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Abstract— Real-time crowdsourced maps, such as Waze pro-
vide timely updates on traffic, congestion, accidents, and points
of interest. In this paper, we demonstrate how lack of strong
location authentication allows creation of software-based Sybil
devices that expose crowdsourced map systems to a variety
of security and privacy attacks. Our experiments show that a
single Sybil device with limited resources can cause havoc on
Waze, reporting false congestion and accidents and automatically
rerouting user traffic. More importantly, we describe techniques
to generate Sybil devices at scale, creating armies of virtual
vehicles capable of remotely tracking precise movements for large
user populations while avoiding detection. To defend against Sybil
devices, we propose a new approach based on co-location edges,
authenticated records that attest to the one-time physical co-
location of a pair of devices. Over time, co-location edges combine
to form large proximity graphs that attest to physical interactions
between devices, allowing scalable detection of virtual vehicles.
We demonstrate the efficacy of this approach using large-scale
simulations, and how they can be used to dramatically reduce the
impact of the attacks. We have informed Waze/Google team of
our research findings. Currently, we are in active collaboration
with Waze team to improve the security and privacy of their
system.

Index Terms—Online social networks, crowdsourcing, Sybil
attack, location privacy.

I. INTRODUCTION

ROWDSOURCING is indispensable as a real-time data
C gathering tool for today’s online services. Take for exam-
ple map and navigation services. Both Google Maps and Waze
use periodic GPS readings from mobile devices to infer traffic
speed and congestion levels on streets and highways. Waze,
the most popular crowdsourced map service, offers users more
ways to actively share information on accidents, police cars,
and even contribute content like editing roads, landmarks,
and local fuel prices. This and the ability to interact with
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nearby users made Waze extremely popular, with an estimated
50 million users when it was acquired by Google for a reported
$1.3 Billion USD in June 2013. Today, Google integrates
selected crowdsourced data (e.g. accidents) from Waze into
its own Maps application.

Unfortunately, systems that rely on crowdsourced data
are inherently vulnerable to mischievous or malicious users
seeking to disrupt or game the system [1]. For example,
business owners can badmouth competitors by falsifying neg-
ative reviews on Yelp or TripAdvisor, and FourSquare users
can forge their physical locations for discounts [2], [3]. For
location-based services, these attacks are possible because
there are no widely deployed tools to authenticate the location
of mobile devices. In fact, there are few effective tools today
to identify whether the origin of traffic requests are real mobile
devices or software scripts.

The goal of our work is to explore the vulnerability of
today’s crowdsourced mobile apps against Sybil devices, soft-
ware scripts that appear to application servers as “virtual
mobile devices.”! While a single Sybil device can damage
mobile apps through misbehavior, larger groups of Sybil
devices can overwhelm normal users and significantly disrupt
any crowdsourced mobile app. In this paper, we identify tech-
niques that allow malicious attackers to reliably create large
populations of Sybil devices using software. Using the context
of the Waze crowdsourced map service, we illustrate the
powerful Sybil device attack, and then develop and evaluate
robust defenses against them.

While our experiments and defenses are designed with
Waze (and crowdsourced maps) in mind, our results generalize
to a wide range of mobile apps. With minimal modifica-
tions, our techniques can be applied to services ranging
from Foursquare and Yelp to Uber, YikYak and Pokemon
Go, allowing attackers to cheaply emulate numerous virtual
devices with forged locations to overwhelm these systems via
misbehavior. Misbehavior can range from falsely obtaining
coupons on Foursquare/Yelp, gaming the new user coupon
system in Uber, imposing censorship on YikYak, to cheating
in the game play of Pokemon Go. We believe our proposed
defenses can be extended to these services as well. We discuss
broader implications of our work in Section IX.

Sybil Attacks in Waze: In the context of Waze, our experi-
ments reveal a number of potential attacks by Sybil devices.
First is simple event forgery, where devices can generate
fake events to the Waze server, including congestion, acci-

'We refer to these scripts as Sybil devices, since they are the manifestations
of Sybil attacks [4] in the context of mobile networks.
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dents or police activity that might affect user routes. Second,
we describe techniques to reverse engineer mobile app APIs,
thus allowing attackers to create lightweight scripts that effec-
tively emulate a large number of virtual vehicles that collude
under the control of a single attacker. We call Sybil devices
in Waze “ghost riders.” These Sybils can effectively magnify
the efficacy of any attack, and overwhelm contributions from
any legitimate users. Finally, we discover a significant privacy
attack where ghost riders can silently and invisibly “follow”
and precisely track individual Waze users throughout their day,
precisely mapping out their movement to work, stores, hotels,
gas station, and home. We experimentally confirmed the
accuracy of this attack against our own vehicles, quantifying
the accuracy of the attack against GPS coordinates. Magnified
by an army of ghost riders, an attacker can potentially track
the constant whereabouts of millions of users, all without any
risk of detection.

Defenses: Prior proposals to address the location authen-
tication problem have limited appeal, because of reliance on
widespread deployment of specialized hardware, either as part
of physical infrastructure, i.e., cellular base stations, or as mod-
ifications to mobile devices themselves. Instead, we propose
a practical solution that limits the ability of Sybil devices to
amplify the potential damage incurred by any single attacker.
We introduce collocation edges, authenticated records that
attest to the one-time physical proximity of a pair of mobile
devices. The creation of collocation edges can be triggered
opportunistically by the mapping service, e.g., Waze. Over
time, collocation edges combine to form large proximity
graphs, network structures that attest to physical interactions
between devices. Since ghost riders cannot physically interact
with real devices, they cannot form direct edges with real
devices, only indirectly through a small number of real devices
operated by the attacker. Thus, the edges between an attacker
and the rest of the network are limited by the number of
real physical devices she has, regardless of how many ghost
riders are under her control. This reduces the problem of
detecting ghost riders to a community detection problem on
the proximity graph (The graph is seeded by a small number
of trusted infrastructure locations).

