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A notion of π-tolerant equilibrium is defined that takes into account that players have some tolerance

regarding payoffs in a game. This solution concept generalizes Nash and refines ε-Nash equilibrium

in a natural way. We show that π-tolerant equilibrium can explain cooperation in social dilemmas

such as Prisoner’s Dilemma and the Public Good game. We then examine the structure of particularly

cooperative π-tolerant equilibria, where players are as cooperative as they can be, subject to their

tolerances, in Prisoner’s Dilemma. To the extent that cooperation is due to tolerance, these results

provide guidance to a mechanism designer who has some control over the payoffs in a game, and

suggest ways in which cooperation can be increased.

1 Introduction

People exhibit systematic deviations from the predictions of game theory. For example, they do not

always act so as to maximize their expected utility in games such as Prisoner’s Dilemma (to the extent

that their utility is accurately characterized by the payoffs in the game). Many alternative models have

been proposed to explain these deviations; the explanations range from players having other-regarding

preferences, so that they prefer to avoid inequity, or prefer to maximize social welfare (see, e.g., [1, 5, 9])

to quantal-response equilibrium, which assumes that, with some probability, players make mistakes and

do not play rationally [17].

The literature here is enormous; a complete bibliography would be almost as long as this paper.

Nevertheless, we propose yet another approach to explaining what people do. Our explanation assumes

that people have some tolerance for not getting the optimal payoff; the degree of tolerance is measured

by how far from an optimal payoff they find acceptable. This idea is certainly not new: it is implicit in

notions like ε-equilibrium and satisficing [20, 21], although the details are different. Moreover, it is clear

that people do have some tolerance. There are many potential reasons for this. First, although we often

identify payoffs and utilities, the payoffs in a game may not represent a player’s true utility; a player

may in fact be indifferent between receiving a payoff of a and a− t if t is sufficiently small. (This is

in the spirit of the “satisficing” view.) Or there may be a recommended strategy, and some overhead in

switching (which again is not being captured in the game’s payoffs). For whatever reason, it seems

reasonable to assume that players may have some tolerance regarding payoffs. However, there is no

reason to believe that all players have the same tolerance. We thus assume that there is a distribution over

possible tolerances for each player, captured by a profile π = (π1, . . . ,πn) of distributions, where πi is a

distribution over the possible tolerances of player i.

Intuitively, we imagine that we have a large population of players who could be player i; if we choose

player i at random from this poplulation, then with probability πi(t), she will have tolerance t. (Of

course, in many applications, it is reasonable to assume that all players are chosen from the same pool,

so that π1 = · · · = πn.) We can relate this to more traditional game-theoretic considerations by thinking

of these tolerances as representing different types of player i; that is, a type is associated with a tolerance.
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There is some psychological evidence to support this viewpoint; specifically, there some evidence that

whether someone uses satisficing-style behavior, and the extent to which it is used, is a personality trait,

with a strong genetic component that endures over time [22]. In this setting, we define an equilibrium

notion that we call π-tolerant equilibrium. A profile σ of possibly mixed strategies, one for each player,

is a π-tolerant equilibrium if, roughly speaking, for each type t of player i (i.e., each possible tolerance

that player i can have), we can assign a mixed strategy to type t in such a way that (1) each of the

pure strategies in the mixture is a best response to σ−i (i.e., what the other players are doing) and (2) σi

represents the convex combination of what all the types of player i are doing. Intuitively, the other players

don’t know what type of player i they are facing; σi describes the aggregate behavior over all types of

player i. We can show that a Nash equilibrium is a 0-tolerant equilibrium (i.e., if we take π1 = · · · = πn

to be the distribution that assigns probability 1 to players having tolerance 0); moreover, every Nash

equilibrium is a π-tolerant equilibrium for all π . Similarly, if πε
1 = · · · = πε

n all asign probability 1 to

players having tolerance ε , then a πε -tolerant equilibrium is an ε-Nash equilibrium. (The converse is not

quite true; see Section 2.)

After defining π-tolerant equilibria in Section 2, in Section 3, we review the definition of social

dilemmas, discuss the observed behavior in social dilemmas that we seek to explain, and show how

tolerance can explain it.

Our interest in social dilemmas is only part of why we are interested in tolerance. We are also

interested in taking advantage of tolerance when designing mechanisms. We illustrate the potential in

Section 4 by investigating this issue in the context of Prisoner’s Dilemma. Although Prisoner’s Dilemma

may seem to be a limited domain, it can model a range of two-player interactions with appropriate

meanings ascribed to the actions of cooperating and defecting. Our analysis of Prisoner’s Dilemma with

tolerance isolates the factors that determine the equilibrium level of cooperation in the game, providing

guidelines (to the extent to which tolerance is indeed the explanation for observed cooperation) for how

a designer, who may be able to modify or control the payoffs from certain actions, can adjust them to

achieve particular levels of cooperative behavior in equilibrium.

