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The consistency between the exchange-correlation functional used in pseudopotential construction and in the
actual density functional theory calculation is essential for the accurate prediction of fundamental properties of
materials. However, routine hybrid density functional calculations at present still rely on generalized gradient
approximation pseudopotentials due to the lack of hybrid functional pseudopotentials. Here, we present a scheme
for generating hybrid functional pseudopotentials, and we analyze the importance of pseudopotential density
functional consistency for hybrid functionals. For the PBEO hybrid functional, we benchmark our pseudopotentials
for structural parameters and fundamental electronic gaps of the Gaussian-2 (G2) molecular dataset and some
simple solids. Our results show that using our PBEO pseudopotentials in PBEQ calculations improves agreement

with respect to all-electron calculations.
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I. INTRODUCTION

Density functional theory (DFT) methods have proven to be
successful for understanding and predicting the physical and
chemical properties of materials. With approximations such as
the local density approximation (LDA) [1] and the generalized-
gradient approximation (GGA) [2], DFT can reproduce many
fundamental properties of solids, such as lattice constants and
atomization energies [3]. However, the LDA and the GGA
usually underestimate the fundamental band gaps of semi-
conductors and insulators [4]. The use of hybrid functionals
in DFT, which combine part of the exact Hartree-Fock (HF)
exchange with local or semilocal approximations (PBEO, HSE,
B3LYP) [5-7], has become a popular option for addressing this
problem.

The pseudopotential approximation is often used to reduce
the complexity of DFT calculations. By replacing the nucleus
and core electrons with a finite shallow potential, the solution of
the Kohn-Sham equation is simplified because of the reduced
number of electrons in the system. Accuracy is preserved
because the core electrons are not involved in chemical bonding
[8.9].

Even though hybrid density functional calculations using
pseudopotentials are currently very popular, these calculations
solve the Kohn-Sham equation using pseudopotentials con-
structed at alower rung of Jacob’s ladder [ 10], such as the GGA.
This is due to a lack of hybrid functional pseudopotentials
available to the community. The mismatch of the level of
the density functional approximation between pseudopotential
construction and target calculation is theoretically unjustified,
and could lead to reduced accuracy [11]. In this work, we
have developed hybrid density functional pseudopotentials to
restore pseudopotential consistency in hybrid functional DFT
calculations.
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Prior to this work, Hartree-Fock pseudopotentials devel-
oped over the past decade [12,13] have proven to be useful
in calculations with correlated electrons. The inclusion of HF
exchange leads to stronger electron binding and mitigates the
underbinding errors of the GGA. It has been suggested that
HF pseudopotentials may be useful in a variety of contexts,
such as modeling systems with negatively charged reference
states [13] and in diffusion Monte Carlo simulations [14,15].
The successful development of HF pseudopotentials [13] has
opened the possibility of constructing hybrid pseudopotentials
by including an exact exchange component into GGA po-
tentials. Previous work demonstrated PBEO pseudopotentials
for gallium, indium, and nitrogen atoms [16]. However, such
pseudopotentials were simple linear combinations of the HF
pseudopotential and the GGA pseudopotential without self-
consistently solving hybrid PBEQ all-electron calculations.

In this paper, we construct consistent pseudopotentials
(Sec. 1) for the PBEO hybrid density functional, following
the Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) method [8].
This work extends Ref. [13], which was solely concerned with
HF pseudopotentials, by considering self-consistent solutions
of a pseudoatom under PBEO, thus moving beyond the non-
self-consistent scheme of Ref. [16]. We benchmark the hybrid
functional pseudopotential accuracy for diatomic molecules in
the G2 dataset and for simple solids, focusing on geometric
parameters and band gaps (Sec. III). We find that the use
of consistent PBEO pseudopotentials improves the accuracy
of PBEOQ calculations of molecules and solids. Using these
pseudopotentials, the mean absolute relative error (MARE) of
highest occupied molecular orbital-lowest unoccupied molec-
ular orbital (HOMO-LUMO) gaps of molecules is reduced to
4.5% from the MARE of 7.96% obtained by inconsistently
using PBE pseudopotentials in PBEO calculations. Likewise,
the MARE of band gaps of simple solids is reduced to 6.56%
from 7.90%. The use of consistent PBEO pseudopotentials
was found to have a relatively small effect on bond lengths
(MARE reduced to 0.53% from 0.71%) and lattice parameters
(MARE reduced to 0.57% from 0.66%). The mean absolute
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errors (MAEs), which illustrate the absolute deviation of
using pseudopotentials from all-electron PBEOQ calculations,
indicates the same performance. The PBEO pseudopotential
generator is implemented in the OPIUM software package [17].

II. THEORETICAL METHODS

In this section, we provide an overview of the standard
theory behind pseudopotential construction before discussing
the special considerations that must be taken into account for
hybrid functional pseudopotentials.