Our paper includes these key contributions:

o We explore limits and impacts of single device attacks

on Waze, e.g., artificial congestion and events.

o We describe techniques to create light-weight ghost
riders, virtual vehicles emulated by client-side scripts,
through reverse engineering of the Waze app’s commu-
nication protocol with the server.

o We identify a new privacy attack that allows ghost riders
to virtually follow and track individual Waze users in real-
time, and describe techniques to produce precise, robust
location updates.

o We propose and evaluate defenses against ghost riders,
using proximity graphs constructed with edges repre-
senting authenticated collocation events between pairs of
devices. Since collocation can only occur between pairs
of physical devices, proximity graphs limit the number of
edges between real devices and ghost riders, thus isolating
groups of ghost riders and making them detectable using
community detection algorithms.
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Impacts: We have informed the Google/Waze team of our
findings, and our efforts have led to significant improvements
to the security and privacy of Waze system. In addition to
Waze and Google Maps, there is more and more evidence of
real-world Sybil threats in similar services, including “ghost
drivers” in Uber who generate fake rides to earn financial
bonus [5], [6], and cheaters in Pokemon Go by spoofing GPS
data [7], [8]. Our study provides insights and mechanisms to
counter such attacks.

II. WAZE BACKGROUND

Waze is the most popular crowdsourced navigation app on
smartphones, with more than 50 million users when it was
acquired by Google in June 2013 [9]. Waze collects GPS
values of users’ devices to estimate real-time traffic. It also
allows users to report on-road events such as accidents, road
closures and police vehicles, as well as editing roads and even
updating local fuel prices. Some features, e.g., user reported
accidents, have been integrated into Google Maps [10]. Here,
we briefly describe the key functionality in Waze as context
for our work.

Trip Navigation: Waze’s main feature is assist users to find
the best route to their destination and turn-by-turn navigation.
Waze generates aggregated real-time traffic updates using
GPS data from its users, and optimizes user routes both
during trip planning and during navigation. If and when traffic
congestions is detected, Waze automatically re-routes users
towards an alternative.

Crowdsourced User Reports: Waze users can generate real-
time event reports on their routes to inform others about ongo-
ing incidents. Events range from accidents to road closures,
hazards, and even police speed traps. Each report can include
a short note with a photo. The event shows up on the map of
users driving towards the reported location. As users get close,
Waze pops up a window to let the user “say thanks,” or report
the event is “not there.” If multiple users choose “not there”,
the event will be removed. Waze also merges multiple reports
of the same event type at the same location into a single event.

Social Function: To increase user engagement, Waze sup-
ports simple social interactions. Users can see avatars and
locations of nearby users. Clicking on a user’s avatar shows
more detailed user information, including nickname, ranking,
and traveling speed. Also, users can send messages and chat
with nearby users. This social function gives users the sense
of a large community. Users can elevate their rankings in
the community by contributing and receiving “thanks” from
others.

III. ATTACKING CROWDSOURCED MAPS

In this section, we describe basic attacks to manipulate Waze
by generating false road events and fake traffic congestion.
Since Waze relies on real-time data for trip planning and route
selection, these attacks can influence user’s routing decisions.
Attackers can attack specific users by forging congestion to
force automatic rerouting on their trips. The attack is possible
because Waze has no reliable authentication on user reported
data, such as their GPS.

We first discuss experimental ethics and steps we took to
limit impact on real users. Then, we describe basic mech-
anisms and resources needed to launch attacks, and use
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controlled experiments on two attacks to understand their
feasibility and limits. One attack creates fake road events at
arbitrary locations, and the other seeks to generate artificial
traffic hotspots to influence user routing.

A. Ethics

Our experiments seek to understand the feasibility and
limits of practical attacks on crowdsourcing maps like Waze.
We are very aware of the potential impact to real users
from any experiments. We consulted our local IRB and have
taken all possible precautions to ensure that our experiments
do not negatively impact real Waze users. In particular, we
choose experiment locations where user population density is
extremely low (unoccupied roads), and only perform exper-
iments at low-traffic hours, e.g., between 2am and Sam.
During experiments, we continuously scan the entire exper-
iment region and neighboring areas, to ensure no other Waze
users (except our own accounts) are within miles of the test
area. If any Waze users are detected, we immediately terminate
all running experiments. Our study received the IRB approval
under protocol# COMS-ZH-YA-010-7N.

Our work is further motivated by our view of the risks of
inaction versus risks posed to users by our study. On one
hand, we can and have minimized risk to Waze users during
our study, and we believe our experiments have not affected
any Waze users. On the other hand, we believe the risk
to millions of Waze users from pervasive location tracking
(Section V) is realistic and potentially very damaging. We feel
that investigating these attacks and identifying these risks to
the broad community at large was the ethically correct course
of action. Furthermore, full understanding of the attacks was
necessary to design a practical defense.

B. Basic Attack: Generating Fake Events

Launching attacks against crowdsourced maps like Waze
requires three steps: automate input to mobile devices that
run the Waze app; control the device GPS and simulate
device movements (e.g., car driving); obtain access to multiple
devices. All three are easily achieved using widely available
mobile device emulators.

Most mobile emulators run a full OS (e.g., Android, i0OS)
down to the kernel level, and simulate hardware features such
as camera, SDCard and GPS. We choose the GenyMotion
Android emulator [11] for its performance and reliability.
Attackers can automatically control the GenyMotion emulator
via Monkeyrunner scripts [12]. They can generate user actions
such as clicking buttons and typing text, and feed pre-designed
GPS sequences to the emulator (through a command line
interface) to simulate location positioning and device move-
ment. By controlling the timing of the GPS updates, they can
simulate any “movement speed” of the simulated devices.

Using these tools, attackers can generate fake events (or
alerts) at a given location by setting fake GPS on their
virtual devices. This includes any events supported by Waze,
including accidents, police, hazards, and road closures. We find
that a single emulator can generate any event at arbitrary
locations on the map. We validate this using experiments on
a variety of unoccupied roads, including highways, local and
rural roads (504 locations, 3 repeated tests each). Note that
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Fig. 1. Before the attack (left), Waze shows the fastest route for the user.
After the attack (right), the user gets automatically re-routed by the fake traffic
Jam.

our experiments only involve data in the Waze system, and
do not affect real road vehicles not running the Waze app.
Thus “unoccupied” means no vehicles on the road with mobile
devices actively running the Waze app. After creation, the fake
event stays on the map for about 30 minutes. Any Waze user
can report that an event was “not there.” We find it takes two
consecutive “not theres” (without any “thanks” in between) to
delete the event. Thus an attacker can ensure an event persists
by occasionally “driving” other virtual devices to the region
and “thanking” the original attacker for the event report.

C. Congestion and Traffic Routing

A more serious attack targets Waze’s real-time trip routing
function. Since route selection in Waze relies on predicted trip
time, attackers can influence routes by creating “fake” traffic
hotspots at specific locations. This can be done by configuring
a group of virtual vehicles to travel slowly on a chosen road
segment.