2 π-Tolerant Equilibrium

We consider normal-form games here. A normal-form game is a tuple Γ = (N,(Si)i∈N ,(ui)i∈N), where

N is a finite set of players, which for convenience we take to be the set {1, . . . ,n}, Si is the set of pure

strategies available to player i, which for convenience we also take to be finite, and ui is i’s utility function.

As usual, we take S = S1×·· ·×Sn. A mixed strategy for player i is a distribution on Si. Let Σi denote the

mixed strategies for player i, and let Σ = Σ1 ×·· ·×Σn. Elements of Σ are called mixed-strategy profiles;

given σ ∈ Σ, we denote by σi the ith component of the tuple σ , and by σ−i the element of Σ−i consisting

of all but the ith component of σ . The utility function ui : S → IR; that is, ui associates with each pure

strategy profile a real number, which we can think of as i’s utility. We can extend ui to Σ in the obvious

way, by linearity.

We take Ti to be the set of possible tolerances for player i. Each element of Ti is a non-negative

real number. For simplicity in this discussion, we take Ti to be finite, although the definitions that we

are about to give go through with minimal change if Ti is infinite (typically, summations have to be

changed to integrations). We identify a tolerance with a type; it can be viewed as private information

about player i. Let πi be a distribution on Ti, the set of possible types of i (under this viewpoint), and let

π = (π1, . . . ,πn).

We want to define what it means for a mixed-strategy profile (σ1, ...σn) to be a π-tolerant equilibrium.
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The intuition is that σi represents a population distribution. If σi puts probability pi on the pure strategy

si, then a fraction pi of the population (of agents who could play the role of player i) plays si. Similarly,

if πi puts a probability pi on a tolerance t, then a fraction pi of the population of agents who could be

player i has type t. Given our view that a mixed strategy for player i really represents a population of

players each playing a pure strategy, in a π-tolerant equilibrium, we want all players of tolerance t to

be playing a mixed strategy such that each strategy in the support is within a tolerance t of being a best

response to what the other players are doing.1

Definition 2.1 A pure strategy si for player i is consistent with a tolerance t for player i and a mixed-

strategy profile σ−i for the players other than i if si is a t-best response to σ−i; that is, if, for all strategies

s′i for player i,

ui(s
′
i,σ−i)≤ ui(si,σ−i)+ t.

Definition 2.2 σ is a π-tolerant equilibrium if, for each player i, there is a mapping gi from the set Ti of

possible tolerances of player i to mixed strategies for player i such that the following conditions hold:

E1. The support of gi(t) consists of only pure strategies that are consistent with t and σ−i. (Intuitively,

a player i of type t will play only strategies that are t-best responses to σ−i.)

E2. ∑t πi(t)gi(t) = σi.

Note that if (σ1, ...σn) is a π-tolerant equilibrium, then there might not be any type of player i that plays

strategy σi. Rather, σi describes the other players’ perception of what a “random” instance of player i is

doing. Thus, if player i has two possible types, say t and t ′, where t occurs with probability 1/3 and t ′

occurs with probability 2/3, then E2 requires that σi =
1
3
gi(t)+

2
3
gi(t

′).

Every Nash equilibrium is clearly a π-tolerant equilibrium for all π: For if σ is a Nash equilibrium,

then each pure strategy in the support of σi is a best response to σ−i, so must be consistent with t and

σ−i for all types t. Thus, if we take gi(t) = σi for all t, then E1 and E2 above are clearly satisfied.

Moreover, the Nash equilibria are precisely the δ 0-tolerant equilibria, where δ 0 = (δ 0
1 , . . . ,δ

0
n ) and δ 0

i

puts probability 1 on type 0.

It is similarly easy to check that if δ ε = (δ ε
1 , . . . ,δ

ε
n ), where δ ε

i puts probability 1 on type ε , then

every δ ε -tolerant equilibrium is an ε-Nash equilibrium. The converse is not true, at least not the way

that ε-Nash is typically defined (see, e.g., [18]).

For example, consider Prisoner’s Dilemma. As is well known, defecting is the dominant strategy.

Given ε > 0, there exists a δ > 0 sufficiently small such that the mixed strategy δC+(1−δ )D (cooper-

ating with probability δ and defecting with probability 1− δ ) is an ε-best response no matter what the

other player does; thus, both players using this strategy is an ε-Nash equilibrium. However, it is not a

δ ε -tolerant equilibrium if C is not an ε-best response. Interestingly, Goldberg and Papadimitriou [10] de-

fined a (nonstandard) notion of ε-Nash equilibrium where all strategies in the support of a mixed strategy

are required to be ε-best responses. This corresponds exactly to our notion of δ ε -tolerant equilibrium.