A. Pseudopotential construction

The all-electron (AE) wave functions and eigenvalues of an
atom are the foundation for the construction of all pseudopo-
tentials. The AE Kohn-Sham (KS) equation is

[_% V2 +Vin(®) + Vil o(®)] + ch[P(r)]hﬁ,AE(r)
= &Y, W

where —%VZ is the single-particle kinetic-energy operator,
Vion(r) is the ionic potential that electrons feel from the
nucleus, Vy[p(r)] is the Hartree potential, and Vi.[p(r)] is
the exchange-correlation potential, which are functionals of
the charge density p(r). The all-electron wave function is
denoted by wiAE(r), and the all-electron energy eigenvalues
are denoted by €. For an atom, Vioy(r) = —%, where Z is
the nuclear charge. Representing the wave function in spherical
coordinates, » = |r|, and each wiAE(r) can be written as

b (1)

r

Yok (r) =

Y[I11(9a¢)’ (2)

where n,l,m are principal, angular, and spin quantum numbers,
and 0 and ¢ are the corresponding angles from spherical
coordinates. ¢/ is the radial wave function and ¥,,,(6,¢) are
the spherical harmonics. Now, Eq. (1) can be simplified in

terms of ¢,,;:

1 d*

( 2dr? *
where Vis(r) = Vien(r) + Via(r) + Vic(r). Instead of solving
the full all-electron KS equation as in [Eq. (1)], it is compu-
tationally more efficient to solve the radial equation [Eq. (3)]
self-consistently to obtain the radial wave function, ¢,;“‘,E(r),
and corresponding eigenvalue, €/}F.

In most molecular or solid systems, the valence electrons of
atoms within the system are more crucial than core electrons,
because they are more involved in chemical bonding. The core
electrons mostly contribute to the electrostatic shielding of
the nucleus. The AE wave functions of core electrons can
contain rapid oscillations, which makes them hard to represent
in plane-wave basis sets and causes further difficulty in solving
Eq. (3) numerically. Therefore, it is advantageous to construct
pseudopotentials, which capture the valence electron behavior
and also eliminate the need to recalculate the core-electron
wave functions.

I(1+1
% + VKs<r>>¢nA[E<r> =enfont(, G

Replacing the potential by a pseudopotential operator, the
KS equation can be written as

1 d° n I(A+1

2dr? 2r2
where Vps is the screened pseudopotential operator. Note that
such an operator is usually nonlocal [it is an integral operator
on P (r)]. Similarto Vks, Ves = ViES + Via(r) + Vie(r). €5} is
the pseudoeigenvalue, and ¢F (r) is the pseudo-wave-function.
Standard methods for constructing these quantities are given
in Appendix A.

+ Vps}ﬁf(r) =B ), (@)

B. Hartree-Fock pseudopotentials

Pseudopotentials can be constructed by solving the all-
electron (AE) and pseudopotential (PSP) equations, Eqgs. (1)
and (4), above using different exchange-correlation function-
als, such as the LDA or the GGA. It is crucial that the exchange-
correlation functional used for pseudopotential construction is
the same as the functional used in the target calculation [11].
When the exchange-correlation functional contains the Fock
operator, as is the case for the hybrid functionals presently in
widespread use, there are special considerations that must be
taken into account in constructing the pseudopotential. Here,
we consider the case of Hartree-Fock (HF) pseudopotentials,
where the exchange-correlation functional is just the Fock
operator, and we will examine the PBEO hybrid functional in
the next subsection, where the Fock operator and PBE ex-
change correlation are combined. For the HF pseudopotential,
instead of solving the KS equation as in Eq. (3), we solve the
Hartree-Fock equation,

(T + Vien(®) + Vel {¥wi )NV (X) = €upu (@), (5)

where ¥,,(r) still takes the form in Eq. (2) (dropping the AE
superscript for simplicity), Vion(r) is the ionic potential, and
VHF[{wn,}] is the HF potential, which depends on the set of
wave functions {1y, }. It is separated into two terms,

Vil Y = Val (W 1 + Vil{trwr }1. (6)
The Hartree potential takes the form

iyt 0t P ()

(Urnt| Va0 W) =Y /

’

'l r—r|
(7
and the exact exchange operator acts as
(Wnl | Vx[{wn’l’}] |wnl>
30 Yt OV (DY (F) Y, (r)
=Z/dr’dr —T . (®)

n'l’

Direct evaluation of the Fock integral above [Eq. (8)]
requires introduction of angular variables for orbitals with
nonzero angular momentum. This would result in nonspherical
pseudopotentials, as well as introducing complexity into the
pseudopotential generation process, which would then depend
on the exact atomic configuration, including magnetic quantum
numbers. To circumvent these issues, we make use of a
spherical approximation to construct spherical Hartree-Fock
pseudopotentials. Spherical approximations are routinely used
to construct spherical LDA and GGA pseudopotentials, which

085130-2



HYBRID FUNCTIONAL PSEUDOPOTENTIALS

PHYSICAL REVIEW B 97, 085130 (2018)

are widely used successfully in electronic and structural cal-
culations.