We use controlled experiments to answer two questions.
First, under what conditions can attackers successfully create
traffic hotspots? Second, how long can an artificial traffic
hotspot last? We select three low-traffic roads in the state of
Texas that are representative of three popular road types based
on their speed limit—Highway (65 mph), Local (45 mph) and
Residential (25 mph). To avoid real users, we choose roads
in low population rural areas, and run tests at hours with
the lowest traffic volumes (usually 3-5AM). We constantly
scan for real users in or nearby the experimental region, and
reset/terminate experiments if users come close to an area with
ongoing experiments. Across all our experiments, only 2 tests
were terminated due to detected presence of real users nearby.
Finally, we have examined different road types and hours of
the day to ensure they do not introduce bias into our results.

Creating Traffic Hotspots: Our experiment shows that it only
takes one slow moving car to create a traffic congestion, when
there are no real Waze users around.

Waze displays a red overlay on the road to indicate traffic
congestion (Figure 1, right). Different road types have differ-
ent congestion thresholds, with thresholds strongly correlated
to the speed limit. The congestion thresholds for Highway,
Local and Residential roads are 40mph, 20mph and 15mph,
respectively.

To understand if this is generalizable, we repeat our tests
on other unoccupied roads in different states and countries.
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Fig. 2. The traffic speed of the road with respect to different combinations of number of slow cars and fast cars. We show that Waze is not using the average
speed of all cars, and our inferred function can correctly predict the traffic speed displayed on Waze. (a) Highway. (b) Local Road. (c) Residential.

We picked 18 roads in five states in the US (CO, MO, NM, UT,
MS) and British Columbia, Canada. In each region, we select
three roads with different speed limits (highway, local and
residential). We find consistent results: a single virtual vehicle
can always generate a traffic hotspot; and the congestion
thresholds were consistent across different roads of the same
speed limit.

Outvoting Real Users: Generating traffic hotspot in practical
scenarios faces a challenge from real Waze users who drive
at normal (non-congested) speeds: attacker’s virtual vehicles
must “convince” the server there’s a stream of slow speed
traffic on the road even as real users tell the server otherwise.
We need to understand how Waze aggregated multiple inputs
to estimate traffic speed.

We perform an experiment to infer this aggregation function
used by Waze. We create two groups of virtual vehicles: Ny
slow-driving cars with speed S,, and Ny fast-driving cars
with speed Sy; and they all pass the target location at the
same time. We study the congestion reported by Waze to
infer the aggregation function. Note that the server-estimated
traffic speed is visible on the map only if we formed a traffic
hotspot. We achieve this by setting the speed tuple (S5, S¢)
to (10mph, 30mph) for Highway, (5, 15) for Local and (5, 10)
for Residential.

As shown in Figure 2, when we vary the ratio of slow cars
over fast cars (Ns:Ny), the Waze server produces different
final traffic speeds. We observe that Waze does not simply
compute an “average” speed over all the cars. Instead, it uses
a weighted average with higher weight on the majority cars’
speed. We infer an aggregation function as follows:

Smaz - max(Ng, Nf) 4+ Squvg - min(Ns, Ny)
Ns + Nf

Swaze =

JN.+S;N .
where Suug = S%iﬂf, and S,,4, is the speed of the

group with N,,4, cars. As shown in Figure 2, our function
can predict Waze’s aggregate traffic speed accurately, for all
different types of roads in our test. For validation purposes,
we run another set of experiments by raising Sy above the
hotspot thresholds (65mph, 30mph and 20mph respectively for
the three roads). We can still form traffic hotspots by using
more slow-driving cars (N5 > Ny), and our function can still
predict the traffic speed on Waze accurately.

Long-Lasting Traffic Congestion: A traffic hotspot will last
for 25-30 minutes if no other cars drive by. Once aggregate
speed normalizes, the congestion event is dismissed within
2-5 minutes. To create a long-lasting virtual traffic jam,
attackers can simply keep sending slow-driving cars to the

congestion area to resist the input from real users. We validate
this using a simple, 50-minute long experiment where 3 virtual
vehicles create a persistent congestion by driving slowly
through an area, and then looping back every 10 minutes.
Meanwhile, 2 other virtual cars emulate legitimate drivers that
pass by at high speed every 10 minutes. We find the traffic
hotspot persists for the entire experiment period.

Impact on End Users: Waze uses real-time traffic data to
optimize routes during trip planning. Waze estimates the end-
to-end trip time and recommends the fastest route. Once on
the road, Waze continuously estimates the travel time, and
automatically reroutes if the current route becomes congested.
An attacker can launch physical attacks by placing fake traffic
hotspots on the user’s original route. While congestion alone
does not trigger rerouting, Waze reroutes the user to a detour
when the estimated travel time through the detour is shorter
than the current congested route (see Figure 1).

We also note that Waze data is used by Google Maps, and
therefore can potentially impact their 14 billion users [13].
Our experiment shows that artificial congestion do not appear
on Google Maps, but fake events generated on Waze are
displayed on Google Maps without verification, including
“accidents”, “construction” and “objects on road”. Finally,
event updates are synchronized on both services, with a
2-minute delay and persist for a similar period of time
(e.g., 30 minutes).

IV. SYBIL ATTACKS

So far, we have shown that attackers using emulators
can create “virtual vehicles” that manipulate the Waze map.
An attacker can generate much higher impact using a large
group of virtual vehicles (or Sybils [4]) under control. In this
section, we describe techniques to produce light-weight virtual
vehicles in Waze, and explore the scalability of the group-
based attacks. We refer to large groups of virtual vehicles as
“ghost riders” for two reasons. First, they are easy to create en
masse, and can travel in packs to outvote real users to generate
more complex events, e.g., persistent traffic congestion. Sec-
ond, as we show in §V, they can make themselves invisible
to nearby vehicles.

A. Creating Sybil Devices

We start by looking at the limits of the large-scale Sybil
attacks on Waze. First, we note user accounts do not pose a
challenge to attackers, since account registration can be fully
automated. We found that a single-threaded Monkeyrunner
script could automatically register 1000 new accounts in a day.
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Fig. 3.  Using a HTTPS proxy as man-in-the-middle to intercept traffic
between Waze client and server.

The limiting factor is the scalability of vehicle emula-
tion. Even though emulators like GenyMotion are relatively
lightweight, each instance still takes significant computational
resources. For example, a MacBookPro with 8G of RAM
supports only 10 simultaneous emulator instances. For this,
we explore a more scalable approach to client emulation
that can increase the number of supported virtual vehicles
by orders of magnitude. Specifically, we reverse engineer the
communication APIs used by the app, and replace emulators
with simple Python scripts that mimic API calls.

