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ABSTRACT

Leaked passwords from data breaches can pose a serious threat

if users reuse or slightly modify the passwords for other services.

With more services getting breached today, there is still a lack of

a quantitative understanding of this risk. In this paper, we per-

form the first large-scale empirical analysis of password reuse and

modification patterns using a ground-truth dataset of 28.8 million

users and their 61.5 million passwords in 107 services over 8 years.

We find that password reuse and modification is very common

(observed on 52% of the users). Sensitive online services such as

shopping websites and email services received the most reused and

modified passwords. We also observe that users would still reuse

the already-leaked passwords for other online services for years

after the initial data breach. Finally, to quantify the security risks,

we develop a new training-based guessing algorithm. We show that

more than 16 million password pairs (including 30% of the modified

passwords) can be cracked within just 10 guesses.

CCS CONCEPTS

· Security and privacy → Authentication; Systems security; ·

Human-centered computing → Human computer interaction

(HCI); · Computing methodologies→ Machine learning;
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1 INTRODUCTION

Today’s data breaches (e.g., Equifax, Yahoo, Myspace, Office of Per-

sonnel Management, Ashley Madison) are reaching unprecedented

scale and coverage. In 2016 alone, there were more than 2000 con-

firmed breaches causing a leakage of billions of user records [37].

Many of the leaked datasets contain sensitive information such

as user passwords, which are often made publicly available on the

Internet by the attackers [25, 26, 29, 31, 42].

Leaked passwords can pose serious threats to users, particularly

if the passwords are reused somewhere else by the users. Reusing

the same or even slightly modified passwords allows attackers to

further compromise the user’s accounts in other unbreached ser-

vices [23, 28]. Even worse, if the target user happened to be the
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administrator of another service, password reuse may lead to new

massive data breaches (e.g., Dropbox [4]).

With more and more passwords being leaked [8, 38], there is

an urgent need to systematically assess users’ password reuse and

modification patterns and quantify the security risks. This is not

only instrumental to protecting user accounts after data breaches,

but can also help to develop more effective tools to manage users’

passwords. Due to a lack of large-scale empirical data, most existing

works rely on surveys or interviews to study password reuse [7, 14,

30, 32, 34, 40]. The problem is that user studies are often limited

in scale (e.g., a few hundred users), and users’ self-reported results

may contradict their actual behavior in practice [40].

Recently, researchers start to analyze empirical data to under-

stand users’ password reuse and modification patterns [5, 6, 24, 40,

43]. However, the scale of existing empirical studies is still very lim-

ited. The largest study so far that focuses on both password reuse

and modification only covers 6,077 users [5]. The limited scope of

the dataset (sample size, service type, user demographics) makes

it challenging to examine the generalizability of the observations

and quantify the actual security risks.

In this paper, we seek to fill in the gaps by gathering and analyz-

ing a large collection of leaked password datasets across multiple

years and various online services1. By linking the userID (i.e., email

address) in different password datasets, we construct a ground-truth

mapping for the same users’ passwords and study their reuse and

modification patterns. The resulting ground-truth dataset contains

28,836,775 users and their 61,552,446 passwords from 107 online

services across 8 years.

Our study has two goals. 1) We seek to empirically understand

how users reuse and modify their passwords across online services

at a large-scale. 2) We want to quantify the security risks introduced

by password reuse andmodifications after data breaches. To achieve

these goals, we have addressed a number of technical challenges.

First, while password reuse is easy to determine, password mod-

ification is not obvious. To this end, we develop a measurement

framework to automatically determine whether two passwords are

modified from each other, and extract the transformation rules. This

framework enables a deeper analysis of users’ password habits and

cross-examining our results with the existing small-scale user stud-

ies. Second, we develop a new training-based password guessing

algorithm to guess a target user’s password based on her leaked

ones. We empirically examine the possibility of password guessing

in an online fashion. We have a number of key findings:

1. Password reuse and modification are still very common.

Among the 28.8 million users, 38% have once reused the same pass-

word in two different services and 21% once modified an existing

password to sign up a new service (52% collectively). In addition,

1Our study has received IRB approval (Protocol #17-393).



we find that users with more total passwords are more likely to

reuse/modify passwords. The reused/modified passwords are sta-

tistically shorter but more complex. These results echo and help to

confirm early findings of small-scale user studies [24, 40].

2. Sensitive online services have a high ratio of reused and

modified passwords. A surprising new finding is that łshop-

pingž services have the highest ratio (>85%) of reused and modified

passwords, while łemailž services are at the second place (>62%).

