Measuring the Insecurity of Mobile Deep Links of Android

Fang Liu, Chun Wang, Andres Pico, Danfeng Yao, Gang Wang
Department of Computer Science, Virginia Tech
{fbeyond, wchun, andres, danfeng, gangwang} @vt.edu

Abstract

Mobile deep links are URIs that point to specific loca-
tions within apps, which are instrumental to web-to-app
communications. Existing “scheme URLs” are known to
have hijacking vulnerabilities where one app can freely
register another app’s schemes to hijack the communi-
cation. Recently, Android introduced two new meth-
ods “App links” and “Intent URLs” which were designed
with security features, to replace scheme URLs. While
the new mechanisms are secure in theory, little is known
about how effective they are in practice.

In this paper, we conduct the first empirical measure-
ment on various mobile deep links across apps and web-
sites. Our analysis is based on the deep links extracted
from two snapshots of 160,000+ top Android apps from
Google Play (2014 and 2016), and 1 million webpages
from Alexa top domains. We find that the new linking
methods (particularly App links) not only failed to de-
liver the security benefits as designed, but significantly
worsen the situation. First, App links apply link verifica-
tion to prevent hijacking. However, only 194 apps (2.2%
out of 8,878 apps with App links) can pass the verifica-
tion due to incorrect (or no) implementations. Second,
we identify a new vulnerability in App link’s preference
setting, which allows a malicious app to intercept arbi-
trary HTTPS URLs in the browser without raising any
alerts. Third, we identify more hijacking cases on App
links than existing scheme URLs among both apps and
websites. Many of them are targeting popular sites such
as online social networks. Finally, Intent URLs have lit-
tle impact in mitigating hijacking risks due to a low adop-
tion rate on the web.

1 Introduction

With the wide adoption of smartphones, mobile websites
and native apps have become the two primary interfaces
to access online content [10, 44]. Today, a user can easily

launch apps from websites with preloaded context, which
becomes instrumental to many key user experiences. For
instance, from a restaurant’s home page, users can tap a
hyperlink to launch the phone app and call the restaurant,
or launch Google Maps for navigation. Recently, users
can even search in-app content with a web-based search
engine (e.g., Google) and directly launch the target app
by clicking the search result [5].

The key enabler of web-to-mobile communication is
mobile deep links. Like web URLSs, mobile deep links
are universal resource identifiers (URI) for content and
functions within apps [49]. The most widely used deep
link is scheme URL supported by both Android [7] and
iOS [3] since 2008. If an app wants to be launched from
the web, the app can register URI schemes to the mobile
OS during installation. For example, the Facebook app
registers “fb://profile” to open user profiles. Later
when the link “fb://profile/userl” is clicked on the
web, OS then can direct users to the Facebook app.

Threats to Mobile Deep Links. Despite the conve-
nience, researchers have identified serious security vul-
nerabilities in scheme URLSs [18, 19, 55]. The most sig-
nificant one is /ink hijacking, where one app can register
another app’s scheme and induce the mobile OS to open
the wrong app. Fundamentally, link hijacking is possi-
ble because there is no restriction on what schemes apps
can register. A malicious app may register “fb” to hijack
the deep link request to the Facebook app to launch it-
self. This allows the malicious apps to perform phishing
attacks (e.g., displaying a fake Facebook login box) or
steal sensitive data carried by the link (e.g., PII) [19, 35].
Even though Android and iOS may prompt users be-
fore launching an app, there are many cases where such
prompting is skipped without user knowledge.

Recently, two new deep link mechanisms were pro-
posed to address the security risks in scheme URLs:
App link and Intent URL. 1) App Link [6, 9] was in-
troduced to Android and iOS in 2015. It no longer al-

lows developers to customize schemes, but exclusively
uses HTTP/HTTPS scheme. To prevent hijacking, App
links introduced a way to verify the app-to-link associa-
tion. More specifically, mobile OS verifies a registered
link (e.g., https://facebook.com/profile) by con-
tacting the corresponding web host (facebook. com) for
verification. This prevents apps other than Facebook to
claim this link. 2) Intent URL [2] is another solution
introduced in 2013, which only works on Android. In-
tent URL defines how deep links should be called by
websites. Instead of calling “fb://profile”, Intent
URL explicitly specifies the destination app identifier
(i.e., package name) in the parameter to avoid confusion.

Measurements. While most existing works focus
on vulnerabilities in scheme URLs [18, 19, 55], little is
known about how widely App links and Intent URLs
are adopted, and how effective they are in mitigating
the threat in practice. In this paper, we conduct the
first large-scale measurement on the current ecosystem of
mobile deep links. Our goal is to detect and measure link
hijacking vulnerabilities across the web and mobile apps,
and understand the effectiveness of new linking mecha-
nisms in battling hijacking attacks.

We perform extensive measurements on a large col-
lection of mobile apps and websites. To measure the
adoption of different mobile deep links, we collected two
snapshots of 160,000+ most popular Android apps from
Google Play in 2014 and 2016, and crawled 1 million
web pages (using a dynamic crawler) from Alexa top do-
mains. We primarily focus on Android for its significant
market share (87%) [29] and availability of apps. We
also perform a subset of analysis on iOS deep links. At
the high-level, our method is to extract the link regis-
tration entries (URIs) from apps, and then measure their
empirical usage on websites. To detect hijacking attacks,
we group apps that register the same URISs as link colli-
sion groups. We find that not all link collisions are ma-
licious — certain links are expected to be shared such
as links for common functionality (e.g., “tel”) or third-
party libraries (e.g., “zxing’”). We develop methods to
identify malicious hijacking attempts.

Findings. Our study has four surprising findings,
which lead to one overall conclusion: the newly intro-
duced deep link solutions not only fail to improve secu-
rity, but significantly increase hijacking risks for users.

First, App links’ verification mechanism fails in prac-
tice. Surprisingly, among 8,878 Android apps with App
links, only 194 (2.2%) correctly implement link verifica-
tion. The reasons are a combination of the lack of mo-
tivation from app developers and various developer mis-
takes. We confirm a subset of mistakes in iOS App links
too: 1,925 out of 12,570 (15%) fail the verification due

to server misconfigurations, including popular apps such
as Airbnb.

Second, we uncover a new vulnerability in App
links, which allows malicious apps to stealthily intercept
HTTP/HTTPS URLs in the browser. The root cause is
that Android grants excessive permissions to unverified
App links through the preference setting. For an unver-
ified App link, Android by default will prompt users to
choose between the app and the browser. To disable pro-
moting, users may set a “preference” to always use the
app for this link. This preference is overly permissive,
since it not only disables prompting for the current link,
but all other unverified links registered by the app. A
malicious app, once received preference, can hijack any
sensitive HTTP/HTTPS URLs (e.g., to a bank website)
without alerting users. We validate this vulnerability in
the latest Android 7.1.1.

Third, We detect more malicious hijacking attacks
on App links (1,593 apps) than scheme URLs (893
apps). Case studies show that popular websites (e.g.,
“google.com”) and apps (e.g., Facebook) are common
targets for traffic hijacking. In addition, we identify sus-
picious apps that act as the man-in-the-middle between
websites and the original app to record sensitive URLs
and the parameters (e.g., “https://paypal.com”).

Finally, Intent URLs have very limited impact in miti-
gating hijacking risks due to the low adoption rate among
websites. Only 452 websites out of the Alexa top 1 mil-
lion contain Intent URLSs (0.05%), which is a much lower
ratio than that of App links (48.0%) and scheme URLs
(19.7%). Meanwhile, among these websites, App links
drastically increase the number of links that have hijack-
ing risks compared to existing vulnerable scheme URLs

To the best of our knowledge, our study is the first
empirical measurement on the ecosystem of mobile deep
links across web and apps. We find the new linking meth-
ods not only fail to deliver the security benefits as de-
signed, but significantly worsen the situation. There is a
clear mismatch between the security design and practical
implementations due to the lack of incentives of develop-
ers, developer mistakes, and inherent vulnerabilities in
the link mechanism. Moving forward, we propose a list
of suggestions to mitigate the threat. We have reported
the over-permission vulnerability to the Google Android
team. The detailed plan for further notification and risk
mitigation is described in §8.

2 Background and Research Goals

Mobile deep links are URIs that point to specific loca-
tions within mobile apps. Through deep links, websites
can initiate useful interactions with apps, which is instru-
mental to many key user experiences, for example, open-
ing apps, sharing and bookmarking in-app pages [49],

Mobile Phone

Browser/Webview

Scheme URL: foo://p Y

App Link: _https:/foo.com/p _ | Im

Intent URL:
intent://p#Intent;scheme= |
foo;package=com.foo;end

Figure 1: Three types of mobile deep links: Scheme
URL, App Link and Intent URL.

Scheme URL: fb://profile/1234
[N—

——
scheme host path

App Link: http://facebook.com/profile/1234

;T—J T T
scheme host path

Figure 2: URI syntax for Scheme URLs and App links.

and searching in-app content using search engines [5]. In
the following, we briefly introduce how deep links work
and the related security vulnerabilities. Then we describe
our research goals and methodology.

2.1 Mobile Deep Links

To understand how deep links work, we first introduce
inter-app communications on Android. An Android app
is essentially a package of software components. One
app’s components can communicate with another app’s
components through Intent, a messaging object charac-
terized “action”, “category” and “data”. By sending an
intent, one app can communicate with the other app’s
front-end Activities, or background Services, Content
Providers and Broadcast Receivers.