Thus, π-tolerant equilibrium refines Nash equilibrium and ε-Nash equilibrium in an arguably natural

way that allows for beliefs regarding agents’ tolerance. We can also view it as a generalization of ε-

Bayes-Nash equilibrium in Bayesian games. Recall that in a Bayesian game, each player i has a type in

a set Ti. It is typically assumed that there is a (commonly known) distribution over T = T1 · · · × · · ·Tn,

and that a player’s utility can depend on his type. The notion of ε-Bayes-Nash equilibrium in a Bayesian

1We should stress that although we view a mixed strategy for player i as representing a population of players, each playing

a pure strategy, nothing in the formal definitions requires this. There could equally well be a single player i playing a mixed

strategy.
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game a natural extension of ε-Nash equilibrium. If we take a player’s type to be his tolerance, and take

all types to agree on the utilities, then a π-tolerant equilibrium is a ε-Bayes-Nash equilibrium in the sense

of the Goldberg-Papadimitriou definition, provided that the ε can depend on the player’s type. That is,

rather than having a uniform ε , we have a type-dependent ε . We believe that focusing on tolerance and

its consequences gives more insight than thinking in terms of this nonstandard notion of Bayes-Nash

equilibrium; that is what we do in the remainder of the paper.

We conclude this section by showing that greater tolerance leads to more equilibria. While this

is intuitively clear, the proof (which can be found in the appendix) is surprisingly nontrivial. Given

a distribution πi, let Fπi denote the corresponding cumulative distribution; that is, Fπi(t) = ∑t ′≤t πi(t
′).

Say that π ′
i stochastically dominates πi if Fπ ′

i ≤Fπi ; that is, Fπ ′
i (t)≤ Fπi(t) for all t. Thus, the probability

of getting greater than t with π ′
i is at least as high as the probability of getting greater than t with

πi. Intuitively, π ′
i stochastically dominates πi if π ′

i is the result of shifting πi to the right. A profile

π ′ = (π ′
1, . . . ,π

′
n) stochastically dominates π = (π1, . . . ,πn) if π ′

i stochastically dominates πi for all i.

Theorem 2.3 If π ′ stochastically dominates π , then every π-tolerant equilibrium is a π ′-tolerant equi-

librium.

Proof: See the appendix.

3 Social Dilemmas

Social dilemmas are situations in which there is a tension between the collective interest and individual

interests: every individual has an incentive to deviate from the common good and act selfishly, but if

everyone deviates, then they are all worse off. Following Capraro and Halpern [3], we formally define

a social dilemma as a normal-form game with a unique Nash equilibrium σN and a unique welfare-

maximizing profile sW , both pure strategy profiles, such that each player’s expected utility if sW is played

is higher than his utility if sN is played. While this is a quite restricted set of games, it includes many of

the best-studied games in the game-theory literature.

We examine the same four games as Capraro and Halpern [3], and show that the experimentally

observed regularities in these games can also be explained using tolerance.2

Prisoner’s Dilemma. Two players can either cooperate (C) or defect (D). To relate our results to ex-

perimental results on Prisoner’s Dilemma, we consider a subclass of Prisoner’s Dilemma games

where we think of cooperation as meaning that a player pays a cost c > 0 to give a benefit b > c to

the other player. If a player defects, he pays nothing and gives nothing. Thus, the payoff of (D,D)
is (0,0), the payoff of (C,C) is (b− c,b− c), and the payoffs of (D,C) and (C,D) are (b,−c) and

(−c,b), respectively. The condition b > c implies that (D,D) is the unique Nash equilibrium and

(C,C) is the unique welfare-maximizing profile.

Traveler’s Dilemma. Two travelers have identical luggage, which is damaged (in an identical way) by

an airline. The airline offers to recompense them for their luggage. They may ask for any dollar

amount between L and H (where L and H are both positive integers). There is only one catch.

If they ask for the same amount, then that is what they will both receive. However, if they ask

for different amounts—say one asks for m and the other for m′, with m < m′—then whoever asks

for m (the lower amount) will get m+ b (m and a bonus of b), while the other player gets m− b:

2The description of the games and observations is taken almost verbatim from Capraro and Halpern [3].
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the lower amount and a penalty of b. (L,L) is thus the unique Nash equilibrium, while (H,H)
maximizes social welfare, independent of b.

Public Goods game. N ≥ 2 contributors are endowed with 1 dollar each; they must simultaneously

decide how much, if anything, to contribute to a public pool. (The contributions must be in

whole cent amounts.) The total contribution pot is then multiplied by a constant strictly be-

tween 1 and N, and then evenly redistributed among all players. So the payoff of player i is

ui(x1, . . . ,xN) = 1− xi +ρ(x1 + . . .+ xN), where xi denotes i’s contribution, and ρ ∈
(

1
N
,1
)

is the

marginal return. (Thus, the pool is multiplied by ρN before being split evenly among all play-

ers.) Everyone contributing nothing to the pool is the unique Nash equilibrium, and everyone

contributing their whole endowment to the pool is the unique welfare-maximizing profile.