Shopping services often store users’ credit card information and

home address, and thus reusing their passwords have key security

implications. The problem with email services can be even more

serious, given that attackers can use the email address to reset the

user’s passwords in other accounts (e.g., online banking).

3. Users still reuse the already-leaked passwords for years

after the data breach. We find a long delay before users change

their already leaked passwords in other services. More than 70% of

the users are still reusing the already-leaked passwords in other

services 1 year after the leakage. 40% of the users are reusing the

same passwords leaked more than 3 years ago. This indicates a

persistent threat of the leaked passwords from data breaches.

4.Modified passwords are highly predictable. Among a large

user population, there is only a small set of rules that users often

apply to modify their passwords. Such łlow variancež makes the

modified passwords highly predictable. Our training-based algo-

rithm can guess 30% of the modified passwords within 10 attempts

(46.5% within 100 attempts). If we consider both the reused and

modified passwords, we estimate that more than 16 million pass-

word pairs in our dataset can be cracked within 10 guesses. Our

algorithm achieves a similar performance even if it is trained with

only 0.1% of the data.

In summary, our work makes 3 key contributions.

• We perform the first large-scale empirical analysis on password

reuse and modification behavior across online services (28.8

million users, 107 online services). Our analysis provides new

insights into how user reuse and modify passwords in practice.

• We develop a new training-based password guessing algorithm

to quantify the risk of password modification. Our algorithm can

guess a large portion of modified passwords within 10 guesses.

• To facilitate future research, we share the dataset with the re-

search community with carefully designed data sharing policies.

2 RELATED WORK

Password Reuse and Modification. Text-based password is

still the primary authentication method for today’s online services.

Due to the difficulties of memorizing a large number of passwords,

users often reuse the same passwords or slightly modify existing

passwords when creating new ones [5, 7, 40]. Attackers may lever-

age the reused passwords to compromise new user accounts, or

link user identities by mining the leaked password datasets [22].

Table 1 lists the key related works on password reuse and mod-

ification. On one hand, due to a lack of empirical datasets, most

existing works rely on user surveys or interviews to understand

password usage [5, 7, 14, 21, 30, 32, 34, 40]. For example, Das et al.

[5] have reported that 51% of the users re-use passwords across

PW Reuse PW Modify Methods # Users

[21] ✓ × Survey 26

[32] ✓ × Survey 27

[40] ✓ × Empirical+Survey 134

[6] ✓ × Empirical 544,960

[7] × ✓ Survey 80

[30] × ✓ Survey 470

[43] × ✓ Empirical 7,700

[34] ✓ ✓ Survey 49

[24] ✓ ✓ Empirical+Survey 154

[14] ✓ ✓ Survey 5,000

[5] ✓ ✓ Empirical+Survey 6,077

Our ✓ ✓ Empirical 28,836,775

Table 1: Related works on password reuse and modification.

online services. Stobert and Biddle’s interview [32] suggests that

password reuse often happens on łless importantž services.

Inevitably, user studies suffer from key limitations due to the

small user population. A recent work also shows that user self-

reported results may contradict their real behavior in practice [40].

To these ends, empirical analysis is needed to understand users’ real-

world behavior [5, 6, 24, 40, 43]. To date, existing empirical studies

are still limited in scale, most of which only cover a few hundred

(or a few thousand) users. The only exception is a measurement

study [6] conducted 10 years ago by Microsoft (500K users), which,

however, only analyzed password reuse not password modification

across services. In our work, we seek to fill in the gap by collecting

and analyzing a large-scale empirical password dataset (61.5 million

passwords across 107 services). We focus on both password reuse

and modification, and cross-examine our results with early findings

from small-scale studies.

Online & Offline Password Guessing. Another related body

of work is password guessing, which can be roughly divided into

online guessing and offline guessing. Online guessing has a strict

limit on the number of guessing attempts. For example, Trawling

based approach simply guesses the most popular passwords chosen

by users [18]. More targeted guessing exploits the fact that users

may reuse the same or similar passwords [5, 43]. More recently,

target guessing also incorporates users’ personal information such

as name and birthday [15, 39].

Offline guessing can easily reach trillions of guessing attempts [9,

10, 12, 19, 20, 36, 41]. A common scenario is to use offline guessing

algorithms to recover plaintext passwords from a hashed pass-

word dataset. Over the last decades, a number of guessing methods

have been proposed, including Markov Model [16, 20], Mangled

Wordlist method [35], Probabilistic Context-Free GrammarsMethod

(PCFGs) [12, 20, 36, 41], and Deep Neural Networks [19]. Offline

guessing has also been used to measure password strength [13].