We use the Hartree-Fock spherical approximation of Froese
Fischer [18] based on the concept of the “average energy of
configuration” introduced by Slater [19]. Consider all atomic
configurations where the ith shell, with principal and total
angular quantum numbers 7; and /;, is occupied with weight
w;, that is, all permutations of w; electrons occupying the
(21; + 1)-degenerate shell (n;1;).

The average energy of all such atomic configurations,
expressed as a sum over pairs of atomic orbitals (n;/;) and

(njlj), is

m
i— 1
E;I,F = Zwi I:I(n,-l,-,n,-l,-) + (w ) )

i=l1

21;

Xy fk(li,li)Fk(”ili,nili):I
k=0

i1

Z w;w; I:Fo(nili’njlj)
j=1

m
+>|

i=2
(li+1j)
+ Y gk<ll-,1,>Gk<niz,-,n,-l,-)} } ©)

k=|l;—l;|
Here, the first summation represents the one-electron contri-
bution,

L[> . d? 2Z I+
I(”l,”l)=—§/ ¢nl(r)<ﬁ+7_

72

)dw(r)dr-
(10)

The other terms contain the interaction terms between pairs
of electrons. F¥ and G* are the Hartree and exchange energy
Slater integrals,

oo 00 k

L R e
0 0 >

(an

and
Gi(nl;n'l'y = /0 /0 Gt (r)pur(r')

k
X =1 6ur(NGu(drdr’,  (12)
rs
where r_ (r.) is the lesser (greater) of r and r’. Details of
the derivation are provided in Appendix C, and the numerical
coefficients fj and g; are tabulated in Ref. [19]. We note that
the integrals in Egs. (10)-(12) for the average energy depend
only on the radial coordinate, and hence are a simplification
of Eqgs. (7) and (8).

Taking functional derivatives of Eq. (9) with respect to
the radial wave functions ¢;(r), we arrive at Hartree-Fock
equations for the wave functions of a Hartree-Fock atom. The
set of m radial wave functions ¢;,i = 1,...,m, obeys the
coupled set of equations

m

N 2
L ¢i(r) = = [Yill¢}1(r) ¢i(r) + Xi[{p}(r)] + Z &ij;(r),
=1

r

13)

where [ = % — 2Vign(r) — "(I;—ZH) is the single-particle
part of the Hartree-Fock Hamiltonian, (2/r)Y;[{¢}](r) and
(2/r)X;[{¢}]1(r) are the Hartree and exchange terms [20], and
g;j are Lagrange multipliers for orthogonality and normaliza-
tion of radial wave functions. The detailed derivations of all
these terms are presented in Appendix C.

Once the HF equation is constructed, we solve these
equations self-consistently in a similar way to DFT pseudopo-
tentials. The HF pseudo-wave-functions ¢ (r) are constructed
using the same RRKIJ procedure [Eq. (A1)] as for the DFT
pseudo-wave-functions. The screened pseudopotential is ob-
tained by inverting Eq. (5). Similar to DFT pseudopotentials,
we descreen by subtracting the Hartree and exchange contri-
butions of the valence electrons [cf. Eq. (A2)],

2X; [{pya}1(r)

, (14
roi(r) (9

2
Vient (1) = VIS@) = ~Villgral 1) -

with ¥; and X; obtained from Eq. (13). The HF pseudopo-
tential constructed this way has a long-range non-Coulombic
component of the tail, which does not decay as 1/r. This is
a consequence of the nonlocal nature of the Fock operator
[13]. To resolve this issue, we make use of the localization
procedure of Trail and Needs [12]. The tail is forced to
asymptotically approach 1/r, and the potential is modified
within the localization radius to ensure consistency with the
all-electron eigenvalues [13].