Reverse Engineering Waze APIs: The Waze app uses
HTTPS to communicate with the server, so API details cannot
be directly observed by capturing network traffic (TLS/SSL
encrypted). However, an attacker can still intercept HTTPS
traffic, by setting up a proxy [14] between her phone and Waze
server as a man-in-the-middle attack [15], [16]. As shown in
Figure 3, an attacker needs to pre-install the proxy server’s root
Certificate Authorities (CA) to her own phone as a “trusted
CA.” This allows the proxy to present self-signed certificates
to the phone claiming to be the Waze server. The Waze app on
the phone will trust the proxy (since the certificate is signed
by a “trusted CA”), and establish HTTPS connections with the
proxy using proxy’s public key. On the proxy side, the attacker
can decrypt the traffic using proxy’s private key, and then
forward traffic from the phone to Waze server through a
separate TLS/SSL channel. The proxy then observes traffic
to the Waze servers and extracts the API calls from plain text
traffic.

Hiding API calls using traffic encryption is fundamentally
challenging, because the attacker has control over most of the
components in the communication process, including phone,
the app binary, and the proxy. A known countermeasure is
certificate pinning [17], which embeds a copy of the server
certificate within the app. When the app makes HTTPS
requests, it validates the server-provided certificate with its
known copy before establishing connections. However, dedi-
cated attackers can extract and replace the embedded certificate
by disassembling the app binary or attaching the app to a
debugger [18], [19].

Once we obtain the knowledge of Waze APIs, we can
build extremely lightweight Waze clients using python scripts,
allocating one thread for each client. Within each thread,
we login to the app using a separate account, and maintain a
live session by sending periodic GPS coordinates to the Waze
server.

B. Potential Defenses Against Sybil Devices

While attackers can easily create lightweight Sybil devices,
it is nontrivial for services providers to effectively detect

and defend against them. Below we discuss possible ways
to reliably authenticate mobile devices, and highlight the key
challenges to do so.

Email Verification: A straight-forward approach is to
authenticate a mobile device via an email account. However,
attackers may create fake email accounts automatically or pur-
chase them in bulks from blackmarkets [20]. This approach has
limited effect.

SMS Verification: Two-factor Authentication can be used to
verify phone numbers. The latest Waze app already requires
SMS verification during account registration. However, attack-
ers can bypass this using disposable phone numbers or tem-
poral SMS services [21].

CAPTCHA: Service providers can use CAPTCHAs to test
whether a phone is operated by a human user or a com-
puter script. This approach has key limitations too. First,
solving CAPTCHAs on smartphones can be distracting and
annoying to legitimate users. Second, attackers can leverage
crowdsourced CAPTCHA farms to solve CAPTCHAs in real
time [22].

IMEI Validation: Service providers may also consider val-
idating the unique identifier of the phone such as IMEI
But the challenge is there are already public IMEI data-
bases [23] or fake IMEI generators [24] that can help attackers
to spoof the identifier.

Device Fingerprinting: Researchers have proposed to use
motion sensors to fingerprint smartphones [25]. The idea is
that smartphone sensors such as accelerometers and gyro-
scopes usually have anomalies in their signals due to manu-
facturing imperfections. Such signal anomalies can be used to
uniquely fingerprint the phone. However, a more recent result
shows that fingerprinting accuracy would drop quickly for a
large number of devices (e.g., 100K) [26]. This technique is
still not reliable enough to authenticate mobile devices.

1P Verification: Finally, service providers can also check if
the device’s IP is an actual mobile IP (or a suspicious web
proxy). However, attacker can overcome this by routing their
traffic through a cellular data plan.

We find that authenticating individual mobile devices is
very challenging. As long as attackers have full controls on
the client side, they could (easily) forge the data needed for
authentication. In the later section (§VI), we will describe our
method to detect groups of Sybil devices.

C. Scalability of Ghost Riders

Ghost riders are fully functional Waze clients and they are
highly scalable. Each ghost rider is scripted not only to report
GPS to Waze server, but also report fake events using the
API. We run 1000 virtual vehicles on a single Linux Dell
Server (Quad Core, 2GB RAM), and find that at steady state,
1000 virtual devices only introduces a small overhead: 11%
of memory usage, 2% of CPU and 420 Kbps bandwidth.
In practice, attackers can easily run tens of thousands of virtual
devices on a commodity server.

Finally, we experimentally confirm the practical efficacy and
scalability of ghost riders. We chose a secluded highway in
rural Texas, and used 1000 virtual vehicles (hosted on a single
server and single IP) to generate a highly congested traffic
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hotspot. We perform our experiment in the middle of the night
after repeated scans showed no Waze users within miles of our
test area. We positioned 1000 ghost riders one after another,
and drove them slowly at 15 mph along the highway, looping
them back every 15 minutes for an entire hour. The congestion
shows up on Waze 5 minutes after our test began, and stayed
on the map during the entire test period. No problems were
observed during our test, and tests to generate fake events
(accidents etc.) also succeeded.

V. USER TRACKING ATTACK

Next, we describe a powerful new attack on user privacy,
where virtual vehicles can track Waze users continuously
without risking detection themselves. By exploiting a key
social functionality in Waze, attackers can remotely follow
(or stalk) any individual user in real time. This is possible
with single device emulation, but greatly amplified with the
help of large groups of ghost riders, possibly tracking large
user populations simultaneously and putting user (location)
privacy at great risk. We start by examining the feasibility
(and key enablers) of this attack. We then present a simple
but highly effective tracking algorithm that follows individual
users in real time, which we have validated using real life
experiments (with ourselves as the targets).

The only way for Waze users to avoid tracking is to go
“invisible” in Waze. However, doing so forfeits the ability to
generate reports or message other users. Waze also resets the
invisible setting every time the app is opened [27].

A. Feasibility of User Tracking

A key feature in Waze allows users to socialize with others
on the road. Each user sees on her screen icons representing
the locations of nearby users, and can chat or message with
them through the app. Leveraging this feature, an attacker
can pinpoint any target who has the Waze app running on
her phone. By constantly “refreshing” the app screen (issuing
an update query to the server), an attacker can query the
victim’s GPS location from Waze in real time. To understand
this capability, we perform detailed measurements on Waze to
evaluate the efficiency and precision of user tracking.

