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Abstract We consider hidden charm pentaquarks as hadro-
quarkonium states in a QCD inspired approach. Pentaquarks
arise naturally as bound states of quarkonia excitations and
ordinary baryons. The LHCb P.(4450) pentaquark is inter-
preted as a ¥/-nucleon bound state with spin-parity J© =
3/27. The partial decay width I" (P, (4450) — J /¥ + N) =~
11 MeV is calculated and turned out to be in agreement
with the experimental data for P.(4450). The P.(4450) pen-
taquark is predicted to be a member of one of the two almost
degenerate hidden-charm baryon octets with spin-parities
JP = 1/27,3/27. The masses and decay widths of the
octet pentaquarks are calculated. The widths are small and
comparable with the width of the P.(4450) pentaquark, and
the masses of the octet pentaquarks satisfy the Gell-Mann—
Okubo relation. Interpretation of pentaquarks as loosely
bound X.D* and ¥* D* deuteronlike states is also consid-
ered. We determine quantum numbers of these bound states
and calculate their masses in the one-pion exchange scenario.
The hadroquarkonium and molecular approaches to exotic
hadrons are compared and the relative advantages and draw-
backs of each approach are discussed.

1 Introduction

Long anticipated heavy hadron states with hidden charm
(and/or beauty) finally arrived in the recent years (see, e.g.,
the review in [1] and references therein) and are here to stay.
Four-quark states with hidden charm were discovered first,
and the heavy pentaquarks followed [2].

There are at least four possible scenarios for the dynam-
ics of the LHCD pentaquarks. In the QCD inspired scenario
one assumes that pentaquarks arise as a result of chromoelec-
tric dipole interaction between a small quarkonium (charmo-
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nium) and a large baryon [3—7] (heavy quarkonium interac-
tion with nuclei was considered in [8,9], see also references
in [10]). Smallness of the quarkonium state is due to large
masses of the heavy quarks. The strength of the quarkonium—
proton interaction in this case is determined by in principle
calculable quarkonium chromoelectric polarizability and by
the proton energy—momentum density. The last one is nor-
malized to the proton mass and is to a large extent model-
independent. Pentaquarks in this scenario look like atomlike
systems with a small nucleus whose role plays the quarko-
nium state and light nucleon quarks that play the role of the
atomic electrons. The characteristic feature of this scenario
is that the pentaquark decay into a charmonium state with
hidden charm and an ordinary baryon is by far the domi-
nant mode of decay. Decays into states with open charm are
strongly suppressed because they can go only via exchange
by aheavy open charm meson. We will discuss the hadrochar-
monium scenario in more detail below.

Molecular-like scenarios initiated in [11] rely on an anal-
ogy between heavy exotic hadrons with hidden charm and
molecules. In this scenario charmed constituents of hidden-
charm hadrons preserve their individuality and form bound
states. There are two kinds of the molecular-like scenarios. In
the first one charmed hadrons interact via exchange of light
mesons and form hidden charmed pentaquarks with the bind-
ing energy at the level of hundreds of MeV (see review in
[12] and references therein). In the second kind of molecular
scenario initiated in [13—15] the binding energy is at the level
of tens of MeV, and the heavy exotic hadrons are bound due
to the one-pion exchange. This approach mimics the loosely
bound deuteron. In the deuteron the S-wave one-pion central
potential is not strong enough to bind the proton and neu-
tron, and the much stronger noncentral tensor potential does
not contribute to the S-wave. Binding in the deuteron arises
because the tensor potential supports coupling between the S-
and D-states. This mechanism was generalized for the case of
the tetraquark mesons with hidden charm in [13,15]. Below
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we will develop this approach and apply it to the dynami-
cal interpretation of the newly discovered pentaquarks. The
generic feature of both molecular scenarios is the necessity to
introduce a small distance repulsive cutoff. Technically this
cutoff is needed to avoid collapse of the would be bound state.
Physically, cutoff arises because due to the finite size both of
the constituent hadrons and the exchanged mesons, the poten-
tial picture does not work at small distances. Similar cutoff is
routinely introduced in nuclear physics, see, e.g., [16]. The
distances between the open charm constituents in the molec-
ular scenario are relatively large, what strongly impedes pos-
sible decays into final states with hidden-charm mesons like
J /. This seems to be a problem for this scenario, since the
LHCDb pentaquarks were discovered as bumps in the invariant
mass distributions of J /¢ N. We will discuss the role of the
cutoff and other features of the molecular scenario in more
detail below.

One more popular idea is to treat heavy exotic hadrons
with hidden charm as “true” tetra- and pentaquarks. This
approach to heavy pentaquarks with hidden charm was initi-
ated in [17] and developed further in numerous later publica-
tions, see, e.g., [18-22] and references in [12,23]. The idea
is that the LHCb pentaquarks are diquark—diquark—antiquark
bound states. The characteristic feature of this approach is
that the hidden-charm pentaquarks arise as compact struc-
tures, more or less on par with the ordinary hadrons. The
mere assumption about the diquark—diquark—antiquark struc-
ture of pentaquarks allows one to develop a rather reach phe-
nomenology. Consideration of the color and flavor assign-
ments for diquarks leads to the prediction of the flavor pen-
taquark multiplets [17]. The multiplet pattern in the diquark—
diquark—antiquark is qualitatively different than the one in the
hadrocharmonium and molecular approaches and can serve
as an experimental signature that allows to choose between
different models. The SU (3) flavor symmetry was used to
predict ratios of partial weak decay widths of bottom baryons
to a pseudoscalar meson and pentaquark [20,21]. These pre-
dictions were further developed in the framework of the effec-
tive Hamiltonian approach to pentaquarks in [22] where the
flavor SU (3) symmetry was amended by the heavy quark
symmetry. A whole spectrum of new pentaquark states with
definite properties arises in this approach. Also a very inter-
esting set selection rules for weak decays of bottom baryons
to pentaquarks is predicted. All these results could be used
as a guideline in experimental searches for pentaquarks in
bottom baryon decays.

In one more scenario pentaquarks are considered as
molecular-like bound states of a “baryon” and a “meson”
with an open color [24]. There are also suggestions in the
literature that the LHCD results could be explained by some
kinematical effects [25-28] without need for pentaquarks.

Below we will concentrate on the hadrocharmonium and
molecular approaches to pentaquarks. We will describe in
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detail the interpretation of the LHCb pentaquarks as bound
states of charmonium and the nucleon suggested in our pre-
vious paper [6], calculate the pentaquark masses and widths,
and predict new pentaquark states. We will also present some
new results in molecular approach and compare our results
in hadrocharmonium and molecular approaches with the pre-
dictions of other authors.

2 Quarkonium-nucleon interaction

Different models were suggested for description of hadrons
with hidden charm. Especially appealing is the hadroquarko-
nium approach to tetraquarks put forward in [3] (see also
[4,5]). In [6] we applied this idea to the LHCb pentaquarks.
The hadroquarkonium approach is based on the simple obser-
vation that interaction of a small size heavy quarkonium with
other hadrons can be considered in the framework of the QCD
multipole expansion [29-32], the role of the small parameter
plays the ratio of the quarkonium size and the gluon wave
length. For the Quarkonium—Nucleon interaction this ratio
is just the ratio of the quarkonium and nucleon sizes. In the
leading order approximation we have to consider emission
(or absorption) of a chromoelectric dipole gluon by a heavy
quark—antiquark pair. The color singlet pair goes into a color
octet state after interaction with a dipole gluon and a second
dipole interaction is needed to return it to the color singlet
state. As a result in the leading approximation interaction of
a heavy singlet quark—antiquark pair with other hadrons is
described by the effective Hamiltonian (see, e.g., [10])

1
Hepp(x) = —EaijEi“(x)E,“-(x), ey

where E' is the chromoelectric field with the absorbed strong
coupling constant' o, and «; ; is the quarkonium chromo-
electric polarizability

1
aij = T (VG = HrGriaf = m)lv), )

where ¢{ are the SU (3). color generators in the fundamental
representation, r = r| — r, describes the relative positions
of the quark and antiquark, and G is the quark—antiquark
Green function in the color octet channel. In the nonrel-
ativistic approximation the heavy quark—antiquark interac-
tion is described by an effective Coulomb potential. Spins
and coordinates decouple in a nonrelativistic bound state
and the effective dipole Hamiltonian for quarkonium S-states
reduces to

1
Hepp(x)(S) = —EaE“(x) -E“(x), 3)

! The gluon part the QCD Lagrangian has the form — (1 /4g52)G2.
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where
1
a(ns) = o (nS |(tf — tHrGr(t{ —15)|nS). 4)

The perturbative quarkonium chromoelectric polarizability
for an arbitrary nl states was calculated long time ago [33,34]
(see also calculations for n.S states in the large N, limit [31,
32] and the recent calculation of the 1§ polarizability for an
arbitrary N, in [35]). Below we will need polarizabilities for
the two lowest energy levels of nonrelativistic quarkonium
[33,34]

67264

78
18) = —ai 28) = ——
a(1S) agmg, o(2S) 563 agmg, 5)

425
where m g is the heavy quark mass, and ap = 3a,/4m, is
quarkonium Bohr radius.