3 DATASET

To study password usage across online services, we gathered a large

number of password datasets and linked the same user’s passwords.

Data Collection In January 2017, we searched through vari-

ous online forums and data archives for public password datasets.

We looked for candidate datasets that meet two criteria. First, the

dataset should contain email addresses so that we can link a user’s

passwords across different services. Second, we exclude datasets



Category #Plain PWs Top 3 Largest Datasets

(#Datasets)

Social 286M (7) Myspace, VK.com, LinkedIn

Adult 75.2M (9) Zoosk, Mate1, YouPorn

Game 40.8M (13) Neopets, 7k7k, Lbsg

Entertain 30.7M (4) Lastfm, Swingbrasileiro, LATimes

Internet 16.4M (18) 000webhost, Comcast, Yahoo

Email 9.6M (3) Gmail, Mail.ru, Yandex

Forum 1.1M (25) CrackingForum, Abusewith.us, Gawker

Shopping 340K (12) RedBox, 1394store, Myaribags

Others 210K (7) Data1, Data2, Data3

Business 10K (9) Movatiathletic, Hrsupporten, 99Fame

Total 460M (107) Myspace, VK, LinkedIn

Table 2: Categories and statistics of the collected datasets.
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Figure 1: # of datasets and total # records per year.

that only contain salted hashes since it is difficult to recover their

passwords. In total, we collected 107 datasets leaked between 2008ś

2016, which contain 497,789,976 passwords and 428,199,842 unique

users (email addresses). 14 datasets contain hashed passwords, and

we spent a week to recover the plaintext using offline guessing

tools [10, 11, 35]. This effort returned 460,874,306 plaintext pass-

words (93% of all passwords). We have carefully checked each

dataset to make sure there are no duplicate records.

Data Statistics. In Table 2, we manually classify the 107 online

services into 10 categories based on their category information

in Alexa2. The łunknownž category contains 7 password datasets

with no information about their leakage source. We double checked

to make sure the 7 łunknownž datasets did not overlap with any

existing ones. The password datasets vary in size. Large datasets

from LinkedIn andMyspace contain hundreds of millions of records,

while small datasets such as InternetFamous only have a few hun-

dred records. Note that the password dataset may not cover the

entire leaked data Ð attacker might only publish part of the dataset

publicly.

We manually label the year when each dataset was leaked (exclud-

ing łunknownž datasets). We confirm the year of the data breach

based on various sources such as reputable news reports and data

breach reports [1, 2, 8, 38]. Figure 1 shows the number of datasets

and the number of user records in different years. Note that year

2016 coversmost of our datasets since it is easier to find datasets that

were leaked more recently. For older datasets, they are primarily

related to large data breaches.

Ethic Guidelines. Our work involves analyzing leaked datasets

that contain sensitive information. We have worked closely with

2https://www.alexa.com/topsites

our local IRB and obtained the approval for our research. Our study

is motivated by the following considerations. First, we only ana-

lyze datasets that are already publicly available. Analyzing such

data does not add additional risks other than what already exists.

Second, these datasets are also publicly available to potential attack-

ers. Failure to include the data for research may give attackers an

advantage over researchers that work on defensive techniques. In

the past decades, leaked password datasets have been extensively

used in academic research [5, 15, 35, 36, 39] to develop security

mechanisms to protect users in the long run.

Primary Dataset (28.8 Million Users) To study cross-site pass-

word usage, we focus on users who appear in at least two different

services. We construct a primary dataset of 28,836,775 users who

have at least two plaintext passwords (61,552,446 passwords in total).

Note that users outside of the primary dataset are not necessarily

risk-free: they might still have accounts in services that we didn’t

cover. In this study, a user is defined by an email address, which

helps us to link the same user’s passwords together. In practice, it

is possible for a person to have multiple email addresses. Our study

will only estimate a lower-bound.

4 PASSWORD REUSE & MODIFICATION

Our dataset provides a unique opportunity to study password reuse

and modifications across a large user population and a variety of

online services. At the same time, we also seek to cross-compare our

results with those from smaller-scale studies [5, 7, 24, 32, 34, 40] to

provide a more complete view of this problem.

