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The systematic identification of cis-regulatory elements (CREs)

in plant genomes is critically important in understanding

transcriptional regulation during development and in response

to environmental cues. Several genome-wide structure-based

methods have been successfully applied to plant genomes in

the past few years. Here, we review recent results on the

identification and characterization of CREs in multiple plant

species and in different biological processes and discuss future

applications of chromatin accessibility data to understand the

mechanism, function and evolution of transcriptional regulation

networks.
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Introduction
A key aspect in the understanding of transcriptional

regulation in plants is the genome-wide identification

and functional characterization of cis-regulatory elements
(CREs) involved in protein-DNA interactions.

Approaches dependent on sequence conservation within

short distances from target genes have produced a num-

ber of important results. However, there are several

limitations: sequence conservation can be restricted to

only a few base pairs (bps) involved in protein-DNA

interactions, CREs can be located rather far from their

target genes (10 000s–100 000s of bps), and sequence

conservation alone provides little information regarding

the tissue specificity and the functionality (activating

versus repressive) of CREs or the potential involvement

of epigenetic pathways. To minimize the impact of these

limitations, several recent studies aimed at identifying

CREs based on chromatin structure and modifications
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have been successfully carried out in plants. The major

findings and potential implications are summarized in this

review.

The basic unit of eukaryotic chromosomes is the nucleo-

some [1], which contains approximately 147 bps of DNA

wrapped around a histone octamer (two copies of each of

the core histones H2A, H2B, H3, and H4) [2]. Nucleo-

some positioning and occupancy can have major effects

on transcription and other DNA-dependent processes

because nucleosomal DNA involved in histone-DNA

interaction is often a poor binding substrate for non-

histone proteins, including transcription factors (TFs)

[3,4]. Consequently, CREs are preferentially located in

accessible chromatin regions (ACRs) — discrete sites with

low nucleosome occupancy due to DNA sequence con-

tent, competitive binding between TFs and histones,

or through the actions of chromatin remodeling factors

[5–7]. ACRs can be identified based on their elevated

sensitivity to enzymes such as micrococcal nuclease

(MNase), DNase I or the bacterial transposase Tn5.

The coupling of chromatin accessibility assays with mas-

sively parallel sequencing in MNase-seq, DNase-seq and

Assay for Transposase-Accessible Chromatin using

sequencing (ATAC-seq) represents an important techno-

logical development and has enabled the identification of

ACRs on a genome-wide scale [8,9��,10–12]. Additionally,

integration with genome-wide datasets on TF binding,

cytosine methylation, and histone covalent modifications

has enabled high-throughput identification of CREs in

plant, metazoan, and yeast genomes [13–15,16��].

CREs are enriched in ACRs
Several lines of evidence indicate that CREs primarily

reside within ACRs. First, ACRs are highly enriched near

the promoter regions of genes, and the degree of accessi-

bility positively correlates with the expression level of

associated genes [17��,18��,19��]. In addition, known TF

binding motifs are highly enriched in ACRs, particularly

within ‘footprints’ which are small regions within ACRs

resistant to DNase I digestion because they are bound by

TFs [18��]. Furthermore, intraspecific sequence polymor-

phisms within ACRs are highly correlated with transcrip-

tional variations and phenotypic differences [20]. For

example, although ACRs account for only �1% of the

maize genome, sequence polymorphisms within ACRs

can explain 40% of the heritable phenotypic variations

across a diverse panel of maize inbred lines [17��]. Simi-

larly, a significantly higher fraction of trait-associated
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sequence polymorphisms in Arabidopsis thaliana reside

within ACRs than other intergenic regions [18��].
However, it should be noted that many sequence poly-

morphisms within ACRs do not appear to affect the

expression of nearby genes, underlying the notion that

only small fractions within individual ACRs are likely

CREs [21,22]. This is further supported by the analysis of

conserved non-coding sequences and transcriptional net-

works within and between related plant species [23,24].

Interspecific comparative analysis of ACRs
Rapid and genome-wide identification of ACRs also

makes it possible to explore the variations in CREs across

species. A recent study of ACRs in A. thaliana, Solanum
lycopersicum, Medicago truncatula, and Oryza sativa revealed

that chromatin accessibility associated with 373 syntenic

orthologs or 52 expressologs was not frequently conserved

across species [19��]. Interestingly, ACRs associated with

genes under the control of specific combinations of TFs

(e.g. ELONGATED HYPOCOTYL 5 (HY5), ABSCISIC

ACID RESPONSIVE ELEMENTS-BINDING FAC-

TOR 3 (ABF3), C-REPEAT/DRE BINDING FACTOR

2 (CBF2), and MYB DOMAIN PROTEIN 77 (MYB77))

appear to be more conserved over evolutionary time

scales [19��]. These results suggest that the regulation

of these genes is dependent on a set of conserved TF-

binding sites within ACRs rather than the entire ACR

sequences.

