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Taylor’s law (TL) is a widely observed empirical pattern that relates
the variances to the means of groups of nonnegative measure-
ments via an approximate power law: variance; = a x meang",
where g indexes the group of measurements. When each group
of measurements is distributed in space, the exponent b of this
power law is conjectured to reflect aggregation in the spatial dis-
tribution. TL has had practical application in many areas since its
initial demonstrations for the population density of spatially dis-
tributed species in population ecology. Another widely observed
aspect of populations is spatial synchrony, which is the tendency
for time series of population densities measured in different loca-
tions to be correlated through time. Recent studies showed that
patterns of population synchrony are changing, possibly as a con-
sequence of climate change. We use mathematical, numerical, and
empirical approaches to show that synchrony affects the validity
and parameters of TL. Greater synchrony typically decreases the
exponent b of TL. Synchrony influenced TL in essentially all of our
analytic, numerical, randomization-based, and empirical examples.
Given the near ubiquity of synchrony in nature, it seems likely that
synchrony influences the exponent of TL widely in ecologically and
economically important systems.
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Taylor’s law (TL) is a widely observed empirical pattern that
relates the variances to the means of groups of measurements
of population densities or other nonnegative quantities via a
power law: variance, ~ a X meangb , where g indexes the groups of
measurements, a > 0, b is usually positive, and a and b are both
independent of g. Equivalently, log(variance,) ~ b X log(mean,) +
log(a). The parameter b has the same numerical value regard-
less of whether it appears as the exponent of the power law or
the slope of the linear relation between log(variance,) and
log(mean,). Thus, b may be referred to as the exponent or the
slope of TL.

TL has been verified in data on the population sizes and
population densities of hundreds of taxa, including aphids (1),
crops (2), fish (3, 4), birds (5), and humans (6). TL has also been
discovered in many other nonnegative measurements (7), in-
cluding recently, tornados per outbreak (8) and stocks (9). In
physics, TL is sometimes called “fluctuation scaling.” TL has
been generalized (10) and applied or proposed for application to
fisheries management (3, 4), estimation of species persistence
times (11), and agriculture (2, 12, 13). Potential mechanisms of
TL have been explored extensively (9, 14, 15). Because of its
ubiquity, it has been suggested that TL could be another “uni-
versal law,” like the central limit theorem (16).

There are multiple versions of TL. “Temporal TL” and “spatial
TL,” on which we focus, use time series, Y;(f), of population
densities measured in locations i = 1, ..., n at times t = 1, ...,
T. For temporal TL, the groups, g, consist of all measurements
made in a location, i (means and variances are computed over
time). For spatial TL, groups are measurements at a single time,
¢t (means and variances are over space).

Synchrony (metapopulation synchrony, spatial synchrony) is
another ubiquitous and fundamental ecological phenomenon. It
is the tendency for time series of population densities of the
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same species measured in geographically separated locations to
be correlated through time. It has been observed in organisms as
diverse as protists (17), insects (18), mammals (19, 20), and birds
(21; ref. 22 has many other examples). It relates to large-scale
pest or disease outbreaks and shortages of resources (23, 24) and
has implications for conservation because populations are at
greater risk of simultaneous extinction if they are simultaneously
rare (24).

Although some empirical and theoretical connections have
been made between synchrony and TL (7, 14, 20, 25), the con-
nections are far from completely understood and do not encompass
all versions of TL. Synchrony, like TL, may reflect aggregation,
because the spatial extent of correlations among population time
series indicates the geographic size of outbreaks (26). Engen,
et al. (25) connected TL with synchrony theoretically but did not
use spatial or temporal TL. Temporal TL has been related to a
kind of synchrony that occurs on spatial scales smaller than that
of sampling (7, 14).

The “Moran effect” refers to synchrony caused by synchronous
environmental drivers. Changes in Moran effects as a conse-
quence of climate change may alter synchrony. Long-term in-
creases in the synchrony of caribou populations in Greenland
were associated with increases in the synchrony of environmental
drivers in the area, apparently through modified Moran effects
(19). The latter were, in turn, linked to global warming. Similar
associations held for North American bird species (21). Large-scale
climatic changes in the North Atlantic Oscillation caused changes
in winter temperature synchrony, which in turn caused changes in
the synchrony of pest aphid species in the United Kingdom (27).
Changes in the synchrony of plankton (26) and tree rings (28) have
been associated with climate change. If synchrony influences TL,
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which states that the variance of population density is approx-
imately a power of mean population density, and population
synchrony, the tendency of species’ population sizes in different
areas to be correlated through time. TL has been applied in
many areas, including fisheries management, conservation, ag-
riculture, finance, physics, and meteorology. Synchrony of pop-
ulations increases the likelihood of large-scale pest or disease
outbreaks and shortages of resources. We show that changed
synchrony modifies and can invalidate TL. Widespread recent
changes in synchrony, possibly resulting from climate change,
may broadly affect TL and its applications.