C. PBEO( pseudopotentials

As hybrid functionals are a mix of HF and DFT ingredients,
we generate a hybrid pseudopotential using the HF pseudopo-
tential approach as a foundation, making use of the spherical
averaging procedure and localization procedure of the previous
section and Ref. [13]. The PBEO density functional [21] was
developed based on the PBE exchange-correlation functional
[2]; the PBEO form is

EPPR = gE™ 4+ (1 — @) EFPF + EPPF, (15)
where a = 0.25 for the PBEO functional. As we use the spher-
ical approximation for EXF [Eq. (9)], we likewise evaluate
the PBE exchange-correlation functional using a spherical
approximation. Since EFBE is a functional of density only, this
method consists of evaluating EFPF in Eq. (15) at the charge
density, again taken to be the average over all possible magnetic
quantum number configurations,

1
P(r) =" fum| ¥ @) |* = o > futl$na, (P, (16)

nlm n;l;

where p(r) is the spherical symmetric charge density, f,,;, =
w; (as in Appendix B) is the occupation number for each
orbital (n;l;), and f,;,, = fum 1s the occupation number
for each magnetic quantum number (n/m). Upon including
EPBE and EFBE into the total energy expression Eq. (9), and
taking functional derivatives, the coupled set of HF equations
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[Eq. (13)] becomes

. 2 1 3
Loi(r) = ;[Yi(r)qbi(r) + Zx,-m} + V)

m
+ VIR + > 81 €0i00(r), (17
j=1

where the additional terms are the PBE exchange potential
VIPBE(r) and the PBE correlation potential V,(r). The self-
consistent solution of these coupled equations is found iter-
atively, in a similar fashion to the HF equations [Eq. (13)]. At
each iteration, we calculate the Fock exchange term [X;(r)]
from the wave functions of the previous iteration, and the PBE
terms (VPBE, VPBE) from the density of the previous iteration.
The pseudopotential construction is performed in the same
way as for HF pseudopotentials, including RRKJ pseudization,
descreening, and localization of the non-Coulombic tail.

III. TESTING OF PBE0 PSEUDOPOTENTIALS ON
MOLECULAR AND SOLID-STATE SYSTEMS

We test the accuracy of our PBEO pseudopotentials and the
importance of pseudopotential density functional consistency
for PBEO. We compare PBE calculations using PBE pseudopo-
tentials (PBE), PBEO calculations using PBEO pseudopoten-
tials (PBEO), and PBEO calculations using PBE pseudopoten-
tials (PBE-PBEQ). The last case is currently the most widely
used method of performing PBEOQ calculations. The DFT code
we use is QUANTUM-ESPRESSO [22]. Each single molecule is
put into a 20.0 A cubic unit cell, and its energy and geometry
are computed with a kinetic energy cutoff E.,; = 25.0 Hartree.
All these calculations are spin-polarized. The total energy con-
vergence threshold and force convergence threshold are set to
0.005 mHartree/cell and 0.05 mHaItree/[o\. The reference
all-electron calculations are performed using FHI-aims [23]
with tight basis settings. The molecular and crystal structural
optimizations are converged within 3 x 1073 mHartree/cell
for total energy, and the forces are converged within 0.003
mHartree /IOA.

In Table I, we show the bond lengths for diatomic molecules
that belong to the G2 data set [5], and we compare each of
our pseudopotential calculations with PBEQ all-electron values
[24]. The use of the PBE pseudopotential in the PBEQ calcula-
tion gives a MARE of 0.71%. Using the PBEO functional with
the PBEO pseudopotential, the MARE reduces to 0.53%. This
indicates that pseudopotential density functional consistency
improves bond lengths for PBEO.

One of the reasons for using hybrid density functionals is
that they predict band structures and ionization potentials (IPs)
more accurately than the PBE functional [16,25,26]. Table II
shows the HOMO eigenvalues for diatomic molecules within
the G2 dataset, calculated from different density functionals
and compared with HOMO levels calculated from all-electron
calculations. As expected, the difference between PBE HOMO
eigenvalues and all-electron PBEOQ values is the largest among
the three computed cases. The use of consistent PBEQ pseu-
dopotentials improves the MARE of the HOMO eigenvalues by
a small amount [to 6.66% (PBEO) from 6.79% (PBE-PBEO)].

TABLE I. The bond lengths of the diatomic molecules from the
G2 data set calculated from PBE, PBE-PBEQ, and PBEO. The all-
electron data are calculated using FHI-aims [23]. Units in A. The
MARE is calculated as MARE = + > % x 100, where N is
the number of species, b; is the bond length of each species, and bag is
the all-electron value. The MAE is the average absolute deviation over
the presented molecules and is calculated as MAE = + SV b —
bae|. MARE and MAE of PBE calculations are taken relative to AE-
PBE, while that of PBEOQ calculations are taken relative to AE-PBEO.
The experimental values are also listed for reference. The rest of the
tables are of the same format.