We will also need the transitional 15-2S polarizability
that can be easily calculated in the large N, limit along the
lines described in [31,32]

32002
Waom 0- (6)

a(lS —28) =—
Fitting the J/v and 1" masses, we obtain numerical values
for the Coulombic polarizabilities

a(18) =0.2GeV™3, «(2S) =12 GeV 3,

_3 @
a(l§ —28) =—-0.6GeV ™.
Charmonium is not a Coulombic system and therefore one
cannot expect quantitative agreement between the charmo-
nium polarizabilities and their perturbative values. Tran-
sitional polarizabilities |a(J/¥ — ¥/)| ~ 2 GeV~3 and
le(Y — T")| &~ 0.66 GeV 3 for charmonium and bottomo-
nium were extracted from the phenomenological analysis
of the pionic decays ' — J/¢¥mwmw and T/ — Trmw
[36]. Comparing these values with the perturbative results
above we see that the perturbative calculations provide at
best an order-of-magnitude estimates of the true polarizabil-
ities. Below we will use perturbative polarizabilities for such
estimates and for rough comparison of the relative magni-
tudes of the polarizabilities.

To describe interaction of a heavy quarkonium with a
nucleon we need to calculate the expectation value of the
chromoelectric field squared in Eq. (3) in a nucleon state.
To facilitate this calculation we represent the chromoelectric
field squared as a linear combination of the covariant gluon
field strength G,Zw and the energy density of the gluon field

(zero component of the gluon energy—momentum tensor TO%)

E’-B* E°+B*> G?
2= =—— + ¢TI, (8)

E
2 + 2 4

where g2 is the QCD coupling constant normalized at the
scale of the quarkonium radius. It arises here because the
QCD coupling constant describing interaction of a small
chromoelectric quark—antiquark dipole with an external field
is normalized at the quarkonium size (in our notation this
coupling constant is swallowed by the field).

Exploiting the QCD scale anomaly we obtain

2 _ 2 8 P G
E“(x)=¢ ngT n(x) + T (x) ), )

where T#, is the trace of the QCD energy—momentum ten-
sor, b = (11/3)N. — (2/3)Ny is the leading coefficient of
the B-function, and g; is the running strong coupling con-
stant at the scale of the nucleon radius. Scale dependence of
the coupling constant can be safely ignored for charmonium,
but could become important for bottomonium. We temporar-
ily omit the light quark masses in the trace of the energy—
momentum tensor, they will be accounted for later.

With the help of the representation in Eq. (9) the effective
Hamiltonian in Eq. (3) reduces to the static nonrelativistic
potential that describes interaction of a heavy quarkonium
with the nucleon

1 872
Vix) = —zagz <;73T“u(x) + ToGo(x)> , (10)

where T,’f (x) and TOGO (x) are the respective tensor den-
sities inside the proton. The energy density TO% (x) car-
ried by the gluons inside the proton cannot be determined
unambiguously and is model-dependent. We make a nat-
ural assumption that it is proportional to the total proton
energy density TOGO (x) = &Too(x) [37]. Such assumption
worked pretty well in the case of the pion. The factor &
depends on the normalization point and is about 1/2 at
Q2 ~ 1GeV? [37]. We will assume this value in fur-
ther calculations. It is convenient to represent the interac-
tion potential in terms of the energy density and pressure,

diag (7, (x)) = (£ (x), p(x), p(x), p(x))

472 g2 bgs2
Vix) = —a— - <;> [pE(x) (1 +$8n2> - 3p(x)} .

s Y

This effective potential has a simple interpretation. A point-
like quarkonium serves as a tool that scans the local energy
density and local pressure inside the nucleon. It could happen
that the size of quarkonium is not small enough in comparison
with the size of the nucleon. In such case we will need to
consider higher order terms in the QCD multipole expansion
in order to improve description of the Quarkonium—Nucleon
interaction.

@ Springer
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The potential in Eq. (11) is to a large extent model-
independent, its normalization

vt = o (5 ) (14555
/d V) = —a & My (1+&25 (12)

is determined by the total energy of the nucleon [ d3xpE(x)
= My and the stability condition [ d*xp(x) = 0. Only the
factorv = 14+£& (bg% / 872) in Eq. (12) cannot be determined
from the first principles, and we use the phenomenological
value & ~ 1/2 to obtain v ~ 1.5.

We are going to use the interaction potential in Eq. (11)
to explore possible bound states formed by heavy quarko-
nia states and the nucleon. With the known normalization of
the potential and the nucleon radius we could proceed in an
almost model-independent way,” considering the potential
as a potential well with the size of the nucleon. Instead we
will use the local energy density pg(x) and pressure p(x)
that were computed in the x QSM in [38]. The potential con-
structed in this way automatically satisfies the normalization
condition in Eq. (12) since the normalization condition for
the energy density and the stability condition for the pressure
hold due to equations of motion.

3 Pentaquarks as hadrocharmonium states

The LHCb pentaquarks were discovered in the analysis of the
invariant mass distributions of J /v plus nucleon. A natural
idea is that the pentaquarks arise as bound states of charmo-
nium excitations and the nucleon. We use the nonrelativistic
Quarkonium—Nucleon potential in Eq. (11) to explore this
hypothesis. The nonrelativistic Schrodinger equation in the
channels J /vy + N and v/’ + N has the form

V2
(——+V(")—Eb> Y =0, (13)
21

where w, ¥ and Ej, are the reduced mass, wave function, and
the binding energy, respectively. The chromoelectric polar-
izabilities for each channel are collected in Eq. (7). Due to
the poor knowledge of polarizabilities we will vary them in
a relatively wide region.

Solving the Schrodinger equation Eq. (13) numerically
we find that a bound state of J/y and the nucleon arises
only when the polarizability reaches the critical value o =
5.6GeV 3. This value of polarizability is more than an order
of magnitude larger then the perturbative «(1S5) in Eq. (7),
and we conclude that J /v does not form a bound state with
the nucleon. Critical values of polarizabilities for the excited

2 A model-independent estimate of the minimal polarizability sufficient
for existence of a bound state was also obtained in [7].
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S states of charmonia are far below their perturbative values
in Eq. (7) (see [6,31-34] for the perturbative polarizabilities
of the higher excited states of charmonia). Hence, such states
do form bound states with the nucleon.> We concentrate on
the lowest ¥’ N bound states in this paper.

A bound v'N state with the mass of the P.(4450) pen-
taquark, the binding energy E;, = —176 MeV, and the orbital
momentum /! = 0 is formed at «(2S) = 17.2 GeV 3.
This value of polarizability is well inside the error bars of
the perturbative calculation of the «(2S) polarizability in
Eq. (7). There are no other bound v/'N states at a(2S) =
17.2 GeV—>.