Mobile deep links trigger a particular type of intent
to enable communications between the web and mobile
apps. As shown in Figure 1, after users click on a link
in the browser (or in-app WebView), the browser sends
an intent to invoke the corresponding component in the
target app. Unlike app-to-app communication, mobile
deep link can only launch front-end Activity in the app.

Mobile deep links work in two simple steps: 1) Reg-
istration: an app “foo” should first register its URIs
(“foo://” or “https://foo.com”) to the mobile OS
during installation. The URIs are declared in the in
the “data” field of intent filters. 2) Addressing: when
“foo://” is clicked, mobile OS will search all the intent
filters for a potential match. Since the link matches the
URI of app “foo”, mobile OS will launch this app.

2.2 Security Risks of Deep Linking

Hijacking Risk in Scheme URL. Scheme URL is
the first generation of mobile deep links, and is the least
secure one. It was introduced since Android 1.0 [7]

Mobile Phone

foo.com
. @ Get https:/foo.com/assetlinks.json —o
Mobile OS g

p - j—
DVerify@ @Return assetlinksjson :

assetlinks.json
app:foo < +»
https://foo.com/*

Figure 3: App link verification process.

Register
https://foo.com/*

and iOS 2.0 [3] in 2008. Figure 2 shows the syntax
of a scheme URL. App developers can customize any
schemes and URISs for their app without any restriction.
Prior research has pointed out key security risks in
scheme URLs [19, 55], given that any app can register
other apps’ schemes. For example, apps other than Face-
book can also register “fb://”. When a deep link is
clicked, it triggers an “implicit intent” to open any app
with a matched URI. This allows a malicious app to hi-
jack the request to the Facebook app to launch itself, ei-
ther for phishing (e.g., displaying a fake Facebook login
box), or stealing sensitive data in the request [19, 35].
With an awareness of this risk, Android lets users be
the security guard. When multiple apps declare the same
URI, users will be prompted (with a dialog box) to se-
lect/confirm their intended app. However, if the mali-
cious app is installed but the victim app is not, the mali-
cious app will automatically skip the prompting and hi-
jack the link without user knowledge. Even when both
apps are installed, the malicious app may trick users to
set itself as the “preference” and disable prompting. His-
torically speaking, relying on end-users as the sole secu-
rity defense is risky since users often fail to perceive the
nature of an attack, leading to bad decisions [12, 22, 53].

Solutionl: App Link. App Link was introduced
recently in October 2015 to Android 6.0 [6] as a more
secure version of deep links. It was designed to pre-
vent hijacking with two mechanisms. First, the authen-
tic app can build an association with the correspond-
ing website, which allows the mobile OS to open the
App link exclusively using the authentic app. Second,
App link no longer allows developers to customize their
own schemes, but exclusively uses the http or https
scheme.

Figure 3 shows the App link association process. Sup-
pose app “foo” wants to register “http://foo.com/*”.
Mobile OS will contact the server at “foo.com” for ver-
ification. The app’s developer needs to set up an associ-
ation file “assetlinks.json” beforehand under the root di-
rectory (“/.well-known/”) of the foo.com server. This
file must be hosted on an HTTPS server. If the file
contains an entry that certifies that app “foo” is asso-
ciated with the link “http://foo.com/*”, the mobile
OS will confirm the association. The association file

contains a field called “sha256_cert_fingerprints”,
which is the SHA256 fingerprint of the associated app’s
signing certificate. The mobile OS is able to verify
the fingerprint and prevent hijacking because only the
authentic app has the corresponding signing certificate.
Suppose a malicious app “bar” also wants to register
“http://foo.com/*”, the verification will fail, assum-
ing the attacker cannot access the root of foo. com server
to modify the association file and the fingerprint.

The i0S version of App links is called universal link,
introduced at iOS 9.0 [9], which has the same verifica-
tion process. The association file for iOS is “apple-app-
site-association”. However, iOS and Android have dif-
ferent policies to handle failed verifications. i0S pro-
hibits opening unverified universal links in apps. An-
droid, however, leaves the decision to users: if an unver-
ified link is clicked, Android prompts users to choose if
they want to open the link in the app or the browser.

Solution 2: Intent URL. Intent URL was intro-
duced in 2013 and only works on Android [2]. Intent
URLSs prevent hijacking by changing how the deep link
is called on the website. As shown in Figure 1, in-
stead of calling “foo://p”, Intent URL is structured as
“intent://p/#Intent;scheme=foo;package=com
.foo;end” where the package name of the target app is
explicitly specified. Package name is a unique identifier
for an Android app. Clicking an intent URL will launch
an “explicit intent” to open the specified app.

Compared to scheme URLs and App links, Intent URL
does not need special URI registration on the app. Intent
URL can invoke the same interfaces defined by the URIs
of scheme URLs or App links, as well as other exposed
components [2].

2.3 Research Questions

While the hijacking risk of scheme URLs has been re-
ported by existing research [18, 19, 55], little is known
about how prevalently this risk exists among apps, and
how effective the new mechanisms (App links and Intent
URLSs) are in reducing this risk in practice. We hypothe-
size that upgrading from scheme URL to App link/Intent
URL is a non-trivial task, considering that scheme URLs
may already have significant footprints on the web. Mo-
bile platforms might be able to enforce changes to apps
through OS updates, but their influence on the web is
likely less significant. In this paper, we conduct the first
large-scale measurement on the mobile deep link ecosys-
tem to understand the adoption of different linking meth-
ods and their effectiveness in battling hijacking threats.

Threat Model. Our study focuses on link hijack-
ing threat since this is the security issue that App Links
and Intent URLs aim to address. Link hijacking happens

Link Conditions Prompt
Type >1 Set As Link User?
Apps | Preference | Verified

v X / v
Scheme v v / X
URL X X / X
X v / X
/ X X v
App / v X X
Link* / X v X
/ v v X
Intent URL / / / X

Table 1: Conditions for whether users will be prompted
after clicking a deep link on Android. * App Links always
have at least one matched app, the mobile browser.

when a malicious app registers the URI that belongs to
the victim app. If mobile OS redirects the user to the
malicious app, it can lead to phishing (e.g., the malicious
app displays forged UI to lure user passwords) or data
leakage (e.g., the deep link may carry sensitive data in the
URL parameters such as PII and session IDs) [19, 35]. In
this threat model, mobile OS and browser (or WebView)
are not the targets of the attack, and we assume they are
not malicious.

The Role of Users. Users also play a role in this
threat model. After clicking on a deep link, a user may
be prompted with a dialog box to confirm the destination
app. As shown in Table 1, prompting can be skipped in
many cases. For scheme URLs, a malicious app can skip
prompting if the victim app is not installed, or by trick-
ing users to set the malicious app as the “preference”.
App link can skip prompting if the link has been verified.
Otherwise, users will be prompted to choose between the
browser and the app. Intent URLs will not prompt users
at all since the target app is explicitly specified.

Our Goals. Our study seeks to answer key ques-
tions regarding how mobile deep links are implemented
in the wild and their security impact. We ask three sets of
questions. First, how prevalently are different deep links
adopted among apps over time? Are App links and Intent
URLSs implemented properly as designed? Second, how
many apps are still vulnerable to hijacking attacks? How
many vulnerable apps are exploited by other real-world
apps? Third, how widely are hijacked links distributed
among websites? How much do App links and Intent
URLS contribute to mitigating such links?

To answer these questions, we first describe data col-
lection (§3), and measure the adoption of App links and
scheme URLs among apps (§4). We perform extensive
security analyses to understand how effective App links
can prevent hijacking (§5), and then describe the method
to detect hijacking attacks among apps (§6). Finally, we
move to the web to measure the usage of Intent URLs,

and the prevalence of hijacked links (§7). In §8, we sum-
marize key implications and discuss possible solutions.

3 Datasets

We collected data from both mobile apps and websites,
including two snapshots of 160,000+ most popular An-
droid apps in 2014 and 2016, and web pages from Alexa
top 1 million domains.

Mobile Apps. To examine deep link registration,
we crawled two snapshots of mobile apps from Google
Play. The first snapshot App2014 contains 164,322 most
popular free apps from 25 categories in December 2014
(crawled with an Android 4.0.1 client). In August 2016,
we crawled a second snapshot of top 160,000 free apps
using an Android 6.0.1 client. We find that 48,923 apps
in App2014 are no longer listed on the market in 2016.
4,963 apps in 2014 snapshot fell out of the top 160K list
in 2016. To match the two datasets, we also crawled
these 4,963 apps in 2016, forming an App2016 dataset of
164,963 apps. The two snapshots have 115,399 overlap-
ping apps. For each app in App2016, we also obtained
the developer information, downloading count, review
count and rating.

Our app dataset is biased towards popular apps among
the 2.2 million apps in Google Play [48]. Since these
popular apps have more downloads, potential vulnerabil-
ities could affect more users. Our result can serve as a
lower bound of empirical risks.

Alexa Top 1 Million Websites. To understand deep
link usage on the web, we crawled Alexa top 1 million
domains [1] in October 2016. We simulate using an An-
droid browser (Android 6.0.1, Chrome/41/0/2272.96) to
visit these web domains and load both static HTML page
(index page) and the dynamic content from JavaScript.
This is done using modified OpenWPM [25], a head-
less browser-based crawler. For each visit, the crawler
loads the web page and waits for 300 seconds allowing
the page to load the dynamic content, or perform the redi-
rection. We store the final URL and HTML content. This
crawling is also biased towards popular websites, assum-
ing that deep links on these sites are more likely to be
encountered by users. We refer this dataset as AlexalM.