Molecule PBE AE-PBE PBE-PBE0 PBE0 AE-PBE0O Expt.’
H, 0.753  0.750 0.747  0.747 0746  0.742
LiH 1.600 1.603 1595 1596 1595  1.595
BeH 1.348 1355 1343 1351 1348 1.343
CH 1.137  1.136 1122 1122 1124 1.120
NH 1.070  1.050 1.056  1.041 1.041 1.045
OH 0.983 0.983 0975 0966 0983 0971
FH 0.928 0.93 0914 0912 0918 0917
Li, 2719 2.728 2725 2718 2723 2670
LiF 1.578 1.574 1567 1566 1.562 1.564
CN 1.174 1175 1.159 1159 1159 1.172
Cco 1.135  1.136 1123 1122 1122 1.128
N, 1.081 1.103 1.069 1069 1.089 1.098
NO 1132 1.157 .113 1138  1.139  1.151
0, 1212 1.218 1218 1217 1.192 1207
F 1420 1.413 1382 1382 1376 1412
MARE (%) 0.61 0.71 0.53

MAE (A)  0.007 0.008  0.006

4Reference [24].

In Table III, we present the HOMO-LUMO gap for the
same dataset as in Table II. Our PBEO pseudopotentials reduce
the MARE of the HOMO-LUMO gap to 4.55% (PBEQ) from
7.96% (PBE-PBEQ). Similar to bond length calculations, the

TABLEII. HOMO eigenvalues with PBE, PBE-PBEO, and PBEO
methods. Energies are in eV.

Molecule PBE AE-PBE PBE-PBE0 PBEO AE-PBEO
H, —1031 -10.34 —11.96 —-1196 —11.99
LiH —3.890 —435 —5.45 —5.44 —5.44
BeH —476  —4.68 =577 -5.20 —5.69
CH -591 584 —7.43 —7.43 —7.45
NH -798 —6.69 -9.78 -9.76 -9.76
OH -7.06 —7.14 —8.81 —8.72 —7.00
FH -933  -9.61 —1143 —-1143 —11.86
Li, -320 -3.16 —-3.99 -3.75 —-3.72
LiF —6.08 —6.09 =7.77 —7.85 —7.96
CN -930 —-9.38 —-10.74  —10.94 -9.32
CO -9.01 -9.03 —-1041 —-1042 —10.72
N, —-10.07 -10.22 -1193 —-1220 -12.20
NO —4.74  —4.50 —6.25 —6.29 —4.60
0O, —6.71 —691 —8.68 —8.70 —8.91
F, -941 —946 —11.50 —11.58 —11.68
MARE (%) 3.33 6.79 6.66

MAE (eV) 3.15 0.40 0.38
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TABLE III. HOMO-LUMO gap (in eV) of diatomic molecules in
the G2 dataset with different functionals.

Molecule PBE AE-PBE PBE-PBEO PBEO AE-PBEO  Expt.
H, 1026 10.84 1194 1194 13.10 11.8*
LiH 257 281 4.04 4.48 4.45 4.0410°
BeH 264 231 4.44 442 4.15 4.200°
CH 206 177 3.95 3.51 3.60

NH 395 645 7.27 7.34 7.16

OH .12 6.54 4.77 4.92 4.25

FH 8.19 8.76 1092 1093 11.80 11.30%
Li, 141 143 2.75 247 2.50 2.22°
LiF 429 4.62 6.41 6.50 7.02 6.16"
CN 199 1.72 4.67 4.74 4.48 9.78"
CcoO 698  6.98 9.61 9.62 10.04 10.29°
N, 7.66  8.24 1094 1094 1171 11.05°
NO 1.30 122 3.50 2.88 2.86 3.05°
0, 240 231 5.74 6.09 6.10 6.06°
F, 332 3.63 7.77 7.79 834 747"
MARE (%) 14.82 7.96 4.55

MAE (eV) 0.78 0.50 0.39

4Reference [27].
PReference [28], G4 basis set.
‘Reference [29].

consistency of the density functional between pseudopotential
construction and DFT calculation reduces the error. While the
use of the PBE pseudopotential for PBEO DFT calculation
results in fair accuracy, it can be improved by using a pseu-
dopotential constructed with a consistent density functional.
We have also tested our pseudopotentials in solid-state
calculations. The lattice constants and band gaps for some
simple solids associated with the first 20 elements in the
Periodic Table are shown in Tables IV and V. Similar to
molecular bond lengths, the density functional consistency also
influences the lattice constants of solids. By using consistent
pseudopotentials, the MARE of lattice constants of these
solids are slightly improved to 0.57% (PBEQ) from 0.66%
(PBE-PBEQ). As expected, the PBE calculation significantly
underestimates the band gaps. The two PBEOQ cases increase

TABLE 1V. Solid-state calculation with PBE, PBE-PBEO, and
PBEQ. The lattice constants of simple solids associated with the first
20 elements are listed. The lattice constant is in units of A.

Solids PBE AE-PBE PBEPBEO PBE0 AE-PBEO Expt.
Si 5484 5472 5452 5446 5448 5430
GaN 4541 4549 4539 4537 4536 4.523
MgO 4324 4305 4310 4308 4204 4207
NaCl 5710 5701 5663 5639 5634 5595
Diamond 3562 3563 3562 3.563 3.564 3.567
Graphene 2476 2469 2460 2460 2453  2.464°
BN (cubic) 3.664 3.665  3.639 3.639 3598 3.616
SiC 4403 4404 4375 4370 4349 4358
MARE (%) 0.17 066  0.57

MAE (A)  0.007 0.027  0.023

“Reference [7].
bReference [26].
‘Reference [30].