Chromatin accessibility dynamics during plant
development and in response to
environmental stimuli
Differential TF-DNA interactions play a major role in

determining distinct transcription profiles in different

developmental stages and in response to external stimuli.

As such, chromatin accessibilities at CREs associated

with expressed genes are expected to be dynamic [25].

DNase-seq experiments on chromatin isolated from A.
thaliana root hair and non-root hair cells using the

INTACT method (‘Isolation of Nuclei TAgged in spe-

cific Cell Types’) indeed identified cell-type-specific

ACRs [26]. Interestingly, despite the differences in cell

identity, the overall ACR landscapes in root hair and non-

root hair cells are remarkably similar. These results are in

stark contrast to the differences in chromatin accessibility

observed in animal cell types. Among other possibilities,

the relatively stable accessibility observed in A. thaliana
could be due to the fact that spatial clustering of CREs is

common in A. thaliana, and therefore activating and

repressive TFs can bind different CREs within the same

ACR. Future studies in plants with larger genomes should

determine whether longer intergenic space leads to the

spatial separation of CREs and larger differences in CRE

chromatin accessibility through development.

In addition to cell differentiation, ACRs can also be

dynamic in response to external stimuli. For example,
www.sciencedirect.com 
a set of 734 ACRs showed strong quantitative changes

throughout photomorphogenesis [18��]. The dynamic

ACRs could be clustered into five temporal patterns,

and each cluster was enriched for footprints of specific

TFs, suggesting that the distinct temporal patterns of

ACR dynamics are driven by the binding of different

TFs. The identification of specific TF footprints for each

cluster may provide a lead for determining the causative

trans-acting factors that drive the dynamic accessibility.

Interestingly, the densities of binding sites for TFs

involved in light response are similar in light-induced

ACRs and static ACRs, indicating many ACRs are poised

for stimuli responses and are accessible even in the

absence of the stimuli.

Gene-distal CREs in large plant genomes
The human genome hosts an abundance of gene-distal

CREs [13,27,28], many of which form complex interac-

tions with cognate genes by forming dynamic, develop-

mentally labile chromatin loops [27,29]. Some observed

forms of interactions include: CREs skipping nearby

genes to interact with more distal genes, multiple CREs

interacting with a single gene, and the promoters of genes

acting as distal CREs for other genes [27]. A combination

of chromatin attributes — accessible chromatin, cytosine

hypomethylation, enrichment of H3K4me1 H3K27ac or

H3K27me3, and absence of H3K4me3 — is used to

locate and discern the biological status of gene-distal

transcriptional enhancers in the human genome [28].

Comparatively little is known about gene-distal CREs in

plants. Results from genetic and transgenic assays suggest

that most CREs in the compact genome of A. thaliana are

located relatively close to their target genes. However, a

handful of functionally validated examples demonstrates

that gene-distal CREs do indeed exist in plants, and that

they show some similarities in chromatin attributes to

their mammalian counterparts [30]. The hepta-repeat

enhancer in Zea mays, which resides 100 kb upstream

of its cognate gene booster1, is characterized by accessible

chromatin, enrichment of acetylated histone H3, and a

physical association with booster1 [31–33]. The Block C

enhancer in A. thaliana resides 5 kb upstream of its

cognate gene FLOWERING LOCUS T (FT) and is simi-

larly characterized by accessible chromatin, acetylated

H3, and a physical association with FT [34,35]. Additional

examples of gene-distal CREs, such as the enhancer of

teosinte branched 1 (tb1) [36] and the VEGETATIVE TO
GENERATIVE1 (VGT1) enhancer of ZmRap2.7 [37], were

first identified as agronomic quantitative trait loci (QTL)

located 60-70 kb from their target genes and are impli-

cated in the domestication of Z. mays.

An important line of evidence from QTL studies suggests

that gene-distal CREs may be widespread in Z.
mays. Wallace et al. [38�] found that SNPs associated with

agronomically important traits are distributed throughout
Current Opinion in Plant Biology 2018, 42:90–94
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the intergenic space in Z. mays and often located tens to

hundreds of kb away from the nearest genes. Liu et al. [39]

identified expression QTL associated with 18 000 Z. mays
genes, and 30% of the leading expression QTL were

intergenic and greater than 100 kb away from the corre-

sponding genes.

