xld- will
be expressed in terms of HFLTS and denoted by
Hfj, where i = 1,2+ ,m, j=1,2,--- ,n,d =
1,2,---, D. The HFLTS, H,-‘j, is a subset of the lin-
guistic term set S, which represents expert DM,'s
uncertain judgment for alternative A; with respect to
attribute C;. For simplicity, we use €2(S) to denote
the family of all HFLTSs defined over the linguistic
term set S.

When expert DM, provides his/her judgment for
the performance of alternative A; with respect to
attribute C;, a probability distribution of his/her opin-
ion on ©2(S) can be derived as

1, if H=H};

pas)(H | A, Cj, DMy) = { ‘

0, otherwise,
where i =1,2,--- ,m, j=1,2,---,n1,and d =
1,2,---, D.Yanetal. [43] pointed out that the proba-
bility distribution posy(H | A;, Cj, DMg)isnothing
but a basic probability assignment in the sense of
Shafer [44]. We then can use the so-called pignistic
transformation method [45] to obtain the least prej-
udiced distribution over the linguistic term set S for
alternative A; on attribute C; under expert DMy as
follows:
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psGsk | Ai, Cj, DMyg)
pas)(H | A;, Cj, DMy)

d
| HE|
V/IH), if sk € Hi;
= . 2
0, otherwise,

where i =1,2,---,m, j=1,2,--- ,n1, and d =
1,2,---,D.

Yan et al. [43] remarked that such a probability
distribution can be viewed as the prior probabil-
ity that the expert DM, believes that the linguistic
term s; € S is appropriate enough to describe the
performance of alternative A; on attribute C;. For
notational convenience, ps(sk | A;, Cj, DMg) will
be denoted by pfj(sk). Under such a formulation, for
each alternative A;, each expert DM, generates a vec-
tor of n1 individual random preferences, denoted by
(P4, P, .-, P4 ), with

12431

P& =[pf(s0), piisn). -+ pliGsl, (3)

wherei =1,2,--- ,m, j=1,2,--- ,n1,d=1,2,
-, D.

3.5. Triangular distribution

The triangular distribution is often used to express
the uncertainty of outcomes when the actual distri-
bution of a random variable cannot be determined
[13]. It is intuitive to non-statistically minded DMs
and appears well suited for GDM/MAGDM envi-
ronments due to its simplicity in capturing multiple
preferences [46]. The triangular distribution is spec-
ified by three parameters: minimum (L), maximum
(H), and most probable (M) value. Given a random
variate U drawn from the uniform distribution over
the interval (0, 1), it can be shown that the random
variate

L+ JUH = LYM - D), if U<t
e @
H- JO-O(H-DH-MW, if U> Y=L

L.
has a triangular distribution with parameters L, M,
and H.

4. A simulation based approach for MAGDM
problems

4.1. The proposed framework

The proposed approach starts by collecting infor-
mation about weights of DMs, weights of attributes

and attribute performance of each alternative with
respect to each attribute. As mentioned before, it
is assumed in our model that the information about
attribute weights is partially known. In addition, DMs
may also provide their assessments about the per-
formance of alternatives using comparative linguistic
expressions for qualitative attributes.

We adopt a probability based interpretation of the
MAGDM problem and solve it by employing Monte
Carlo simulation. The framework of the proposed
approachis depicted in Fig. 1. The proposed approach
consists of three main stages: Transformation —>
Simulation — Selection. Since the MAGDM prob-
lem will be analyzed by Monte Carlo simulation, the
information about attribute performance of alterna-
tives provided by individual DM is aggregated into
probability distributions in the first stage. Specif-
ically, for the assessment of each alternative with
respect to each qualitative attribute, comparative lin-
guistic expressions provided by DMs are aggregated
into random preferences, whereas numerical numbers
provided by DMs are aggregated into triangular dis-
tributions. Then in the second stage, the Monte Carlo
simulation is repeated N times. In each simulation,
a random decision matrix is generated by sampling
from the random preferences and the triangular dis-
tributions formed in stage 1. Additionally, a random
weight vector of attributes is generated by uniformly
sampling from the space characterized by the par-
tial information available on attribute weights. Then,
the alternatives are ranked by solving the generated
multi-attribute decision making problem. At the end
of each simulation replication run, the rankings of
alternatives are recorded. Finally, based on the results
of N simulation runs, the ultimate rankings of alter-
natives is determined by using a particular measure
in the last stage. The detailed steps of the proposed
approach are described in the following subsection.