Author contributions: D.C.R. and J.E.C. designed research; D.C.R., L.Z,, LW.S., and J.E.C.
performed research; D.C.R., L.Z.,, LW.S., P.C.R., and J.E.C. contributed new reagents/
analytic tools; D.C.R., L.Z.,, and L.W.S. analyzed data; and D.C.R,, L.Z., and J.E.C. wrote
the paper.

Reviewers: M.J.P., University of Canterbury; and X.X., University of Maine.

The authors declare no conflict of interest.

"To whom correspondence may be addressed. Email: reuman@ku.edu or cohen@
rockefeller.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1703593114/-/DCSupplemental.

PNAS Early Edition 10f6

>
o
(=]
=
[=]
L)
w

APPLIED
MATHEMATICS



s T

/

J I\

1N\

then changes in synchrony may change TL in ecologically and
economically important systems.

We analyze connections between synchrony and spatial TL to
answer the following questions. Do the presence and strength of
synchrony in population time series influence whether TL holds
and if so, how? Do the presence and strength of synchrony in-
fluence the slope b of TL and if so, how? Because of the fun-
damental importance of both TL and synchrony to population
ecology, illuminating connections between these phenomena is
of intrinsic interest, but we are also motivated by the applied
importance of TL and concern that climate change may modify
synchrony.

Results

Analytic Results. Suppose the population size or density in loca-
tion i at time ¢ is modeled by the nonnegative random variable
Yi(t) for i = 1, ..., n. Assume that the multivariate stochastic
process Y(t) = (Y1(¢), ..., Y,(¢)) is stationary and ergodic (29);
these assumptions are standard (SI Appendix, S1). We use the
standard spatial sample mean and sample variance; m(t) =
(1/m)>",Yi(e) and  v(0) =30, Yi(0)*/(n = 1) = () (n = 1),
The traditional plot to test spatial TL is the log(v(¢)) vs. log(m(r))
scatterplot for a finite realization of these processes. TL hy-
pothesizes that this plot will be approximately linear. The linear
regression slope is b, =cov,(In(m(t)), In(v(¢)))/var,(In(m(t)))
(30). The subscripts ¢ indicate that the variance var; and the
covariance cov; are computed across time for the finite re-
alization, whereas each value of m(f) and v(t) is computed across
space at time ¢. A standard (22) measure of average synchrony,
Q=1 /nz)zg}:lcor,(Y,-(t),Yj-(t)), averages the temporal correla-
tions of every pair of population dynamic time series. This
summation includes the terms with i =j, which equal 1, and hence
Q, is 1/n when the correlations with i #j are 0; €, is zero when the
spatial average time series is constant, and €, cannot be negative
(SI Appendix, SI). We are interested in how Q, may affect
whether the relationship between the log mean and the log
variance is linear and the value of the slope b; when linearity
holds. For long time series, it suffices (SI Appendix, S1) to con-
sider the population quantities b =cov(In(m), In(v))/var(In(m))
and Q= (1/n2)2,’»fj=160r(Yi,Yj), assuming that all of the expec-
tations, variances, and covariances in these expressions and
others exist (details are in SI Appendix). Thus, we work with the
time-independent distribution Y = (Y7, ..., Y;). Autocorrelation
in time series will not influence the relationships that we study if
time series are long enough for empirical and true marginal
distributions to be similar (S Appendix, S1).

Applying the delta method (31), In(m) ~In(E(m)) + (m — E(m))/
E(m),In(v) ~In(E(v))+ (v—E(v))/E(v), and var(In(m)) ~ var(m)/
E(m)?; therefore (SI Appendix, SI)

(= DE@m)

b cov(m,v)

n (A —var(m))var(m)’

1]

where the first factor in this expression and the quantity
A=(1/n)Y 1L E(Y?) —E(m)* depend solely on the marginal dis-
tributions, Y;, and do not depend on the correlations, cor(Y;, Yj).
However, var(m) equals (1 /nz)Z;’lecov(i’i, Y;), which relates to
synchrony, Q, and is similar in form. Eq. 1, therefore, provides
the intuition behind our subsequent analyses: if synchrony [Q or
var(m)] changes and the marginals, Y;, remain fixed, then one
expects the slope b to change. The following theorem supports
this intuition.