Exploiting the uncertainty in our knowledge of the «(25)
polarizability we can also adjust it in such way as to match
the light LHCb pentaquark. A bound y'N state with the
mass of the P.(4380) pentaquark, the binding energy E; =
—246 MeV, and the orbital momentum / = 0 is formed at
«(2S) = 20.2 GeV 3. Again, there are no other bound ¥'N
states at this value of polarizability. An identification of this
bound state with the P.(4380) pentaquark would mean that
there are no heavier pentaquarks formed by ¥'N.

Taking into account opposite parities of the observed
LHCb pentaquarks [2] it is interesting to explore possible
Y’ N bound states with [ = 1. Such state arises for the first
time when polarizability reaches the value o ~ 22.4 GeV 3.
One could try to identify this state together with a more
tightly bound / = 0 bound state with the pair of the LHCb
pentaquarks. The spin-parities 3/27 for the lighter state and
5/2% for the heavier one fit nicely the experimental data.
However, the mass splitting between these states is about
300MeV instead of the experimentally observed 70 MeV.
The large mass difference between the rotational excitation
and the ground state indicates that the moment of inertia of
the bound state is small. This bound state moment of inertia
is determined by the size of the binding potential. The bind-
ing potential is proportional to the nucleon energy density,
and hence the same binding potential determines the nucleon
moment of inertia. In the mean field picture of the nucleon
its moment of inertia determines the energy of its rotational
excitations which is about a few hundred MeV as can be seen
from the N — A mass splitting. Due to the connection between
the nucleon moment of inertia and the bound state moment of
inertia we are compelled to conclude that the moment of iner-
tia of the bound state is small. This explains large splitting
between the bound states with different angular momenta.
Another drawback of the scenario with two pentaquarks as
! = 0and! = 1 bound states is that it predicts that the heav-
ier pentaquark with / = 1 has a larger decay width, what
squarely contradicts the experimental data in [2]. Both due
to the prediction of a too large mass splitting and an unre-

3 To the best of our knowledge stronger binding between ¥’ and nuclei
was first mentioned in [9].
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alistic hierarchy of decay widths we reject the interpretation
of the LHCb pentaquarks as / = 0 and / = 1 bound states of
Y'N.

The hadrocharmonium interpretation of pentaquarks was
tested in [7] in the framework of the Skyrme model. It turned
out that the Skyrme model energy—momentum tensor densi-
ties lead to the same conclusions as the considerations in [6]
which were loosely based on the chiral quark soliton model.
This demonstrates that the hadrocharmonium interpretation
of pentaquarks is robust and does not depend on the details
of a particular nucleon model. New hadrocharmonium ' A
bound states with hidden charm, isospin 3/2 and masses 4.5
and 4.9 GeV were predicted in [7].

In summary, solving the Schrodinger equation we have
found two theoretically acceptable values of polarizability
that admit interpretation of either of the two LHCb pen-
taquarks as a ¥'N bound state. Only one bound state exists
at each value of polarizability, and, respectively, only one of
the observed pentaquarks can be interpreted as a v’ N bound
state. Experimentally the P.(4380) peak has a rather large
width 205 £ 18 4+ 86 MeV, whereas the P.(4450) peak is
narrow with the width 39 5 £+ 19 MeV. To make a choice
between the two possible hadrocharmonium interpretations
of the LHCb pentaquarks we need to calculate the theoretical
decay widths of the bound state solutions found above.

4 Partial width of the ¥’ N bound state

Interaction of heavy charmonia states with the nucleon is
described by the nonrelativistic potential in Eq. (11). This
potential is universal, only its overall strength, determined
by the polarizability of the respective charmonia excitation,
changes when we go from one charmonia state to another.
The nonzero transition polarizability in Eq. (7) shows that
there exists a similar nondiagonal potential that describes the
transition J /v — v’ off the nucleon. Due to the coupling
between the J/¥ N and ¥'N channels the pentaquark that
we found in the /' N channel should arise as a resonance in
the J/v N scattering channel. We are going to solve the two-
channel scattering problem, find the resonance J/YN —
J /¥ N scattering amplitude, and determine the width of the
resonance by comparing this scattering amplitude with the
standard Breit—Wigner expression.

The Hamiltonian for the two-channel nonrelativistic scat-
tering problem has the form

¥ V11| Via
oo (Zm - , (14)
Viz —25 T Voo + A

where A = my —myy, p1 = mypymy/(myy +my),
u2 = mysmpy /(my + my). The potentials V;; are obtained

from the potential in Eq. (11) by substituting the respective
polarizabilities from Eq. (7) instead of «.

Next we solve the scattering problem for the Schrédnger
equation

HY = EV, LII:(%), (15)
V2

where E is the nonrelativistic J/¢ N energy in the center

of mass frame (E = ¢q%/2/u1, q is the relative momentum)

with only the incoming plane wave | = ¢/?* in the J /¥ N

channel different from zero.

The transition potential Vj; is small and the perturbation
theory treatment is sufficient for the scattering problem in
Eq. (15). Due to coupling between the channels the incoming
plane wave v/ (x) leaks in the ¥’ N channel

U (x) = _/d3x/G2(x,x')Vlz(x/)eiq'x/- (16)
Here
I 1 /
Gy(x,x') = <x 5 x > 17
—ZVW—E+A+V22—1'O

is the Green function in the ¥/’ N channel (see Egs. (14) and
(15)). Near the resonance

_ Yr®)YR (x)

Gy(x,x’
2(x, x7) Ex_ E

’

where Eg is the resonance energy. The wave function v (x)
in Eq. (16) in its turn generates correction to the incoming
plane wave ¥ (x), that near the resonance has the form

SY1(x) = / d>x'G1(x, x")Via(x ) YR (x)

- 18
5 fd3x//Vlz(x//)w;é(x//)ezq‘x (18)
Er—F ’
where
Gi(x x’): X ;x’ ZQMM
’ _%_ —i0 dr|x — x'|

(19)

is the free Green function in the J /¢ N channel.

Calculating 811 (x) near the resonance with the orbital
momentum / at large r = |x| we obtain the wave function in
the J /vy N channel as a superposition of the incoming plane
wave and the outgoing spherical wave

@ Springer
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. iqr
Y1 (r) + 8y (r) = ' + 21 67

20+ 1
ER—E( +1)

00 2
x Pz(COSQ)‘ / drr? ji(@r) R (r)Via(r)|
0

(20)
where the resonance radial wave function R; (r) is normalized
by the condition [y~ drr?R7(r) = 1.

This wave function can be written in terms of the scattering
amplitude f(0) (0 is the scattering angle)

elqr

Y1 (x) + 891 (x) = 1% + f(6) (21)

Pt
The scattering amplitude near the resonance has the standard
Breit—Wigner form

21 +1

r/2
oy =211
q

E — Eg

Pi(cos6), (22)

where I” is the resonance partial decay width in the J /¥ N
channel.
Comparing Egs. (20) and (21) we obtain

oo 2
F=4M1q‘/0 drr*Ri(rn)V () jilgr)| . (23)

where ¢ = /2141 Eg and ji(z) is the spherical Bessel func-
tion.

5 Phenomenology of charmonium-baryon bound states

We obtained above a candidate for the heavy LHCb pen-
taquark as a bound v'N state that arises at «(2S) =
17.2GeV 3, and a candidate for the light LHCb pentaquark
as a bound ' N state that arises at «(2S5) = 20.2 GeV—3.
Now we are in a position to calculate these bound state partial
decay widths into the ¥ N channel. Using the phenomenolog-
ical value of the transitional polarizability «(2S — 15) =
2 GeV 3 [36] we obtain partial widths at the level of tens of
MeV for both bound states. We also made a rough estimate
of the partial width for the decay of either of the ¥/’ N bound
states into J /¢ + N + m, and it turned out to be even smaller
than the partial width into the J /v 4+ N channel. The decays
of these bound states into (anti)charmed meson + charmed
baryon are strongly suppressed in this scenario, since such
decays into open charm channels can go only via 7-channel
exchange by a heavy D-meson. Therefore the total width of
each of the ¥/’ N bound states is small, in the range of tens of
MeV.