Bertrand Competition. N ≥ 2 firms compete to sell their identical product at a price between the “price

floor” L ≥ 2 and the “reservation value” H. (Again, we assume that H and L are integers, and all

prices must be integers.) The firm that chooses the lowest price, say s, sells the product at that

price, getting a payoff of s, while all other firms get a payoff of 0. If there are ties, then the sales

are split equally among all firms that choose the lowest price. Now everyone choosing L is the

unique Nash equilibrium, and everyone choosing H is the unique welfare-maximizing profile.3

From here on, we say that a player cooperates if he plays his part of the socially-welfare maximizing

strategy profile and defects if he plays his part of the Nash equilibrium strategy profile. While Nash

equilibrium predicts that people should always defect in social dilemmas, in practice, we see a great deal

of cooperative behavior. But the cooperative behavior exhibits a great deal of regularity. Here are some

regularities that have been observed (although it should be noted that in some cases the evidence is rather

limited—see the discussion of Bertrand Competition at the end of this section):

• The degree of cooperation in the Prisoner’s dilemma depends positively on the benefit of mutual

cooperation and negatively on the cost of cooperation [4, 8, 19].

• The degree of cooperation in the Traveler’s Dilemma depends negatively on the bonus/penalty [2].

• The degree of cooperation in the Public Goods game depends positively on the constant marginal

return [11, 14].

• The degree of cooperation in the Public Goods game depends positively on the number of players

[15, 23].

• The degree of cooperation in the Bertrand Competition depends negatively on the number of play-

ers [6].

• The degree of cooperation in the Bertrand Competition depends negatively on the price floor [7].

Of course, as mentioned in the introduction, there have been many attempts to explain the regularities

that have been observed in social dilemmas. However, very few can actually explain all the regularities

mentioned above. Indeed, the only approaches seem to be Charness and Rabin’s [5] approach, which

assumes that agents care about maximizing social welfare and the utility of the worst-off individual as

well as their own utility, and the translucency approach introduced by Halpern and Pass [13] and adapted

by Capraro and Halpern [3] to explain social dilemmas: roughly speaking, a player is translucent to the

degree that he believes that, with some probability, other players will know what he is about to do.

3We require that L ≥ 2 for otherwise we would not have a unique Nash equilibrium, a condition we imposed on Social

Dilemmas. If L = 1 and N = 2, we get two Nash equilibria: (2,2) and (1,1); similarly, for L = 0, we also get multiple Nash

equilibria, for all values of N ≥ 2.
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To show how tolerance can explain cooperation in social dilemmas, we first examine the relationship

between tolerance and the parameters of the various social dilemmas we are considering. We consider

two settings. In the first, we ask when it is consistent for a player i of type t to cooperate. In the second,

we ask when it is rational for a player i of type t who believes (as assumed by Capraro and Halpern [3])

that each other player j is playing β sW
j +(1−β )sN

j to cooperate (i.e., i believes that each other player is

cooperating with probability β , defecting with probability (1−β ), and not putting positive probability

on any other strategy). We write β sW
−i +(1− β )sN

−i for the corresponding mixed-strategy profile. Say

that a player has type (t,β ) in the second case; in the spirit of Definition 2.1, say that cooperation is

consistent with type (t,β ) for player i if for all strategies s′i for player i,

ui(s
′
i,β sW

−i +(1−β )sN
−i)≤ ui(s

W
i ,β sW

−i +(1−β )sN
−i)+ t.

For a Prisoner’s Dilemma of the form described in Section 3, consistency is independent of the

strategy the other player is using (and hence independent of player’s beliefs).

Proposition 3.1 For the Prisoner’s Dilemma of the form described in Section 3, cooperation is consis-

tent for a player of type t and mixed strategy σ for the other player iff t ≥ c.

Proof: Switching from cooperating to defecting gives the player an additional payoff of c, independent

of whether the other player is cooperating or defecting. Thus, cooperation is consistent if t ≥ c.

We next consider the Traveler’s Dilemma.

Proposition 3.2 For the Traveler’s Dilemma,

(a) cooperation is consistent with t and a mixed strategy σ for the other player if t ≥ 2b−1;

(b) there exists a strategy σ for the other player such that cooperation is consistent with t and σ iff

t ≥ 2b−1;

(c) cooperation is consistent with (t,β ) iff t ≥ max(β (b−1),b−β (H −L)).

Proof: If player 2 plays m, then player 1’s best response is to play m− 1 (or L if m = L). If m < H,

then player 1 gets a payoff of m− b if he cooperates (i.e., plays H), and could have gotten m− 1+ b

by making a best response (or L, in case m = L). Thus, he can gain at most 2b− 1 by playing a best

response. This proves part (a). If m = H − 1 and H − 1 > L, then cooperation is consistent iff t ≥
2b− 1; this proves part (b). Finally, if player 1 has type (t,β ), then he believes that 2 plays H with

probability β and L with probability 1−β . Thus, player 1 believes his expected payoff from playing H

is βH +(1−β )(L− b). The best response for player 1 is to play one of H − 1 or L. His payoff from

playing H −1 is β (H +b−1)+(1−β )(L−b); his payoff from playing L is β (L+b)+(1−β )L. Thus,

cooperation is consistent for a player 1 of type (t,β ) iff t ≥ max(β (b−1),b−β (H −L)).