Recently published epigenomic datasets revealed that

gene-distal ACRs are indeed abundant in plant genomes

[9��,10,16��,17��,18��,19��,40,41��]. The proportion of

gene-distal ACRs scales with genome size and the

amount of intergenic space [42]. In A. thaliana (135 Mb

genome), approximately 80% of ACRs reside within

2000 bp of genes, whereas in S. lycopersicum (�980 Mb

genome), only 50% of ACRs reside within 2000 bp of

genes [19��]. In Z. mays (2.3 Gb genome), a significant

proportion of ACRs are found tens to hundreds of kb away

from genes [17��]. Collectively, these results suggest that

the expansion of intergenic space by mechanisms such as

transposon insertions may contribute to the localization of

ACRs away from their target genes.

The generation of plant epigenomic datasets will

be valuable for the annotation of functional genomic

elements [43]. Epigenomic data have been used in com-

bination with chromatin accessibility to identify transcrip-

tional enhancers in Z. mays [41��]. Approximately

1500 putative intergenic enhancers were identified on

the basis of chromatin attributes typically used for the

identification of mammalian enhancers. Like mammalian

enhancers, the putative Z. mays gene-distal enhancers

show accessible chromatin, cytosine hypomethylation,

and enrichment of H3K9ac, potentially in correspon-

dence with the expression status of adjacent genes.

In contrast to mammalian enhancers, H3K4me1 appears

to be absent from the gene-distal CREs [41��].
Thus, H3K4me1 is unlikely to serve as a marker for

CREs in plants. These results were further corroborated

by a recently published Hi-C dataset that demonstrated

enrichment of accessible chromatin and acetylated H3

at the boundaries of chromatin loops in the maize

genome [44].

Conclusion and future perspectives
The recent applications of rapid and efficient genome-

wide ACR profiling assays have produced an unprece-

dented amount of data for the identification of CREs and

the understanding of how TF networks control gene

expression during development and in response to envi-

ronmental stimuli. However, a major limitation to these

assays is the lack of cell-type resolution. ACRs from

tissues containing mixed cell types provide little infor-

mation regarding which specific cell types the CREs

function in, and ACRs that are specific to uncommon

cell types may produce insufficient signals for their iden-

tification. Although this can be overcome by fluorescence

activated cell/nuclei sorting or INTACT, both assays
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require the generation of transgenic plants, which is time

consuming and impractical in many important crops

species. It is exciting to anticipate that the maturation

of single-cell technologies might facilitate ACR identifi-

cation in specific cell types. A second technical aspect that

requires further optimization is the experimental and

computational methods for defining DNA footprints that

result from TF-binding within ACRs, which will facilitate

the identification of bound TFs as well as the elucidation

of the dynamics of TF-DNA interactions.

The ability to rapidly identify ACRs also makes it possi-

ble to study CRE variations in DNA sequence and cell-

type specificity during domestication and evolution.

Direct sequence comparison between ACRs associated

with orthologous genes in different species is not always

informative as only short stretches of DNA sequences

within each ACR are expected to be functionally relevant.

Additionally, the history of small-scale and large-scale

gene/genome duplication events in different plant spe-

cies, together with different models of gene regulatory

evolution, interferes with the straightforward analysis and

interpretation of ACRs and CREs across species. How-

ever, better identification of CREs should be achieved by

improved footprinting assays as well as other data such as

DNA affinity purification sequencing (DAP-seq) [45].

The results should not only assist in the understanding

of CRE variation as the basis for phenotypic evolution,

but also provide important information for bioengineering

by modifying CRE sequences to improve agronomically

important traits.

The widespread presence of distal CREs revealed by

ACR profiling assays also raises a number of mechanistic

questions. The long distance between distal CREs and

their target genes necessitates 3D interactions. Recent

Hi-C studies on Z. mays, S. lycopersicum, Sorghum bicolor,
Setaria italica, and O. sativa demonstrated extensive intra-

chromosomal interactions throughout the chromosome

arms [44,46]. The large-genome plants (e.g. Z. mays
and S. lycopersicum) had thousands of chromatin loops,

the majority of which formed between islands of

genic regions separated by repressive heterochromatin.

A fraction of the interactions are formed between inter-

genic and genic regions. However, the limited resolution

of the genome-wide dataset was inadequate to detect

specific CRE-gene interactions. Future Hi-C studies

with enhanced resolution (such as HiChIP [47] and

ChIAPET [48]) will be necessary to elucidate specific

CRE-gene interactions. Finally, most distal ACRs are

associated with highly localized chromatin signatures,

including DNA hypomethylation and certain histone

modifications. Future studies of the establishment, main-

tenance and removal of these chromatin signatures should

provide important information on how TFs interact

with chromatin modification pathways to control gene

expression.
www.sciencedirect.com
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