4.2. Description of the proposed approach

Setting up the Problem

Step 1: Specify attributes, alternatives and DMs:
In this step, a set of attributes C = {Cy, - -- , Cp,},aset
of alternatives A = {A1, Az, - -+ , A, } and a group of
decision makers DM = {DM;, DM, ---, DMp}
with respect to the decision problem are determined.
The attributes are application-dependent, and brain-
storming exercises may be required to determine the
attributes for a particular application. Furthermore,
the type of each attribute, i.e., qualitative attribute
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MAGDM problem
]

h 4

Transform comparative linguistic expressions into
individual random preferences

Aggregate individual random preferences into
collective random preferences

Aggregate numerical evaluations into triangular
distribution functions

]
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Generate a random decision matrix

v

Normalize the generated numerical attribute values

v
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'

Rank the alternative

|
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Output

Fig. 1. Framework of the proposed approach.
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Table 1

Description of variables and symbols

Variables/symbols

Description

[pt,(m, e p,’-_’,(sg)]
[[7,](?0, cees P;j(Sg)]
_(tlzj 1211 t?lj)

decision matrix provided by decision maker Dy

performance of A; with respect to C;; provided by Dy
comparative linguistic expression provided by D, for X;‘}
HFLTS derived from II{,

individual random preference derived from H; d

collective random preference aggregated from Pd

parameters of the aggregated triangular dlstrlbutlon

decision matrix generated in the 7th round

single linguistic term generated for a qualitative attribute in G’
numerical number generated for a quantitative attribute in G’
normalized non-homogeneous decision matrix in the 7th round
normalized value of r{ g in NG'

linguistic 2-tuple obtained by transforming zl’.j

the feasible weight space

random weight vector by sampling from W in the ¢th round
overall performance (a linguistic 2-tuple) of alternative A;

the equivalent numerical value corresponding to X}

number of times that A; is ranked as the sth best alternative
mean stochastic rank of alternative A;

stochastic rank index of alternative A;

or quantitative attribute, should also be specified. In
addition, the weight vector A = (A1, A2, -+, Ap) of
decision makers should also be determined in this
step.

Step 2: Evaluate performance of alterna-
tives: A linguistic term set § = {so, s, -, Sg}
should be determined for evaluating the perfor-
mance of alternatives with respect to qualitative
attributes. ~ Multi-attribute  decision  matrices

= (xg.)mxn(d =1,2,---,D) are created
based on the DMs’ opinion. The element xg.(i =
,2,---,mj=12,---,n5d=1,2,---,D) in
decision matrices X¢ indicates the performance
rating of alternative A; with respect to attribute
C; provided by Dy. For qualitative attributes, the
performance of alternatives is expressed using
comparative linguistic expressions generated by the
context-free grammar; for quantitative attributes, the
performance of alternatives is evaluated by using
crisp numbers.

Step 3: Articulate the incomplete information
about attribute weights. In the third step, incom-
plete information about the weights of attributes
is determined by DMs or experts. In practice,
the set of known weight information can be
constructed by the Forms 1-5 given in subsec-
tion 3.1. Let w = (wy,wy,---,w,) € H be the
weight vector of attributes, where w; >0, j=

1,2,---,n, Z'}zl w;j = 1, H is the set of the known
weight information. It is assumed that all DMs or
experts agree on the incomplete information H about
the weights of attributes.

Transforming information

Step 4: Aggregate individual evaluations into
probability distributions: In this step, the individual
evaluations about the performance of each alternative
with respect to each attribute are aggregated into a
probability distribution. This is carried out as follows:

Step 4.1: Aggregate comparative linguistic expres-
sions into random preferences: Let lld be the
comparative linguistic expression pr0V1ded by DMy
for the performance of the alternative A; with respect
to a qualitative attribute C;. The transformation of
llflj into a collective random preference Pg consists
of three steps (shown in Fig. 2).

In the first step, using the function Eg,, the
comparative linguistic expression ll is transformed
into HFLTS Hd Then, the 1nd1V1dua1 random
preference P, ” = [p,j(SO) P,](Sl) . ,pg-(sg)] can
be obtained from equation (2). At the last step,
the individual random preferences are aggre-
gated into a collective random preference PS =

ij
[p,,(So) p,](sl) . plj(sg)] where the kth element
Pl](Sk)(k =0,1,

ing equation:

-, g) is determined by the follow-
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DM Compaljatlve 1lmgulstlc S HELTS: H' Ps | |Individual ranldom
expression //; y preference P,

DM,: Compal:atlve ngulstlc Sy HFLTS: H Ps |Individual razldom Collective mx:dom
expression //; d preference P, preference P,
Comparative linguistic | £ p| Ps |Individual random

: . Ly tH| >
DMp: expression /1] HFLTS: #, preference P,

Fig. 2. Transforming comparative linguistic expressions into collective random preference.

D
PG =D dapfis) k=0,1,--, g (5)
d=1

Step 4.2: Aggregate numerical numbers into tri-
angular distributions: The individual evaluations
of DMs for quantitative attributes are aggregated
into triangular distributions. This is performed in
a similar way as described in [13, 23]. Let TUC =
(tlcl- I tg. i t3ci j) be the parameters of the aggregated tri-
angular probability density function representing the
group performance rating of an alternative A; (i =
1,2,---,m) with respect to attribute C; (j = n; +
1, ---, n). The parameters of the triangular distribu-
tion can then be calculated as follows:

Cc : d
d
d
115 )
d=1

C d
13;j = maxqx;;. ®)

Monte Carlo simulation

Step 5: Monte Carlo simulation: The simulation
component consists of N rounds of simulation runs.
In each round, a multi-attribute decision-making
problem is generated and a ranking of alternative
is derived by using a deterministic decision method.
Based on the results of the N runs, the ultimate rank-
ing of alternatives is determined.