Tracking via User Queries: A Waze client periodically
requests updates in her nearby area, by issuing an update
query with its GPS coordinates and a rectangular ‘“search
area.” This search area can be set to any location on the
map, and does not depend on the requester’s own location.
The server returns a list of users located in the area, including
userID, nickname, account creation time, GPS coordinates and
the GPS timestamp. Thus an attacker can find and “follow” a
target user by first locating them at any given location (work,
home) and then continuously following them by issuing update
queries centered on the target vehicle location, all automated
by scripts.

Overcoming Downsampling: The user query approach faces
a downsampling challenge, because Waze responds to each
query with an “incomplete” set of users, i.e., up to 20 users
per query regardless of the search area size. This downsampled
result is necessary to prevent flooding the app screen with
too many user icons, but it also limits an attacker’s ability
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Fig. 4. # of queries vs. unique returned users in the area.

to follow a moving target. We find that this downsampling
can be overcome by simply repeatedly querying the system
until the target is found. We perform query measurements
on four test areas (of different sizes between 3 x 4 mile?
and 24 x 32 mile?) in the downtown area of Los Angeles
(City A, with 10 million residents as of 2015). For each area,
we issue 400 queries within 10 seconds, and examine the
number of unique users returned by all the queries. Results
in Figure 4 show that the number of unique users reported
converges after 150-250 queries for the three small search
areas (< 12 x 16 mile?). For the area of size 24x32 mile?,
more than 400 queries are required to reach convergence.

Tracking Users Over Time: Our analysis found that
each active Waze app updates its GPS coordinates to the
server every 2 minutes, regardless of whether the user is
mobile or stationary. Even when running in the background,
the Waze app reports GPS values every 5 minutes. As long
as the Waze app is open (even running in the background),
the user’s location is continuously reported to Waze and
potential attackers. Clearly, a more conservative approach to
managing location data would be helpful here.

We note that attackers can perform long-term tracking on a
target user (e.g., over months). The attacker needs a persistent
ID associated to the target. The “userID” field in the metadata
is insufficient, because it is a random “session” ID assigned
upon user login and is released when the user kills the
app. However, the “account creation time” can serve as a
persistent ID, because a) it remains the same across the user’s
different login sessions, and b) it is precise down to the second,
and is sufficiently to uniquely identify single users in the same
geographic area. While Waze can remove the “account creation
time” field from metadata, a persistent attacker can overcome
this by analyzing the victim’s mobility pattern. For example,
the attacker can identify a set of locations where the victim has
visited frequently or stayed during the past session, mapping
to home or workplace. Then the attacker can assign a ghost
rider to constantly monitor those areas, and re-identify the
target once her icon shows up in a monitored location, e.g.,
home.

Stealth Mode: We note that attackers remain invisible to
their targets, because queries on any specific geographic area
can be done by Sybils operating “remotely,” i.e. claiming
to be in a different city, state or country. Attackers can
enable their “invisible” option to hide from other nearby users.
Finally, disabling these features still does not make the attacker
visible. Waze only updates each user’s “nearby” screen every
2 minutes (while sending its own GPS update to the servers).
Thus a tracker can “pop into” the target’s region, query for
the target, and then move out of the target’s observable range,
all before the target can update and detect it.
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TABLE I
TRACKING EXPERIMENT RESULTS

Location Route Travel GPS Sent | GPS Captured | Followed to Avg. Track Waze User Density
Length (Mile) | Time (Minute) By Victim by Attacker Destination? | Delay (Second) | (# of Users / mile?)
City A 12.8 35 18 16 Yes 43.79 56.6
Highway B 36.6 40 20 19 Yes 9.24 2.8

GPS Points
Missed by Attacker oo

Fig. 5. A graphical view of the tracking result in Los Angeles downtown
(City A). Blue dots are GPS points captured by the attacker and the red dots
are those missed by the attacker.

B. Real-Time Individual User Tracking

To build a detailed trace of a target user’s movements,
an attacker first bootstraps by identifying the target’s icon on
the map. This can be done by identifying the target’s icon
while confirming her physical presence at a time and location.
The attacker centers its search area on the victim’s location,
and issues a large number of queries (using Sybil accounts)
until it captures the next GPS report from the target. If the
target is moving, the attacker moves the search area along the
target’s direction of movement and repeats the process to get
updates.

Experiments: To evaluate its effectiveness, we performed
experiments by tracking one of our own Android smartphones
and one of our virtual devices. Tracking was effective in both
cases, but we experimented more with tracking our virtual
device, since we could have it travel to any location. Using
the OSRM tool [28], we generate detailed GPS traces of
two driving trips, one in downtown area of Los Angeles
(City A), and one along the interstate highway-101 (Highway
B). The target device uses a realistic driving speed based on
average traffic speeds estimated by Google Maps during the
experiment. The attacker used 20 virtual devices to query Waze
simultaneously in a rectangular search area of size 6 x 8 mile?.
This should be sufficient to track the GPS update of a fast-
driving car (up to 160 mph). Both experiments were during
morning hours, and we logged both the network traffic of the
target phone and query data retrieved by the attacker. Note
that we did not generate any “events” or otherwise affect the
Waze system in this experiment.

Results: Table I lists the results of tracking our virtual
device, and Figure 5 presents a graphical view of the City
A result. For both routes, the attacker can consistently follow
the victim to her destination, though the attacker fails to
capture 1-2 GPS points out of the 18-20 reported. For City A,
the tracking delay, i.e., the time spent to capture the subsequent
GPS of the victim, is larger (averaging 43s rather than 9s). This
is because the downtown area has a higher Waze user density,
and required more rounds of queries to locate the target.

Our experiments represent two highly challenging
(i.e., worst case) scenarios for the attacker. The high
density of Waze users in City A downtown is makes it
challenging to locate a target in real time with downsampling.

On Highway B, the target travels at a high speed (~60mph),
putting a stringent time limit on the tracking latency, i.e.,
the attacker must capture the target before he leaves the
search area. The success of both experiments confirms the
effectiveness and practicality of the proposed attack.

VI. DEFENSES

In this section, we propose defense mechanisms to signifi-
cantly limit the magnitude and impact of these attacks. While
individual devices can inflict limited damage, an attacker’s
ability to control a large number of virtual vehicles at low
cost elevates the severity of the attack in both quantity and
quality. Our priority, then, is to restrict the number of ghost
riders available to each attacker, thus increasing the cost per
“vehicle” and reducing potential damage.