4 Deep Link Registration by Apps

In this section, we start by analyzing mobile apps to un-
derstand deep link registration and adoption. In order to
receive deep link requests, an app needs to register its
URIs to mobile OS during installation. Our analysis in
this section focuses on Scheme URLs and App links. For
Intent URLSs, as described in §2, developers do not need
special registrations in the app. Instead, it is up to the

websites to decide whether to use Intent URLSs or scheme
URLSs to launch the app. We will examine the adoption
Intent URLS later by analyzing web pages (§7).

We provide an overview of deep link adoption by an-
alyzing 1) how widely the scheme URLs are adopted
among apps, and 2) whether App links are in the process
of replacing scheme URLSs for better security.

4.1 Extracting URI Registration Entries

Android apps register their URIs in the manifest file
(AndroidManifest.xml). Both Scheme URLs and
App Links are declared in Intent filters as a set
of matching rules, which can either be actual links
(fb://login/) or a wild card (fb://profile/x*).
Since there is no way to exhaustively obtain all links be-
hind a wild card, we treat each matching rule as a regis-
tration entry. Given a manifest file, we extract deep link
entries in three steps:

e Stepl: Detecting Open Interfaces. We capture all
the Activity intent filters whose “category” field con-
tains both BROWSABLE and DEFAULT. This returns
all the components that are reachable from the web.

e Step2: Extracting App Link. Among intent fil-
ters in Step 1, we capture those whose “action” con-
tains VIEW. This returns intent filters with either App
Links or Scheme URLs in their “data” fields'. We ex-
tract App Link URIs as those with http/https scheme.
Note that App Link intent filters have a special field
called autoVerify. If its value is TRUE, then mobile
OS will perform verification on the App link.

e Step3: Extracting Scheme URL. All the non-
http/https URIs from Step2 are Scheme URLs.

We apply the above method to our dataset and the re-
sult is summarized in Table 2. Among the 160K apps in
App2016, we find that 20.3K apps adopt scheme URLs
and 8.9K apps adopt App links. Note that for the apps in
App2014 (Android 4.0 or lower), App Link had not been
introduced to Android yet. We find that 4,545 apps in
App2014 register http/https URIs, which are essentially
scheme URLs with “http” or “https” as the scheme.
For consistency, we still call these http/https links as App
links, but link verification is not supported for these apps.

4.2 Scheme URL vs. App Link

Next, we compare the adoption of Scheme URLs and
App links across time, app categories and app popular-
ity. We seek to understand if the new App links are on
the way of replacing Scheme URLs.

IThe rest intent filters whose “action” is not VIEW can still be trig-
gered by Intent URLs.

Dataset Total Apps accept Apps accept Apps accept Unique Unique
Apps Scheme URLs App Links either Links Schemes | Web Hosts

App2014 | 164,322 | 10,565 (6.4%) | 4,545 (2.8%) | 12,428 (7.6%) 8,845 6,471

App2016 | 164,963 | 20,257 (12.3%) | 8,878 (5.4%) | 23,830 (14.5%) 18,839 18,561

Table 2: Two snapshots of Android apps collected in 2014 and 2016. 115,399 apps appear in the both datasets; 48,923
apps in App2014 are no longer listed on the market in 2016; App2016 has 49,564 new apps.

100
80
60
40
20

App Links ez
Scheme URLs

CDF of Apps (%)

Host
.| Scheme

0 2 £
-5-4-3-210123456 78910 [0,1K) [1K, 1M) [1M, o)
of New Schemes/Hosts per App Download Count

Apps w/ Deep Links (%)
o

Figure 4: # of new schemes Figure 5: % of apps w/deep
and app link hosts per app links; apps are divided by
between 2014 and 2016. download count.

Adoption over Time. As shown in Table 2, there
are significantly more apps that started to adopt deep
links from 2014 to 2016 (about 100% growth). However,
the growth rates are almost the same for App links and
Scheme URLs. There are still 2-3 times more apps using
scheme URLSs than those with App links. Apps links are
far from replacing scheme URLs.

Figure 4 specifically looks at apps in both snapshots.
We select those that adopt either type of deep links in
either snapshot (13,538 apps), and compute the differ-
ences in their number of schemes/hosts between 2014
and 2016. We find that the majority of apps (over 96.2%)
either added more deep links or remained the same. Al-
most no apps removed or replaced scheme URLs with
App links. The conclusion is the same when we compare
the number of URI rules (omitted for brevity). This sug-
gests that scheme URLs are still heavily used, exposing
users to potential hijacking threat.

App Popularity. We find that deep links are
more commonly used by popular apps (based on down-
load count). In Figure 5, we divide apps in 2016 into
three buckets based on their download count: [0,1K),
[1K,1M), [I1M,oo). Each has 20,654, 127,323 and 5,223
apps respectively. Then we calculate the percentage of
apps that adopt deep links in each bucket. We observe
that 33% of the 5,223 most popular apps adopt scheme
URL, and the adoption rate goes down to 8% for apps
with <1K downloads. The trend is similar for App links.
In addition, we find that apps with deep links have aver-
agely 4 million downloads per app, which is orders of
magnitude higher than apps without deep links (125K
downloads per app). As deep links are associated with
popular apps, potential vulnerabilities can affect many
users.

App Categories. Among the 25 app cat-
egories, we find that the following categories
have the highest deep link adoption rate: SHOP-
PING (25.5%), SOCIAL (23.4%), LIFESTYLE
(21.0%), NEWS_AND_MAGAZINES (20.5%) and
TRAVEL_AND_LOCAL (20.2%). These apps are
content-heavy and often handle user personally identifi-
able information (e.g., social network app) and financial
data (e.g., shopping app). Link hijacking targeting these
apps could have practical consequences.

S Security Analysis of App Links

Our result shows that App links are still not as popular
as scheme URLs. Then for apps that adopt App links,
are they truly secure against link hijacking? As we dis-
cussed in §2.2, App link was designed to prevent hijack-
ing through a link verification process. If a user clicks
on an unverified App link, the mobile OS will prompt
the user to choose whether he/she would like to open
the link in the browser or using the app. In the fol-
lowing, we empirically analyze the security properties of
App links in two aspects. First, we measure how likely
app developers make mistakes when deploying App link
verification. Second, we discuss a new vulnerability
we discovered which allows malicious apps to skip user
prompting when unverified App links are clicked. Ma-
licious apps can exploit this to stealthily hijack arbitrary
HTTP/HTTPS URLSs in the mobile browser without user
knowledge.

5.1 App Link Verification

We start by examining whether link verification truly
protects apps from hijacking attacks. Since App link has
not been introduced for App2014, all the http/https links
in 2014 were unverified. In the following, we focus on
apps in App2016. In total, there are 8,878 apps that regis-
ter App links, involving 18,561 unique web domains. We
crawled two snapshots of the association files for each
domain in January and May of 2017 respectively. We
use the January snapshot to discuss our key findings, and
then use the May snapshot to check if the identified prob-
lems have been fixed.

Date Apps w/ Apps Verif. Apps Apps with Failed Verifications™
App Links | Turned On | Verified App Host w/o | Host w/ | Wrong Host Host Assoc.
Misconfig. | Assoc. F. | HTTP Path Invalid F. | Other apps
Jan.17 8,878 415 194 26 177 11 0 10 60
May.17 8,878 415 192 26 171 8 0 18 57

Table 3: App Link verification statistics and common mistakes (App2016) based on data from January 2017 and May

2017. *One app can make multiple mistakes.

Type Date Hosts w/ Assoc. F. | Under HTTP | Wrong Path | Invalid File
(08 Jan.17 12,570 1,817 (14%) 0 (0%) 108 (1%)
May.17 13,541 1,820 (13%) 0 (0%) 113 (.8%)
Android Jan.17 1,833 330 (18%) 4 (.2%) 81 (4%)
May.17 2,779 474 (17%) 0 (0%) 118 (4%)

Table 4: Association files for iOS and Android obtained after scanning 1,012,844 domains.

Failed Verifications. As of January 2017, we find
a surprisingly low ratio of verified App links. Among
8,878 apps that register App Links, only 194 apps suc-
cessfully pass the verification (2%). More specifically,
only 415 apps (4.7%) set the “autoVerify” field as TRUE,
which triggers the verification process during app instal-
lation. This means the vast majority of apps (8,463,
95.3%) do not even start the verification process. Inter-
estingly, 434 apps actually have the association file ready
on their web servers, but the developers seem to forget to
configure the apps to turn on the verification.

Even for apps that turn on the verification, only 194
out of 415 can successfully complete the process as of
January 2017. Table 3 shows the common mistakes of
the failed apps (one app can have multiple mistakes).
More specifically, 26 apps incorrectly set the App link
(e.g., with a wildcard in the domain name), which is im-
possible for mobile OS to connect to. On the server-side,
177 apps turn on the verification, but the destination do-
main does not host the association file; 11 apps host the
file under an HTTP server instead of the required HTTPS
server; 10 apps’ files are in invalid JSON format; 60
apps’ association files do not contain the App link (or
the app) to be verified. Note that for these failed apps,
we do not distinguish whether they are malicious apps
attempting to verify with a domain they do not own, or
simply mistakes by legitimate developers.

