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ABSTRACT

Social media is often viewed as a sensor into various societal events

such as disease outbreaks, protests, and elections. We describe

the use of social media as a crowdsourced sensor to gain insight

into ongoing cyber-attacks. Our approach detects a broad range of

cyber-attacks (e.g., distributed denial of service (DDoS) attacks, data

breaches, and account hijacking) in a weakly supervised manner

using just a small set of seed event triggers and requires no train-

ing or labeled samples. A new query expansion strategy based on

convolution kernels and dependency parses helps model semantic

structure and aids in identifying key event characteristics. Through

a large-scale analysis over Twitter, we demonstrate that our ap-

proach consistently identiies and encodes events, outperforming

existing methods.
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1 INTRODUCTION

Cyber-attacks are now widespread, e.g., most recently of the US

Democratic National Committee and at companies such as Sony,

Verizon, Yahoo, Target, JP Morgan, Ashley Madison as well as at

government agencies such as the US Oice of Personnel Manage-

ment. Consequences and implications of cyber-attacks range from

data leaks about sensitive personal information about users to po-

tential to cause loss of life and disruptions in critical infrastructure.

To develop adequate cyber-defenses it is imperative to develop

good ‘ground truth’, i.e., an authoritative record of cyber incidents
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reported in the media cataloged alongside key dimensions. Avail-

ability of high quality ground truth events can support various

analytics eforts, e.g., identifying precursors of attacks, developing

predictive indicators using surrogate data sources, and tracking the

progression of events over space and time.

It has been well argued that, because news about an organiza-

tion’s compromise sometimes originates outside the organization,

one could use open source indicators (e.g., news and social media)

as indicators of a cyber-attack. Social media, in particular, turns

users into social sensors empowering them to participate in an

online ecosystem of event detection for happenings such as disease

outbreaks [31], civil unrest [20, 37], and earthquakes [29]. While

the use of social media cannot fully supplant the need for internal

telemetry for certain types of attacks (e.g., use of network low data

to detect malicious network behavior [4, 12, 21]), analysis of such

online media can provide insight into a broader range of cyber-

attacks such as data breaches, account hijacking and newer ones as

they emerge.

At the same time it is non-trivial to harness social media to

identify cyber-attacks. Our objective is to detect a range of diferent

cyber-attacks as early as possible, determine their characteristics

(e.g., the target, the type of attack), in an weakly supervised manner

without any requirement for training phase or labeled samples.

Prior work (e.g., [27]) relies on trainingwith annotated sampleswith

ixed feature sets which will be unable to capture the dynamically

evolving nature of cyber-attacks over time and are also unable to

encode characteristics of detected events, as we aim to do here.

Our main contributions are:

• A framework for cybersecurity event detection from

online social media. We propose a dynamic typed query

expansion approach that requires only a small set of general

seed event triggers and learns to map them to speciic event-

related expansions and thus provide situational awareness

into cyber-events in an unsupervised manner.

• Anovel query expansion strategy based ondependency

tree patterns. To model typical reporting structure in how

cyber-attacks are described in social media, we propose a dy-

namic event trigger expansion method based on convolution

kernels and dependency parses. The proposed approach also

employs a word embedding strategy to capture similarities

between event triggers and candidate event reports.

• Extensive empirical evaluation for three kinds of cyber-

attacks. We manually catalog ground truth for three event

classesÐdistributed denial of service (DDoS) attacks, data

breaches, and account hijackingÐand demonstrate that our



approach consistently identiies and encodes events outper-

forming existing methods.

2 PROBLEM SETUP

The input to our methodology is a collection of time-ordered tweets

D = {D1,D2, . . . ,Dp } organized along p time slots. Let D denote

the tweet space corresponding to a subcollection Di , letD+ denote

the target tweet subspace (in our case, comprising cyber-attack

events), and let D− = D − D+ denote the rest of the tweets in the

considered tweet space.