The most intuitive approach is perform strong loca-
tion authentication, so that attackers must use real devices
physically located at the actual locations reported. This
would make ghost riders as expensive to operate as real
devices. Unfortunately, existing methods for location authen-
tication do not extend well to our context. Some proposals
solely rely on trusted infrastructures (e.g., wireless access
points) to verify the physical presence of devices in close
proximity [29], [30]. However, this requires large scale retro-
fitting of cellular celltowers or installation of new hardware,
neither of which is practical at large geographic scales. Others
propose to embed tamperproof location hardware on mobile
devices [31], [32], which incurs high cost per user, and is
only effective if enforced across all devices. For our purposes,
we need a scalable approach that works with current hard-
ware, without incurring costs on mobile users or the map
service (Waze).

A. Sybil Detection via Proximity Graph

Instead of optimizing per-device location authentication, our
proposed defense is a Sybil detection mechanism based on the
novel concept of proximity graph. Specifically, we leverage
physical proximity between real devices to create collocation
edges, which act as secure attestations of shared physical pres-
ence. In a proximity graph, nodes are Waze devices (uniquely
identified by an account username and password on the server
side). They perform secure peer-to-peer location authentication
with the Waze app running in the background. An edge is
established if the proximity authentication is successful.

Because Sybil devices are scripted software, they are highly
unlikely to come into physical proximity with real devices.
A Sybil device can only form collocation edges with other
Sybil devices (with coordination by the attacker) or the
attacker’s own physical devices. The resulting graph should
have only very few (or no) edges between virtual devices and
real users (other than the attacker). Leveraging prior work
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Fig. 6. WiFi signal strength and scan success rate with respect to car distance
in static scenarios.

on Sybil detection in social networks, groups of Sybils can
be characterized by the few “attack edges” connecting them
to the rest of the graph, making them identifiable through
community-detection algorithms [33].

We use a very small number of trusted nodes only to
bootstrap trust in the graph. We assume a small number of
infrastructure access points are known to Waze servers, e.g.,
hotels and public WiFi networks associated with physical
locations stored in IP-location databases (used for geolocation
by Apple and Google). Any Waze device that communicates
with the Waze server under their IPs (and reports a GPS
location consistent with the IP) automatically creates a new
collocation edge to the trusted node.

B. Peer-Based Proximity Authentication

To build the proximity graph, we first need a reliable method
to verify the physical collocation of mobile devices. We cannot
rely on GPS reports since attackers can forge arbitrary GPS
coordinates, or Bluetooth based device ranging [34] because
the coverage is too short (<10 meters) for vehicles. Instead, we
consider a challenge-based proximity authentication method,
which leverages the limited transmission range of WiFi radios.

WiFi Tethering Challenge: We use the smartphone’s WiFi
radio to implement a proximity challenge between two Waze
devices. Because WiFi radios have limited ranges (<250
meters for 802.11n [35])), two Waze devices must be in
physical proximity to complete the challenge. Specifically,
we (or the Waze server) instruct one device to enable WiFi
tethering and broadcast beacons with an SSID provided by
the Waze server, i.e., a randomly generated, time-varying bit
string. This bit string cannot be forged by other users or used
to re-identify a particular user. The second device proves its
proximity to the first device by returning the SSID value heard
over the air to the Waze server.

The key concerns of this approach are whether the WiFi
link between two vehicles is stable/strong enough to complete
the challenge, and whether the separation distance is long
enough for our needs. This concern is valid given the high
moving speed, potential signal blockage from vehicles’ metal
components, and the low transmit power of smartphones.
We explore these issues with detailed measurements on real
mobile devices.

First, we perform measurements on stationary vehicles to
study the joint effect of blockage and limited mobile transmit
power. We put two Android phones into two cars (with win-
dows and doors closed), one running WiFi tethering to broad-
cast beacons and the other scanning for beacons. Figure 6 plots
the WiFi beacon strength at different separation distances.
We see that the above artifacts make the signal strength drop
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Fig. 7. WiFi signal strength and scan success rate with respect to car distance
in driving scenarios.

to —100 dBm before the distance reaches 250 meters. In the
same figure, we also plot the probability of successful beacon
decoding (thus challenge completion) across 400 attempts
within 2 minutes. It remains 100% when the two cars are
separated by <80 meters, and drops to zero at 160 meters.

Next, we perform driving experiments on a highway at
normal traffic hours in the presence of other vehicles. The
vehicles travel at speeds averaging 65 mph. During driving,
we are able to vary the distance between the two cars, and
use recorded GPS logs to calculate the separation distance.
Figure 7 shows that while WiFi signal strength fluctuates
during our experiments, the probability of beacon decoding
remains very high at 98% when the separation is less than
80 meters but drops to <10% once the two cars are more
than 140 meters apart.

Overall, the results suggest the proposed WiFi tethering
challenge is a reliable method for proximity authentication
for our system. In practice, Waze can start the challenge
when detecting the two vehicles are within the effective
range, e.g., 80 meters. Since the WiFi channel scan is fast,
e.g., 1-2 seconds to do a full channel scan in our experiments,
this challenge can be accomplished quickly with minimum
energy cost on mobile devices.

Constructing Proximity Graphs: In a proximity graph, each
node is a Waze device, and an edge indicates the two users
come into physical proximity, e.g., 80 meters, within a pre-
defined time window. The resulting graph is undirected but
weighted based on the number of times the two users have
encountered. Using weighted graph makes it harder for Sybils
to blend into the normal user region. Intuitively, real users will
get more weights on their edges as they use Waze over time.
For attackers, in order to blend in the graph, they need to build
more weighted attack edges to real users (higher costs).

This approach should not introduce much energy consump-
tion to users’ phones. First, Waze server does not need to
trigger collocation authentication every time two users are in
close proximity. Instead, the proximity graph will be built
up over time. A user only need to authenticate with other
users occasionally, since we can require that device authenti-
cation expires after a moderate time period (e.g., months) to
reduce the net impact on wireless performance and energy
usage. Second, since the process is triggered by the Waze
server, Waze can can use WiFi sensing from devices to find
“opportunistic” authentication times that minimize impact on
performance and energy. Waze can also use one tether to
simultaneously authenticate multiple colocated devices within
an area. This further reduces authentication overhead, and
avoids performance issues like wireless interference in areas
with high user density. In practice, there might be users who
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never turn on the Wifi permission for Waze. One possible strat-
egy is to lower these users’ weights in traffic aggregation and
temporarily strict them from querying nearby users, to control
the potential damage. Also, WiFi is just one example we used
to explain the technique. Waze may use similar techniques
on Bluetooth or other proximity based communications when
WiFi access is not available.