For the Public Goods game, consistency is again independent of the other players’ strategies.

Proposition 3.3 For the Public Goods game, cooperation is consistent for a player i of tolerance t and

mixed strategy σ−i for the other players iff t ≥ (1−ρ).

Proof: It is easy to see that, no matter what the other players do, defection (contributing 0) is the best

response in this game, and a player gets a payoff that is 1−ρ higher if he defects than if he cooperates.

Thus, cooperation is consistent iff t ≥ (1−ρ).
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Proposition 3.4 For Bertrand Competition with n players, cooperation for player i is consistent with

(t,β ) iff t ≥ max(β n−1(H −1), f (n)L)−β n−1H/n, where f (n) = ∑
n−1
k=0 β k(1−β )n−1−k

(

n−1
k

)

/(n− k).

Proof: Consider a player of type (t,β ). If player i cooperates, he will get H/n if all the other players

cooperate, which happens with probability β n−1; otherwise, he gets 0. Thus, his expected payoff from

cooperation is β n−1H/n. His best response, given his beliefs, is to play one of H − 1 or L. If he plays

H − 1, then his payoff is H − 1 if all the remaining players play H, which happens with probability

β n−1; otherwise his payoff is 0. Thus, his expected payoff is β n−1(H − 1). If he plays L, then his

payoff if k players play H and n− 1− k play L is L/(n− k); this event occurs with probability β k(1−
β )n−1−k

(

n−1
k

)

. Thus, his expected payoff is f (n)L. It follows that cooperation is consistent with (t,β ) if

t ≥ max(β n(H −1), f (n)L)−β n−1H/n.

From here it is but three short steps to our desired result: First, observe that, up to now, we have

looked at games in isolation. But now we want to compare tolerances in different games, with different

settings of the relevant parameters. Intuitively, having a tolerance of 2 in Traveler’s Dilemma where

L = 2 and H = 100 should have a different meaning than it does in a version of Traveler’s Dilemma

where payoffs are multiplied by a factor of 10, so that L = 20 and H = 1000. Thus, when considering

a family of related games, rather than considering absolute tolerances, it seems more appropriate to

consider relative tolerance. There are many ways of defining a notion of relative tolerance. For our

purposes, we take a player’s relative tolerance to be an element of [0,1]; player i’s actual tolerance in

a game Γ is his relative tolerance multiplied by the payoff that player i gets if everyone cooperates in

Γ. For example, since the payoff obtained by i if everyone cooperates in Traveler’s Dilemma is H, then

the actual tolerance of a player of type (t̃,β ) is t̃H. (Here and elsewhere, if we wish to emphasize that

we are considering relative tolerance, we write t̃, reserving t for actual tolerance.) There are other ways

we could define relative tolerance. For example, we could multiply by the difference between the payoff

obtained if everyone cooperates and the payoff obtained if everyone defects, or multiply by the maximum

possible social welfare. The exact choice does not affect our results.

Second, recall that the fact that cooperation is consistent with a given type does not mean that a player

of that type will actually cooperate. We add an extra component to the type of a player to indicate whether

the player will cooperate if it is consistent to do so, given his beliefs. We thus consider relative types

of the form (t̃,β ,C) and (t̃,β ,D); such a type will cooperate in Traveler’s Dilemma if t̃H ≥ max(β (b−
1),b−β (H −L)) and the third component is C. Finally, we need to assume that there are a reasonable

number of players of each type. Formally, we assume that the set of types of each player is infinite and

that there is a distribution on relative types such that for all intervals (u,v) and (u′,v′) in [0,1], there is

a positive probability of finding someone of relative type (t̃,β ,C) with t̃ ∈ (u,v) and β ∈ (u′,v′). An

analogous assumption is made by Capraro and Halpern [3].

With these assumptions, it follows from Propositions 3.1–3.4 that the regularities discussed in Sec-

tion 3 hold.

• In the case of Prisoner’s Dilemma, b− c is the payoff obtained if everyone cooperates, so if t̃

is the relative tolerance, t̃(b− c) is the actual tolerance. Thus, if a player’s relative type is (t̃,β ),
then cooperation is consistent if t̃(b−c)≥ c. Clearly, as b increases, there are strictly more relative

types for which cooperation is consistent, so, by our assumptions, we should see more cooperation.

Similarly, if c increases (keeping b fixed), there are fewer relative types for which cooperation is

consistent, so we should see less cooperation.

• In the case of Traveler’s Dilemma, as we have observed a relative type will cooperate if t̃H ≥
max(β (b− 1),b−β (H −L)). Clearly, if b increases, then there will be fewer relative types for

whom cooperation is consistent.
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• In the Public Goods game, if everyone cooperates, the payoff to player i is nρ . So it is consistent

to cooperate if t̃ρn ≥ (1− ρ). Clearly, as n increases, we should see more cooperation, given

our assumptions. Moreover, tolerance explains the increase of cooperation as the marginal return

increases.