In the following, we first develop a framework to measure pass-

word reuse and modification behavior across online services (cur-

rent section). Then we use this framework to perform an in-depth

analysis to understand how users manage their passwords and gen-

erate the statistical patterns of password reuse and modification

(Section 5). Finally, we empirically quantify the security risks of

password reuse/modifications by performing password guessing ex-

periments (Section 6 and Section 6.2), and discuss the implications

of our results to the increasingly frequent data breaches (Section 7).

4.1 Reusing the Same Password

Human brains can only memorize a limited number of passwords,

and thus users often reuse their passwords for different online

services [6]. To understand the password reuse in practice, we

perform a quick measurement on the primary dataset. For each

user, we cross-examine all the possible password pairs (e.g., if a user

has 4 passwords, then we get 6 pairs). In total, we extract 37,301,406

password pairs for the 28.8 million users. We find that 34.3% of the

pairs are identical pairs, meaning that the password is reused by the

user. At the user level, 38% of the users (10.9 million) have at least

one identical pair. This ratio is slightly lower than the self-reported

results (51%) from a prior user study [5].

4.2 Classifying Password Modification

In addition to reusing the same password, users may also modify

an existing password to sign up for a new service. We refer this

type of behavior as password modification. Unlike password reuse,

password modification is more difficult to measure because users

may apply different rules to make the transformation. To this end,
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Figure 2: The workflow to measure a user’s password transformation patterns.

Rule # Pairs of Passwords Ratio (%)

➊. Identical 12,780,722 34.3%

➋. Substring 3,748,258 10.0%

➌. Capitalization 478,233 1.3%

➍. Leet 93,418 0.3%

➎. Reversal 5,938 < 0.1%

➏. Sequential keys 12,118 < 0.1%

➐. Common Substring 2,103,888 5.7%

❽. Combination of Rules 754,393 2.0%

Can Not Find A Rule 17,324,438 46.4%

Total 37,301,406 100%

Table 3: Distribution of password transformation rules.

we first develop a method to automatically identify and classify

modified passwords.

Given a pair of passwords, our goal is to detect if one password

is modified from the other password and infer the rule of the trans-

formation. Figure 2 shows the high-level workflow. In total, we

construct 8 rules for password transformation based on our manual

examinations of 1000 random password pairs and the results from

prior studies [5, 43, 44]. We test these rules against the password

pairs in the primary dataset, and the results are shown in Table 3.

We find that the majority of the password pairs (55.6%) can

be explained by one of the transformation rules. To translate the

numbers to the user level, 38% of the users have reused the same

password at least once, and 21% of the users have once modified

an existing password to create a new one. Collectively, these users

count for 52%. Below, we discuss each of the rules in detail.

Identical. For completeness, we consider reusing the same pass-

word as one of the rules (12 million password pairs, 34.3%).

Substring. This rule indicates that one password is a substring of

the other one (e.g., łabcž and łabc12ž). This rule matches 3.7 million

password pairs (10%), indicating that users have inserted/deleted a

string to/from an existing password to make a new one. As shown

in Table 4, most insertions/deletions happened at the tail (87.2%).

Most inserted/deleted strings are pure digits (74%) and short (1ś2

characters), e.g., ł1ž, ł2ž, and ł12ž.

Capitalization. Users may simply capitalize certain letters in

a password. Even though the ratio of matched pairs is not high

(1.3%), the absolute number is still significant (478,233 pairs). We

observe that users commonly capitalize letters at the beginning of

the password (73%), particularly the first letter (68.6%).

Leet. 93,418 password pairs match the leet rule (0.3%) [27]. Leet

transformation refers to replacing certain characters with other

similar-looking ones. Our analysis shows the top 10 most com-

mon transformations are: 0↔o, 1↔i, 3↔e, 4↔a, 1↔!, 1↔l, 5↔s,

Insert/Delete Position Ratio Inserted/Deleted Length Ratio

Tail 87.2% 1 48.3%

Head 11.0% 2 28.0%

Both Ends 1.8% 3+ 23.7%

Insert/Delete Type Ratio Top Inserted/Deleted Str. Ratio

Digit 74.0% ł1ž 24.2%

Letter 17.8% ł2ž 4.0%

Combined 4.5 % ł12ž 2.1%

Special Char 3.7% ł123ž 1.9%

Table 4: Substring rule: insertion/deletion patterns.

Longest Comm. Substring Ratio Transformation Rules Ratio

Letter 63.8% Substitution 84.7%

Digit 22.0% Insertion/Deletion 32.4%

Combined 13.7% Capitalization 3.2%

Special Char 0.5% Switching Order 2.2%

Table 5: Common substring rule: longest common substring

and transformation patterns.