Deinition 1. Typed Dependency Query: A typed dependency

query is a linguistic structure that characterizes a semantically co-

herent event related topic. Diferent from n-grams, terms contained

in a typed dependency query share both syntactic and semantic

relationships. Mathematically, a typed dependency query is for-

mulated as a tree structure G = {V ,E}, where node v ∈ V can be

either a word, user mention, or a hashtag and ε ∈ E represents a

syntactic relation between two nodes.

Deinition 2. Seed Query: A seed query is a manually selected

typed dependency query targeted for a certain type of event. For

instance, łhacked accountž can be deined as a potential seed query

for an account hijacking event.

Deinition 3. Expanded Query: An expanded query is a typed

dependency querywhich is automatically generated by the dynamic

query expansion algorithm based on a set of seed queries and a given

tweet collection D. The expanded query and its seed query can

be two diferent descriptions of the same subject. More commonly,

an expanded query can be more speciic than its seed query. For

instance, łprime minister dmitry medvedev twitter account hackž,

an expanded query from łhacked accountž, denotes the message

of an account hijacking event related with Russian Prime Minister

Dmitry Medvedev.

Deinition 4. Event Representation: An event e is deined as

(Qe ,date, type ), where Qe is the set of event-related expanded

queries, date denotes when the event happens, and type refers to

the category of the cyber-attack event (i.e., DDoS, account hijacking,

or data breach).

HereQe is a deined as a set because, in general, a cyber-attack event

can be presented and retrieved by multiple query templates. For

instance, among online discussion and report about event łFashola’s

account, website hackedž, the query template most used are łfashola

twitter account hackž, łfashola n78m website twitter account hackž

and łhack accountž.

Given the above deinitions, the major tasks underlying the

cyber-attack event detection problem are deined as follows:

Task 1: Target Domain Generation. Given a tweet subcollec-

tionD, target domain generation is the task of identifying the set

of target related tweets D+. D+ contains critical domain relevant

information based on which the expanded queries can be mined.

Task 2: Expanded Query Extraction. Given target domain

D+, the task of expanded query extraction is to generate a set of

expanded queries Q = {q1, . . . ,qn } which represents the relevant

concepts delivered byD+. Thus set Q can be used to retrieve event

related information from other collection sets.

Task 3: Dynamic Typed Query Expansion. Given a small set

of seed queries Q0 and a twitter collectionD, the task of dynamic

typed query expansion is to iteratively expand Dk
+
and Qk until

all the target related messages are included.

3 METHODOLOGY

In traditional information extraction (IE), a large corpus of text must

irst be annotated to train extractors for event triggers, deined as

main keywords indicating an event occurrence [8]. However, in

our scenario using online social media, a manually annotated label

set is impractical due to the huge volume of online media and the

generally noisy characteristics of social media text. In this section,

we discuss in detail the key components of our system, illustrated

in Fig. 1, to automatically mine cybersecurity related queries over

which the event tracking is performed.

3.1 Target Domain Generation

In this subsection, we describe our target domain generationwherein

crowdsourced social indicators (tweets) of cyber-attack events are

retrieved. Given a query and a collection of tweets D, the typical

way to retrieve query-related documentation is based on a bag of

words model [30] which comes with its attendant disadvantages.

Consider the following two tweets: łhave Riseup servers been com-

promised or data leaked?ž and ł@O2 You completely screwed

me over! My phones back on, still leaking data and YOU are so

UNHELPFUL #CancellingContract #Byež. Though the important

indicator łdata leakž for a data breach attack is mentioned in both

tweets, the second tweet is complaining about a phone carrier and

would be considered noise for the cybersecurity domain. To address

this problem, syntactically bound information and semantic simi-

larity constraints are jointly considered in our proposed method.

More speciically, each tweet in D is irst converted into its

dependency tree form. Thus for a given seed query q, the target

domain D+ ⊆ D can be generated by collecting all tweets which

are both syntactically and semantically similar to the seed query

q. Mathematically, given the two dependency trees q and d ∈ D, a

convolution tree kernel [9] is adopted to measure the similarity by

computing all the common paths between two trees:

K(q,d ) =
∑

u ∈q
v ∈d

(

1 +H (u,v )
)

1R
>0

(

H (u,v )
)

(1)

where v and u are nodes from two trees q and d respectively, R>0
represents the set of positive real numbers, 1(·) is the indicator

function, andH (v,u) counts the number of common paths between

the two trees which peak at v and u, which can be calculated by

an eicient algorithm proposed by Kate et al. [9], as described in

Algorithm 1.