The LHCb P.(4380) pentaquark is a wide peak with the
width 205 4 18 = 86 MeV, while the P.(4450) pentaquark
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is a narrow state with the total width 39 £ 5 £ 19 MeV. The
acceptable spin-parity assignments include (3/27,5/2%),
(3/2%,5/27), and (5/2%,3/27), all with opposite parities
[2]. Comparing the experimental data with the calculations
above we interpret the narrow heavy P.(4450) pentaquark as
the ¥'N bound state. This v/’ N (4450) bound state is formed
in the S-wave and is a J© = 3/2~ state. We used Eq. (23) to
calculate its partial width and, in reasonable agreement with
the data, obtained I" (P, (4450) — N+ J /) =~ 11 MeV for
the dominant decay mode.

The potentials in Eq. (13) are spin-independent, so
there are two degenerate bound states with J¥ = 172~
and JP = 3/27. The hyperfine splitting between these
degenerate color-singlet bound states arises due to interfer-
ence of the chromoelectric dipole E1 and the chromomag-
netic quadrupole M2 transitions in charmonium. It can be
described by the effective Hamiltonian

o
Hery = ———S; (NIE{(DiB))* + (Di Bj) EIN),
mo
(24)

where §; is the quarkonium spin, o and m¢ are the same
chromoelectric polarizability and the heavy quark mass as
above, and only the nucleon matrix element of the product of
chromoelectric and chromomagnetic fields requires calcula-
tion.

The strength of this interaction is determined by the chro-
moelectric polarizability and it is additionally suppressed by
the heavy quark mass ~ 1/m . A semiquantitative estimate
of the hyperfine splitting produces a small value in the range
of 5—10 MeV. Therefore we expect to find two almost degen-
erate pentaquark states with J” = 1/27 and J¥ = 3/2~
and with the mass of the observed pentaquark 4450 MeV. It
would be very interesting if the LHCb collaboration could
check this hypothesis in their partial wave analysis.

Thus far we ignored flavor symmetry of ordinary baryons.
Recall that the nucleon is a member of the baryon octet. The
interaction potential in Eq. (11) is proportional to the matrix
element of E2, and in the linear approximation in the quark
mass it is one and the same for all members of the baryon
octet. Therefore we should expect that all members of the
baryon octet bind with v/, and the respective pentaquarks
also form an octet. Masses of these octet pentaquarks are just
the sums of the constituent masses and the binding energies.
The binding energy depends on the mass of the ordinary
octet baryon B only through the reduced mass in the kinetic
energy in the respective Eq. (13). Then the pentaquark octet
mass splittings in the leading order in the ordinary octet mass
splitting AM are (see the definition of the reduced mass (1
after Eq. (14))
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Table 1 Penta octet

P b ~ . d
(JP = 3/27): masses and P} Mass (MeV) Mp — MPF Mp — M5, Width'
widths Py (P.(4450)) 4449 0 0 1
Py, 4665 217 253 14
Py 4598 150 176 13
Pz 4776 327 378 15
4Penta octet states, Pp is a ¥’ B bound state
bMass differences between the penta octet states and P,
“Mass differences between the baryon octet states and m y
dPartial width for decays of penta octet states into J /v + B
V2 uark—antiquark excitation x> (3556) is a P-wave state. The
AE=—HMUINIZ Y N am. 25 4 d auon xe2299 ) .
m%\] 211 chromoelectric polarizability of this P-state is a two-index

We checked this result by solving Eq. (13) for each ordinary
octet baryon and calculating the pentaquark binding energies
(and their changes) directly. Both approaches lead to the same
results.

We have also solved the two-channel scattering problems
for J /¢ scattering off all members B of the ordinary baryon
octet, found the respective ' B resonances, and calculated
their partial decay widths into J/y B. The results for the
octet pentaquarks mass splittings and widths are collected
in Table 1. All octet pentaquarks Pp have very small decay
widths into J /¢ + B. We expect that like P.(4450) they also
have small total widths. The mass splittings between the octet
pentaquarks in Table 1 are somewhat smaller then the mass
splitting in the ordinary baryon octet as predicted by Eq. (25).
Due to hyperfine splitting there are two almost degenerate
pentaquark octets with J© = 1/27 and J¥ = 3/27. With
very good accuracy the states in the pentaquark octets satisfy
the Gell-Mann—Okubo mass formula

mpy +mpz _ mpg +3mp,
2 - 4 ’

(26)

or, numerically, 4613 MeV~ 4615 MeV.

Only the heavy narrow pentaquark with spin-parity 3/27
finds a natural interpretation as a y’ N bound state in the sce-
nario described above. Another explanation should be found
for the wide P.(4380) pentaquark* with spin-parity 5/27F.
The hadrocharmonium approach predicts also bound states
formed by the nucleon and other excited states of charmo-
nium, besides v’. Scanning the charmonium spectrum in
search of a state that could bind with the nucleon to form
a pentaquark with mass 4380 MeV and spin-parity 5/2% we
observe that x.»(3556) with J P = 2% has necessary quan-
tum numbers and mass.

To find out if x.2(3556) really binds with the nucleon we
have to solve a dynamical problem. As a nonrelativistic heavy

4 Let us mention the suggestions in the literature that there is really no
resonance at the position of this pentaquark, see. e.g., [28].

symmetric tensor o;; that can be calculated using Eq. (2).
Then one can calculate the x.2(3556)-nucleon interaction
potential starting with Eq. (1), like it was done above in the
case of the S-wave charmonium states, and solve the respec-
tive bound state Schrodinger equation. An estimate of the
perturbative polarizability tensor for the P-state shows that
it has roughly the same magnitude as for the S-state. Thus
we have every reason to expect that y.2(3556) forms a bound
state with the nucleon with spin-parity 5/2% and mass about
4380 MeV. This state could be a candidate for the observed
P.(4380) pentaquark. Moreover, due to the smallness of the
spin—spin interaction there should be also almost degener-
ate states with spin-parities 1/2%, 3/2%. These particles do
not exhaust the reach spectrum of pentaquarks formed by the
P-states of charmonia and the nucleon. We expect to find yo-
nucleon bound state with spin-parity 1/27, almost degener-
ate x.1-nucleon bound states with spin-parities 1/2%, 3/27,
and almost degenerate h.-nucleon bound states with spin-
parities 1/27,3/2%. All these states should be very narrow
because there are no open channels for decays except decays
into particles without hidden charm that are strongly sup-
pressed in accordance with the Okubo—Zweig-lizuka rule.
Suppression of strong decays of these particles puts a ques-
tion mark over the possibility to identify the x.2(3556)-
nucleon bound state with the LHCb P,(4380) pentaquark.

6 Are there Bottomonium-nucleon hadrocharmonium
bound states?

The binding mechanism developed above could generate
bound states of bottomonium and the nucleon. The perturba-
tive polarizability in Eq. (5) (see also [31-34]) depends on
the heavy quark mass, the running strong coupling constant,
and the Bohr radius. Both the effective coupling constant and
the Bohr radius for bottomonium are smaller than for char-
monium, while the mass of the bottom quark is larger than the
mass of the charmed quark. Taking into account the interplay
of these effects we calculated perturbative polarizabilities for
the lowest states of bottomonia
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a(18) ~ 0.07 GeV™>, a(25) ~5GeV ™2, (27)
where we used the bottom quark mass m; = 5105 MeV, the
bottomonium Bohr radius ag = 3o /4mp ~ 0.1 fm, and the
strong coupling o (ap) ~ 0.6 in this calculations.

We searched for bottomonia-nucleon bound states, solv-
ing the Schrodinger equation Eq. (13) for bottomonium. No
7 (18)-nucleon bound state was found for a reasonable value
of polarizability. The results for the 7" (2S5)-nucleon system
are inconclusive due to poor knowledge of polarizability. A
bound state could exist but a much better handle on polariz-
ability is needed to make a definite statement. The sizes of
higher bottomonia excitations are comparable to the size of
the nucleon and the dipole approximation at the root of our
approach is not valid any more.