We confirm all these mistakes lead to failed verifica-
tions by installing and testing related apps on a phys-
ical phone. We observe many of these mistakes are
made by popular apps from big companies. For ex-
ample, “com.amazon.mp3” is Amazon’s official music
app, which claims to be associated with “amazon.com”.
However, the association file under amazon.com does
not certify this app. We tested the app on our phone,
which indeed failed the verification.

In May 2017, we check all the apps again and find that
most of the identified problems remain unfixed. More-
over, some apps introduce new mistakes: there are 8

more apps with an invalid association files in May com-
pared to that of January. Manual examination shows that
new mistakes are introduced when the developers update
the association files.

Misconfigurations for iOS and Android. To show
that App links verification can be easily misconfigured,
we put together 1,012,844 web domains to scan their as-
sociation files. These 1,012,844 domains is a union of
Alexa top 1 million domains and the 18,561 domains ex-
tracted from our apps. We scan the association files for
both Android and iOS.

As of January 2017, 12,570 domains (out 1 million)
have iOS association files and only 1,833 domains have
Android association files (Table 4). It is unlikely that
there are 10x more iOS-exclusive apps. A more plau-
sible explanation is iOS developers are more motivated
to perform link verification, since iOS prohibits opening
unverified HTTP/HTTPS links in apps. In contrary, An-
droid leaves the decision to users by prompting users to
choose between using apps or a browser.

We find iOS apps also have significant mis-
configurations. This analysis only covers a subset of pos-
sible mistakes compared to Table 3, but still returns a
large number. As of January 2017, 1817 domains (14%)
are hosting the association file under HTTP, and there
are additional 108 domains (1%) with invalid JSON files.
One example is the Airbnb’s iOS app. The app tries to
associate with “airbnb.com.gt”, which only hosts the
association file under an HTTP server. This means users
will not be able to open this link in the Airbnb app.

In May 2017, we scan these domains again. We ob-
serve 7.7% of increase of hosts with association files for
10S and 51.6% increase for Android. However, the num-
ber of misconfigured association files also increased.

5.2 Over-Permission Vulnerability

In addition to verification failures, we identify a new vul-
nerability in the setting preferences for App links. Recall

that unverified App links still have one last security de-
fense — the end user. Android OS prompts users when
unverified App links are clicked, and users can choose
between a browser and the matched app. We describe an
over-permission vulnerability that allows malicious apps
to skip prompting for stealthy hijacking.

Over-Permission through Preference Setting. User
prompting is there for better security, but prompting
users too much can hurt usability. Android’s solution
is to take a middle ground using “preference” setting.
When an App link is clicked, users can set “preference”
for always opening the link in the native app without
prompting again. We find that the preference setting
gives excessive permissions. Specifically, the preference
not only disables the prompting for the current link that
the user sees, but all other (unverified) HTTP/HTTPS
links that this app register. For example, if the user sets
preference for “https://bar.com”, all the links with
“https://” in this app receive the permission. Exploit-
ing this vulnerability allows malicious apps to hijack any
HTTP/HTTPS URLSs without alerting users.

Proof-of-Concept Attack. Suppose “bar” is a
malicious app that register both “https://bar.com”
and “https://bank.com/transfer/*”. The user
sets preference for using “bar” to open the link
“https://bar.com”, which is a normal action. Then
without user knowledge, the permission also applies to
“https://bank.com/transfer/*".

Later, suppose this user visits her bank’s
website in a mobile browser, and trans-
fers money through an HTTPS request

“https://bank.com/transfer?sessionid=8154%&
amount=1000& recipient=tom”. Because of the
preference setting, this request will automatically trigger
bar without prompting the user. The browser wraps up
this URL and the parameters in plaintext to create an
Intent, and hands it over to the app bar. bar can then
change the recipient and use the session ID to transfer
money to the attacker. In this example, the attacker
sets the path of the URI as “/transfer/*” so that bar
would only be triggered during money transfer. The
app can make this even stealthier by quickly terminating
itself after the hijacking, and bouncing the user back to
the bank website in the browser.

We validate this vulnerability in both Android 6.0.1
and 7.1.1 (the latest version). We implement the proof-
of-concept attack by writing a malicious Android app to
hijack the author’s own blog website (instead of an actual
bank). The attack is successful: the malicious app hi-
jacked the plaintext parameters in the URL, and quickly
bounced the user back to the original page in the browser.
The bouncing is barely noticeable by users.

Discussion. Fundamentally, this vulnerability is
caused by the excessive permission to unverified App
links. When setting preferences, the permission is not
applied to the link-level, but to the scheme-level. We sus-
pect that the preference system of App links is directly
inherent from scheme URLs. For scheme URLs, the
preference is also set to the scheme level which makes
more sense (e.g., allowing the Facebook app to open all
“fb://”). However, for App links, scheme-level permis-
sion means attackers can hijack any HTTP/HTTPS links.

To successfully exploit this vulnerability, a malicious
app needs to trick users to set the preference (e.g., using
benign functionalities). For example, an attacker may
design a recipe app that allows users to open recipe web
links in the app for an easy display and sharing. This
recipe app can ask users to set the preference for opening
recipe links but secretly registers an online bank’s App
links to receive the same preference. We have filed a bug
report through Google’s Vulnerability Reward Program
(VRP) in February 2017. We are currently working with
the VRP team to mitigate the threat.

10S has a similar preference setting, but not vulnera-
ble to this over-permission attack. In iOS, if the user sets
preference for one app to open an HTTPS link. The per-
mission goes to all the HTTPS links that the app has suc-
cessfully verified. The Android vulnerability is caused by
the fact that permission goes to unverified links.

5.3 Summary of Vulnerable Apps

Thus far, our analysis shows that most apps are still vul-
nerable to link hijacking. First, scheme URLs are still
heavily used among apps. Second, for apps that adopt
App links, only 2% can pass the link verification. The
over-permission vulnerability described above makes the
situation even worse. In 2016, out of all 23,830 apps that
adopt deep links, 23,636 apps either use scheme URLSs
or unverified App links. These are candidates of poten-
tial hijacking attacks.

6 Link Hijacking

While many apps are vulnerable in theory, the real ques-
tion is how many vulnerable apps are exploited in prac-
tice? For a given app, how likely would other apps regis-
ter the same URIs (a.k.a., link collision)? Do link colli-
sions always have a malicious intention? If not, how can
we classify malicious hijacking from benign collisions?
To answer these questions, we first measure how likely
it is for different apps to register the same URIs. Our
analysis reveals the key categories of link collisions, and
we develop a systematic procedure to label all of them.
This analysis allows us to focus on the highly suspicious
groups that are involved in malicious hijacking. Finally,

100 100
g s 2 9
2 90 2 9
< 8 < &
o 80)
S 5 App2016 =—— S 75 App2016 ——
70 App2014 o 70 App2014
1 10 100 1000 1 10 100 1000

of Apps per Scheme # of Apps per Web Host

Figure 6: # of Collision apps Figure 7: # of Collision apps

per scheme. per web host.

we present more in-depth case studies to understand the
risk of typical attacks.

6.1 Characterizing Link Collision

Links collision happens when two or more apps register
the same deep link URIs. When the link is clicked, it is
possible for mobile OS to direct users to the wrong app.
Note that simply matching “scheme” or app link “host”
is not sufficient. For example, “myapp://a/1” and
“myapp://a/2” do not conflict with each other since
they use different “paths” in the URI. To this end, we de-
fine two apps have link collision only if there is at least
one link that is opened by both apps.

Prevalence of Link Collisions. To identify link col-
lision, we first group apps based on the scheme (scheme
URL) or web host (App links). Figure 6 and Figure 7
show the number of apps that each scheme/host is as-
sociated with. About 95% of schemes are exclusively
registered by one single app. The percentage is slightly
lower for App links (76%—-82%). Then for each group,
we filter out apps that have no conflicting URIs with any
other apps in the group, and produce apps with link colli-
sions. Within App2014, we identify 394 schemes, 1,547
web hosts from 5,615 apps involved in link collisions.
The corresponding numbers for 2016 are higher: 697
schemes and 3,272 web hosts from 8,961 apps.

Our result is a lower bound of actual collisions, biased
towards popular apps. Schemes/hosts that are currently
mapped to a single app might still have collisions with
apps outside of our dataset. For the rest of our analysis,
we focus on the more recent 2016 dataset.

Categorizing Link Collisions. We find that not all
collisions have malicious intention. After manually ana-
lyzing these schemes and hosts, we categorize collisions
into 3 types. Table 5 shows the top 10 mostly registered
schemes/hosts and their labels.

e Functional scheme (F) is reserved for a common
functionality, instead of a particular app. “file” is
registered by 1,278 apps that can open files. “geo”
is registered by 238 apps that can handle GPS coor-
dinates. These schemes are expected to be registered

Scheme Apps| Web Host Apps
file ® 1278| google.com (® 480
content () 727 | google.co.uk (®) 441
oauth (7) 520 | zxing.appspot.com (T) 410
x-oauthflow-twitter @ | 369 | maps.google.com () 187
x-oauthflow-espn- 359 | beautygirlsinc.com () 148
twitter (1)

zxing (T) 321 | triposo.com (?) 131
testshop (¥ 278 | feeds.feedburner.com (1) 126
shopgate-10006 (1) 278 | feeds2.feedburner.com (7) 123
geo (® 238 | feedproxy.google.com (1) 112
tapatalk-byo (D) 180 | feedsproxy.google.com (™ | 110

Table 5: Top 10 schemes and app link hosts with link col-
lisions in App2016. We manually label them into three
types: (©)= Functional, (¢))= Per-App, (1)= Third-party

by multiple apps. IANA [13] maintains a list of URI
schemes, most of which are functional ones. This
collision type does not apply to App links.

e Per-app scheme/host (P) is designated to an indi-
vidual app. “maps.google.com” is to open Google
Maps (but registered by 186 other apps) and “fb” is
supposed to open Facebook app (but registered by
4 other apps). Collisions on per-app schemes/hosts
are often malicious, with the exception if all apps are
from the same developer.

e Third-party scheme/host (T) is used by third-
party libraries, which often leads to (uninten-
tional) link collision. “x-oauthflow-twitter”
is a callback URL for Twitter OAuth. Twit-
ter suggests developers defining their own call-
back URL, but many developers copy-paste this
scheme from an online tutorial (unintentional colli-
sion). “feedproxy.google.com” is from a third-
party RSS aggregator. Apps use this service to redi-
rect user RSS requests to their apps (benign colli-
sion).