In Algorithm 1, λ ∈ (0, 1] (set to 0.5) is a parameter used to

down-weight the contribution of long paths, κ (u,v ) is the number

of common paths between the two trees which originate from u

and v , and can be recursively deined as:

κ (u,v ) =
∑

µ ∈C (u )
η∈C (v )

(1 + κ (µ,η))1µ�η (u,v ) , (2)





Table 1: Seed queries for cyber-attack events.

Category Seed Query

Data breach data leak, security breach, information

stolen, password stolen, hacker stole

DDoS DDoS attack, slow internet, network inil-

trated, malicious activity, vulnerability ex-

ploit, phishing attack

Account Hijacking unauthorized access, stolen identity, hacked

account

in Equation 1. At the kth iteration, given the last expanded query

set Qk−1 and last generated target domainDk−1
+

, our approach irst

prepares candidate expanded queries for each matched qi ∈ Q
k−1

and d ∈ Dk−1
+

:

q̂ki = subtree
(

argmax
v ∈d

(
∑

u ∈qi

H (v,u))
)

, (3)

where v and u are term nodes in tweet d and qi respectively, and

subgraph(·) is an operator to extract the subtree structure from

entire tree with v as root. Thus the candidate query expansions

are collected based on the relevant document and query space,

that is Dk−1
+

and Qk−1. To identify the best (candidates) expanded

queries, query terms are then ranked based on the Kullback-Leibler

divergence [18] between the target domain Dk−1
+

and the whole

tweet collection D:

KL( f ,Dk−1
+
|D) = log

Pr( f |Dk−1
+

)

Pr( f |D)
Pr( f |Dk−1

+
), (4)

where KL( f ,Dk−1
+
|D) denotes the Kullback-Leibler divergence, f

is a term in q̂ki , Pr( f |D
k−1
+

) and Pr( f |D) is the probability of term

f appearing inDk−1
+

andD, respectively. Using the KL divergence

to rank query terms we are able to assign scores to terms that best

discriminate relevant and non-relevant expansions. For example

query terms such łaccountž and łtwitterž both appear frequently in

the candidate expansions but they have little informative value as

they will have a similar (random) distribution in any subset of the

twitter collection, whereas terms such as łhackedž will have com-

paratively higher probability of occurrence in the relevant subspace.

These high ranked candidates will then act as the expanded queries

set to run the next iteration until the algorithm converges.detailed

dynamic typed query expansion algorithm is shown in Algorithm 2.

3.3 Event Extraction

Given an expanded query set Q, we extract Qs | qi ⊈ qj | qi ,qj ∈

Qs . For example, if the surface string representations of a set of

expanded queries Q is (łdata breachž, łdata leakž, łashley madisonž,

łashleymadison data breachž) thenQs will be (łashleymadison data

breachž). We then cluster the query expansions in Qs using ainity

propagation [7] and also extract exemplars qe of each query set Qe
that are representative of clusters, where each member query is

represented by a vector q̃ calculated from the word embedding ũ

of the lemma of each query term u ∈ q as:

q̃ =

∑

u ∈q

ũ . (5)

Algorithm 2: Dynamic Typed Query Expansion Algorithm.