Step 5.1: Generate a random decision matrix:
At the beginning of each round, a multi-attribute
decision matrix is generated by sampling from the
aggregated probability distributions obtained in step
4. In the generated decision matrix, the performance
of each alternative on each attribute is either a single
linguistic term (for a qualitative attribute) or a crisp
number (for a quantitative attribute). Let G* be the
generated decision matrix in the 7th round:

t t t 1

St Sty M+ 7 T

t t t 1

2007 Sy D+ T T

G = , ‘ ; , ;

Sie o Sing Tig+y 77 in

t t ' '

Sml " Smny Tmi+1) 7 Tmn
Whel‘esngS,l‘=172,""m,j=172"",n1§rlt'j
isacrispvalue,i =1,2,--- ,m, j=ni+1,--- ,n.

We remark that the single linguistic term sl’-j (=
1,2,...,n1) representing the value of alternative
A; (i €{l,2,...,m}) with respect to a qualitative
attribute C; is generated by the collective random
preference Pg and the numerical value r} i(J=n1+
1,...,n) is generated from the triangular distribu-
tion TIJC

Step 5.2: Normalize the generated numerical
attribute values: For the generated performance of
alternatives with respect to the quantitative attributes,
normalization is essential to eliminate the com-
putational difficulties caused by incommensurable
attributes. Let J? C {n1 +1,---,n} be the index
set of benefit attributes and J C {n; + 1,---,n}
be the index set of cost attributes. For the gener-
ated attribute value rj;(j € {n1 +1,---,n}) in the
tth(t=1,2,---, N) round, we can obtain the nor-
malized value zfj € [0, 1] by the following 0 — 1
normalization method:

t I
. rl-]- — mzn,rij
Zij = ot T

max;r min;r;

ij ij

i=1,2,-,m;jeJ’,

max;rt, — r.
t_ i i
YT maxirt, — mingr
1 ij 1 ij
i=1,2,---,m;jeJ. 9)
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Fig. 3. Transforming numerical number into linguistic 2-tuple.

After normalization, the decision matrix is then
converted into the following matrix:

1 ! t t

St Stny Qg+ 7 Ln

t ! t t

21 777 Sony L2+ 77 %o

NG' = t t t t ’

Sit 7 Sing Zim+D 7 Zin

! 1 t t
Sm1 " Smny L+l 7 Zmn

Wheresl’j €S i=12--,mj=12,-- ,nl;zf.j

is numerical number in the interval [0, 1], i =
L2, mj=n+1,--,n

Step 5.3: Unify the non-homogeneous informa-
tion: In order to facilitate the ranking of the
alternatives in the tth round, the non-homogeneous
information in the decision matrix NG’ will first
needs to be unified. Motivated by the idea proposed
by Herrera and Martinez [47], we transform linguistic
and numerical information into linguistic 2-tuples in
our approach. For a single linguistic term s/ ;E€S>i=
1,2,---,m,j=1,2,---,n1)in NG!, we can easily
obtain the corresponding linguistic 2-tuple as (s} i 0).
The transformation from numerical values zﬁ}-(i =
1,2,---,m,j=n1+1,---,n) €0, 1] to linguis-
tic 2-tuples can be realized by using the following
equation:

A(x(x(z))) = (s}j, af),

where the functions 7, x and A are defined as
in [47]. The transformation process is shown in
Fig. 3.

Step 5.4: Generate a random weight vector of
attributes. In this step, a random weight vector
w' = (w), wh, -+, w)T is generated by sampling
from the convex polytope of the feasible weight
space H, which is characterized by linear con-
straints and the natural constraints 7, w' =
1, w; >0(=1,2,---,n). Wand and Zionts [48]
proposed a procedures for generating weights that
satisfy general linear constraints. According to the
procedure, we can obtain a random weight vector
w' = (w, wh, -+, w)T by sampling from H in the

tth round of the simulation. The details are given
below:

(i) Enumerate the extreme points of the poly-
tope of the feasible weight space H, E1, E»,
.-, Ep, where E; I =1,2,---,L) is a real
n—vector.

(ii) Generate an L—vector (k{,k5, -, k}) uni-
formly distributed over K = {(ki, k2, -,
ki) | k1= 0,5F ki =1}. To do this, L — 1
random numbers are first independently gener-
ated from the uniform distribution on [0, 1] and
then ranked. Suppose the the ranked numbers
are 1 > vy | >=v_, >, vh>v] >0.We
then let kf =vi, k) =v —v}, -k _, =
v~V kp =1—0

(iii) Generate the weight vector w’ = ZZL:I klt E;.