• Finally, in the Bertrand Competition, since the payoff if everyone cooperates is H/n, it is consistent

to cooperate if t̃H/n ≥ max(β n−1(H −1), f (n)L)−β n−1H/n, or equivalently, if

t̃ ≥ max(nβ n−1(H −1)/H,n f (n)L/H)−β n−1.

Clearly, cooperation decreases if L increases. The effect of increasing n is more nuanced. For n

large, β n−1 is essentially 0, as is nβ n−1; it can be shown that f (n) is roughly 1/(1−β )n. Thus, if

n is large, cooperation is consistent if t̃ > L/(1−β )H. What happens for small values of n is very

much dependent on β , H, and L. The actual experiments on this topic [6] considered only 2, 3, and

4 players, with L = 2 and H = 100. For these values, we get the desired effect if β is sufficiently

large (β > .7 suffices).

As we said earlier, of all the approaches to explaining social dilemmas in the literature, only Capraro

and Halpern [3] and Charness and Rabin [5], can explain all these regularities; see Capraro and Halpern

[3] for a detailed discussion and a comparison to other approaches. Of course, this leaves open the

question of which approach is a better description of what people are doing. We suspect that translucency,

care for others, and tolerance all influence behavior. We hope that further investigation of social dilemmas

will reveal other regularities that can be used to compare our approach to others, and give us a more fine-

grained understanding of what is going on.

4 Prisoner’s Dilemma with Tolerance

We now take a closer look at the impact of tolerance on perhaps the best-studied social dilemma, Pris-

oner’s Dilemma. The analysis suggests how thinking in terms of tolerance might help us design better

mechanisms.

The general prisoners’ dilemma (PD) game has payoffs (a1,a2), (b1,c2), (c1,b2), and (d1,d2) cor-

responding to action profiles (C,C), (C,D), (D,C), and (D,D), respectively, with ci > ai > di > bi. To

analyze equilibrium outcomes in PD with tolerances, consider a player i, and suppose she believes that

the other player j will play C with probability α j. Her payoff from choosing action C and action D are,

respectively,

uC = a jαi +(1−α j)bi; uD = α jci +(1−α j)di.

Since D is a dominant strategy in Prisoner’s Dilemma, uD > uC. Agent i is willing to play C if uD −uC is

within her tolerance, that is, if

t ≥ α j(ci −ai)+(1−α j)(di −bi), α j∆Ci +(1−α j)∆Di,

where ∆Ci is the gain to player i from defecting when the the other player plays C, and similarly for ∆Di.

Taking Fi to denote the cumulative probability distribution on agent i’s tolerances, it follows that the

probability that agent i has the tolerance required to allow cooperation is 1−Fi(α j∆Ci +(1−α j)∆Di).
Note that the minimum tolerance at which i can cooperate, which depends upon the probability α j

with which j plays C, need not decrease with α j: If the payoffs in the game are such that ∆Ci > ∆Di (the

gain from defecting is larger when the other player is cooperating rather than defecting), then increasing

α j increases the tolerance i must have to be willing to cooperate.
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Suppose that agents break ties in favor of cooperation, that is, if cooperating yields a payoff within

an agent’s tolerance, that agent will cooperate rather than defect. Call a π-tolerant equilibrium satisfying

this condition a particularly cooperative (π-tolerant) equilibrium. Note that if some player with tolerance

t cooperates in a perfectly cooperative equilibrium, then all players with tolerance t cooperate.

It follows from the discussion above that a particularly cooperative equilibrium is determined by a

pair of mutually consistent probabilities of cooperation (αi,α j) satisfying

αi = 1−Fi(αi∆C j +(1−αi)∆D j)
α j = 1−Fj(α j∆Ci +(1−α j)∆Di).

Note that a particularly cooperative equilibrium may not exist in PD, although a π-tolerant equilib-

rium always does (since both agents defecting is a π-tolerant equilibrium, no matter what π is). For a

simple example, suppose that a1 = a2 = 3, b1 = b2 = −1, c1 = c2 = 5, d1 = d2 = 0, and players are

drawn from a population where everyone has a tolerance of 1.5. Now suppose that there is a perfectly

cooperative equilibrium where a fraction α of the players cooperate. Thus, a player’s expected payoff

from cooperation is 3α − (1−α) = 4α − 1; a player’s expected payoff from defection is 5α . Thus,

a player gains α + 1 by defecting. If 0 ≤ α ≤ .5, then a player gains at most 1.5 by switching from

cooperate to defect, so all players should cooperate in a perfectly cooperative equilibrium (i.e., α should

be 1); on the other hand, if α > .5, then 1+α > 1.5, so all players should defect (so α should be 0).