Input: Seed Query Set Q0, Twitter sub-collection D

Output: Expanded Query Set Q

1 Set D0
+
=match (Q0

, D), k = 0

2 repeat

3 k = k + 1

4 for qi ∈ Q
k−1

, d ∈ Dk−1
+

do

5 q̂ki = subtree (argmax
v∈d

∑

u∈qi

CPP (v, u )) // new candidate

6 for f ∈ q̂ki do

7 Pr(f |Dk−1
+

) =
t f (f )

|Dk−1
+
|

8 Pr(f |D) =
t f (f )
|D|

9 w (f ) = KL(f , Dk−1
+
|D) // feature score

10 w (q̂ki ) =
∑

f ∈q̂ki
w (f ) // query score

11 Qk = topN (w ( Q̂k )), Q̂k = {q̂
k
1 , . . . , q̂

k

|Q̂k |
}

12 Dk
+
=match (Qk , D) // filter new target subspace

13 until
k
⋃

i=0
Qi −

k−1
⋃

i=0
Qi , ∅ // DQE iteration;

14 Q = Qk

Each exemplar query qe is then annotated to a cyber-attack type.

For this purpose, we irst compute the cosine similarity between

an exemplar query expansion qe and seed query qj ∈ Q
(0) as:

sim(qe ,qj ) =
q̃e · q̃j

| |q̃e | | · | |q̃j | |
. (6)

The qj ∈ Q
(0) which has the highest similarity value with qe

determines the event type to which Qe belongs to. For the complete

event representation (Qe ,date, type ) date information is extracted

based on the time interval chosen for DQE; for example in our

experiments we run DQE on a daily aggregated collection of tweets.

In this way we extract the inal set of event tuples.

4 EVALUATION

4.1 Evaluation Setup

4.1.1 Dataset and Gold Standard Report. We evaluate the pro-

posed method on a large stream of tweets from GNIP’s decahose

(10% sample) collected fromAugust 2014 through October 2016. The

total raw volume of our Twitter dataset across these 27 months is

5,146,666,178 (after removing all retweets and non-English tweets).

Then, from this raw volume we create two subset collections:

• Fixed Keyword Filtered Tweets: We iltered 79,501,789

tweets that contain at least one matching term from a list of

cyber-attack related keywords. These are top 1000 keywords

(ranked by TFIDF) extracted from description texts of events

in our gold standard report (see below).

• Normalized Tweet Texts:We extract and normalize tweet

texts (after removing accents, user mentions and urls) to

produce a collection of 3,267,567,087 unique texts to train a

200 dimensional word embedding via Gensim’s word2vec

software [25].

Note that the experimental results for the performance of our event

detection approach are done using the entire raw volume of over





Table 2: A sample of negative instances for cyber-attack events used in the evaluation of target domain generation methods.

Event Entity Date Sample Tweet

white house 2014-08-08 Toddler causes perimeter breach at White House

green zone 2016-04-30 Anti-Government Protesters Breach Baghdad’s Green Zone

avijit roy 2015-02-27 American-Bangladeshi blogger Avijit Roy hacked to death by Islamist extremists

jessica jones 2016-01-13 NBC thinks it’s hacked Netlix’s ratings, says ’Jessica Jones’ bests ’Master of None’

arbor networks 2015-03-25 Arbor Networks, Cisco partner on DDoS protection

zenedge 2016-07-30 ZENEDGE Debuts Always-On DDoS Protection #Bitcoin

Table 3: Contingency table used to assess cyber-attack related tweet detection results.

Method
Data Breach DDoS Account Hijacking

TP FP FN TN TP FP FN TN TP FP FN TN

Typed DQE 1110 389 528 1085 516 129 93 30 2028 1 2976 200

Baseline 1 [27] 1526 1391 112 83 295 113 314 46 2182 29 2322 172

set of seed events for each type of attack. For training, we

randomly selected 10 ground-truth events for each of the

three attack types (from our GSR). Additionally, keeping

the similar proportions of per attack-type events, in the test

phase we also included several negative sample events (as

shown in Table 2) from manual search.

Following the dataset preparation process described in [27],

we retained only those event-related tweets that contained

keywords - łhackedž (for account hijacking events), łbreachž

(data breach events), and łddosž (DDoS events). Following

this step, the feature set was generated by collecting a win-

dow of contextual words and POS tags surrounding the seed

event keyword, where this window size was set to 4 in our

evaluation, the target expectation was set to 0.55, l2 regular-

ization term to 100, and expectation regularization term λU

set to 10 times the number of labeled samples. In total, we

collected 8943 and 8585 tweet samples for training and test-

ing, respectively. Further, we were able to extract 8969, 6178

and 10760 features from data breach, DDoS, and account

hijacking event related tweets, respectively.