Step 5.5: Calculate overall performance of each
alternative: Let X! be the overall performance
of alternative A; (i =1,2,---,n). Based on the
weighted aggregation operator (Equation (1)), we can
obtain X} as follows:

n
X =A Zw;A—l(sf.j, o) | (10)
=1

Note that X! obtained by (10) is a linguistic 2-tuple
that indicates the overall performance of alternative
Aj;. In this step, other operators or decision methods
can also be used to aggregate the attribute values of
each alternative.

Step 5.6: Rank the alternatives: In order to rank the
alternatives, we transform the overall performance X;
into an equivalent numerical value B! by the following
equation:

Bl = ATE). (11)

The numerical value ,31’- (i=1,2,---,n) can be
used as a ranking index of alternatives A; (i =
1,2,---,n) at the rth round. The larger the value
ﬂl’. is, the better the alternative A; will be. At the
end of each simulation, the ranking of alternatives
is recorded.

Selection of the best alternative

Step 6: Calculate rank indices: In order to deter-
mine the alternatives’ ultimate preference order, a
measure is used to handle the information about the
ranking counts of the N simulation runs. We adopt the
Mean Stochastic Rank (MSR) and Stochastic Rank
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Index (SI) suggested by [49]. Let MSR; and S1; repre-
sent the MSR and SI of alternative A;, respectively.
Denote by R;; the number of times that alternative
A; is ranked as the sy, best alternative during the N
simulation runs. Let MSR,;,,,x and MSR,,;, be the
respective highest and lowest possible MSR values.
Equations (12)-(13) give the explicit formulas for
calculating these values.

1 n
MSR; = — Z}(sR,-S), (12)
1=
MSR; — MSR,i,
SI; = i min ’ (13)
MSRmax - MSRmin

where MSR;0x = N, MSRyin = %

Step 7: Rank the alternatives: The ranking of the
alternatives can be obtained according to the values
of SI;. The smaller the SI; (i = 1,2, --- , n) values,
the better the alternative A; (i =1,2,--- ,n) is. In
some cases, the difference between the SI values of
two alternatives can be very small. As mentioned in
[13, 49], this difference can be better distinguished
by increasing the number of simulation replication
runs.

5. Illustrative example and comparative
analysis

5.1. An illustrative example

Electric vehicle charging station (EVCS) is a fun-
damental element in an infrastructure that provides
the energy required for electric vehicles. Efficient,
convenient and economic EVCS can enhance the con-
sumers’ willingness to buy electric vehicles and thus
promote the success of the industry [50, 51]. As part
of the EVCS construction plan, the EVCS site selec-
tionis very important and may have significant impact
on the service quality and operational efficiency of
EVCS. Therefore, it is necessary to employ proper
method to determine the optimal EVCS site.

In this illustrative example, we consider a group
of 10 DMs who are trying to select an appropriate
site for EVCS. DMs have identified five alterna-
tive sites (A; — As) and six attributes (C; — Cg) to
evaluate them. The six attributes are listed as fol-
lows: Cy: Traffic convenience; C,: Harmonization
of EVCS with the development planning of urban
road network and power grid; C3: Environment dam-
age; C4: Emission reduction; Cs: Construction cost;

Ce: Annual operation and maintenance cost. Let
w = (w1, w2, w3, w4, ws, we) be the weight vector
of attributes, satisfying w; > 0@ =1,2,---,6)and
Z?:l w; = 1. The attribute weights are not known
with complete certainty and are characterized by the
following constraints:

— wi, w2, ws, we > 0.1; w3, wg > 0.2;
- We < Ws;
- w5+ we < wy + w2 < w3+ wy.

Thus, the incomplete information about these
weights can be written as H = {(wy, wa, w3, w4,
ws, We) | wi, w2, ws, we > 0.1; w3z, wg > 0.2; we
Sws;ws + we < wp + w2 Sws + waswy + w2 +
w3 + wa + ws + weg = 1}. Since no additional prior
information is available, the weight vector w is
assumed to be uniformly distributed on H in the
Monte Carlo simulation.

The DMs are required to evaluate the performances
of each alternative with respect to each attribute based
on their personal judgments. It is not difficult to
see that both quantitative attributes and qualitative
attributes are involved in this multi-attribute decision-
making problem. In particular, Cy, C2, C3 and C4 are
qualitative attributes, and Cs and Cg are quantitative.
As mentioned before, the DMs declare their judg-
ments by using comparative linguistic expressions
generated by the context-free grammar for qualita-
tive attributes. On the other hand, numerical numbers
are used to evaluate the performance of quantitative
attributes. Table 2 gives an example of the decision
matrix provided by one DM. To save space, decision
matrices provided by other DMs are omitted.