@↔a, 9↔6, and $↔s. These 10 transformations already cover 96.6%

of the leet pairs.

Reversal. Reversal rule is rarely used (5938 pairs, <0.1%), which

means reversing the order of the characters in a password, e.g.,

abcd↔dcba. Intuitively, reversed passwords are hard to memorize.

Sequential Keys. Sequential keys include alphabetically-ordered

letters (abcd), sequential numbers (1234) and adjacent keys on

the keyboard (qwert, asdfg, !@#$%). The matched pairs (i.e., both

passwords are sequential keys) are also below 0.1%.

Common Substrings. When a user modifies an existing pass-

word to create a new one, we assume the majority of the password

remains the same. As shown in Figure 2, we extract the longest

common substrings from the two passwords to learn how they

transform the rest parts. To avoid accidental character overlaps,

we require the longest common string to be >2 characters, and all

the common substrings should cover >50% characters of a pass-

word (i.e., the majority). This rule matches 2.1 million password

pairs (5.7%). To make sure the thresholds make sense, we manually

examine a random sample of 1000 matched pairs. For ethical con-

siderations, we use a script to remove the email addresses before

manually looking at the passwords. We find only 44 out of 1000

pairs appear to be accidental overlaps. For example, łfighter51ž

and łnightfallž share a common substring łightž, but do not look

like a password modification case. At this point, we can allow false

negatives since we have one more rule to check. Based on the false

positive rate (4.4%), we estimate that the common substring rule

should match at least 5.4% of all password pairs (lower bound).
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Rule Combination Ratio Rule Combination Ratio

Capitalization+Substring 26.2% Reversal+CSS 6.1%

Leet+CSS 21.8% Leet+SubString 5.6%

Seqkey+CSS 13.2% Seqkey+SubString 4.2%

Reversal+Leet+CSS 7.1% Seqkey+Leet+CSS 2.9%

Capitalization+CSS 6.2% Others 6.8%

Table 6: Rule combinations (CSS: Common SubString).

Table 5 shows characteristics of the longest common substrings

for the matched password pairs. The longest common substring

represents the łunmodifiedž part of the password, most of which are

pure letters (63.8%) or pure digits (22%). The majority (56.7%) of the

pure-letter substrings are actually English words or English names

(based on NLTK corpus [3]). Table 5 shows that the most common

transformation is substitution, followed by insertion and deletion.

Note that one password pair may have multiple transformations

(the accumulated ratio exceeds 100%).

Combination of Rules. As a final step, we combine possible

rules to find a match. Note that rule3 ś rule6 modify the characters

(or the sequence of characters) in a password, while rule2 and rule7

operate on substrings. Our approach is to use a combination of

rule3 ś rule6 to modify the password first, and then test if rule2 or

rule7 can declare a match. In this way, we further matched another

754,000+ pairs (2.0%). As shown in Table 6, łCapitalizationž and

łSubstringž are the most common combination (26.2%), followed by

the combination of łLeetž and łCommon substringž rules.

Unmatched Password Pairs. After testing all the above rules,

there are still 46.4% password pairs remain unmatched. To make

sure we did not miss any major rules, we randomly sample 1000

unmatched pairs for manual examination. Through our manual

analysis, we did not find any of the 1000 password pairs exhibit-

ing a meaningful transformation. Some example password pairs are:

(samsungi5700, nokiae61), (phone80720, computer7), (iloveyou12,

12081999), and (sleepwalker, 123456). We regard the remaining

46.4% of password pairs as the result of users łmaking new pass-

words from scratchž.

5 MEASURING PASSWORD HABITS

Next, we leverage the labeled data to answer key questions about

users’ password habits. We focus on the individual users to explore

a series of key questions. Firs, how often do users reuse (modify) the

same password for different services? Second, what types of online

services receive the most reused (modified) passwords?Finally, how

long do users wait before changing their reused passwords in other

services after a data breach?

User-level Reuse and Modification Rate. To measure pass-

word reuse and modification at the per-user level, we calculate

a reuse rate and a modification rate for each user. Given a user

ui , we define her online services as Si = [si,1, si,2, si,3, ..., si,Ki ],

where Ki is user ui ’s total number of services. The correspond-

ing passwords are Pi = [pi,1,pi,2,pi,3, ...,pi,Ki ]. First, reuse rate

describes how many times a user’s password is reused in differ-

ent services on average. RR (i ) = |Si |

|Set (Pi ) |
. RR=1, if the user sets a

unique password for each service. A higher value of RR indicates

a more severe password reuse. Second, modification rate describes

how many times a user’s password is reused or modified for dif-

ferent services.MR (i ) =
|Si |

|Cluster (Pi ) |
, where Cluster () groups the

user’s passwords based on whether one password is modified from

the other. Based on the transformation rules in Section 4, we group

passwords into the same cluster if they match with one of the trans-

formation rules. The resulting clusters don’t overlap, representing

independent password groups. A higher value ofMR indicates more

frequent password reuse and modifications.