Because of the “shared” nature, functional schemes
or third-party schemes/hosts are expected to be used by
multiple apps. Related link collisions are benign or un-
intentional. In contrary, per-app schemes/hosts are (ex-
pected to be) designated to each app, and thus link colli-
sion can indicate malicious hijacking attempts.

6.2 Detecting Malicious Hijacking

Next, we detect malicious hijacking by labeling per-app
schemes/hosts. This task is challenging since schemes
and hosts are registered without much restriction—
it is difficult to tell based on the name of the
scheme/host. Our The high-level intuition is: 1)
third-party schemes/hosts often have official documen-
tations to teach developers how to use the library,
which are searchable online; 2) functional schemes are

Deep Links . . After Pre- . .
In Total Link Collisions Processing Functional | Third-party Per-app
#Schemes (#Apps) | 18,839 (20,257) 697 (7,432) 376 (6,350) 30 (2,135) 197 (3,972) 149 (893)
#Hosts (#Apps) 18,561 (8,878) 3,272 (2,868) 2,451 (2,083) N/A 137 (999) 2,314 (1,593)

Table 6: Filtering and classification results for schemes and App link hosts (App2016).

well-documented in public URI standard. To these
ends, we develop a filtering procedure to label per-app
schemes/hosts. For any manual labeling tasks, we have
two authors perform the task independently, and a third
person to resolve any disagreements.

Pre-Processing. We start with the 697 schemes
and 3,272 hosts (8,961 apps) that have link collisions in
App2016. We exclude schemes/hosts where all the colli-
sion apps are from the same developer. This leaves 376
schemes and 2,451 web hosts for further labeling.

Classifying Schemes. We label schemes in two steps.
The results are shown in Table 6. First, we filter out
functional schemes. TANA [13] lists 256 common URI
schemes, among which there are a few per-apps scheme
under “provisional” status (e.g., “spotify”). We man-
vally filter them out and get 175 standard functional
schemes. Matching this list with our dataset returns 30
functional schemes with link collisions. Then, to label
third-party schemes, we manually search for their doc-
umentations or tutorials online. For certain third-party
schemes, we also check the app code to be sure. In to-
tal, we identify 197 third-party schemes, and the rest 149
schemes are per-app schemes (also manually checked).

Figure 8 shows the number of collision apps for
different schemes. Not surprisingly, per-app schemes
have fewer collision apps than functional and third-party
schemes.

Classifying App Link Hosts. This only requires
labeling third-party hosts from per-app hosts. In total,
there are 2,451 hosts after pre-processing. We observe
that 1633 hosts are jointly registered by 5 apps, and 347
subdomains of “google.com” are registered by 2 apps.
All these hosts are not third-party hosts, which helps to
trim down to 471 hosts for manual labeling. We follow
the same intuition to label third-party web hosts by man-
ually searching their official documentations. In total,
we label 137 third-party hosts, and 2,314 per-app hosts.
Figure 9 compares per-app hosts and third-party hosts on
their number of collision apps, which are very similar.

Testing Automated Classification. Clearly manu-
ally labeling cannot scale. Now that we have obtained
the labels, we briefly explore the feasibility of automated
classification. As a feasibility test, we classify per-app
schemes from third-party schemes using 10 features such
as unique developers per scheme, and apps per scheme
(feature list in Appendix). 5-fold cross-validation us-

I |

CDF of Apps (%)

e . - " Per-app
20 r -7 Third-party e
of = Functional - - - Third-party

2 10 100 1000 2 10 100 1000

of Collision Apps per Scheme # of Collision Apps per Host

20 Per-app

CDF of Apps (%)

Figure 9: # of collision apps
per host.

Figure 8: # of collision apps
per scheme.

ing SVM and Random Forests classifiers return an accu-
racy of 59% (SVM) and 62% (RF). If we only focus on
schemes that have a higher-level of collisions (e.g., > 4
developers), it returns a higher accuracy: 84% (SVM)
and 75% (RF). The accuracy is not high enough for prac-
tical usage. Intuitively, there are not many restrictions on
how developers register their URIs, and thus it is possible
that the patterns of per-app schemes are not that strong.
Since fully automated classification is not yet feasi-
ble, we then explore useful heuristics to help app mar-
ket admins to conduct collision auditing. We rank fea-
tures based on the information gain, and identify top 3
features: average number of apps from the same devel-
oper (apDev), number of unique no-prefix components
(npcNum) and number of unique components (ucNum).
Regarding apDeyv, the intuition is that developers are
likely to use a different per-app scheme for each of their
apps, but would share the same third-party schemes (e.g.,
oauth) for all their apps. A larger apDev of the colli-
sion link indicates a higher chance of being a third-party
scheme. Moreover, third-party schemes are likely to use
the same component name for different apps (i.e., less
unique), leading to smaller npcNum and ucNum.

6.3 Hijacking Results and Case Studies

In total, we identify 149 per-app schemes and 2,314 per-
app hosts that are involved in link collisions. The related
apps (893 and 1,593 respectively) are either the attacker
or victim in the hijacking attacks. To understand how
per-app schemes and hosts are hijacked, we perform in-
depth cases studies on a number of representative attacks.

Traffic Hijacking. We find apps that regis-
ter popular websites’ links (or popular apps’ schemes)
seeking to redirect user traffic to themselves. For
example, “google.com” is registered by 480 apps
from 305 non-Google developers. The scheme

“google.navigation” from Google Maps is hijacked
by 79 apps from 32 developers. The intuition is that
popular sites and apps already have a significant num-
ber of links distributed to the web. Hijacking their links
are likely to increase the attacker apps’ chance of being
invoked. We find many popular apps are among the hi-
jacking targets (e.g., Facebook, Airbnb, YouTube, Tum-
blr). Traffic hijacking is the most common attack.

URL Redirector MITM. A number of hijackings
are conducted by “URL Redirector” apps. When users
click on an http/https link in the browser, these Redirec-
tor apps redirect users to the corresponding apps. Es-
sentially, Redirector apps play the role of mobile OS in
redirecting URLS, but their underlying mechanisms have
several security implications. For example, URLLander
(com.chestnutcorp.android.urlander) and Ap-
pRedirect (com.nevoxo.tapatalk.redirect) each
has registered HTTPS links from 36 and 75 web domains
respectively (unverified) and has over 10,000 installs. We
suspect that users install Redirector apps because of the
convenience, since these apps allow users to open the
destination apps (without bouncing to the browser) even
if the destination apps have not yet adopted App links.
The redirection is hard coded without the consent of the
destination apps or the originated websites.

URL redirector apps can act as man-in-the-middle
(MITM) to hijack HTTP/HTTPS URLs. For example,
URLLander registered “https://www.paypal.com”
for redirection. When a user visits paypal.com us-
ing a browser (usually logged-in), the URL contains
sensitive parameters including a SESSIONID. Once the
user agrees to use URLLander for redirection, the URL
and SESSIONID will be handed over to URLLander
by the browser in plaintext. This MITM threat applies
to all the popular websites that Redirector apps reg-
istered such as facebook.com, instagram.com, and
ebay.com. Particularly for eBay, we find that the offi-
cial eBay app explicitly does not register to open the link
“payments.ebay.com”, but this link was registered by
Redirector apps. We analyze the code of AppRedirect
and find it actually writes every single incoming URL
and parameters in a log file. Redirection (and MITM)
can be automated without prompting users by exploiting
the over-permission vulnerability (see §5.2) — if the user
once sets a preference for just one of those links.

Hijacking a Competitor’s App. Many apps are
competitors in the same business, and we find tar-
geted hijacking cases between competing apps. For
example, Careem (com.careem.acma) and QatarTaxi
(com.gatar.qatartaxi) are two competing taxi book-
ing apps in Dubai. Careem is more popular (SM+ down-
loads), which uses scheme “careem” for many function-
alities such as booking a ride (from hotel websites) and

Dataset App Link Scheme URL | Intent URL
(Webpage) (Webpage) (Webpage)
AlexalM | 3.2M (480K) | 431K (197K) 1,203 (452)

Table 7: Number of deep links (and webpages that con-
tain deep links) in Alexa top 1 million web domains.

adding credit card information. QatarTaxi (10K down-
loads) registers to receive all “careem://*” deep links.
After code analysis, we find all these links redirect users
to the QatarTaxi app’s home screen, as an attempt to draw
customers.