7 Meson exchanges, nuclei, and the deuteron

Molecular bound states of two charmed mesons as an expla-
nation of certain states in the charmonium spectrum were
suggested long time ago [11]. Nowadays molecular models
of mesons and baryons with hidden charm are very popu-
lar, and there are numerous papers discussing this scenario,
see, e.g., review in [12]. We would like to compare the char-
acteristic properties of pentaquarks arising in the molecular
approach with the properties of the hadrocharmonium pen-
taquarks. Binding potential in the molecular approach is due
to the exchange of light mesons. It is modeled after the simi-
lar approach widely accepted in nuclear physics. Let us recall
the basics of the meson picture of nuclear forces [16].

The forces between nucleons in nuclei are due to exchanges
of light mesons: pions, 1-, o-, p- and w-mesons. Together
they generate the potential resembling the Van der Waals
molecular potential. Attraction at large distances (> 1fm) is
due to the light pion, attraction at intermediate distances is
described by o -meson (or two-pion) exchange and the short
distance repulsion is usually ascribed to the p- and w-meson
exchanges. The meson exchanges do not make sense when
distances between the nucleons in nuclei become comparable
to the sizes of the exchanged bosons and/or sizes of the con-
stituents. A strong repulsion core at small distances is usually
introduced in the potential. Its position is determined by the
particle sizes and should be chosen in the range of 0.3-0.5 fm.
This approach provides at least a qualitative description of
nuclei. The nucleons in a typical nucleus are separated by the
distances about 0.7 fm. At these distances the contribution of
the light pion exchange to the interaction potential is strongly
suppressed and is almost irrelevant in comparison with the
o, p, w contributions.

This is not the case for the loosely bound deuteron. The
binding energy in the deuteron is very small, about 2.2 MeV,
and the nucleons in the deuteron are separated by a relative
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distance about 2 fm. At such distances only the light pion con-
tribution to the potential survives. Calculating the nucleon—
nucleon scattering amplitude in the nonrelativistic approx-
imation we obtain the momentum space nucleon—nucleon
potential

S1-9)(S$2-q)

Vig) = —%(T -T»)
M? ! 2 q2+m,2,

N

, (28)

where g, yy = 13.7 is the pseudoscalar nucleon-pion cou-
pling constant, m, and My are the pion and nucleon masses,
and S; and T, are the nucleon spin and isospin operators,
respectively.

The potential in coordinate space is a sum of a central
spin—spin potential and a tensor potential

V(r) = Vc(r) + S12(81, S2. m) Vr (1), (29)

where S12(81, 82, n) = 3(81-n)(S2 - n) — (81 - $2), and
formally

gzNN 5 e~ Mar 4 3)
V. — s T . T S . S _— —(S ~
C(r) Mlzv ( 1 2)( 1 2) <mn’ 377 3 (r)>
gZNN 2.2 _mn_r
_ ox
rr) = Mj%, (F1-12) (mnr + 3Imzr + 3) 33’
(30)

Naively, one could hope that this one-pion exchange
potential would be sufficient to describe the deuteron. This
does not happen due to the problems at small distances. Both
the é-function contribution to the spin—spin potential and the
singular 1/r> contribution to the tensor potential are unphys-
ical, they arise from distances where the one-pion exchange
makes no sense due to finite sizes of all particles. To getrid of
unphysical short distance contributions one could introduce
soft or hard core at small distances. Instead it is routine in
nuclear physics to regularize the potential at small distances
by inserting the dipole form factor [(A%— m%)/(A2 + q2)]2
in Eq. (28), see, e.g., [16]. Naive insertion of this form factor
smears the §-function contribution in Eq. (30). Notice that
the §-function contribution to the spin—spin potential has the
sign opposite to the sign of the Yukawa type contribution in
Eq. (30). After such formal regularization a repulsive at large
distances spin—spin potential turns into strong attraction at
distances shorter than than the inverse regularization param-
eter. We consider this regularized §-function contribution to
the potential unphysical, and subtract it from the regularized
potential. Then the regularized potentials in Eq. (30) have the
form (compare [15,39])
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g2 m2
Ve reg(r) = ZZEN(T |- To)(S1 - $2) 2 ZY (A, my, 1),
My, 3
gzNN 1
Ve, = SZNN (T Ty Z(A, my, 1),
T,reg(I) M]%, (T4 2)37_[ (A, mgz,r)
(3D
where
—Mxr —Ar 2 2
ar A —
Y(A, g, r) = e e
da (120 (32)
Z(A,mﬂ,r)zrg ;5Y(A,mn,r) .

The functions Y (A, my,r) and Z(A, my, r) are nonsingu-
lar and positive (or negative) definite at all distances. As a
result the regularized potentials are finite at zero and a repul-
sive (attractive) at large distances potential remains repulsive
(attractive) at all distances.

It turns out that the one-pion exchange allows quantitative
description of the principal deuteron characteristics with any
short distance modifications we just described [13,15]. There
is a nontrivial mechanism at work. The attractive spin—spin
potential vanishes in the chiral limit and is therefore sup-
pressed by the factor m% / MIZV. It is not strong enough to
bind the proton and neutron if the tensor potential is turned
off. The tensor potential is nonzero even in the chiral limit
and is thus much stronger. It couples S- and D-waves in
the Schrédinger equation and due to this coupling a loosely
bound deuteron arises. We obtain the experimental binding
energy 2.2 MeV if we place an infinite wall at o = 0.485 fm.
The fraction of the D-wave squared in this case is about 7%
and the deuteron root mean square (rms) radius is 1.98 fm.
The regularized potentials in Eq. (31) reproduce the same
binding energy at A = 800MeV, see also [15,39,40]. With
the regularized potentials the fraction of the D-wave squared
is about 5% and the deuteron rms is 1.92fm. In both cases
the cutoff parameters have areasonable magnitude, confining
the one-pion potential to distances larger than 0.25-0.4 fm.

The one-pion exchange mechanism modified at small dis-
tances completely describes all possible nucleon—nucleon
bound states. There are four different spin—isospin states of
two nucleons with § = 0,1, T = 0, 1. There is no bound
state with § = 7' = 0 since the spin—spin potential in this
case is repulsive and the tensor potential turns into zero. The
spin—spin potential is attractive and the tensor one is nonzero
in the state with the quantum numbers of the deuteron, S = 1,
T = 0. The spin—spin potential for S = 0, T = 1 is
attractive and coincides with the deuteron spin—spin poten-
tial, while the tensor potential in this case is zero. Finally,
in the state with S = T = 1 the signs of both potentials
are opposite to the deuteron potentials and are suppressed by
the factor 3. The Schrodinger equation with the potential in

Eq. (29) and any short range regularization discussed above
has a bound state solution with the deuteron quantum num-
bers and the binding energy 2.2MeV. There are no bound
states with any other spin—isospin quantum numbers. There
are also no loosely bound nucleon-antinucleon states. One-
pion exchange potential changes the overall sign when one
replaces one of the nucleons by an antinucleon. Then absence
of the nucleon-antinucleon states follows from the previous
analysis.

Modern nuclear-type potentials (see, e.g., [16]) are much
more sophisticated than the primitive one-pion exchange and
include exchanges by other light bosons. We do not need
them for our discussion of the deuteron. As we have seen
the main features of a loosely bound deuteron are due to
the long distance part of the one-pion exchange potential.
Quantitative description of the deuteron requires some kind
of short distance cutoff whether we include exchanges by
other mesons besides pion or not, and the nature of this cutoff
is only obscured by other mesons.

Below we will consider applications of the one-pion
exchange and light boson exchange mechanisms to the LHCb
pentaquarks.