C. Graph-Based Sybil Detection

We apply graph-based Sybil detection algorithms to detect
Sybils in Waze proximity graph. Graph-based Sybil detec-
tors [33], [36]-[42] were originally proposed in social net-
works. They all rely on the key assumption that Sybils have
difficulty to form edges with real users, which results in a
sparse cut between the Sybil and non-Sybil regions in the
social graph. Because of the limited number of “attack edges”
between Sybils and non-Sybils, a random walk from non-Sybil
region has a higher landing probability to land on a non-Sybil
node than a Sybil node.

Although this assumption may not always hold in online
social networks [43], it holds well for the proximity graph.
In online social networks, Sybils may build “attack edges”
by befriending with real users (e.g., using attractive female
photos) [43]. However, in a proximity graph, building an
attack edge requires physical collocations. With the WiFi
authentication, it’s difficult to build attack edges using software
simulations alone in a massive, automated manner (e.g., for
tens of thousands of Sybil devices). In addition, the authenti-
cation is done in the background without human involvement,
which further eliminates the chance for Sybils to trick real
users to add edges.

SybilRank: We choose SybilRank as our main algorithm.
Compared to its counterparts [36]-[38], SybilRank achieves
a higher accuracy at a lower computational cost, and has
been successfully deployed in a real-world social network with
tens of millions of users [39]. At the high-level, SybilRank
ranks the nodes based on how likely they are Sybils. The
algorithm starts with multiple trusted nodes in the graph.
It iteratively computes the landing probability for short random
walks (originated from trusted nodes) to land on all other
nodes. The landing probability is normalized by the node’s
degree, which acts as the trust score for ranking. Intuitively,
short random walks from trusted nodes are very unlikely to
traverse the few attack edges to reach Sybil nodes, and thus
Sybils’ scores should be lower.

SybilRank is designed to rank Sybils and allows system
administrators to go through the ranked list to decide which
accounts to suspend. As shown in [39], in practice, the admin-
istrators may set a cut-off value for the trust score and label
the tail of the list as Sybils. For example, administrators can
go through the ranked list from the most suspicious accounts
to the least suspicious ones. They can stop at some point (the
cut-off value) when they find the non-Sybil rate gets too high.

The original SybilRank works on unweighted social graphs.
We modified it to work on our weighted proximity graph:
when a node propagates trust (or performs random walks) to
its neighbors, instead of splitting the trust equally, it distributes
proportionally based on the edge weights. This actually makes

it harder for Sybils to evade SybilRank—they will need to
build more high-weight attack edges to real users to receive
trust.

SybilSCAR: 1In addition, we also consider a more
recent algorithm SybilSCAR [41] for comparison purposes.
SybilSCAR unifies multiple graph-based Sybil detection algo-
rithms into a single framework and proposes a new set of rules
for label propagating. However, SybilSCAR requires a small
number of known Sybils as well as trusted nodes as seeds, and
thus is not our first choice (SybilRank only needs a few trusted
nodes). SybilSCAR iteratively propagates label information
(Sybil and non-Sybil) from nodes to their neighbors. The
underlying assumption is the homophily property of social
graphs, i.e., real users are more likely to connect with real
users and Sybils are more likely to connect with Sybils, which
is applicable to our proximity graph.

VII. COUNTERMEASURE EVALUATION

We use simulations to evaluate the effectiveness of our
proposed defense. We focus on evaluating the feasibility and
cost for attackers to maintain a large number of Sybils after
the Sybil detection is in place. We quantify the cost by the
number of attack edges a Sybil must establish with real users.
In practice, this translates into the effort taken to physically
drive around and use physical devices (with WiFi radios) per
Sybil to complete proximity authentication. In the following,
we first describe our simulation setup, and then present the
key findings and their implications on Waze.

A. Evaluation Setup

We first discuss how we construct a synthetic proximity
graph for our evaluation, followed by the counter strategies
taken by attackers to evade detection. Finally, we describe the
evaluation metrics for Sybil detection.

Simulating Proximity Graphs: We use well-known models
on human encountering to create synthetic proximity graphs.
This is because, to the best of our knowledge, there is no public
per-user mobility dataset with sufficient scale and temporal
coverage to support our evaluation. Also, directly crawling
large-scale, per-user mobility trace from Waze can lead to
questionable privacy implications, and thus we exclude this
option.

Existing literatures [44]-[48] all suggest that human (and
vehicle) encounter patterns display strong scale-free and
“small-world” properties [49]. Thus we follow the methodol-
ogy of [44] to simulate a power-law based encounter process
among Waze users. Given a user population N, we first assign
each user an encounter probability following a power-law
distribution (ov =2 based on the empirical values [44], [50]).
We then simulate user encounter over time, by adding edges
to the graph based on the joint probability of the two nodes.

For our evaluation, we produce a proximity graph for N =
10000 normal users and use the snapshot when 99.9% of nodes
are connected. Note that as the graph gets denser over time,
it is harder for Sybils to blend into normal user regions. We use
this graph to simulate the lower-bound performance of Sybil
detection.?

2Validated by experiments: a denser, 99.99% connected graph can uniformly
improve Sybil detection accuracy.
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degree = 5. (b) Sybil inner connection avg. degree = 10.

Note that by following a power-law encountering probabil-
ity, our model already considers the effect of new users or inac-
tive users. In this graph, only a small portion of active users
has a high degree, while most users (including new users) have
a low degree due to a low encountering probability. In practice,
Waze can use their real graphs for this experiment.

Attacker Models: In the presence of Sybil detection,
an attacker will try mixing their Sybils into the proximity
graph.

We consider the following strategies:

1) Single-Gateway — An attacker first takes one Sybil
account (as the gateway) to build attack edges to normal
users. Then the attacker connects the remaining Sybils
to this gateway. In practice, this means the attacker only
needs to take one physical phone to go out and encounter
normal users.

2) Multi-Gateways — An attacker distributes the attack
edges to multiple gateways, and then evenly spreads the
other Sybils across the gateways. This helps the Sybils
to blend in with normal users. The attacker pays an extra
cost in terms of using multiple real devices to build
attack edges.