Theorem. Suppose Y; are identically distributed (but not necessarily
independent) with E(Y;) =M >0 and finite var(Y;) =V > 0. Assume
that iy = E((Y; — M) (Y, ~ M), g = E((Y; ~ M)(¥; — M) (Yi, - M),
and pyy =E((Y; = M)(Y; = M) (Y, — M)(Y; —M)) are finite for all i,
J» ks and |, and define p;=cor(Y;,Y;) = u;/V and py. = . [ 1y Then
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The approximation is better whenever the coefficients of variation
of the sample mean /var(m) /E(m) =+/VQ/M and sample variance
\/var(v)/E(v) are smaller, and is asymptotically perfect as these
quantities approach zero.

Additional details, alternative mathematically equivalent ex-
pressions for b, and a proof of the theorem are in SI Appendix, S2.

This theorem extends a theorem by Cohen and Xu (15), which
assumes that the Y; are independent and identically distributed
(iid). In that case, the second factor on the right of Eq. 2 is 1, and
b (My,;/V?), which equals the skewness y;/V>/? of Y; divided
by its coefficient of variation 1’'/2/M. Independence of the Y; is
not necessary here: the same formula holds if p; =0 for i #j and
pir =0 whenever i, j, and k are not all equal. Cohen and Xu (15)
concluded that, in the iid case, skewness of Y; is necessary and
sufficient for TL to have slope b #0. Our theorem extends this
result to the case of identically distributed Y; that may be
nonindependent.

The denominator n?(1 — Q)Q in Eq. 2 is a n-shaped function of
Q (i.e., it increases, has a maximum, and then decreases again as Q
increases). Therefore, Eq. 2 may seem to suggest that b is a
U-shaped function of synchrony (it decreases, has a minimum, and
then increases again). However, the numerator of the second
factor of Eq. 2 may, a priori, also be a N-shaped function of syn-
chrony; therefore, a U-shaped dependence of b on synchrony is not
mathematically certain, and neither are any of the components of
such a dependence (the initial decrease, the internal minimum,
and the subsequent increase of b as Q increases). Dependence of
the numerator of Eq. 2 on Q also means that limg_,¢b and limg_,1b
can be finite, although limg_,¢(1 — Q)Q and limg,_,; (1 — Q)Q are 0.

Numerical Results. To illustrate the identically distributed case, we
performed numerical simulations based on multivariate normal
random variables X = (X, ..., X,,) with mean (0, ..., 0) and
covariance matrix with diagonal entries 1 and off-diagonal en-
tries equal to a parameter, p >0. We let Y; = @(X;), where the
transformations ¢(.) were chosen, in different simulations, to
make the Y; a variety of Poisson, negative binomial, gamma,
exponential, y%, normal, and log-normal distributions. Increases
in p produced increases in Q. Exponential and y* distributions
are special cases of gamma distributions. We produced separate
results for these distributions because they are widely used.
Results are in SI Appendix, S3; Fig. 1 shows typical results for
Poisson and gamma examples.