Bad Scheme Names. Hijackings are also caused by
developers using easy-to-conflict scheme names. For ex-
ample, Citi Bank’s official app uses “deeplink” as its
per-app scheme, which conflicts with 6 other apps. These
apps are not malicious, but may cause confusions — a
user is going to open the Citi Bank app, but a non-related
app shows up (and vice versa). We detect 14 poorly

LLIT3

named per-app schemes (e.g., “myapp”, “app”).

7 Mobile Deep Links on The Web

Our analysis shows that hijacking risks still widely exist
within apps. Next, we move to the web-side to examine
how mobile deep links are distributed on the web, and
estimate the likelihood of users encountering hijacked
links. In addition, we focus on Intent URL to examine
its adoption and usage. We seek to estimate the impact
of Intent URLs to mitigating hijacking threats.

In the following, we first measure the prevalence of
Intent URLs on the web, and compare it with scheme
URLs and App links. Then, we revisit the hijacked links
detected in §6 and analyze their appearance on the web.

7.1 Intent URL Usage

Intent URL is a secure way of calling deep links from
websites by specifying the target app’s package name
(unique identifier). In theory, Intent URL can be used
to invoke existing app components defined by scheme
URLSs (and even App links) to prevent hijacking. The
key question is how widely are Intent URLs adopted in
practice.

Intent URLs vs. Other Links ~ We start by extracting
mobile deep links from web pages in AlexalM collected
in §3. For App links and scheme URLs, we match all the
hyperlinks in the HTML pages with the link registration
entries extracted from apps. We admit that this method
is conservative as we only include deep links registered
by apps in our dataset. But the matching is necessary
since not all the HTTP/HTTPS links or schemes on the
web can invoke apps. For Intent URLs, we identify them

n
(3

S

Bins of Websites (in 10 Thousand)

(a) Intent URLs

% Websites w/ Deep Link
c o o o 8
§
[0 —
[—]
[\ —
[l —]
0f)
[Tl —
[l ——
[T —
0§ ey
[T —
09)
[t ——
[V ——
[——
08)
[———]
06)
66 Ty
00}
% Websites w/ Deep Link
- N W A O
o O O O o
[——
[\ —
[T O ——
[——
[er Al ————
[l —
[l ————]
[\ —
[Ol ———
0§
[T ——
09
[t ——
0,
[———
08
o1 —
06 Ty
[T ——
00}

Bins of Websites (in 10 Thousand)

(b) Scheme URLs

Bins of Websites (in 10 Thousand)

(c) App Links

Figure 10: Deep link distribution among Alexa top 1 million websites. Website domains are sorted and divided into
20 even-sized bins (50K sites per bin). We report the % of websites that contain deep links in each bin.

100 10000

1000

.......

i
............

80 r
60
40
20
0

1000

100

CDF of App (%)

Intent URL =sseesssenen: 4
Scheme URL ——

1 2 10 100 1000

of Deeplinks (Thousand)

Third-party e
Per-app Ezmzm
Functional ==

Third-party =
Per-app
Functional 191K

398K

of Websites (Thousand)

Web Domains per App

Figure 11: Number of websites that Figure 12: Different type of hijacked Figure 13: Webpages that contain hi-

host deep links for each app.

based on their special format (“intent://*;end”). The
matching results are shown in Table 7.

The key observation is Intent URLs are rarely used.
Out of 1 million web domains, only 452 (0.05%) contain
Intent URLSs in their index page. As a comparison, App
links and Scheme URLs appear in 480K (48%) and 197K
(19.7%) of these sites. For the total number of links, In-
tent URL is also orders of magnitude lower than other
links (1,203 versus 3.2M and 431K). This extremely low
adoption rate indicates that Intent URLs have little im-
pact to mitigating hijacking risks in practice.

Challenges to Intent URL Adoption. Since Android
still supports scheme URLSs, it is possible that developers
are not motivated to use Intent URLSs to replace the still-
functional scheme URLs. In addition, even if security-
aware developers use Intent URLs on their own websites,
it is difficult for them to upgrade scheme URLs that have
been distributed to other websites.

As shown in Figure 10(a), Intent URLs are highly
skewed towards to high-ranked websites. In contrary,
Scheme URLs are more likely to appear in low-ranked
domains (Figure 10(b)), and App links’ distribution is
relatively even (Figure 10(c)). A possible explanation is
that popular websites are more security-aware.

Then we focus on apps, and examine how many web-
sites that contain an app’s deep links (Figure 11). We find
that most apps have their Intent URLSs on a single website
(90%). We randomly select 40+ pairs of the one-to-one
mapped apps and websites for manual examination. We
find that almost all websites (except 2) are owned by the
app developers, which confirms our intuition. Scheme
URLS are found in more than 5 websites for 90% of apps

deep links in Alexal M.

jacked deep links in Alexal M.

(50 websites for more than half of the apps). It is chal-
lenging to remove or upgrade scheme URLs across all
these sites.

Insecure Usage of Intent URL. Among the 1,203
Intent URLSs, we find 25 Intent URLs did not specify the
package name of the target app (only the host or scheme).
These 25 Intent URLSs can be hijacked.

7.2 Measuring Hijacking Risk on Web

To estimate the level of hijacking risks on the web, we
now revisit the hijacking attacks detected in §6 (those
on per-app schemes/hosts). We seek to measure the vol-
ume of hijacked links among webpages, and estimation
App link’s contributions over existing risks introduced
by scheme URLs.

Hijacked Mobile Deep Links. We extract links from
AlexalM that are registered by multiple apps, which re-
turns 408,455 scheme URLs and 2,741,817 App links.
Among them, 7,242 scheme URLs and 2,619,565 App
links contain per-app schemes/hosts (i.e., hijacked links).

The key observation is that App links introduce orders
of magnitude more hijacked links than scheme URLs, as
shown in Figure 12 (log scale y-axis). We further exam-
ine the number of websites that contain hijacked links.
As shown in Figure 13, App links have a dominating
contribution: 456K websites (out of 1 million, 45.6%)
contains per-app App links that are subject to link hi-
jacking. The corresponding number for scheme URL is
5.3K websites (0.5%).

App links, designed as the secure version of deep
links, actually expose users to a higher level of risks. In-

tuitively, http/https links have been used on the web for
decades. Once apps register App links, a large number
of existing http/https links on the web are automatically
interpreted as App links. This creates more opportunities
for malicious apps to perform link hijacking.

Links Carrying Sensitive Data. To illustrate the
practical consequences of link hijacking, we perform a
quick analysis on the hijacked links with a focus on their
parameters. A quick keyword search returns 74 sen-
sitive parameter names related to authentications (e.g.,
authToken, sessionid, password, access_token,
full list in Appendix). We find that 1075 hijacked links
contain at least one of the sensitive parameters. A suc-
cessful hijacking will expose these parameters to the at-
tacker app. This is just one example, and by no means
exhaustive in terms of possibly sensitive data carried in
hijacked links (e.g., PII, location).

8 Discussion

Key Implications. Our results shed light on the prac-
tical challenges to mitigate vulnerable mobile deep links.
First, scheme URL was designed for mixed purposes,
including invoking a generic function (functional/third-
party schemes) and launching a target app (per-app
schemes). The multipurpose design makes it difficult
to uniformly enforce security policies (e.g., associating
schemes to apps). A more practical solution should pro-
hibit per-app schemes, while not crippling the widely de-
ployed functional/third-party schemes on the web.

Second, App links and Intent URLs were designed
with security in mind. However, their practical usage
has deviated from the initial design. Particularly for App
links, 98% of apps did not implement link verification
correctly. In addition to various configuration errors, a
more important reason is unverified links still work on
Android, and developers are likely not motivated to ver-
ify links. As a result, App links not only fail to provide
better security, but worsen the situation significantly by
introducing more hijackable links.

Finally, the insecurity of deep links leads to a tough
trade-off between security and usability. Mobile deep
links were designed for usability, to enable seamless
context-aware transitions from web to apps. However,
due to the insecure design, mobile platforms have to con-
stantly prompt users to confirm the links they clicked,
which in turn hurts usability. The current solution for
Android (and iOS) takes a middle ground, by letting
users set “preference” for certain apps to disable prompt-
ing. We find this leads to new security vulnerabilities
(over permission risk in §5.2) that allow malicious apps
to hijack arbitrary HTTP/HTTPS URLs in the Android
browser.

Legacy Issue. Android does not strongly enforce
App link verification possibly due to the legacy issues.
First, scheme URLs are still widely used on websites
as discussed in §7. Disabling scheme links altogether
would inevitably affect users’ web browsing experience
(e.g., causing broken links [8]). Second, according to
Google’s report [11], over 60% of Android devices are
still using Android 5.0 or earlier versions, which do not
support App link verification. Android allows apps (6.0
or higher) to use verified App links while maintaining
backward compatibility by not enforcing the verification.

Countermeasures. We discuss three countermea-
sures to mitigate link hijacking risks. In the short term,
the most effective countermeasures would be disabling
scheme URLs in mobile browsers and WebViews. Note
that this is not to disable the app interfaces defined by
schemes, but to encourage (force) websites to use Intent
URLs to invoke per-app schemes safely. Android may
also whitelist a set of well-defined functional schemes
to avoid massively breaking functional links. For cus-
tomized scheme URLs that are still used on the web,
Android needs to handle their failure gracefully without
severely degrading user experience. Second, prohibit-
ing apps from opening unverified App links to prevent
link hijacking. The drawback is that apps without a web
front would face difficulties to use deep links — they will
need to rely on third-party services such as Brach.io [4]
or Firebase [5] to host their association files. Third,
addressing the over-permission vulnerability (§5.2), by
adopting more fine-grained preference setting (e.g., at the
host level or even the link level). This threat would also
go away if Android strictly enforces App link verifica-
tions.