Figure 3 shows the distribution of RR and MR for users with

different numbers of total passwords. We examine whether users

with more passwords (i.e. online accounts) are more likely to reuse

their passwords. The intuition is that a user can only memorize a

limited number of passwords. The more online services she has,

the more likely her passwords are reused. Our result supports this

intuition. As shown in Figure 3, both the reuse rate andmodification

rate are increasing as users have more total passwords. Our results

agree with prior user studies (100+ users) that examine this intuition

on password reuse [21, 40]. Figure 3 also shows that the black bars

(modification) are consistently higher than the blue bars (reuse).

This indicates that password modification is broadly applied by

users. Analysis that does not consider password modification will

under-estimate the security risks.

Impact of Online Services. In Figure 4, we examine what types

of online services have received the most reused or modified pass-

words. We find that łshoppingž services have the most reused/-

modified passwords with a ratio over 85%. Shopping services usu-

ally store users’ credit information and home address information.



Reusing passwords of shopping services have key security impli-

cations. A possible explanation is that users may have too many

accounts for various online stores, making it difficult to memorize

a unique password for each one.

More surprisingly, we find that łemail servicesž contain the

second-most reused and modified passwords. This result has more

serious security implications. First and foremost, an email account

can be used to reset the password for other online services (e.g.,

banking accounts). Many of the online accounts will be in danger if

the user’s email account is compromised. The ratio of reused email

passwords is over 62% and the ratio of modified email passwords is

an even higher 78%. Noticeably, our observation contradicts with

the results from a prior user study (154 users) [24], which shows

that łemailž is among categories with the least password reuse.

Delay of Changing Passwords. Finally, we examine the pass-

word reuse and modification across time. More specifically, we ex-

amine how long it takes before users change their reused passwords

in other services after data breaches. For example, suppose service

A was breached in year tA and service B was breached later in year

tB . If a user has the same password for both A and B in our dataset,

it means this user did not bother to change the reused password

for tδ = tB − tA years. Another interpretation is that the user still

signs-up new services using the same password leaked tδ years

ago. For users who have reused/modified passwords, we calculate

the largest time-span between her reused/modified password pairs.

The result is shown in Figure 5.

Surprisingly, our results indicate that after a servicewas breached,

a large number of users did not reset their reused passwords in other

services for a long time. More than 70% of the users with reused pass-

words are still reusing the leaked passwords 1 year after the initial

leakage. 40% of users are still reusing the same passwords leaked

3 years ago. Not too surprisingly, slightly modified passwords are

continuously used for a longer time than the reused passwords. Our

result indicates a persistent threat from reused/modified passwords

after data breaches. Attackers may still use the leaked passwords

to compromise user accounts in other services after a long time.

6 PASSWORD GUESSING EXPERIMENT

So far, the measurement results suggest that password reuse and

modification have potential security risks. Next, we seek to quantify

the security risks by performing password guessing experiments.

In this section, we develop a new training-based password guess-

ing algorithm and answer the following key questions. First, how

quickly can attackers guess a modified password based on a known

one? Second, can attackers use a small training data (e.g., 0.1%) to

achieve an effective guessing?

6.1 Guessing Algorithm

We build a new password guessing algorithm to quantify the se-

curity risks of password reuse and modification. The algorithm

seeks to guess a target user’s password by transforming a known

password of the same user. The high-level idea is to test different

password transformation rules (e.g., rules in Table 3) on the known

password. This idea is similar to DBCBW [5], a popular algorithm

for targeted password guessing. DBCBW’s focuses on simplicity

which, however, has to make a few compromises. First, due to the

18 Features Extracted from a Password

PW (password) length, # Lowercase letters, # Uppercase letters, # Digits,

# Special chars, Letter-only pw?, Digit-only pw?, # Repeated chars,

Max # consec. letters, Max # consec. digits, Max # sequential keys,

Englishword-only pw?, # Consec. digits (head), # Consec. digits (tail),

# Consec. letters (head), # Consec. letters (tail),

# Consec. special-chars (head), # Consec. special-chars (tail)

Table 7: Feature list of the Bayesian model.

lack of training data, the DBCBW uses hand-crafted transformation

rules. Second, it tests these rules in a fixed order, which may not be

optimal for individual passwords. For example, given łl0vež, the

most probable rule should be leet (0→o);

Our algorithm overcomes these drawbacks by introducing a

training phase. Using ground-truth password pairs, we learn two

things: (1) the transformation procedure for each rule, and (2) a

model to customize the ordering of the rules for each password.