Results generally agreed with the above intuitions and analy-
ses. The linearity hypothesis of TL was usually, but not always, an
adequate approximation in that linearity and homoscedasticity
could not be rejected statistically (S Appendix, S6 has details on
how this was tested). In agreement with our theorem and Cohen
and Xu (15), when a shifted normal distribution (which has
skewness 0) was used for Y;, b = 0 for all values of Q. For skewed
distributions, the slope b was generally smaller for larger values
of Q, confirming the prediction that b depends on synchrony.
Although b decreased steeply as Q increased from zero for all
skewed distributions, b most commonly continued to decrease
monotonically as Q increased further, even for large values of Q,
except for a few cases using gamma distributions, for which
modest increases were observed (SI Appendix, Figs. S14-S20):
the b vs. synchrony relationship was only occasionally u-shaped,
and then only mildly so. The right side of Eq. 2 was computed
analytically (i.e., with formulas) for gamma, exponential, y?
normal, and log-normal examples, and the formulas were com-
pared with numerical results. For some distributions and pa-
rameters, the approximation was very accurate, and it was always
at least qualitatively accurate (in the sense that it showed similar
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Fig. 1. Effects of spatial synchrony on spatial TL for a model with populations
identically distributed in different sampling locations and iid through time at
each location. Examples use (A4) Poisson (4 = 5) and (B) gamma (shape a = 8,
rate p = 2) distributions (S/ Appendix, S3 shows the parameterization of the
gamma distribution). (Top) m is spatial sample mean and v is spatial sample
variance. Confirming TL visually, approximately linear logo(v) vs. logqo(m) re-
lationships held with selected values of p. Slopes were shallower for greater
synchrony. (Middle) TL had a shallower slope for greater synchrony. Black lines
show the average (across 50 simulations) TL slope plotted against average
synchrony (error bars are standard deviations) and average (over 50 simula-
tions) of the root mean squared errors (RSME) of logyo(v) values from log;o(v)
vs. logqo(m) linear regressions (labeled TL RMSE in the axis label). (B) Red lines
are analytic approximations (Eq. 2 and Theorem 5 in S/ Appendix, 52.3),
computable with readily available software for continuous distributions (S/
Appendix, 53), with + and x symbols indicating points for which approxima-
tions were deemed adequate via two different methods, respectively; both
symbols are plotted when both methods indicate an adequate approximation.
Each simulation consisted of 25 populations sampled 100 times each. (Bottom)
Fractions of m and v values, which were 0 and therefore ignored, and fractions
of 50 simulations, for which statistical tests rejected linearity or homo-
skedasticity of the log1o(v) vs. logqo(m) relationship with 95% confidence. Frac,
fraction; Homosk, homoskedasticity; Lin, linearity. SI Appendix, Figs. S1-S32
show other parameters and distributions, which often showed similar patterns.
Additional details are in S/ Appendix, S3 and S6.

declines of b with increasing synchrony), except for the log-
normal distribution, for which it was very inaccurate for some
parameters because of insufficient sampling as previously ob-
served (15). As expected from the theorem, Eq. 2 was a better
approximation for smaller Q.

We also constructed nonidentically distributed examples by
applying transformations to multivariate normal random vari-
ables. Our theorem, which assumed identically distributed Y;, did
not apply here. The random variable X was the same as above,
and Y; = ¢;(X;), where the ¢,(.) differed for different i. The ¢;(.)
values were chosen so that all of the Y; were from the same
family (Poisson, negative binomial, gamma, exponential, s
normal, or log normal), although with different parameters. For
gamma, normal, exponential, and log-normal examples, the ¢;(.)
were chosen so that Y; was distributed in the same way as (but
was not equal to) f;Yy, where 0 < f; < ... <f,. This E)rocedure was
not possible for negative binomial, Poisson, or y~ distributions
because these families are not closed under multiplication by
positive real numbers. Distributions used for these families and
the results are described in SI Appendix, S4.

Results reinforced most of the generalities that emerged from
the above analytical results and simulations, although a U-shaped
dependence of b on Q was more common and stronger in these
examples (SI Appendix, S4). Exceptions to general tendencies did
occur. For gamma, exponential, normal, and log-normal examples,
TL was usually a good approximation. Although linearity was of-
ten statistically rejected, departures from linearity were modest:
log(v) vs. log(m) plots stayed very close to the regression line. The
slope b always showed an initial steep decrease as Q increased
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from zero for all gamma, exponential, normal, and log-normal
examples. As Q — 1, these examples approached the case for
which Y; equals f;Y; almost surely in addition to having the same
distribution as f;Y;. In that limit, m = mean;(Y;) = mean;(f;Y7) =
Y mean;(f;), whereas v=var;(Y;) =var;(fY1) = Y2var,(f;). There-
fore, TL should hold exactly with slope two. This argument holds
even for symmetric distributions like the normal. Our numerical
simulations confirmed that, as Q increased toward one, root
mean squared errors from log(v) vs. log(m) regressions went to
zero, and b went to two, sometimes from above and sometimes
from below. An approach from below was paired with U-shaped
dependence of b on €, which was common and often pro-
nounced in these examples. The earlier result (15) that skewness
is required for TL to have slope b#0 if Y; are identically dis-
tributed does not hold when Y; are not identically distributed:
simulations with Y; normally distributed had b # 0 (SI Appendix,
Figs. $45-S50). For Poisson and > examples, TL was usually a
reasonable approximation, and b declined steeply as Q increased
from zero and continued to decrease for larger Q. Negative bi-
nomial examples often strongly violated TL, especially for large
values of Q (e.g., SI Appendix, Figs. S63 and S64). Nonetheless,
the slope b tended to decrease with increasing Q whenever lin-
earity held approximately.