We apply the proposed simulation-based approach
to rank the alternatives. All steps of the approach were
implemented using MATLAB. Given the information
provided by the DMs, the first stage is to transform
the individual evaluations into probability distribu-
tions. According to the method presented in step
4.1 of the proposed approach, comparative linguis-
tic expressions llflj(d =1,2,..., D) are transformed
into individual random preference Pi‘; by using the
function Eg, and Equation (2). Further, apply-
ing Equation (5), we can aggregate the individual
random preferences into collective random prefer-
ences which are shown in Table 3. In Table 3, the
vector in each row represents a probability distribu-
tion over the linguistic term set § = {so, 51, - - - , Sg},
indicating the aggregated performance of the corre-
sponding attribute value. For instance, the random
preference in second row of the table, i.e., Plc1 =
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Table 2
An example of one DM’s Performance ratings of alternatives on attributes
xd C C> G Cy Cs Co
Ay greaterthan s3 between sy and sy K atleast s4 420 39
Aj lowerthan sy 53 atleast sy greaterthan s 380 36
Az atleast s3 greaterthan s; S4 between s3 and sy 440 51
Ay 53 S4 lessthan s3 greaterthan s3 430 42
As between s3 and s5 greaterthan s3 52 between sy and sy 385 40

Table 3
Aggregated random preferences for attributes Cy, C2, C3 and Ca

P,S S0 S1 52 53 54 S5 56

P§ 0.000 0.000 0.100 0.100 0.533 0.133 0.133

P 0.100 0.233 0.233 0.283 0.050 0.050 0.050

Pf 0.100 0.100 0.100 0.400 0.100 0.100 0.100

Py 0.080 0.180 0.180 0.480 0.080 0.000 0.000

P, 0.100 0.100 0.160 0.227 0.227 0.127 0.060

Plc2 0.075 0.075 0.215 0.215 0.340 0.040 0.040

ch 0.100 0.100 0.100 0.400 0.300 0.000 0.000

P; 0.075 0.075 0.175 0.425 0.150 0.050 0.050

Py, 0.000 0.000 0.000 0.367 0.467 0.167 0.000

P5C 0.040 0.040 0.207 0.207 0.307 0.100 0.100

Py, 0.100 0.100 0.400 0.400 0.000 0.000 0.000

ch 0.000 0.000 0.133 0.233 0.300 0.167 0.167

Pz 0.000 0.000 0.300 0.350 0.250 0.050 0.050

Pf 0.133 0.433 0.433 0.000 0.000 0.000 0.000

P 0.075 0.075 0.407 0.207 0.127 0.060 0.060

Py, 0.000 0.000 0.133 0.183 0.450 0.117 0.117

P2C4 0.100 0.100 0.200 0.200 0.200 0.100 0.100

Pﬁ 0.000 0.000 0.300 0.133 0.233 0.233 0.100

P 0.090 0.090 0.090 0.090 0.507 0.067 0.067

PSC4 0.000 0.000 0.200 0.600 0.200 0.000 0.000
(0.000, 0.000, 0.100, 0.100, 0.533, 0.133, 0.133), is Table 4
a probability distribution over S, which represents Parameters of aggregated glang:jllgr distributions for attributes
the aggregated performance of alternative A; with - s amete
respect to attribute Cj. We can see that P{(sp) = T his fais 13is "i6 hi6 13i6

A;  400.00 420.32  440.00 39.00 40.48  43.00

PIC1 (s1) = 0, which means that the group does not
give a rating of so and s; for the performance of
alternative A on attribute Cj.

For quantitative attributes C5 and Cg, individual
numerical evaluations can be aggregated into triangu-
lar distributions. For example, suppose that attribute
values of sites A1 with respect to attribute Cs assessed
by 10 DMs are 420, 400, 430, 400, 420, 420, 440,
430, 415 and 430, respectively. By using Equations
(6), (7) and (8), we have 115 = 400, 1215 = 420.32
and 1315 = 440. Therefore, the aggregated triangu-
lar distribution of A; with respect to Cs is Tlc5 =
(115, 215, t315) = (400.00, 420.32, 440.00). All the
parameters of the aggregated triangular distributions
are shown in Table 4.

Given the random preferences and triangular dis-
tributions, Monte Carlo simulation is then repeated
N times at the second stage. In the rth simulation

Ay 360.00 37339  390.00 35.00 3693  42.00
A3 410.00 436.62 460.00 38.00 4592 51.00
Ay 400.00 417.40  430.00 40.00 44.06 46.00
As 365.00 386.87 400.00 37.00 4036  43.00

run, a decision matrix is randomly generated from
the corresponding aggregated random preference and
triangular distribution. A particular realization of the
matrix is shown in Table 5. At the same time, a ran-
dom weight vector is also generated by sampling
from the space H following the procedure outlined in
step 5.4. The generated weight vector in the 7th run
is given as

w' = (0.163,0.122,0.276, 0.218, 0.112, 0.109).