TABLE V. Solid-state calculation with PBE, PBE-PBEQ, and
PBEQ. The band gap of simple solids within the first 20 elements
are listed. The band gap is in eV.

Solids PBE AE-PBE PBEPBE0 PBE0 AE-PBE0 Expt.
Si 058 254 179 178 163 117
GaN 1.81 155 358 356 354 330
MgO 438 444 797 738 728 7.2
NaCl 367 497 671 728 714 850
Diamond  5.63 5.8 553 554 608 548
BN (cubic) 449 445 658 656 654 622
SiC 134 138 298 296 295 242
MARE (%) 18.02 529 378

MAE (eV) 053 028  0.18

4Reference [7].
bReference [26].

the band gaps by a large amount compared to PBE calculation.
The effect of density functional consistency is even more
important for the band gaps than for the lattice constants:
the MARE:s of the band gaps are improved to 3.78% (PBEO)
from 5.29% (PBE-PBEO). Together with the calculations from
molecular properties, we may conclude that pseudopotential
density functional inconsistency contributes a systematic error
of the order of 1% for PBEOQ for the systems tested.

IV. CONCLUSION

We have developed a consistent PBEO pseudopotential
and successfully implemented it in the OPIUM pseudopoten-
tial generation code. We have also shown that our PBEO
pseudopotentials behave well when implementing them in
DFT calculations. Our benchmarking tests on the G2 dataset
and solids indicate that the systematic error associated with
pseudopotential density functional consistency is of the or-
der of 1%. Using the PBEO pseudopotential in PBEO DFT
calculations leads to small improvements in bond length and
lattice parameter accuracy. For these quantities, the errors
of the pseudopotential calculations compared to all-electron
calculations are typically less than 1%. Using consistent PBEQ
pseudopotentials reduces these errors by around 0.1% (i.e.,
pseudopotential density functional consistency accounts for
about 1/10th of the 1% errors in these geometrical quantities).
On the other hand, for the HOMO-LUMO gaps, the error
of the pseudopotential calculations compared to all-electron
calculations is 8%, and is reduced to 4.5% by using PBEO
pseudopotentials. Pseudopotential density functional consis-
tency, therefore, accounts for a significant amount of the error
between pseudopotential and all-electron calculations, for the
electronic excitation energies. A similar trend is obtained for
the band gaps of solids tested. From these results, we con-
clude that using PBE pseudopotentials in PBEO calculations
leads to acceptable results for small molecules and simple
solids, while using PBEQO pseudopotentials instead will likely
result in a small but consistent increase in accuracy. Future
directions include further testing of PBEO pseudopotentials for
more complex systems, the inclusion of relativistic effects for
heavy atoms, and the development of other hybrid functional
pseudopotentials, including range-separated hybrids [31].
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APPENDIX A: DETAILS OF PSEUDOPOTENTIAL
CONSTRUCTION

Norm-conserving pseudo-wave-functions [32] should obey
the following criteria:

AE
(1) ¢ (r) d):\[E(r), ¢dr(r) ¢:1lr(r) ’
() _ doEr)
i d}fz forr > r,,
(i) e =ent,
(111) ( nl |¢nl> ( |¢ﬂl )

’

R,en

. dIng,>(r)
W) Ze (d—>

R > r..

_ dIn¢F(r)
Rfm'_ de dr

Together, they guarantee wave-function smoothness and con-
tinuity, that the solutions of the pseudosystem are accurate
representations of the corresponding all-electron system, and
that the error of eigenenergy shifts caused by chemical bonding
is small for gentle changes to the wave functions and density
[32], hence improving the transferability or applicability of the
pseudopotential in different chemical environments.

In the RRKJ method [8], the pseudo-wave-function is
constructed as a sum of N, spherical Bessel functions j;(gxr):

r<re,

Ny .
ST (r) = {Zk:l Crik? ji(qir), AD

(),

where the coefficients ¢, are chosen to normalize the wave
function and satisfy continuity constraints at .. Additional
cnx coefficients improve plane-wave convergence. Once the
pseudo-wave-function is constructed, the pseudopotential is
obtained by inverting the pseudo-KS equation above [see
Eq. (4)]. In applications of the pseudopotential in solid-state
or molecular calculations, the screening effect of the valence
electrons will generally be different from that in the atomic cal-
culation. Therefore, the valence electron screening is removed
to obtain a descreened pseudopotential, Vs (r), for each
angular momentum /, by subtracting Hartree and exchange-
correlation potentials from the screened pseudopotential,

r>rca

View 1(r) = V() — Valpval(r) — Viclpval(r),  (A2)

where Vu[pval(r) and Vi.[pval(r) are calculated only from
the valence charge density. The full pseudopotential, written

in semilocal form, is then

Vs = Vs () 1Yim) (Vi

Im

=Vioe(r) + Z AV, (A3)
1

In the second line, the potential is expressed as the sum of a
local potential Vj,.(r) and semilocal corrections A\7,SL, which
are projections in the angular coordinates and are local in the
radial coordinate. To reduce the memory cost of computation,
we write the semilocal pseudopotential in a fully separable
nonlocal Kleinman-Bylander [33] form