(2) Cyber-attack Event Detection using Bursty Keywords (baseline

2) [11]: This baseline method identiies time periods in which

a target event is uncharacteristically frequent or bursty on

a set of static keywords. An event is extracted if the size

of this set of bursty keywords is larger than a threshold Tb .

In this experiment, we use the 79.5 million Fixed Keyword

Filtered Tweets and the 1000 static keywords to apply the

baseline method. We set the threshold Tb based on small

scale empirical tests on a few months of data, and manually

examine the detected events. We set Tb =36 which returns

a better event/noise ratio. We apply this threshold on all

the data and detects 81 events from August 2014 through

October 2016. Each detected event is characterized by a date

and a set of bursty keywords.

4.1.3 Matching Detected Events with GSR. Given a detected

event presented by e = (Qe ,date, type ), we developed a semi-

automatic method to detect if e is matched with any event in the

GSR:

(1) For named entity in e , we check if it matches any event

description in GSR and obtain a matched collection from

GSR, sayME;

(2) Further ilterME by matching the event date between date

in e andME, with a time window as 3 (one day before date ,

and one day after date), and obtain a new iltered event set,

say FME;

(3) Compare the event type between e and event in FME; if

the event type also matches, then event e is consider as a

matched event.

However considering that the detected events are mined from

the Twitter environment which may not use formal keywords to

describe the event. We also manually double check the event e

if it fails step 1. Detected events by the baseline method use the

same approach to match against GSR. The only adjustment is to

match the bursty keywords of the detected events instead of named

entities.

4.2 Measuring Performance

Target Domain Generation. In terms of precision and recall

(see Table 4), our approach achieves a 70% accuracy in extracting

target domain tweets, outperforming the comparison to baseline

1 [27] in two categories, viz. data breach and DDoS. In case of

account hijacking our accuracy is only slightly less due to our

lower recall, because TypedDQE will reject tweets by way of down-

ranking expansion candidates that are not speciic enough (for

example if they contain only one keyword such as łhackedž) and

are below a certain support threshold. The use of kernel similarity

(as opposed to ixed context window) provides higher precision,

seen clearly from Table 3 where our approach detected only 1 tweet

incorrectly as account hijacking-related in comparison to 29 false

positives by the baseline. Also worth noting is the high speciicity

(true negative rate) of 71% as compared to baseline’s 16%.

Cyber-attack Event Detection. Precision and recall over dif-

ferent types of cyber-attack events are summarized in Table 4 using

a second baseline [11]. These results show that with only a small

set of seed queries (as shown in Table 1), our approach can obtain







Table 6: Comparison of our work to past research.

Method Event Goal Data

No

Training

Keyword

Expansion

Information

Extraction

Characterize

Event

Type Detection

[16] ✕ ✕ ✕ ✕ ✕ ✓ Cyberattacks Network Data

[27] ✕ ✓ ✓ ✕ ✓ ✓ Cyberattacks Twitter

[22] ✕ ✕ ✕ ✕ ✕ ✕ Cyberattacks WINE

[39] ✕ ✕ ✓ ✕ ✕ ✕ Malware Papers

[12] ✕ ✕ ✕ ✕ ✕ ✕ Malware WINE

[28] ✕ ✕ ✓ ✕ ✕ ✓ Vulnerability Twitter

[5] ✓ ✕ ✕ ✕ ✕ ✕ Intrusion Network Data

[21] ✓ ✕ ✕ ✕ ✕ ✕ Intrusion Network Data

[6] ✓ ✕ ✕ ✕ ✕ ✕ Intrusion Network Data

[4] ✓ ✕ ✕ ✕ ✕ ✕ Insider Access Log
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Ours ✓ ✓ ✓ ✓ ✓ ✓ Cyberattacks Twitter
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