Another way to create families of random variables Y with
fixed marginal distributions but varying synchrony is based on
sums of independent random variables representing local and
regional influences on populations (32). It is well-known that, for
independent Poisson random variables X and X, the sum X + X;
is Poisson distributed. Similar facts are also true for the negative
binomial, gamma, and normal families. Therefore, Y was gen-
erated by setting Y; = X + X; for independent X and X; for
i=1,...,n. The variable X can be interpreted as the influence of
a large-spatial-scale environmental or other factor that affects all
populations; the X; are local effects. Different relative variances
of X and the X; led to different amounts of correlation (syn-
chrony) among the Y;. By this approach, we constructed Y,
such that the Y; were identically distributed according to
a desired Poisson, negative binomial, gamma, exponential, xz,
or normal distribution, with a desired level of synchrony
among the Y;. Details of this construction and the results are
in SI Appendix, SS5.

Results were the same in some respects as the results above
and differed in others. Larger values of synchrony always
decreased the slope b (except for normal Y;, for which b was
always zero as expected from the theorem because Y; are again
identically distributed). The slope b went to zero as Q
approached one. The approximation Eq. 2 applied reasonably
accurately. In all cases, the right side of Eq. 2 reduced to simple,
monotonically decreasing functions of Q. However, contrary to
prior simulations, log(v) vs. log(m) plots often strongly violated
the linear hypothesis of TL. Values of synchrony Q larger than
zero smeared points rightward in log(v) vs. log(m) space,
destroying the linear relation expected from TL. This smearing
decreased b but also changed its meaning from representing the
slope of a linear pattern to representing the slope of a linear
approximation to a nonlinear pattern. The decrease in b did not
reflect maintenance of a linear pattern with a changed slope as in
prior examples (Fig. 1 and SI Appendix, S3 and S4). SI Appendix,
S5 gives an explanation for this effect.

Empirical Results. We examined the influence of synchrony on
empirical data using 82 spatiotemporal population datasets. The
datasets included annual time series of population density for
20 species of aphid sampled for 35 y in 11 locations across the
United Kingdom, annual density time series for 22 plankton
groups sampled in 26 regions in the seas around the United
Kingdom for 56 y, and chlorophyll-a density time series mea-
sured at several locations at each of 10 depths in four distance
categories from the coast of southern California over 28 y. We
henceforth refer to distance categories from shore in the chlo-
rophyll-a data as groups 1-4, where group 1 refers to the closest
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category to shore and larger group numbers correspond to far-
ther categories from shore. Methods has additional descriptions
of the data and their processing.

The spatial TL was reasonably well-supported by all 82 data-
sets. SI Appendix, Figs. S91-S96 plots log(v) vs. log(m) and gives
statistical tests of TL. Conformity to TL was not perfect, but
quite good overall, except for the chlorophyll-a data in group 3
(SI Appendix, Fig. S95). Linearity or homoskedasticity of the log(v)
vs. log(m) relationship was rejected at the 1% level for 7 of
82 datasets (1 aphid species, 1 depth from group 1, and 5 depths
from group 3).

We examined correlations across species, taxonomic groups,
or depths (for the aphid, plankton, and chlorophyll-a datasets,
respectively) between measurements of b and Q. Factors other
than synchrony may have influenced these results and are
accounted for below after examining the raw correlations here.
Fig. 2A4, D, G, J, M, and P shows that b and Q were significantly
negatively correlated across aphid species and across depths in
the chlorophyll-a data, groups 1 and 2, and nonsignificantly
negatively correlated across plankton groups in the plankton
data. Higher synchrony Q was associated with lower slope b in
these data, despite possible confounding influences.

However, significant positive correlations occurred in the
chlorophyll-a data, groups 3 and 4 (Fig. 2 M and P). These
positive associations seem to conflict with simulation results,
which generally support a negative association between b and Q,
unless confounding factors overwhelmed a negative influence
of synchrony on b in these data. For instance, changes across
depths in b may be influenced for the chlorophyll-a data, groups
3 and 4, by changes across depths in Q and possible changes in
time series marginal distributions. Simulations carried out above
held time series marginal distributions constant when synchrony
was varied.