A PS 1 N
VP :VOC+ZA‘/[NL’

FNL __ AVISL|¢nl >< nl |AVISL
i =
( |AV/SL|¢MI >

Writing the pseudopotential in this form ensures that
semilocal and nonlocal pseudoatoms have the same eigen-
values and wave functions for the reference configuration.
The transferability of such a nonlocal pseudopotential, to
configurations other than the reference, can be improved
by applying the designed nonlocal strategy, which involves
modifying the projectors of Eq. (A4) [9].

We implement pseudopotential construction on a radial
grid, with accuracy depending on the radial grid size. The use
of alogarithmic grid ensures enough grid points near the core to
describe oscillations of the all-electron wave functions in that
region while capturing the tail of the wave functions at large
distances from the core to sufficient accuracy. The logarithmic
grid is defined as

(A4)

1/3 li—Db

r=aZ" ,i=1,...,N, (AS)

where N is the number of grid points, spanning a sufficiently
large real-space range (rmax), Z is the core charge, a controls
the position of the first grid point, and b determines the grid
spacing. We use values of a = 0.0001 and b = 0.013. The
number of grid points N is obtained by setting r,.x = 80 Bohr.

APPENDIX B: DERIVATION OF HARTREE-FOCK
AVERAGE ENERGY

As a preliminary to deriving the average energy formula
Eq. (9), we collect several useful quantities. The Hartree
potential due to an electron in the state (nlm) is

2
V’gdm)(;) — /d3 /lWﬂlm(r”

7= 7|

0 . N2 Ym (9% 2
:/ apag I @P o
0 |[r — |
Using the expansion,
1 X e 4 rk
T Z =" =
=] a1 r>

(B2)
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where r_ () is the lesser (greater) of r and r/, we write Eq. (B1) as

O / e T [ ATy @)t m) g
H - 0 F1 2k+1 k,0 STl Ly n

rk
k
k

* 5 1 2 SN 2 r 4m k 2
= r'“dr’' —a, (r' + / r’=dr’ —— Y (U m,lm) ¢ (). B3
/(; r>¢ 1(r) /?:1 ; rﬁ“‘/ Y ro(82) c( ) Gui(r’) (B3)

Here, we make use of the symbols

;o 4n *
clm,l'm'y = Vak+1 / Y ()Y (S) Yy (S2)d 2

:(—1)_’"«/21—}—1«/21’—}—1((1) ’5 g)(l £ l/,> (B4)

-m m-m' m
for Gaunt’s formula, in terms of Wigner 3 j-symbols. In the second line of Eq. (B3), we have separated the k =0 and k > 0

components, because the latter vanishes when averaged over m. Therefore, the Hartree energy of a pair of electrons (ij|ij), in
orbitals (n;,/;) and (n;,/;), averaged over the magnetic quantum number m; of the second electron, is simply

o * N | "2
((l.]|l.]))l1lj =/ dr ¢n,-l,-(r) / dr _d’ﬂj‘[j(r)
0 0 rs

= Fo(n,-l,-,njlj).

(BS)

The exchange integral for a pair of electrons in orbitals (n;,/;) and (n;,/;) can be calculated in a similar fashion. Using Egs. (B2)
and (B4), we get

.(;/)Wn,-l,-m,- (;/)

J

l/f;f,-l,-m,- (;:)w”jl.fm.f (F)W::jljm

7 7]

(ijlji) = /d3rd3r’

= Zf Yle,-(Q)Y/jmj(Q)qu(Q)dQ/Ylt,nj(Q/)Y[,m,-(Q')qu*(Q’)dQ’
kq

I"i 4n I / ’
S FZk—_i_l(pn;h(r)(pnjl/(r)¢njlj(r )‘Pn,l,(" )dr dr

k
= Z Ck(lismi’ljsmj)z / ’%(ﬁn,‘li (r)¢njlj (r)(pn‘,'[j (r/)¢n,-l,- (r/)dr dr/' (B6)
k >

For the average of the exchange integral over m ;, we get

1
> :.0.1;,0)G (nilin 1), (B7)