Training 1: Transformation Procedures. A transformation

procedure describes how to transform a password to a new one. For

each rule in Table 3, we seek to learn a list of possible transforma-

tions during the training phase. For each rule Ri , the learned trans-

formation is Ti = [ti1, ti2, ...tiNi
], which is sorted by the frequency

of each transformation in the training dataset. For the łsubstring

rulež, t is characterized by <insert/delete><position><string>. For the

łcapitalization rulež, t is characterized by <position><#chars>. In a

similar way, we learn the lists of transformations for łleetž, łsequen-

tial keysž and łreversalž. For the łidenticalž rule, no transformation

is needed, and we simply test if the password is reused.

There are special designs for the łcommon substringž rule and

the łcombinationž rule. For the common substring rule, we can learn

and sort the transformations (e.g., insert, delete, replace, substitute,

switch orders) based on the training data. However, when applying

the transformation to a given password, we need to split the pass-

word to detect potential common substrings. In our design, we test

3 types of candidates: (1) substrings of pure digits/letters/special

characters, (2) English words/names, and (3) popular common sub-

strings in the training data. For the łcombined rulež, T is a sorted

list of rule-combinations where each rule-combination has a sorted

list of transformations to be tested.

Training 2: Rule Ordering. For a given password, we also learn

which rule should be applied first. We treat this as a multiple-

class classification problem. Given a password, we train a model to

estimate the likelihood that the password can be transformed by

each rule. To achieve a quick training, we choose the Naive Bayes

classifier (multinomial model) [17], which produces the probability

that a data point (password) belong to a class (rule). Based on the

probability, we customize the ordering of the rules for this password.

Table 7 shows the 18 features used in the Bayesian model.

Password Guessing Method. For a password pair (pw1,pw2),

we seek to test how many attempts are needed to guess pw2 by

transforming a known pw1. We first use the Bayesian model to

generate a customized order of rules for pw1. Following the ordered

rule list, we have two options for guessing:

• Sequential: testing one rule at a time. After testing all the trans-

formations under a rule, we move to the next rule. Since cer-

tain rules have a significantly longer list than others, we set a
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Figure 6: Password guessing with 50% of the data for training.
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Figure 7: Password guessing with dif-

ferent training data sizes.

threshold M as the maximum number of guesses under each

rule (M = 800 for our experiment).

• Rotational: testing one rule and one transformation at a time.

After testing one transformation under a rule, we move to the

next rule to test another transformation. We rotate to test each

rule for just one guess.

Note that sequential guessing requires a higher accuracy of the

predicted order. If the predicted order is wrong, it will waste many

guesses on the wrong rule before moving on.

Baselines. When choosing baselines, we ruled out algorithms

that don’t fit our threat model. First, we rule out non-targeted

guessing algorithms [19, 35], since non-targeted algorithms are

primarily for offline guessing (e.g., 1012 guesses needed). Second,

we also rule out targeted guessing algorithms that require the user’s

PII information (e.g., real name, date of birth) [15, 39]. Such PII

information is not available in our datasets.

For our experiment, we run two baseline algorithms for compar-

ison purposes. First, instead of customizing the order of rules for

each password, we apply these rules with a fixed order for łsequen-

tial guessingž. The fixed order is based on the overall rule popularity

in the training data. Our second baseline is a widely used password

cracking tool John the Ripper (JtR) [11]. We use the łsinglež mode

and follow the default setting. Given a password, JtR applies a list

of mangling rules to transform the password. It stops when all the

mangling rules have been exhaustively tested.

6.2 Password Guessing Results

We use the proposed algorithm to evaluate the risks of modified

passwords. For this experiment, we exclude identical password pairs

(34.3%) since they only take one guess, and 46.4% of the pairs that

don’t match a rule. This leaves us 7,196,242 password pairs that

represent password modifications (exp dataset). Our experiment

contains two parts. First, we split the exp dataset randomly to use

50% for training and the other 50% for testing. Second, we use

a much smaller training dataset to train the guessing algorithm.