To control for changes in time series marginal distributions
that may have occurred in concert with changes in synchrony, we
decomposed slopes b = bparg + Dyyne into contributions due to
synchrony, bgn., and due to time series marginals, Dyars. We
computed the marginal contribution, bmarg, by independently ran-
domizing time series and then recomputing the log(v) vs. log(m)
slope (Methods) to eliminate synchrony and ensure that it cannot
contribute t0 byar. Then, we defined byyye as b — by, Fig. 2 C,
F,I,L, O, and R shows that by, was negatively associated with
Q in all cases (albeit not always significantly), even for chlo-
rophyll-a data, groups 3 and 4 (Fig. 2 O and R). For these
groups, bmare Was strongly positively associated with Q (Fig. 2 N
and Q). This positive association overwhelmed the negative
association of by, with Q to produce the overall positive as-
sociation of b with Q observed in Fig. 2 M and P. Thus, groups
3 and 4 results did not conflict with simulation results, but
rather showed that other factors dominated. The change in
time series marginal distributions for the chlorophyll-a data was
not surprising, because these data were gathered across dif-
ferent depths, and chlorophyll-a density varies with depth in the
ocean. SI Appendix, Fig. S99 is like Fig. 2 but identifies the
species/groups/depths of plotted points; panels for the chloro-
phyll-a data show that depth probably played a role. Differing
thermocline depths across groups 1-4 (SI Appendix, Fig. S101)
may also have been important.

To examine in more detail the influence of synchrony on
spatial TL in empirical data, we performed additional random-
izations (Methods). Randomizations reduced or increased the
synchrony in each of our 82 spatiotemporal population datasets
while not modifying the marginal distributions in each sampling
location. In virtually every case, increasing synchrony decreased
b, whereas decreasing synchrony increased b (Fig. 3). The
strength of the effect varied across datasets and was typically
steeper for smaller values of synchrony. Values of by corre-
spond to the y-axis intercepts of the curves in Fig. 3. In a few
cases, b appeared to depend in a U-shaped way on synchrony, as
in some simulations, but the U shape was modest when it oc-
curred, also in agreement with simulations (i.e., only modest
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Fig. 2. Plots of TL slope b against synchrony € for (A) 20 species of aphid in
the United Kingdom, (D) 22 plankton groups in the seas around the United
Kingdom, and (G, J, M, and P) chlorophyll-a density time series measured at
10 depths in groups 1-4 (Methods), which are distance categories from
shore. A, D, G, J, M, and P are paired with contributions to the slope, b, of (B,
E, H, K, N, and Q) marginal distribution structure (bmarg) and (G, F, /, L, O, and
R) synchrony (bgnc), respectively (Methods). Associations between synchrony
and TL slope b can be due to associations between synchrony and bmarg,
associations between synchrony and bgyn., or both, because b = bmarg + bsync-
SI Appendix, Fig. S99 shows another version of the figure that labels indi-
vidual species/groups/depths.

increases in b with increasing Q were observed in Fig. 3 B, D, and
F). The linearity of TL was approximately supported across the
range of synchrony values, except possibly for the highest syn-
chrony values and the chlorophyll-a data in group 3 (SI Appendix,
Figs. S97 and S98).
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Fig. 3. The dependence of the spatial TL slope b on synchrony €, where
synchrony was manipulated through randomizations or sorting of time series
(Methods) for (A) aphid species, (B) plankton groups, and (C—F) a chlorophyll-
a density index measured at 10 depths. C is for 19 group-1 locations, F is for
12 group-4 locations, and D and E are for 12 locations in each of two in-
termediate distance categories (groups 2 and 3) (Methods). Red points on
plotted lines correspond to individual unrandomized (A) aphid species,
(B) plankton groups, and (C—F) sampling depths detailed in S/ Appendix, Table
S1. Gray points are averages over randomizations or sortings (Methods).
Values for individual randomizations are shown in S/ Appendix, Fig. S100.

All results are summarized, with hyperlinks to supporting
figures and derivations, in SI Appendix, Tables S3 and S4.

Discussion

Understanding the relationship of synchrony with TL is impor-
tant, because both patterns are widespread in population ecol-
ogy, and because TL and recent observed climate change-
induced modifications in synchrony have applied importance
(19, 21, 26-28).