A normalization is subsequently performed
to eliminate computational problems caused by
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Table 5
Random decision matrix G in round ¢
C; C C3 C4 Cs Cs

Ay s3 so s1 sq4 4263380 39.5985
Ay ss sq4 sy sq4  378.0720 37.3414
A3 sy sy s¢ §5 4354156  43.4902
Ay s1 s4  s2 sq4 4043874 44.8468
As 53 s3 sy s3 3715935 41.6251

Table 6
The unified decision matrix in round ¢
Cy Cy C3 Cy Cs Ce

Ay (53,0) (50,0) (s5,0) (s4,0) (s1,—0.1468) (s4,0.1956)
Az (55.0) (54.0) (54.0) (54,0) (s5,0.3911) (s6. 0)
Az (51,0) (s52,0) (s0,0) (s5,0) (s0, 0) (s1, 0.0843)
Ay (51,0) (54,0) (54,0) (54,0) (s3,—0.0830) (50, 0)
As (53,0) (s3,0) (s4,0) (s53,0) (56, 0) (s3, —0.4244)

incommensurable attributes. Since the construction
cost and annual operation and maintenance cost are
both cost attributes, Equation (9) is used to normal-
ize the generated performance of alternatives with
respect to Cs and Cg. Then, the non-homogeneous
information in the normalized decision matrix is
unified into linguistic 2-tuples by using the method
described in step 5.3 of the proposed approach.
The unified decision matrix in iteration ¢ is given
in Table 6. Using Equations (10) and (11), we can
obtain the overall performance X/ and the corre-
sponding numerical value B! of each alternative.
The computational details are reported in Table 7.
From the values given in Table 7, we can see
that the ranking of alternatives in rth iteration is:
Ay > As > A1 > As > A3z. Accordingly, the rank
counts Rj1, Rsa, R13, Raa, R3s are all increased by
one in this iteration.

Based on the results of N = 10000 runs, we can
convert the rank counts R;; into MSR; and SI; by
using Equations (12) and (13). R;;, MSR; and SI; of
the alternatives are reported in Table 8. According
to the value SI; in Table 8, we obtain the ulti-
mate ranking of the alternatives: A5 > A} > Ay >
Ag > Az

The proposed simulation based approach was
performed by varying the number of simulation repli-
cations from 50 to 10000. The obtained SI values of
alternatives in each of the respective cases are given in

Table 8
Rank counts of alternatives

Rig Ay A A3 Ay As
R 2601 2402 124 1160 3713
Ri» 2791 2115 337 2064 2693
Ri3 2518 2125 762 2743 1852
Ris 1696 2335 1815 2821 1333
Ris 394 1023 6962 1212 409
MSR; 4898.2 5492.4 9030.8 6172.2 4406.4
SI; 0.3623 0.4365 0.8788 0.5215 0.3008

Table 9

Statistical regularity of different simulation runs

N= 50 100 200 500 1000 5000 10000

SI; 0395 0310 0378 0366 0.362 0.358 0.362
S, 0370 0443 0423 0418 0.420 0436 0.437
Sl 0.885 0.878 0.868 0.882 0.875 0.884 0.879
SI, 0555 04838 0523 0531 0530 0.518 0.522
SIs 0295 0383 0310 0305 0313 0304 0.301

Table 9. From Table 9, we can see that the ranking of
all alternatives becomes consistent after the N = 200
case.

5.2. Comparative study

In this subsection, we apply the proposed approach
to an example adopted in Chen et al. [52] and compare
its performance with that of the model developed in
[52]. This example involves the evaluation of univer-
sity faculty for tenure and promotion. In particular,
the attributes used by a university are teaching (C1),
research (C3), and service (C3), which carry unknown
weighting vectors. Suppose that 5 candidates x; (i =
1,2, 3,4,5) need to be evaluated by 10 experts E =
{e1, ea, ..., ejo} under these three attributes. Due to
the uncertainty involved in evaluating the candidates,
the experts may either use single linguistic terms or
comparative linguistic expressions to provide their
preferences. Thus, the problem can be viewed as
a special case of the problems considered in this
paper by letting ny =n and H = {(wy, -+, wy) |
wj >0, Z’}zl wj =1} in our model. According
to the decision matrix constructed on the basis of
the proportional comparative linguistic pairs Pllfj =
(Il;, piy) in [52], we can use the proposed approach

ij
to solve the MAGDM problem.

Table 7
The overall performances of alternatives in round ¢
A A A3 Ay As
X (s3,0.2952) (s5, —0.4633) (52, —0.3860) (s3, —0.0457) (s4, —0.4328)
B 3.2952 4.5367 1.6140 2.9543 3.5672
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Table 10
Transformed random preferences

P S0 K 52 $3 S4 S5 S6

Py 0.000 0.000 0.000 0.100 0.400 0.400 0.100
P> 0.150 0.150 0.000 0.000 0.000 0.600 0.100
P 0.040 0.040 0.207 0.432 0.232 0.025 0.025
Py 0.117 0.117 0.177 0.177 0.177 0.177 0.060
Ps; 0.000 0.000 0.000 0.100 0.333 0.333 0.233
Py 0.067 0.067 0.200 0.250 0.250 0.117 0.050
Py 0.060 0.060 0.260 0.118 0.218 0.158 0.125
P3; 0.000 0.200 0.500 0.000 0.100 0.100 0.100
Py 0.000 0.000 0.100 0.100 0.300 0.300 0.200
Ps 0.100 0.100 0.100 0.400 0.300 0.000 0.000
P13 0.000 0.000 0.200 0.350 0.350 0.050 0.050
Py 0.040 0.040 0.040 0.115 0.115 0.575 0.075
P33 0.000 0.000 0.167 0.392 0.192 0.125 0.125
Py3 0.133 0.133 0.208 0.075 0.175 0.175 0.100
Ps3 0.000 0.000 0.000 0.325 0.125 0.275 0.275