During the password guessing phase of our experiment, we test

both directions for each password pair (pw1→pw2 and pw2→pw1),

which doubles the size of the testing data.

Training on 50% of the Data. As shown in Figure 6, our best

algorithm guessed 46.5% of the passwords within just 100 attempts.

Figure 6(b) shows that 10 guesses already cracked 30% of the pass-

words. In comparison, the JtR baseline almost got nothing in the

first 10 attempts and exhausted all the mangling rules after 1081

guesses. Since we evaluate an online-guessing scenario, we stopped

our algorithm after 5000 guesses for each password.3

Comparing different algorithms, we show that the Bayesian

model outperforms the fixed ordering method. This confirms the

benefits of prioritizing the more likely rules for each password. In

addition, we show that rotational guessing is better than sequential

guessing. Sequential guessing has a clear stair-step increase of

the hit rate after switching to a new rule. This indicates that the

first few transformations under each rule are the most effective

ones. Rotational guessing has an overall better performance due to

switching the rules more frequently.

We argue that Bayesian-based sequential guessing still has its

value, especially for online guessing attacks. As shown in Figure 6(b),

sequential guessing’s advantage is in the first 7 guesses Ð if the

Bayesian prediction is correct, sticking to the right rule helped

to guess the password more quickly. Within the first 7 guesses,

Bayesian-based sequential guessing can guess 3% more passwords

than rotational guessing. Given the large number of passwords be-

ing tested (3.6 million pairs, 7.2 million passwords), 3% still involve

a large number of passwords (216K).

Using Smaller Training Data. Next, we try to use smaller

datasets to train our algorithm (Bayesian+rotational). We vary the

size of the training data from 0.01% to 10% of the exp dataset. To

be consistent, we use the same 50% as the testing data (training

and testing data has no overlap). As shown in Figure 7, the 0.1%-

training curve is still overlapped with the 50%-curve, suggesting

that extremely small training data can achieve a comparable perfor-

mance. The result suggests that users are following a small number

of consistent rules to modify their passwords. This is likely to make

the modified passwords more predictable.

To measure the number of vulnerable password pairs, we use the

0.1%-trained model to guess the rest 99.9% of the password pairs.

Since we guess both directions, the testing data essentially has 14

million passwords. Within 10 attempts, we guessed 30% (4.2 million

passwords) Ð 3.8 million password pairs are cracked for at least one

direction. Together with the identical password pairs (12.8 million),

over 16.6 million pairs can be cracked within 10 attempts.

7 DISCUSSION & CONCLUSION

In this paper, we perform a large-scale empirical analysis on leaked

password datasets over 8 years. We find that a majority of users

have reused the same password or slightly modified an existing

password for multiple services. Particularly, łshoppingž and łemailž

3Our experiment shows that 50,000 guesses can crack 70%.



services received the most reused and modified passwords (con-

tradicting with existing results [24, 32]). In addition, users are still

reusing their leaked passwords in other online services for years

after the initial data breach, which introduces a persistent threat.

More importantly, we find that the password modification patterns

are highly consistent across various user populations, allowing at-

tackers to quickly guess a large number of passwords with minimal

training. Moving forward, we believe more proactive steps should

be taken to protect user accounts after data breaches. Major online

services such as Google have made an initial progress along this

direction to proactively detect and stop malicious login attempts

using the leaked passwords [33].

Limitations. Our study has a few limitations. First, our dataset is

by no means complete, even for the 107 online services. For a given

user, there are likely more reused or modified passwords in other

services outside of our dataset. Our results can only be interpreted

as a lower bound. Second, we treat each email address as a łuserž,

but in practice, a user may have multiple email addresses. Again,

the estimated password reuse and modification rates may be only a

lower bound. Finally, our password guessing algorithms requires

training data. We argue that such training data is relatively easy to

obtain, and only a small training dataset is needed.

Data Sharing. To facilitate future research, we share our pass-

word dataset with the research community4. Although these datasets

are already public on the Internet, it will still take a significant ef-

fort to search, collect, and clean the datasets. Sharing the dataset

will benefit the research community as a whole. At the same time,

we believe careful steps are needed to make sure the dataset is

not misused by malicious parties. To this end, we follow a con-

servative data sharing policy that is commonly used by password

researchers [10, 35]. First, we remove the email address from all

the datasets, and use a hashed string as the identifier. Second, we

remove the service name of each dataset. Finally, we will carefully

verify the data requester’s identity (e.g., based on his/her institu-

tional email address) before sharing the dataset.
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