We showed that the strength of synchrony substantially influ-
ences the log(variance) vs. log(mean) scatterplot, of which TL is
one special form. It can destroy linearity of TL, but more com-
monly, it preserves linearity and changes the slope b of the plot.
Synchrony influenced the slope of TL in essentially all of our
analytic, numerical, empirical, and randomization-based exam-
ples. The one systematic exception occurred when the marginal
distributions of time series in different locations were normally
and identically distributed, so that a nonzero slope of TL was not
expected with or without synchrony (15). As synchrony increased
from zero, slope b almost always decreased quite sharply. For
some theoretical and randomization examples, increasing syn-
chrony starting from higher levels of synchrony increased the
slope b modestly, but analogous increases were not seen in em-
pirical examples when confounding changes in time series mar-
ginal distributions were controlled. Our analytic results generalize
a theorem of Cohen and Xu (15). We provided a simple method
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of decomposing b into its contributions due to synchrony, by,
and due to time series marginal distributions, by

Ballantyne and Kerkhoff (14) and Eisler, et al. (section 3 in
ref. 7) described interesting links between small-spatial-scale
synchrony and temporal TL. To explain the basic idea, we con-
struct an idealized example using aphids monitored by suction
traps. Suppose trap i fori =1, ..., n has 4; agricultural fields that
can produce aphids within its sampling range. Suppose traps are
placed so that no fields contribute to more than one trap. Sup-
pose field j (i =1, ...,n;j =1, ..., A;) contributes a random
variable V;(¢) to trap i in year ¢, and suppose all of the Vj(f) are
identically distributed with mean g and variance 62, Then, if, for
fixed i, Vj(t) are perfectly correlated so that all fields near i
produce the same number of sampled aphids per year (this as-
sumption constitutes very strong small-spatial-scale synchrony,
the spatial scale being smaller than the spatial resolution of
sampling), the mean of the number of aphids 3 Vj;(r) sampled
by trap i in year ¢ is y; = A; X u, and the variance is 6t =A%
o~. Assuming that random variables for different times ¢ are in-
dependent, the mean and variance across time of numbers of
aphids sampled by trap i will converge almost surely, in the limit of
long time series, to these same values (strong law of large num-
bers). Log transforming and doing basic algebra give In(s;") = 2 x
In(y;) + C; for a constant Cj; this equation demonstrates a
temporal TL with slope two. If, for fixed i, V;;(¢) are independent,
then the mean of ZjV,-,-(t) is again y; = A; X u, but the variance is
now o> = A; x 6. Log transforming and doing basic algebra give
temporal TL with slope one. (This example shows, incidentally,
that observing TL with slope one need not be evidence that the
aphids or other organisms are Poisson distributed, although
Poisson-distributed aphids or other organisms lead to TL with
slope one.)

The above example differs in at least two important ways from
our results. First, it concerns temporal TL, whereas we studied
spatial TL. Second, the above example concerns synchrony at a
different spatial scale from our study. Although dependence
between numbers of aphids sampled at different traps seems
likely to imply dependence between numbers contributed by
fields within the range of individual traps, the reverse need not
be true.

It seems worthwhile, in future research, to examine the pos-
sibly complex relationships between the above example (7, 14)
and our study. Although Eisler, et al. (7) focus on temporal TL,
they state without proof or details that many of their results also
apply to TL more generally. Relationships between spatial and
temporal TL have recently been examined (20) and may help
connect the TL in the above example to the spatial TL of our
study. Perhaps all of these versions of TL could be formally re-
lated to each other and synchrony.

Engen, et al. (25) produced a general model for analyzing a
version of TL, in which each group of measurements of pop-
ulation density comes from plots of the same size, but different
groups use different plot sizes (distinct from spatial and temporal
TL). On p. 2,620 in ref. 25, they remind the reader that in-
creasing population migration leads to increasing synchrony,
which causes “the slope [of this version of TL] ... to increase
from 1 to 2 ... as the migration increases.” Engen, et al. (25)
seem to indicate in the final sentences of their paper that their
model could be extended to address spatial TL, possibly helping
to illuminate connections among spatial, temporal, and their
versions of TL and synchrony.