In this example, we have a point mass of 1 on tolerance 1.5, so there is only one type of each

player. This is inconsistent with the assumption in the previous section that the cumulative probability

increases continuously. If we assume that the cumulative probability increases continuously then there is

always a particularly cooperative equilibrium in PD. We provide an analysis here, making some symme-

try assumptions for simplicity. Specifically, we assume (1) symmetry in payoffs: a1 = a2, . . . ,d1 = d2;

(2) symmetry in tolerance distributions: F1 = F2 = F ; and (3) that F is continuous (so that there are

infinitely many types). Under these assumptions, we show that a symmetric perfectly cooperative equi-

librium (where α1 = α2) always exists; this is a solution α∗ to

1−α = F(α∆C+(1−α)∆D). (1)

(Note that for prisoners’ dilemma, 0 < F(∆C),F(∆D)≤ 1 since ∆C = c−a and ∆D = d−b are positive.)

Theorem 4.1 (Equilibrium structure.) Under our assumptions, a symmetric particularly cooperative

equilibrium always exists, is a solution to (1), and has the following structure:

(a) There is an equilibrium with α = 0 (in which case (D,D) is necessarily played, so there is no

cooperation) if and only if F(∆D) = 1.

(b) (Uniqueness.) If ∆C > ∆D, there is a unique equilibrium; if ∆C ≤ ∆D, multiple equilibria corre-

sponding to different cooperation probabilities may exist.

We omit the formal proofs; the results follow from applying the Intermediate Value Theorem using the

continuity of F , and noting that the LHS in (1) is greater than the RHS at α = 0 when F(∆D) < 1,

and is smaller than the RHS at α = 1. Uniqueness (and non-uniqueness, respectively) follows from

the fact that the RHS is increasing (respectively, decreasing) in α when ∆D < ∆C (respectively ∆C <
∆D). The idea is perhaps best illustrated by Figure 1, where the intersections correspond to equilibrium

cooperation probabilities α∗. Note that these results depend critically on F , the cumulative distribution,

being continuous.

The next result gives insight into how the probability of cooperation changes as we change various

parameters. As we change the relevant parameters (the payoffs and the probabilities of tolerance) slightly
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player also defects, is smaller than ∆C, the marginal gain from defecting when the other player cooper-

ates. (This might be achieved, for instance, by providing additional rewards—either extra compensation,

or social rewards such as public acknowledgement, to a player who continues to cooperate despite defec-

tion by her partner, increasing the payoff b and therefore decreasing d − b.) On the other hand, if there

is a means to “nudge” behavior towards a particular equilibrium when there are multiple equilibria, a

designer might prefer to manipulate payoffs to fall in the ∆C ≤ ∆D regime and nudge behavior towards

the equilibrium with the most cooperation (again, this could be achieved by imposing social or monetary

penalties for defecting on a cooperating partner, decreasing t and thereby ∆C).

5 Conclusion

We have defined a notion of π-tolerant equilibrium, which takes into account that players have some

tolerance regarding payoffs. This solution concept generalizes Nash and ε-Nash equilibrium in a natural

way. We showed that this solution concept can explain cooperation in social dilemmas. Although we

focused on social dilemmas, tolerance can also explain other well-known observations, such as the fact

that people give some money to the other person in the Dictator Game [16] (where one person is given

a certain amount of money, and can split it as he chooses between himself and someone else) and that

people give intermediate amounts and reject small positive offers in the Ultimatum Game [12] (where

one person can decide on how to split a certain amount of money, but the other person can reject the split,

in which case both players get nothing).

We also examined the structure of particularly cooperative π-tolerant equilibria, where players are as

cooperative as they can be, given their tolerances, in Prisoner’s Dilemma. To the extent that cooperation

is due to tolerance, our results provide guidance to a mechanism designer who has some control over the

payoffs in a game, and suggest ways that cooperation can be increased. Since many practical situations

of interest can be modeled as Prisoner’s Dilemmas, these results may suggest how mechanism designers

can take advantage of players’ tolerance in practice.

We believe that a study of convergence towards, and stability and robustness of, particularly coop-

erative equilibria in Prisoner’s Dilemma in an appropriate model for dynamics can potentially provide

useful insights into emergence and sustainability of trust in online economies.

A Proof of Theorem 2.3

In this section, we prove Theorem 2.3. We repeat the statement of the theorem for the reader’s conve-

nience

THEOREM 2.3. If π ′ stochastically dominates π , then every π-tolerant equilibrium is a π ′-tolerant

equilibrium.

Suppose that σ is a π-tolerant equilibrium, and π ′ stochastically dominates π for all i. We want to

show that σ is a π ′-tolerant equilibrium. Clearly, it suffices to consider the case where π ′
i dominates πi,

and π ′
j = π j for j 6= i.