QL+ D2+ 1) 4

To calculate the average total energy of an atomic configuration, we must consider the Hartree and exchange energies of all
pairs of electrons. First consider the case in which the electrons are in the same orbital (n; = n;, [; = [;). In this case, since
G*(n;l;,n;l;) = F*n;l;,n;l;), we can combine Egs. (BS), (11), and (B7) to obtain

((Ul.]l))mj =

w;(w; — 1)
(i) = Gj1iD) = = 3 felland) FHnilg.nily). (BS)
k
where the numerical coefficients fi(l;,l;) are obtained from those in Eqs. (B5) and (B7), and the prefactor %ﬁl) is the number

of different electron pairs in orbital i.
For the case in which the electrons in the pair are in different orbitals, the sum of Egs. (B5) and (B7) gives

(@jlij) — (@jlji)) = wiw; (Fo(nilianjlj) + Zgk(li,lj)Gk("ili,"jlj)>, (B9)

k

where the coefficients g (/;,/;) are given by Eq. (B7). Collecting the terms in Egs. (B8) and (B9) with the single-particle energies
results in the expression for the average total energy Eq. (9).

085130-7



JING YANG, LIANG Z. TAN, AND ANDREW M. RAPPE PHYSICAL REVIEW B 97, 085130 (2018)

APPENDIX C: DERIVATION OF SELF-CONSISTENT HARTREE-FOCK EQUATIONS

If the orbitals are not necessarily normalized, the average energy (as defined in Sec. IIB) derived in Appendix B may be
written in the form

HF __
Eav -

wi I (nil;,n;l;) aii F*(nil; nil;) aij FX(nil; ;1)) bijkG*(nil;n;l;)
+ + + (C1)
y y- ¥

(nili|n;l;) nili|n; ;) (nili\n;l;) ) nililn;il;)(nl;|n;l;) Tk (nililnil;Y(njl;ln;l;)

We wish to find wave functions that minimize E!F under the constraint of wave-function orthogonality. In other words, a pair

of radial functions from orbitals with the same angular momentum, (n;,/;) and (n;,/;) with [; = [;, must be orthogonal. Using
the Lagrange multipliers A;;, we therefore search for the stationary solutions of the functional
(nili|n;l;)
= ENF 811 M L ) 2
+Z i Tl Il ) V2 (il i) 12 (2

l>j

We now proceed to take functional derivatives of Egs. (C1) and (C2) with respect to variations in a radial function ¢,;(r). We
note that only a subset of terms in Eq. (C1) involves n/, and those that do all contain a factor of (n;/; |n;1;)~'. We can therefore
write those terms in the form E(nl) = (n;1;|n;l;) " F(nl) with the variation

SE(nl) = (nili|n;l;) '8 F (nl) + 8[{n;l; n;1;) " 1F (nl) (C3)
and
‘ Ant,nt 18 FX(nl,nl) At k8 F*(nl,n'l")
SE(nl) = wysIl(nl) + zk:a,,, ik FX(nl,nD)S[(nl|nl)~ Z T + M;M T
buwr k8G*(nl,n'l')
+ ) : (C4)
i /l/|n/l/>
Furthermore, we have
n 6 n
Sty = —2 [ ar £00) (C5)
(nl|nl)?
and
1
SF (L'l = 2(1 + 8,1) / dr ¢ (r) 8¢ (r) = Yl ;nl,r), (C6)
r
1
8G*(nl,n'l'y =2 / dr ¢ (r) 8¢ (r) = Y*ml,n'l,r), (CT)
r
where
r Sk 00 rk+l
Pt = [ ds 0 0u6)+ [ ds g ) bur) (8)
0 r ” Ky

Finally, the variation of the terms involving the Lagrange multipliers in Eq. (C2) is

|:Z )\.nl n'l’ n”n/l) } = Z )\.nl,n’l’ (/ dr ¢’l/l(r) 8¢’1[(r) . (C9)

(nl|n)V2(n'l|n'1)1/2 nl|n)V2(n’l|n'1)1/2

The variational principle requires that the variation § K be stationary with respect to §¢,;(r). Collecting Egs. (C3)—(C9), we
obtain the Hartree-Fock equations [Eq. (13)] where

Z (1 + 6;1,-/;,'1/-11-)an,-l;,njlj,kYk(njlj’njljar)

Yi(r) = ; (C10)
I w; (njlj|njlj)
bn,'l,',n,'[j,kYk(nilfan l ‘5r)¢}1jl,'(r)
Xi(r)= ) (Cl11)
ik wi(njl;|n;lj)
and
2| - gty ity 1 FE (il mily)
i = — | E(nly) — e s C12
i w; |: it Z (nil;|n;l;)? (€12

k
)\n- il nili nili 172
£y = sty nalilniliy 7 (C13)

wi(njljln;l;)'>
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