8 One-pion exchange and pentaquarks

The one-pion exchange mechanism was generalized for
description of tetraquarks with hidden charm in [13—15]. The
essence of this approach to the loosely bound tetraquarks
is the interplay between the channels with different orbital
momenta. With reasonable assumptions about the magnitude
of the short distance cutoff new tetraquark states were pre-
dicted in this framework [15]. The state X (3782) that was
discovered many years later [41] turned out to be one of
these predicted states [42]. It is worthwhile to figure out if
this nice mechanism could be applied for the description of
pentaquarks, can we construct the LHCb pentaquarks from a
charmed baryon and an anticharmed boson as a deuteronlike
loosely bound states. Inspection of the charmed hadron spec-
trum shows that the sum of masses of X' (2520) and D(1870)
exceeds the mass of P.(4380) only by 10MeV, and the sum
of masses of X.(2455) and D*(2010) exceeds the mass of
P.(4450) only by 15MeV. This immediately suggests that
the respective LHCDb pentaquarks are deuteronlike loosely
bound states. At first glance the one-pion exchange mecha-
nism has a fair chance to support the necessary binding in
both cases. However, one-pion exchange cannot bind E;‘D
because the wr D vertex is banned by parity conservation.
Therefore P.(4380) cannot be considered as a loosely bound
deuteronlike 2;‘[) state.” It remains to figure out if P.(4450)

5 See, however, [43], where the P, (4380) state was interpreted with the
help of one-pion exchange for the coupled channels XD — X.D*.
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could be interpreted as a deuteronlike loosely bound X.D*
state.

Let us first obtain the momentum space one-pion potential
for interaction of two arbitrary hadrons. The Goldberger—
Treiman relationship gﬁ’ /Fr = gmnn/Mpy allows to
replace the coupling constant g,yy in Eq. (28) by the
nucleon axial charge gg’ and the pion decay constant
F, = 92MeV. The coordinate space nucleon—nucleon
potential in terms of the axial charge is obtained from
the expressions in Egs. (30), (31) by the substitution
g2 yn/M% — (g%)?/F2. The respective hadron-hadron
potential is obtained from Eqgs. (30), (31) by the substitu-
tiong2 /M3 — gi{l gfz /F2, where the constants gi"' are
axial charges of the respective hadrons. The axial charges of
heavy charmed hadrons almost never can be derived from
the experimental data. An estimate of these charges can be
obtained with the help of the naive constituent quark model
for light quarks as suggested in [44]. We do not expect these
axial charges to be particularly accurate, but they would have
at least correct signs and order of magnitude. In the lead-
ing nonrelativistic approximation the time component of the
quark axial current J',Sm = lﬁq t, yMySIﬂ turns into zero, and
only the spatial components of the axial current proportional
to o; survive. Then in the framework of the nonrelativistic
constituent quark model the axial charge gf{ of the hadron
H is given by the relationship

841 $iTa = g8 (Wi |3 sita| W), (33)
where |Wp) is the heavy hadron state vector in terms of the
light quark states, gZ is the light quark axial charge, s; and
t, are the quark spin and isospin operators, and S; and T,
are the respective heavy hadron operators. Summation goes
over all light constituent quarks. It is easy to generalize this

expression for transitional axial charges gzl‘ H

Below we will assume that g% = 1 (and g% = —1 for
antiquarks). We can make a more accurate estimate of the
quark axial charge using the Goldberger—Treiman relation-
ship and Eq. (33) for the nucleon axial charge. In this way
we would obtain

q EgJTNNFT[

= 0.81. 34
8475 My 34

Taking into account inaccuracy of the nonrelativistic con-
stituent quark model itself it does not make much sense to
make a distinction between g;]1 = 1and gi = 0.81. Axial
charges of the nucleon and some charmed hadrons are col-
lected in Table 2.

Letus return to the one-pion exchange interaction between
¥, and D*. Unlike the case of the deuteron the tensor
potential in this case does not commute with the total spin
S =S8z + 85, [512(85., S+, n), S] # 0. Only the total
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Table 2 Some axial charges H N D b* % A P
5 1 1 2 1
84 3 2 2 3 0 3

angular momentum J = L + S is conserved. The lowest
X.D* bound state should be dominated by the S-wave, and
seeking an interpretation for the P.(4450) pentaquark we
start with the sector with J = 3/2. The tensor potential has
nonzero matrix elements between S- and D-waves and the
X.D* state with J = 3/2 is a superposition of three states
IL=0,5=3/2),|[L=2,S=1/2),and|L =2,S =3/2).
The Hamiltonian in the subspace with / = 3/2and T = 1/2
has the form (it coincides with the pion contribution to the
respective Hamiltonian in [45])

Y4, —lv 1%
o c FVr T
1 V2 3 1
H = _EVT —E—FF—ZVC EVT s
V. ly V.3 .y
T 2 T 2# +Mr2 + C

(35)

where 1 is the X.D* reduced mass. The potentials (non-
regularized and regularized, with the subtracted §-function
contribution) according to Eq. (30) and Eq. (31) are

m,zr —Mal m% 1
Ve@r) = —ngma VC,reg(r) = _F%@Y(A’ My, T),
1 2 2 e—mnr
Vr(r) = —F—%(?s +3myr +myre) o3
1 1
VT,reg(r) = _ﬁgin_z(/lvmrr’ r). (36)

/g

In this calculation we used g>° = 2/3, g = 1/2 from
Table 2 and the substitution g2, /M% — gh' g%/ F2 dis-
cussed above.

The spin—spin S-wave potential is attractive and is sup-
pressed by the factor 8/25 in comparison with the respective
deuteron potential. Again, like in the deuteron case it is not
strong enough to bind ¥, and D* if the tensor potential is
turned off.

We looked for the bound state solutions with the Hamilto-
nian in Eq. (35). To cut off the singular behavior of the poten-
tial at short distances we one time amended the potential in
Eq. (35) by an infinitely hard wall at small distances, and
another time we used the regularized potential in Eq. (36). In
a model with the wall at ry = 0.33 fm we find a . D* bound
state with J” = 3/27, T = 1/2 and the binding energy
14.7MeV, exactly with the mass of the P.(4450) pentaquark.
This is a deuteronlike state, the binding arises due to the non-
diagonal tensor potential. The hard core radius ro = 0.33fm
is somewhat smaller than in the case of the deuteron, but is
still not too small. The rms of the bound state is about 1.6 fm.
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r, fm

Fig. 1 Normalized wave functions of the X, D* bound state with J© =
3/27, T = 1/2 and the binding energy 14.6MeV (A = 1430MeV).
The [L=0,5=3/2),|L=2,8S=1/2),and |L =2, S = 3/2) wave
functions are solid, dotted, and dashed lines, respectively

This radius is large in comparison with the hard core radius
and with the scale corresponding to the exchanges by other
light bosons, what justifies the one-pion exchange approxi-
mation. The fraction of the D-wave squared is about 18%,
much larger than in the deuteron. In a model with the regu-
larized potentials Eq. (36) the bound state at the position of
P.(4450) arises at A = 1430MeV. The rms in this case is
about 1.24 fm and the fraction of D-wave squared is 12%, see
wave functions in Fig. 1. These results were obtained with the
axial charges in Table 2. We also repeated these calculations
with the phenomenological axial charges, see, e.g., [45]. We
again can obtain a bound state at the position of P.(4450)
but now A = 2000MeV, rms is 1.13fm, and the fraction of
the D-wave squared is about 10%. Dependence of the energy
level on A with any choice of the set of coupling constants
is rather steep, the binding energy changes by about 4 MeV
when A changes by 100 MeV. We see that P.(4450) can be
interpreted as a deuteronlike bound state, but requires fine
tuning of the short distance regularization parameter A.

Now, that we fixed A, it is natural to look for the X, D*
bound states in the channels with J/ = 3/2, T = 3/2 and
J =1/2, T = 1/2,3/2. 1t turns out that there are no X.D*
bound states with other quantum numbers besides J© =
3/27, T = 1/2 for the values of A and/or the position of the
hard wall determined above.