Let the support of πi be {t1, . . . , tn}, where t1 < .. . < tn, and let the support of π ′
1 be {t ′1, . . . , t

′
m},

where t ′1 < .. . < t ′m. For convenience, define t0 = t ′0 = 0. By assumption, there exists a mapping gi such

that gi(t) is a mixed strategy for each type t with support consisting of pure strategies consistent with t

and σ−i (this is E1) such that ∑
n
h=1 πi(th)gi(th) = σi (this is E2). We want to define a comparable function

g′i. In the remainder of the proof, for ease of exposition, we drop the subscript i (on gi, g′i, πi, π ′
i ).
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We start by defining g′(t ′1). This has the benefit of giving the intuition for how to define g′ in gen-

eral. For ease of notation, we write F and F ′ rather than Fπ and Fπ ′
. Choose the smallest h such that

F(th)≥ F ′(t ′1). Intuitively, type t ′1 should play g(t1) with probability π(t1)/π ′(t ′1), g(t2) with probability

π(t2)/π ′(t ′1), . . . , and g(th) with probability π(th)/π ′(t ′1). This isn’t quite right, since ∑
h
j=1 π(t j) = F(th),

and F(th) may be strictly larger than F ′(t1) = π ′(t1). Thus, we modify the probability that t ′1 plays g(th)
to (π ′(t1)−F(th−1))/π ′(t ′h). That is, g(th) is played with whatever probability is left over after all the

other strategies have been played. Thus, we take g′1(t
′
1), the strategy played by type t ′1, to be

π(t1)

π ′(t ′1)
g(t1)+ · · ·+

π(th−1)

π ′(t ′1)
g(th−1)+

π ′(t1)−F(th−1)

π ′(t ′1)
g(th). (2)

We must show that E1 is satisfied by π ′, so that any pure strategy in the support of any of g(t1), . . . ,g(th)
is consistent with t ′1 and σ−i. Since consistency is monotonic in the tolerance, and by E1, all the strategies

in the support of g(t j) are consistent with t j and σ−i, it suffices to show that t ′1 ≥ th. Suppose, by way of

contradiction, that t ′1 < th. By choice of th, if t < th, then F(t) < F ′(t ′1). Thus, F(t ′1) < F ′(t ′1). But this

contradicts the assumption that F ′ stochastically dominates F . Thus, E1 is indeed satisfied by π ′.

We now define g′(t ′j) for j ≥ 2. We first define auxiliary functions α : {1, . . . ,m} → {1, . . . ,n} and

β : {1, . . . ,m}→ [0,1]:

• α( j) is the least h such that F(th)≥ F ′(t ′j) (so the h in the definition of g′(t ′1) above is just α(1)).

• β ( j) is defined by induction on j. Let β (1) = π ′(t1)−F(tα(1)−1). Note that β (1) was the quantity

that occurred in the argument above that represented the amount of the probability mass π ′(t ′1) not

allocated to g(t1), . . . ,g(tα(1)−1), which can thus be allocated to g(tα(1)). For j ≥ 2, define

β ( j) = π ′(t j)−

(

π(tα( j−1))−β ( j−1)+
α( j)−1

∑
h=α( j−1)+1

π(th)

)

.

Again, roughly speaking, β ( j) is the amount of the probability mass π ′(t ′j) not allocated to the

strategies g(tα( j−1)), . . . ,g(tα( j)).

We claim that, for j ≥ 2, t ′j ≥ tα( j). The argument is essentially the same as that given above for the case

that j = 1. Suppose not. Then, by choice of tα( j), if t < tα( j), then F(t) < F ′(t ′j). Thus, F(t ′j) < F ′(t ′j).
But this contradicts the assumption that F ′ stochastically dominates F .

Finally, for j > 1, define

g′(t ′j) =
1

π ′
1(t

′
j)

[

(π(tα( j−1))−β ( j−1))g(tα( j−1))+

(

α( j)−1

∑
h=α( j−1)+1

π(th)g(th)

)

+β ( j)g(tα( j))

]

. (3)

To see that this works, we need to check E1 and E2. For E1, note that the support of g′(t ′j) consists

of the strategies in the support of g(tα( j−1)), . . . ,g(tα( j)). Since strategies in the support of g(th) are all

consistent with th and σ−i, all the strategies in the support of g′(t ′j) are clearly consistent with tα( j) and

σ−i. We showed above that tα( j) ≤ t ′j, so all these strategies are consistent with t ′j and σ−i. Thus E1

holds.

For E2, note that it is immediate from (2) and the definition of α(1) and β (1) that

π ′
1(t

′
1)g

′
1(t

′
1) =

α(1)−1

∑
h=1

π(th)g(th)+β (1)g(tα(1)). (4)
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It is immediate from (3) that for j > 1,

π ′
1(t

′
j)g

′
1(t

′
j) = (π(tα( j−1))−β ( j−1))g(tα( j−1))+

(

α( j)−1

∑
h=α( j−1)+1

π(th)g(th)

)

+β ( j)g(tα( j)). (5)

It follows from (4) and (5) that
m

∑
h=1

π ′(t ′h)g
′(t ′h) =

n

∑
h=1

π(th)g(th).

Since the latter sum is σ1 by E2, we are done.
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