Vulnerability Notification & Mitigation. Our study
identifies new vulnerabilities and attacks, and we are tak-
ing active steps to notifying the related parties for the risk
mitigation.

First, regarding the over-permission vulnerability, we
have filed a bug report through Google’s Vulnerability
Reward Program (VRP) in February 2017. As of June
2017, we have established a case and submitted the sec-
ond round of materials including the proof-of-concept
app and a demo of the attack. We are waiting for further
responses from Google. Second, we have reported our
findings to the Android anti-malware team and the Fire-
base team regarding the massive unverified App links and
the misconfiguration issues. Details regarding their miti-
gation plan, however, were not disclosed to us. Third, as
shown in §5.1, most of the misconfigured App links have
not been fixed after 5 months. In the next step, we plan
to contact the developers, particularly those of hijacked
apps and help them to mitigate the configuration errors.

Limitations. Our study has a few limitations. First,
our conclusions are limited to mobile deep links of An-
droid. Although iOS takes a more strict approach to en-
forcing the link verification, it remains to be seen how
well the security guarantees are achieved in practice. Our
brief measurement in §5.1 already shows that iOS uni-
versal links also have misconfigurations. More exten-
sive measurements are needed to fully understand the
potential security risks of iOS deep links. Second, our
measurement scope is still limited comparing to the size
of Android app market and the whole web. We argue
that data size is sufficient to draw our conclusions. By
measuring the most popular apps (160,000+) and web
domains (1,000,000), we collect strong evidence on the
incompetence of the newly introduced linking mecha-
nisms in providing better security. Third, we only fo-
cus on the link hijacking threat, because this is the se-
curity issue that App links and Intent URLs were de-
signed to address. There are other threats related to web-
to-mobile communications such as exploiting WebViews
and browsers [20, 37], and cross-site request forgery on
apps [27, 46, 50]. Our work is complementary to existing
work to better understand and secure the web-and-app
ecosystem.

9 Related Work

Inter-app Communication & Deep Links. Re-
searchers have discovered various vulnerabilities in the
inter-app communication mechanism in Android [19, 23]
and i0OS [52], which leads to potential hijacking and
spoofing attacks. The fundamental issue is a lack of
source and destination authentication [52]. In the con-
text of app-to-app communication, attacks may cause
permission escalation [15, 21] and sensitive data leak-
age [46]. Mobile deep links (e.g., scheme URL) inherent
some of these vulnerabilities when facilitating commu-
nications between websites and apps. Unlike web URLs
whose uniqueness is guaranteed by the DNS, mobile
deep links lack a similar, centralized entity for link reg-
istration and addressing. As a result, multiple apps may
register the same link, leading to hijacking risks. Our
work is complementary to existing work since we focus
on large-scale empirical measurements, providing new
understandings to how the risks are mitigated in practice.

Other recent works on mobile deep links focus on im-
proving usability instead of security. Two systems are
proposed to automatically generate deep links for apps
via static and dynamic code analysis [38, 49].

Mobile Browser Security. In web-to-app communi-
cations, mobile browsers play an important role in bridg-
ing websites and apps, which can also be the target of
attacks. For example, malicious websites may attack the

browser using XSS [27, 50] and origin-crossing [52].
The threat also applies to customized in-app browsers
(called WebView) [20, 37, 40, 51]. In our work, we focus
hijacking threats to apps, a different threat model where
browser is the not target.

Detection and Mitigation. Existing research has ex-
plored different approaches to detect vulnerabilities in
app-to-app communications. On one hand, static code
analysis leverages call graphs and flow analysis to de-
tect information leakages [15, 26, 36, 45, 57] and vul-
nerable interfaces for inter-app communications [14, 32,
33, 34, 41, 42, 43]. On the other hand, dynamic anal-
ysis tracks information flow in the runtime which can
capture attacks that would be otherwise missed by static
analysis [24, 28, 30, 54, 56]. To remove and miti-
gate vulnerabilities, researchers propose to automatically
generate app patches [39, 45, 58], enforce strict poli-
cies [16, 17, 31, 51, 59] and provide guidelines for writ-
ing safer apps [31]. Our work highlights the significant
gap between a security solution and the practical impact
in mitigating threats. Beyond technical solutions, other
factors such as developer incentives and capabilities and
mobile platform policies also play a big role.

10 Conclusion

In this paper, we conducted the first large-scale measure-
ment study on mobile deep links across popular Android
apps and websites. Our results showed strong evidence
that the newly proposed deep link methods (App links
and Intent URLs) fail to address the existing hijacking
risks in practice. In addition, we identified new vul-
nerabilities and empirical misconfigurations in App links
which ultimately expose users to a higher level of risks.
Finally, we made a list of suggestions to countermeasure
the link hijacking risks in Android. Moving forward, we
plan to further investigate automated methods for hijack-
ing detection, and conduct more extensive measurements
on i0S deep links in the future.

Acknowledgments

The authors wish to thank the anonymous reviewers and
our shepherd Manuel Egele for their helpful comments,
and Bolun Wang for sharing the scripts to collect the
meta data of Android apps. This project was supported
by NSF grant CNS-1717028. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of any funding agencies.

References

(1]
(2]

(3]

(4]
(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Alexa. http://www.alexa.com.

Android Intents with Chrome. https:
//developer.chrome.com/multidevice/
android/intents.

App programming guide for ios.
//developer.apple.com/library/
content/documentation/iPhone/
Conceptual/iPhone0SProgrammingGuide/
Inter-AppCommunication/Inter-
AppCommunication.html.

https:

Branch. https://developer.branch.io/.

Firebase App Indexing. https://firebase.
google.com/docs/app-indexing.

Handling App Links. https://developer.
android.com/training/app-links/index.
html.

Interacting with Other Apps. https:
//developer.android.com/training/
basics/intents/filters.html.

i0OS 9.2 Update: The Fall of URI Schemes and
the Rise of Universal Links. https://blog.
branch.io/ios-9-2-redirection-update-
uri-scheme-and-universal-1links/.

Support Universal Links. https://
developer.apple.com/library/content/
documentation/General/Conceptual/
AppSearch/UniversalLinks.html.

Smartphone apps crushing mobile web times.
https://www.emarketer.com/Article/
Smartphone-Apps-Crushing-Mobile-Web-
Time/1014498, October 2016.

Android platform versions. https://developer.
android.com/about/dashboards/index.
html, May 2017.

AKHAWE, D., AND FELT, A. P. Alice in warning-
land: A large-scale field study of browser security
warning effectiveness. In Proc. of USENIX Security
(2013).

Uniform re-
http:

AuTHORITY, I. A. N.
source identifier (URI) schemes.

//www.iana.org/assignments/uri-
schemes/uri-schemes.xhtml, February 2017.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

BAGHERI, H., SADEGHI, A., GARCIA, J., AND
MALEK, S. COVERT: Compositional analysis of
Android inter-app permission leakage. IEEE Trans-
actions in Software Engineering (2015).

Bosu, A., Liu, F., YAao, D. D., AND WANG, G.
Collusive data leak and more: Large-scale threat
analysis of inter-app communications. In Proc. of
ASIACCS (2017).

BUGIEL, S., DAVI, L., DMITRIENKO, A., FIS-
CHER, T., AND SADEGHI, A.-R. XManDroid: A
new Android evolution to mitigate privilege esca-
lation attacks. Technische Universitit Darmstadt,
Technical Report TR-2011-04 (2011).

BUGIEL, S., HEUSER, S., AND SADEGHI, A.-R.
Flexible and fine-grained mandatory access control
on Android for diverse security and privacy poli-
cies. In Proc. of USENIX Security (2013).

CHEN, E. Y., PE1, Y., CHEN, S., TIiaN, Y.,
KOTCHER, R., AND TAGUE, P. Oauth demysti-

fied for mobile application developers. In Proc. of
CCS (2014).

CHIN, E., FELT, A. P., GREENWOOD, K., AND
WAGNER, D. Analyzing inter-application commu-
nication in Android. In Proc. of MobiSys (2011).

CHIN, E., AND WAGNER, D. Bifocals: Analyzing
webview vulnerabilities in Android applications. In
Proc. of WISA (2014).

DaAvi, L., DMITRIENKO, A., SADEGHI, A.-R.,
AND WINANDY, M. Privilege escalation attacks
on Android. In Proc. of ISC (2011).

EGELMAN, S., CRANOR, L. F., AND HONG, J.
You’ve been warned: An empirical study of the ef-

fectiveness of web browser phishing warnings. In
Proc. of CHI (2008).

ELISH, K. O., YAO, D., AND RYDER, B. G. On
the need of precise inter-app ICC classification for

detecting Android malware collusions. In Proc. of
MoST (2015).

ENCK, W., GILBERT, P., HAN, S., TENDULKAR,
V., CHUN, B.-G., Cox, L. P.,, JUuNgG, J., Mc-
DANIEL, P., AND SHETH, A. N. TaintDroid: an
information-flow tracking system for realtime pri-
vacy monitoring on smartphones. ACM TOCS 32,
2 (2014), 5.