A X¥.D* bound state with J¥ = 3/27, T = 1/2 and the
binding energy 85 MeV was obtained in [46,47] on the basis
of the one-pion exchange. It was identified with the P.(4380)
LHCb pentaquark. The binding in [46,47] occurred due to
the spin—spin part of the one-pion exchange potential with
account only for the S-wave wave function. The one-pion
potential in [46] was regularized by the dipole form factor
with A = 2.35GeV (A = 1.78GeV in [47]). The sign of
the unregularized spin—spin potential in [46,47] is opposite

to the sign in Eq. (35) and in [45], and corresponds to a
long-distance repulsion. The binding is due to the regular-
ized §-function contribution to the spin—spin potential, see
Eq. (30) (compare with the regularized potential in Eq. (36),
where the §-function contribution is subtracted). The repul-
sive long-distance one-pion spin—spin contribution to the
potential in [46,47] can be omitted without changing the
results. The rms of the bound state in [46,47] is 0.42fm,
what is by far too small to justify validity of the one-pion
exchange approximation.® This rms value can be roughly
estimated almost without calculations, simply from the well
known asymptotic formula for the bound state wave func-
tion V¥ (r)y 0o ~ e ~ e "V2LE where E is the binding
energy. We disagree with the sign of the one-pion potential in
[46,47], do not accept the idea of binding due to the attractive
smeared §-function, cannot justify the dominant role of the
one-pion exchange at the distances about 0.4 fm, and there-
fore cannot accept the interpretation of P.(4380) as a >.D*
bound state due to the one-pion exchange.

9 Are there other deuteronlike pentaquarks?

In search for other loosely bound pentaquark states with a
deuteronlike binding we considered possible Z‘jD* loosely
bound states. One could expect to find bound states with the
binding energy about 10 MeV and mass about 4520 MeV,
slightly below Mxx + M. = 4530 MeV.

Like in the case of X.D* interaction only the total angular
momentum is conserved. We consider first the sector with
J = 5/2.The lowest ¥* D* bound state should be dominated
by the S-wave, and the tensor potential has nonzero matrix
elements between S- and D-waves. Hence, the X* D* state
with J = 5/27 is a superposition of four partial waves,
IL=0,S=5/2),|[L=2,8=1/2),|L=2,5 = 3/2),
and |L = 2,8 = 5/2). The Hamiltonian in the subspace
with J = 5/2, T = 1/2 has the form

-%+ Ve 7\/§VT Ly, 3/1avy

e —[vr L+ -ive 1/Iv 2[Evr

%VT %\/?\/r *%‘Fﬁ*%VC‘F%VT *%\/gVT
wiave | 2 /gvr —1ivr A A

37)

The potentials (nonregularized and regularized, with the sub-
tracted §-function contribution) according to Egs. (30) and
(31) are

6 We reproduced the calculations in [46,47] and discovered some mis-
prints. In particular, the horizontal axis in Fig. 1 in [46] and in Fig. 3 in
[47] is graduated in GeV~! not in fm.
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Table 3 Binding energy of

—4.11

1000
—-9.64

1100
—18.6

1200
—31.8

1300
-50.3

1400
—74.8

EL*D* (J” — /5/2—’ T = 1/2) A (MeV) 800 900
state as function of A E, MeV) —1.18
Very= "2 = ="y a

C = Fn% 127r s VC,reg = F% 127 s My, 1),
Vi) = =3+ 3mar + e

r)=—— Myr +mor ,
’ F2 SRS T
1 1

VT,reg(r) = —Z(A,my,1). (38)

_FT% 187

In this calculation we used gf‘* = 1/3, g/ﬁ)* = 1/2 from
Table 2 and the substitution g2 /M3 — gh'gi? /F2 dis-
cussed above.

The spin—spin S-wave potential is attractive and is 1.5
times stronger than the respective potential in the case of
X.D*. We looked for the eigenstates of the Hamiltonian in
Eq. (37) with the hard wall at ro = 0.33 fm, exactly at the
same position as in the case of X.D* above. Surprisingly,
there are no shallow loosely bound states with the binding
energy about dozens of MeV. Only a bound state with the
binding energy 82MeV and the mass close to the mass of
P.(4450) exists. There is a steep dependence of the bind-
ing energy on the radius of the hard core. Change of this
radius from rog = 0.33fm to ro = 0.38 fm reduces the bind-
ing energy to 10 MeV and leads to prediction of a pentaquark
state with /¥ = 5/27, T = 1/2 and mass 4520MeV. We
repeated these calculations with the phenomenological cou-
pling constants (see, e.g., [45]) and the regularized potentials
in Eq. (38). Again we observe a steep dependence of the bind-
ing energy on the regularization parameter A, see Table 3.
At A = 1400 we obtain a state with the mass of P,.(4450),
JP =5/27 and T = 1/2. Recall that we have already found
a X, D* bound state with the mass of P.(4450), J¥ =3 /27
and T = 1/2 at A = 2000 MeV using the phenomenological
coupling constants. Interpretation of the X ;"D* bound state
as P.(4450) could be preferable, since A is smaller than in
the case of X D*. On the other hand rms of the ¥* D* bound
state at A = 1400MeV is only 0.78 fm, and the fraction of
the D-wave squared is about 25%, see Fig. 2. The one-pion
exchange mechanism is probably not dominant for the bound
state with such rms. The steep dependence of the bound state
mass on the magnitude of A makes prediction of the mass
of this state not too reliable. A fair conclusion could be that
the consideration above does not have too much predictive
power.

We also looked for possible X* D* bound states in the
channels with J = 3/2, T = 3/2,and J = 1/2, T =
1/2,3/2. We found a shallow bound state with J = 1/2,
T = 3/2, binding energy E, = —1.4MeV, mass 4526 MeV,
rms about 3 fm, fraction of the D-wave squared about 6% at
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Fig. 2 Normalized wave functions of the X*D* bound state with
JP = 5/27, T = 1/2 and the binding energy 74.8MeV (A =
1400MeV). The |[L = 0,8 =5/2),|[L =2,8S =1/2),|[L =2,8 =
3/2), and |[L = 2, S = 5/2) wave functions are solid, dash-dotted,
dotted, and dashed lines, respectively

A = 1400MeV. This is an almost ideal deuteronlike bound
state, but again a steep dependence on A does not allow to
make a reliable prediction.

The EjD* one-pion exchange interaction was also con-
sidered in [46,47], where a bound state with the binding
energy 70MeV, J = 5/27, T = 1/2, and mass 4450 MeV
was obtained and identified with P.(4450). Like in the case
of X.D* we disagree with the sign of the potential in [46,47],
see discussion above.

10 Nuclear type potential and pentaquarks

We considered above the deuteronlike model of loosely
bound pentaquarks where the long distance one-pion
exchange amended by a short distance repulsive core plays
the defining role. We have already mentioned that more
sophisticated descriptions of nucleon—nucleon interactions
include exchanges by other light mesons, see, e.g., [16]. We
do not need to go into detail of these more sophisticated mod-
els, but let us try to include exchanges by o, p, @, and 1 in the
most straightforward way. One can use the constituent quark
model to estimate the meson-nucleon interaction constants,
see, €.g., [48]. In the framework of this model, o and w inter-
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act with the light quark baryon number and p interacts with
isospin. Exchange by a scalar o is always attraction, by a vec-
tor w it is always repulsion and by a vector p it depends on
isospin. In the case of the deuteron the total effect of the p and
o exchanges is repulsion, that naturally explains the origin
of the repulsive core at small distances. The regularization
at small distances is still needed due to the singular behavior
of the tensor potential at small distances. The deuteron prob-
lem with the nuclear type potential and phenomenological
coupling constants was considered in [48]. It turned out that
inclusion of the meson exchanges effectively did not change
values of the deuteron parameters obtained in the one-pion
exchange scenario and the value of the regularization param-
eter A also did not change. This justifies the one-pion binding
scenario for the deuteron.

Almost all papers on the molecular model of tetra- and
pentaquarks adopt the nuclear point of view and construct
nuclear type potentials that include exchanges by all light
bosons, see, e.g., review in [12]. Like in nuclear physics each
meson exchange is regularized at short distances by the dipole
potential with a phenomenological cutoff parameter A. This
potential is nonuniversal and the cutoff parameter is adjusted
for each experimentally known tetra- or pentaquark.