In step 4 of our approach, for the attribute value
of alternative x; (i =1,2,---,m) with respect to
attribute C; (j = 1,2, ---, n), the individual com-
parative linguistic expressions ll;ii da=12,---,D)
are aggregated into a random preference Pg of
the group. Similarly, in [52], the proportional
comparative linguistic pairs Plll-fj = (lll-’j, pl-’j) (=
1,2,.--,T) are transformed into a proportional

hesitant fuzzy linguistic term set (PHFLTS) PZS. In

fact, both Pg and PZS can be considered as the prob-
ability distributions over the linguistic term set S =
{50, 51, - - - , 8¢}, indicating the collective preferences
about the performance of alternative x; with respect
to attribute C;. Assuming that each DM in the group
are equally important, we can obtain the random pref-
erences reported in Table 10 by using the method in
step 4 of our approach. The corresponding PHFLTSs
are listed in the matrix R, = (R),, R}, R3) in [52].
For the majority of the entries in the two matrices,
we find there are differences between the probability
distributions obtained by these two different meth-
ods of transformation. In fact, a closer analysis of the
transformation algorithm in [52] shows that, if the
formula in step 4 of the algorithm in [52], i.e.,
Pl =pi/Ci_iipl)  t=1.2,---.T (14
is replaced by the following equation:
pl=pi/e! T=12-...T, (19
then the probability distributions obtained will be
identical to those of Table 10. In the following, we
argue that Equation (15) is more reasonable than
Equation (14) in terms of calculating the propor-
tions (probability) of linguistic term s, in Eg H(lli’j).

Notice that Zle pfj = 1. Thus, each linguistic term

Sg, in EGH(lll-fj) should share the same proportion
of lll-fj. Since the number of elements of Eg H(lll-’j)

is ¢%, we can calculate the proportion for linguis-
tic term s, in Eg H(llf/) by using Equation (15) if
there is no additional information. In fact, if Equa-
tion (14) is replaced by Equation (15), then the
transformation algorithm in [52] is equivalent to the
transformation method in step 4 in our approach.
Moreover, the relative importance of DMs can be
considered in our method. However, in [52], each
DM is assumed to be equally important due to the
fact that the proportional comparative linguistic pair
Plll-’j = (lll-’j, pi’j) (t=1,2,---,T) is obtained by
simply combining individual comparative linguistic
expressions.

After the completion of information transforma-
tion, Monte Carlo simulation is conducted in order
to rank the alternatives. By using the proposed
approach, we obtain the information about the rank
counts and the ultimate ranking of the alternatives,
which is reported in Table 11 (the numbers before
the slash). Table 11 also shows the simulation results
based on the transformed decision matrix in [52].
From Table 11, we see that the ranking of the
alternatives is Ay > A5 = A1 > A4 > A3 when the
decision matrix is transformed using the algorithm in
[52]. This ranking is the same as that in [52], which
implies that there is no difference in ranking of alter-
natives between the simulation based approach and
the operator based approach in this problem. How-
ever, we can see that the ranking is As > Ay > A1 >
A4 > Aj if the proposed approach is applied. Obvi-
ously, the reverse in the ranking order between A;
and As is mainly attributed to the use of different
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Table 11
Rank counts of alternatives
Ris Ay An Az Ay As
R 1520/1493 3107/3374 815/847 1866/1939 2692/2347
Ri» 2258/2293 2265/2222 1000/1091 1764/1830 2713/2564
R;i3 2799/2765 1537/1442 1622/1715 1729/1667 2313/2411
Ria 2210/2188 1302/1320 3002/3000 1977/1780 1509/1712
R;s 1213/1261 1789/1642 3561/3347 2664/2784 773/966
SI; 0.4835/0.4858 0.4100/0.3909 0.6874/0.6727 0.5452/0.5410 0.3740/0.4096
ranking 3/3 2/1 5/5 4/4 172
Table 12
Comparison with the related MAGDM approaches
Performance ratings Attribute weights Method Final results
Proposed approach comparative linguistic completely unknown or stochastic  distribution for possible rankings
expressions and real numbers partially known
Mousavi’s approach [12] single linguistic term known(linguistic term) stochastic  distribution for possible rankings
Bayram’s approach [13]  real numbers completely known stochastic  distribution for possible rankings

Zhang’s approach [53] heterogeneous information

completely unknown or fuzzy
partially known

single ranking

transformation methods. Since the improvement in
the method of transformation is meaningful, it can
be concluded that the ranking results obtained by our
approach is more reasonable than that of [52]. More
importantly, the rank counts shown in Table 11 may
also be important for DMs because they reveal the dis-
tribution information among the ranking alternatives,
which is not available in other approaches.