Cohen and Saitoh (20) examined relationships among syn-
chrony and spatial and temporal TL in voles. Their example is
consistent with our work and illustrates the value of our general
results for understanding TL in specific systems. Using 31 y of
population density data for the gray-sided vole, Myodes rufoca-
nus, at 85 locations in Hokkaido, Japan, Cohen and Saitoh (20)
verified that spatial and temporal TL held for the data as well as
simulations of a previously validated Gompertz model of the
dynamics of these populations. However, simulated time series
had spatial and temporal TL slopes substantially steeper than
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those from data. Cohen and Saitoh (20) observed that most pairs
of vole populations were significantly temporally correlated and
modified the Gompertz model accordingly. When density-
independent perturbations in model dynamics were synchro-
nized, inducing synchrony in simulated population time series, and
when simulated populations with higher mean density had a re-
duced variance of density-independent perturbations, the modeled
slopes of spatial and temporal TL were reduced to values similar
to those of the data. Our results here account qualitatively for the
effect on TL slopes of the first of these two modifications of the
Gompertz model (i.e., the introduction of synchrony).

Our theoretical models and our randomizations kept the
marginal distributions of time series fixed as synchrony changed
to exclude confounding factors. In our empirical analyses, we
identified the contribution of synchrony, by, to the empirical
TL slope b. In reality, synchrony may change jointly with mar-
ginal distributions across species, or depths, or some other axis of
variation, as in some of our empirical data (Fig. 2). Covariation
between changes in by and by, should be context-dependent,
may be biologically revealing, and is worth examining when
multiple values of b are computed.

Increasing evidence shows that changing Moran effects, possibly
due to climate change, modify synchrony (19, 21, 26-28). This work
indicates that changed synchrony will modify the slope and possibly
the validity of TL, with ramifications for applications of TL in many
areas, including resource management (3), conservation (11), hu-
man demography (6), tornado outbreaks (8), and agriculture (2, 12,
13). Given the ubiquity of synchrony in nature (22), it seems highly
likely that synchrony often affects values of TL slopes in real
populations, as Hokkaido voles showed. It is important to un-
derstand better how TL is affected by synchrony and other factors.

Methods

Analytic and Numerical Methods. Full details of analytic results are in S/
Appendix, ST and S2, and full details of numerical simulations are in
SI Appendix, S3-S6.

Data. The Rothamsted Insect Survey runs a network of suction traps that
sample flying aphids. Daily aphid counts are collected throughout the flight
season for many species at multiple locations. Data were processed to pro-
duce annual total counts for 20 species (S Appendix, Table S1) at 11 locations
(SI Appendix, Table S2) for the years 1976-2010, forming 20 spatiotemporal
population datasets.
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The Continuous Plankton Recorder survey, now operated by the Sir Alister
Hardy Foundation for Ocean Science, has sampled the seas around the United
Kingdom for plankton abundances since before World War Il using a sam-
pling device towed behind commercial ships. Data were processed to produce
annual abundance time series for 22 phytoplankton and zooplankton taxa (S/
Appendix, Table S1) for 26 2° x 2" areas around the United Kingdom for the
years 1958-2013, forming 22 spatiotemporal population datasets.

The California Cooperative Oceanic Fisheries Investigations have surveyed
the California Current System since 1949, measuring chlorophyll-a regularly
since 1984. Time series of spring chlorophyll-a were based on measurements
at 55 sites, which were divided into four groups based on distance from
shore, with group 1 near to shore (average 87.7 km) and group 4 far from
shore (average 539.3 km). For each site and sampling occasion, annual chlo-
rophyll abundances were calculated for 0-, 10-, 20-, 30-, 50-, 75-, 100-, 125-,
150-, and 200-m depths, forming 10 spatiotemporal datasets for each group.

Additional data details are in S/ Appendix, S7.

Randomizations and the Decomposition of b. Given a T x n matrix, with each
column containing a time series of population size or density from one lo-
cation (therefore, T is the length of the time series and n is the number of
sampling locations), synchrony was reduced without affecting time series
marginal distributions for the sampling locations by selecting k rows ran-
domly and then randomly replacing the entries in those rows with randomly
chosen (with replacement) values from the same column; this replacement
was done independently within each column. Larger values of k destroy a
larger fraction of any synchrony that was originally present in the time se-
ries. Setting k = T completely eliminates synchrony by randomizing each
complete time series independently. To increase the synchrony, starting
from the original time series, k rows were again selected randomly. Within
each column of this k x n submatrix separately, entries were sorted into in-
creasing order. For each value of k, k rows were selected randomly in
100 ways, with values of b and Q averaged for Fig. 3. The value bmarg Was
computed by randomizing time series with k = T as described above to destroy
synchrony and then computing b = bmarg for the randomized dataset.
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