Like in the case of the deuteron one way to test the reli-
ability of the one-pion exchange scenario for pentaquarks
considered above is to include in the potential exchanges by
other mesons and to see if the characteristics of the bound
states (rms radius, fraction of the D-wave squared, param-
eter A) would remain stable. We obtained above a X.D*
(JP =3/27, T = 1) bound state at A = 2000MeV with
mass 4450MeV, rms 1.13fm, the fraction of the D-wave
squared about 10%. Now we amend the one-pion exchange
potential by o, p, w, and n exchanges, and use the phe-
nomenological coupling constants (but not the signs of the
individual contributions to the potential and not the regular-
ization without subtraction of the §-function contribution)
from [45]. Then the bound state at the position of P,.(4450)
arises at A = 1300MeV with rms 1.46fm, and D-wave
squared fraction about 4%. The value of A changed signif-
icantly thus hinting that the one-pion mechanism is not too
reliable for this bound state.

We have also reconsidered X* D* bound states in a model
with the nuclear type potential. Like in the one-pion scenario
we obtain a J© = 5/27, T = 1/2 bound state with E;, =
—74MeV, rms 0.71 fm, and D-wave squared fraction 15%
at A = 1200MeV. Again, like in the one-pion exchange
scenario we have also found a second X*D* bound state
at the same A. This is J© = 1/27, T = 3/2 state with
Ep = —37MeV, rms 0.83 fm, and D-wave squared fraction
1.2%. We observe a rather substantial change of parameters,
especially of the second state, in comparison with the one-
pion exchange scenario.

We see that the one-pion exchange scenario is not stable
with respect to inclusion of other light meson exchanges, and
it is hard to insist that this is the dominant binding mecha-
nism even for the loosely bound pentaquarks. Both the one-
pion exchange and nuclear type scenarios for pentaquarks
suffer from steep dependence on the short distance regular-
ization parameter A (or position of the hard wall at small
distances). One can describe existing experimental data on
pentaquarks with the help of nuclear type and/or one-pion
exchange potentials choosing different values of A for dif-
ferent states.

There are also apparent problems with the pentaquark
decays in the molecular approach. The pentaquarks were dis-
covered in the invariant mass spectrum of J /v and the pro-
ton. So decay to J /v + N is the only reliably established pen-
taquark decay mode. It is hard to understand how this decay
to the states without open charm can can give a substantial
contribution to the total width in the molecular picture. The
constituents with open charm preserve their individuality in
the molecular picture and we expect the decays into states
without open charm to be strongly suppressed. This presents
a qualitative difference with the hadrocharmonium picture,
where the charmed quarks are close to each other and decay
into J /¥ + N should should give a significant contribution.

11 Discussion of results

We have developed a QCD based approach to dynamical
interpretation of pentaquarks. In this approach pentaquarks
arise as bound states of ordinary baryons and excited states
of quarkonia. The binding is due to the chromoelectric
dipole interaction between the quarkonia states and ordi-
nary baryons. The strength of the quarkonium-baryon inter-
action is determined by the quarkonium state chromoelectric
polarizability and the baryon mass. The interaction poten-
tial is proportional to the density of the baryon energy—
momentum distributions. In this approach we interpret the
LHCb P.(4450) pentaquark as a bound ' N state with spin-
parity J¥ = 3/27. We calculated its decay width into
J/YN, I'(P:(4450) — J/¥ + N) ~ 11MeV, what is in
rough agreement with the experimental data. The P.(4450)
pentaquark in this approach turns out to be a member of a pen-
taquark flavor octet, similar to the octet of ordinary baryons.
The interaction between the quarkonia states and ordinary
baryons is spin-independent in the leading approximation, so
there are two degenerate pentaquark octets with spin-parities
JP =1/27 and JP = 3/27. This degeneracy is lifted by
a small color-singlet spin—spin interaction due to the inter-
ference of the chromoelectric £'1 and chromomagnetic M?2
transitions in charmonium.

Experimentally acceptable spin-parities for the LHCb
pentaquarks are (3/27,5/2%), (3/27,5/27), and (5/27,
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3/27) [2]. With our assignment of spin-parity J¥ = 3/2~
to P.(4450) we have to assign J P =5 /2% to the wide
P.(4380). We cannot find a natural interpretation for such
state as a ¥’ N bound state. We have discovered x.oN, xc1 N,
xc2N, and h.N bound states with spin-parity J* = 5/2%
in the same mass region as P.(4380). Unfortunately, these
states have no open channels for decays into an ordinary
baryon and a charmonium state with hidden charm. Hence,
all strong decays should go via heavy quark—antiquark anni-
hilation, and are thus strongly suppressed in accordance with
the Okubo—Zweig-lizuka rule.

From the phenomenological perspective the main problem
with the hadrocharmonium approach is its apparent inability
to describe the P.(4380) pentaquark. On the theoretical side,
development of a reliable method to calculate charmonium
polarizability is urgently required.

We also considered the one-pion exchange model for
loosely bound pentaquarks. In the framework of this model
the P.(4450) pentaquark could be interpreted as a ¥.D*
bound state with /¥ = 3/27 and T = 1/2. The P,(4380)
pentaquark that did not find a satisfactory explanation in the
hadrocharmonium approach, does not admit a description
based on the one-pion exchange either. Another difficulty
of the one-pion exchange model is connected with decays.
Phenomenologically we should expect that the partial width
I’ (P.(4450) — J/v¥+N)isnotsmall. This follows from the
simple observation that the P, (4450) pentaquark was discov-
ered in the invariant mass distribution of J /v N. The ampli-
tude of this decay is proportional to the bound state wave
function at zero, since to create J /¢ the charmed quark and
antiquark should come closely together. On the other hand
the pentaquark in the one-pion molecular model is loosely
bound, the wave function is smeared over a relatively large
region and as a result the bound state wave function at zero
is relatively small. Suppression of the pentaquark J /¢ + N
decay mode is an apparent difficulty of the one-pion exchange
model.

A nuclear type potential, that includes exchanges of dif-
ferent light mesons allows to consider not necessarily loosely
bound pentaquarks. In this approach the binding energy could
be relatively large and the constituents could be at much
shorter distances than in the one-pion exchange model. This
approach is much more flexible than the deuteronlike mech-
anism. The problem of the nuclear type potential which it
shares with the one-pion potential is the apparent lack of pre-
dictive power. One cannot describe even the already observed
pentaquarks with one and the same short distance regular-
ization. An adjustment of this parameter is required for each
particular state.

Either of the scenarios above predicts a number of new
pentaquark states. A hadrocharmonium LHCDb pentaquark is
a member of an SU (3) flavor octet with small mass split-
tings (see the discussion above). The situation with a molec-
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ular type pentaquark is less clear. The SU(3) partners of
such pentaquark can fail to form a bound state. This is what
happens in the case of the deuteron, where partners do not
form due to the difference of the pion and kaon masses. The
pentaquark binding energy is larger, constituents in the pen-
taquarks are more densely packed than in the deuteron, so the
mass differences inside the meson octets are less important.
Whether the molecular pentaquarks have the SU (3) partners
remains an open question, that probably cannot be answered
in our rough approximation.

It is interesting to explore if there exist molecular bound
states of other heavy mesons and baryons due to the one-pion
exchange mechanism. As a simplest possibility it was sug-
gested some time ago [49] that A.(2940) could be a molecu-
lar pentaquark made of D* and nucleon. We tested this sug-
gestion quantitatively in the same approach as in the discus-
sion of the P,(4450) pentaquark. It turned out that there is no
bound state in the N D* channel. This happens because due
to the isospin factors the attraction induced by the pions in the
N D* channel is only 3 /4 of the attraction between X and D*,
while the nucleon is lighter than X, (the coupling constants
in both channels are approximately equal). Still, molecular
pentaquarks formed by heavier baryons with different quan-
tum numbers and by other heavy mesons could exist.

Hadrocharmonium scenario also admits existence of pen-
taquarks formed by other baryons (for example, by the Roper
resonance as suggested in [50]) and different cc states. The
chromoelectric interaction is spin-independent, so the bound
states in this case (if any) will come in multiplets splitted
by hyperfine interaction. They also should form the SU (3)
flavor multiplets.

Both the hadrocharmonium interpretation of pentaquarks
and the molecular-like approach have their own drawbacks
and advantages, and need further development. Experimen-
tal and theoretical research on pentaquark decay rates and
branching ratios could help to discriminate between differ-
ent models. We hope to address decays in the future.
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