In order to demonstrate the relationship and dif-
ferences between the proposed approach and other
MAGDM approaches under uncertain environment
and emphasize the advantages and characteristics of
the proposed method, in the following we further
compare the proposed approach with the related latest
work on MAGDM [12, 13, 53]. Based on the anal-
ysis of different approaches, the comparison results
are listed in Table 12.

As mentioned in the introduction, Monte Carlo
simulation has been used to deal with MAGDM
under uncertain environment in literature. In partic-
ular, in [12] and [13], different stochastic MAGDM
approaches are developed to handle MAGDM prob-
lem, which motivate the proposed approach in
our work. As shown in Table 12, the differences
between the proposed approach and the methods
developed in [12] and [13] are obvious. First of
all, our proposal captures DMs’ hesitancy about
linguistic expressions by allowing the use of com-
parative linguistic expressions under a simulation
framework. In the framework of simulation, the pro-
posed approach can combine comparative linguistic
expressions and numerical information in MAGDM.
However, the approach developed in [12] is only

applicable to MAGDM problem where the decision
makers describe a value for an alternative with respect
to an attribute by the use of linguistic variables. On
the other hand, the method in [13] is only capable
of solving MAGDM problems where attribute values
and weights are described in crisp numbers. Sec-
ondly, the proposed approach can effectively deal
with MAGDM problems with incomplete informa-
tion about attributes. In our work, attribute weights
are assumed to be partially known, whereas they are
completely known in [13] and known as linguis-
tic variables in [12]. In addition, we remark that if
attribute weights are completely unknown, the pro-
posed approach is still valid because the weight vector
of attributes can be regarded as a random vector
uniformly distributed over the simplex H = {w =
(Wi, wa, ..., wy) > 0] >0 wi =1}

In [53], a deviation model is developed to handle
heterogeneous MAGDM problems with incomplete
weight information in which the decision information
is expressed in multiple formats of attribute values
(such as real numbers, interval numbers, and linguis-
tic variables). In fact, the fuzzy approach is adopted to
model uncertainty in the considered MCGDM prob-
lem. Notice that the output of the decision model
is a single ranking of alternatives in [53]. For the
MAGDM problem under uncertainty, a single rank-
ing of alternatives may have limitations for decision
making because because it cannot reflect the possibil-
ities and distribution of the ranking of alternatives. In
the proposed simulation-based approach, the output
is the distribution information for possible rankings,
which can provide a more complete understanding of
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possible outcomes for MAGDM under uncertainty.
This is also the main feature of the simulation-based
approach, which distinguishes itself from the fuzzy
approach.

6. Conclusions

In real world MAGDM, DMs often do not have
complete knowledge about the attribute weights and
the performance ratings of alternatives due to the
complexity of the decision problems and the limita-
tion of human cognitive ability. Thus, how to model
the uncertainty and imprecision in the decision mak-
ing problems is a challenging issue in MAGDM. This
paper proposes a novel simulation based approach
for MAGDM under uncertainty. The approach is
divided into three stage: transformation, simulation,
and selection, each of which consists of multiple
steps.

Compared with the decision making methods
based on fuzzy set theory, the advantage of pro-
posed approach lies in its ability to provide a
complete understanding of alternatives’ preference
structure. The main contributions of this work are
as follows. First, the DMs hesitancy about linguis-
tic expressions for performance ratings with respect
to qualitative attributes is well modeled under the
proposed simulation framework. In the proposed
approach, the comparative linguistic expressions gen-
erated by context-free grammar are used by DMs
to express their preference. Then, individual com-
parative linguistic expressions are aggregated into
random preferences over the linguistic term set,
which are used as inputs to Monte Carlo simulation.
This distinguishes our work from previous studies
[12] that consider qualitative attributes in simulation
based MAGDM approaches. Second, by treating the
attribute weight vector as a random vector uniformly
distributed over the space characterized by weight
constraints, the proposed approach provides a viable
way to cope with the incomplete information about
attributes weights. Third, the proposed approach can
be used to solve MAGDM problems in which both
quantitative attributes and qualitative attributes are
involved. Although many models have been proposed
in the literature to solve MAGDM involving both
qualitative and quantitative attributes, most of these
models are established from the fuzzy viewpoint. The
proposed simulation based approach can provide a
more complete understanding of alternatives’ prefer-
ence structure.

For future research, utilizing other multi-attribute
decision making methods, such as TOPSIS and
VIKOR, to rank the alternatives in the stage of Monte
Carlo simulation is suggested to improve the overall
performance of the proposed approach. In addition,
developing effective algorithms for unifying non-
homogenous information about attribute values will
also be helpful for further validating the effectiveness
of the proposed approach.
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