ENGLEHARDT, S., AND NARAYANAN, A. Online
tracking: A 1-million-site measurement and analy-
sis. In Proc. of CCS (2016).

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

GORDON, M. I., KiMm, D., PERKINS, J. H.,
GILHAM, L., NGUYEN, N., AND RINARD, M. C.
Information flow analysis of Android applications
in DroidSafe. In Proc. of NDSS (2015).

HAY, R., AND AMIT, Y. Android browser cross-
application scripting (cve-2011-2357). Tech. rep.,
July 2011.

HAY, R., TRIPP, O., AND PISTOIA, M. Dynamic
detection of inter-application communication vul-
nerabilities in Android. In Proc. of ISSTA (2015).

INTERNATIONAL DATA CORPORATION
(IDC). Smartphone OS Market Share. http:
//www.idc.com/prodserv/smartphone-os-
market-share. jsp, November 2016.

JING, Y., AHN, G.-J., DOUPE, A., AND Y1, J. H.
Checking intent-based communication in Android
with intent space analysis. In Proc. of ASIACCS
(2016).

KANTOLA, D., CHIN, E., HE, W., AND WAGNER,
D. Reducing attack surfaces for intra-application
communication in Android. In Proc. of SPSM
(2012).

KLIEBER, W., FLYNN, L., BHOSALE, A., JIA, L.,
AND BAUER, L. Android taint flow analysis for
app sets. In Proc. of SOAP (2014).

Li, L., BARTEL, A., BISSYANDE, T. F.
D. A., KLEIN, J., LE TRAON, Y., ARZT, S.,
RASTHOFER, S., BODDEN, E., OCTEAU, D.,
AND MCDANIEL, P. IccTA: detecting inter-
component privacy leaks in Android apps. In Proc.
of ICSE (2015).

Liu, F., CA1, H., WANG, G., YAO, D. D, EL-
ISH, K. O., AND RYDER, B. G. MR-Droid: A
scalable and prioritized analysis of inter-app com-
munication risks. In Proc. of MoST (2017).

Liu, Y., SONG, H. H., BERMUDEZ, 1., MISLOVE,
A., BALDI, M., AND TONGAONKAR, A. Identify-
ing personal information in internet traffic. In Proc.
of COSN (2015).

Lu, L., L1, Z., WU, Z., LEE, W., AND JIANG,
G. CHEX: Statically vetting Android apps for com-
ponent hijacking vulnerabilities. In Proc. of CCS
(2012).

Luo, T., HAo, H., DU, W., WANG, Y., AND YIN,
H. Attacks on webview in the Android system. In
Proc. of ACSAC (2011).

(38]

[39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

Ma, Y., Liu, X, Du, R, Hu, Z., L1U, Y., YU,
M., AND HUANG, G. DroidLink: Automated
generation of deep links for Android apps. CoRR
abs/1605.06928 (2016).

MULLINER, C., OBERHEIDE, J., ROBERTSON,
W., AND KIRDA, E. PatchDroid: Scalable third-
party security patches for Android devices. In Proc.
of ACSAC (2013).

MUTCHLER, P., DOUPE, A., MITCHELL, J.,
KRUEGEL, C., AND VIGNA, G. A large-scale
study of mobile web app security. In Proc. of IEEE
MoST (2015).

OCTEAU, D., JHA, S., DERING, M., Mc-
DANIEL, P., BARTEL, A., L1, L., KLEIN, J., AND
LE TRAON, Y. Combining static analysis with
probabilistic models to enable market-scale An-
droid inter-component analysis. In Proc. of POPL
(2016).

OCTEAU, D., MCDANIEL, P., JHA, S., BARTEL,
A., BODDEN, E., KLEIN, J., AND LE TRAON,
Y. Effective inter-component communication map-
ping in Android: An essential step towards holis-
tic security analysis. In Proc. of USENIX Security
(2013).

RaviTcH, T., CRESWICK, E. R., TomB, A.,
FOLTZER, A., ELLIOTT, T., AND CASBURN, L.
Multi-App security analysis with FUSE: Statically
detecting Android app collusion. In Proc. of
PPREW (2014).

ROWINSKI, D. Digital strategy: Why native apps
versus mobile web is a false choice. https:
//arc.applause.com/2016/09/13/native-
apps-versus-mobile-web-decision/,

September 2016.

SBIRLEA, D., BURKE, M. G., GUARNIERI, S.,
PISTOIA, M., AND SARKAR, V. Automatic de-
tection of inter-application permission leaks in An-
droid applications. IBM Journal of Research and
Development 57, 6 (2013), 10-1.

SCHLEGEL, R., ZHANG, K., ZHOU, X., INT-
WALA, M., KAPADIA, A., AND WANG, X. Sound-
comber: A stealthy and context-aware sound trojan
for smartphones. In Proc. of NDSS (2011).

STAROV, O., GILL, P., AND NIKIFORAKIS, N.
Are you sure you want to contact us? quantify-
ing the leakage of pii via website contact forms. In
Proc. of PETS (2016).

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

STATISTA: THE STATISTICS PROTAL. Number
of available applications in the Google Play store
from December 2009 to February 2016. http:
//www.statista.com/statistics/266210/
number-of-available-applications-in-
the-google-play-store/, 2016.

TANZIRUL AZIM, ORIANA RIVA, S. N. uLink:
Enabling user-defined deep linking to app content.
In Proc. of Mobisys (2016).

TERADA, T. Attacking Android browsers via intent
scheme urls. Tech. rep., March 2014.

TUNCAY, G. S., DEMETRIOU, S., AND GUNTER,
C. A. Draco: A system for uniform and fine-
grained access control for web code on Android.
In Proc. of CCS (2016).

WANG, R., XING, L., WANG, X., AND CHEN, S.
Unauthorized origin crossing on mobile platforms:
Threats and mitigation. In Proc. of CCS (2013).

WU, M., MILLER, R. C., AND GARFINKEL, S. L.

Do security toolbars actually prevent phishing at-
tacks? In Proc. of CHI (2006).

XIA, M., GONG, L., Lyu, Y., Q1, Z., AND LIU,
X. Effective real-time android application auditing.
In Proc. of IEEE S&P (2015).

XING, L., Bal, X., L1, T., WANG, X., CHEN, K.,
Liao, X., Hu, S.-M., AND HAN, X. Cracking
app isolation on apple: Unauthorized cross-app re-
source access on MAC OS X and iOS. In Proc. of
CCS (2015).

YANG, K., ZHUGE, J., WANG, Y., ZHOU, L.,
AND DUAN, H. IntentFuzzer: Detecting capability
leaks of Android applications. In Proc. of ASIACCS
(2014).

YANG, Z., YANG, M., ZHANG, Y., GU, G,,
NING, P., AND WANG, X. S. Applntent: analyzing
sensitive data transmission in Android for privacy
leakage detection. In Proc. of CCS (2013).

ZHANG, M., AND YIN, H. AppSealer: Auto-
matic generation of vulnerability-specific patches
for preventing component hijacking attacks in An-
droid applications. In Proc. of NDSS (2014).

ZHANG, Y., YANG, M., GU, G., AND CHEN,
H. FineDroid: Enforcing permissions with system-
wide application execution context. In Proc. of Se-
cureComm (2015).

Appendix

Features for Classifying Schemes. Table 8 shows a
list of features for classifying per-app schemes and third-
party schemes in §6. These features are selected based
on the intuition that third-party schemes are likely to be
used by a larger variety of apps and developers, but are
used for similar components in the third-party library

Sensitive Mobile Deep Link Parameters . Table 9
is a list of sensitive parameters identified in the mobile
deep links from Alexa top 1 million websites. We ex-
clusively focus on link parameters that are related to au-
thentication. These parameter names are used in §7 to
match hijacked deep links that carry sensitive data. We
obtain this list by keyword searching and manual anno-
tation. This is by no means an exhaustive list. The goal
is provide examples to illustrate practical consequences
of link hijacking attacks.

Feature | Description
aNum | Total # of apps
uDev | # of developers
cNum | Total # of components
ucNum | # of unique components
utcNum | # of unique third-party components
npcNum | # of unique components name (no prefix)
tDev | # of developers with third-party components
apDev | Average # of apps of the same developer
tDevP | % of third-party developers
ucP | % of unique components

Table 8: Features used for scheme classification.

access_token, actionToken, api_key, apikey, apiTo-
ken, Auth, auth_key, auth_token, authenticity_token,
authkey, authToken, autologin, AWSAccessKeyld,
cookie, csrf_token, csrfKey, csrfToken, ctoken,
fk_session_id, FKSESSID, FOGSESSID, force_sid,
formkey, gsessionid, guestaccesstoken, hkey, IK-
SESSID, imprToken, jsessionid, key, keycode, keys,
LinkedinToken, live_configurator_token, = LLSES-
SID, MessageKey, mrsessionid, navKey, newsid,
oauth_callback, oauth_token, pasID, pass, pass_key,
password, PHPSESSID, piggybackCookie, plkey,
redir_token, reward_key, roken2, seasonid, secret_key,
secret_perk_token, ses_key, sesid, SESS, sessid, ses-
sid2b4f0b11dea2f7ae4bfff49b6307d50f, = SESSION,
session_id, session_rikey, sessionGUID, sessionid,
sh_auth, sharedKey, SID, tok, token, uepSessionToken,
vt_session_id, wmsAuthSign, ytsession

Table 9: Sensitive parameters in mobile deep links.