The attacker also builds edges among its own Sybils to
maintain a legitimate degree distribution, and boost each
other’s trust score. In our simulation, we follow the scale-
free distribution to add edges among Sybils mimicking normal
user region (we did not use a fully connected network between
Sybils since it is more easily detectable).

Evaluation Metrics: To evaluate Sybil detection efficacy,
we use the standard false positive (negative) rate, and the
Area under the Receiver Operating Characteristic curve (AUC)
used by SybilRank [39]. AUC represents the probability that
SybilRank ranks a random Sybil node lower than a random
non-Sybil node. Its value ranges from O to 1, where 1 means
the ranking is perfect (all Sybils are ranked lower than non-
Sybils), 0 means the ranking is always flipped, and 0.5 matches
the result of random guessing. Compared to false positive
(negative) rates, AUC is independent of the cutoff threshold,
and thus comparable across experiment settings.

B. Results

Our evaluation primarily focuses on SybilRank, and we
briefly discuss the results of SybilSCAR in the end.

Accuracy of Sybil Detection: We assume the attacker seeks
to embed 1000 Sybils into the proximity graph. We use either
single- or multi-gateway approaches to build attack edges
on the proximity graph by connecting Sybils to randomly
chosen normal users. We then add edges between Sybil nodes,
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following the power-law distribution and producing an average
weighted degree of either 5 or 10 (to emulate different Sybil
subgraph density). We randomly select 10 trusted nodes to
bootstrap trust for SybilRank and run it on the proximity
graph. We repeat each experiment 50 times.

Figure 8 shows that the Sybil detection mechanism is highly
effective. For attackers of the single-gateway model, the AUC
is very close to 1 (> 0.983), indicating Waze can identify
almost all Sybils even after the attacker established a large
number of attack edges, e.g., 50000. Meanwhile, the multi-
gateway method helps attackers add “undetected” Sybils, but
the number of gateways required is significant. For example,
to maintain 1000 Sybils, i.e., by bringing down AUC to 0.5,
the attacker needs at least 500 as gateways. In practice, this
means wardriving with 500+ physical devices to meet real
users, which is a significant overhead.

Interestingly, the 1000-gateway result (where every Sybil is
a gateway) shows that, at certain point, adding more attack
edges can actually hurt Sybils. This is potentially due to the
fact that SybilRank uses node degree to normalize trust score.
For gateways that connect to both normal users and other
Sybils, the additional “trust” received by adding more attack
edges cannot compensate the penalty of degree normalization.

For a better look at the detection accuracy, we convert the
AUC in Figure 8(b) to false positives (classifying real users as
Sybils) and false negatives (classifying Sybils as real users).
For simplicity, we set a cutoff value to mark the bottom 10%
of the ranked nodes as Sybils. This cutoff value is only to
convert the error rate. In practice, Waze can optimize this value
based on the trust score or manual examination. As shown in
Figure 10, SybilRank is highly accurate to detect Sybils when
the number of gateways is less than 100. Again, 100 gateways
incur high cost in practice.

Next we quickly examine the impact of trusted nodes to
Sybil detection. Figure 9 shows a small number of trusted node
is enough to run SybilRank. Interestingly, adding more trusted
nodes can slightly hurt Sybil detection, possibly because
it gives the attacker (gateways) a higher chance to receive
trust. In practice, multiple trusted nodes can help SybilRank
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overcome potential community structures in proximity graph
(e.g., users of the same city form a cluster). So Waze should
place trusted nodes accordingly to cover geographic clusters.

Cost of Sybil Attacks: Next, we infer the rough cost of
attackers on implementing successful Sybil attacks. For this
we look at the number of attack edges required to successfully
embed a given number of Sybils. Our experiment assumes the
attacker uses 500 gateways and builds power-law distributed
inner connections with average degree = 10. Figure 11 shows
the number of attack edges required to achieve a specific
AUC under SybilRank as a function of the target number of
Sybils. We see that the attack edge count increases linearly
with the Sybil count. The cost of Sybil attack is high: to
maintain 3000 Sybils, the attacker must make 60,000 attack
edges to keep AUC below (.75, and spread these attack edges
across 500 high-cost gateways.

Smaller Sybil Groups: We briefly examine how effective
our system is in detecting much smaller Sybil groups. We test
Sybil groups with size of 20, 50 and 100 using a single-
gateway approach. We configure 50K attacking edges for
Sybils with inner degree = 10. The resulting AUC of Sybil
detection is 0.90, 0.95 and 0.99 respectively. This confirms our
system can effectively identify small Sybil groups as well.

Handling False Positives: For the few false positives (e.g.,
new accounts without an edge yet), Waze can handle them
properly without affecting much of its functionality. For exam-
ple, Waze can apply “temporary” restrictions, by lowering
their weights in traffic aggregation, and enforcing strict rate
limits for querying nearby users. Once the new accounts
establish some edges after one trip, Waze then can release
the restriction.

SybilSCAR Results: We perform a quick evaluation on
SybilSCAR. We set the average degree of the Sybil region
as 5, and feed 10 random trusted nodes and 10 random
known Sybils to bootstrap SybilSCAR. The results are
shown in Figure 12. SybilSCAR performs well under the
single-gateway setting (AUC above 0.9). The AUC still
remains above 0.8 under 100 gateways. The results suggest
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Sybil region).

that our system is not too sensitive to the choice of the Sybil
detection algorithm. Once the proximity graph is constructed,
existing off-the-shelf Sybil detection algorithms can help to
support the system.

VIII. OUR INTERACTIONS WITH WAZE

After our study, we have taken active steps to inform
Google/Waze team of our results and helped them to mitigate
the threat. In this section, we briefly describe our interactions
with Waze team and their new security measures.

Informing Waze Team Directly: Before the first writeup of
our work in November 2014, we sought to inform the Google
Waze team of our findings. We first used multiple existing
Google contacts on the Security and Android teams to reach
out to Waze. When that failed, we got in touch with Niels
Provos, who relayed information about our project to the Waze
team.

As of October 2015, we observed a major change in Waze
app on how the app reports user GPS to the server (and other
users). In the new version, the app only reports user GPS
when the user is actively driving (moving at a moderate/fast
rate of speed). In addition, Waze automatically shuts down
if the user puts it in the background, and has not driven
for a while. To resume GPS reporting, users must manually
bring the app to the foreground. Finally, Waze hides users’
starting and destination locations of their trips. While online
documentation claims that these optimizations are to reduce
energy usage for the app, we are gratified by the dramatic
steps taken to limit user tracking and improve user privacy.
These changes indeed reduce the amount of GPS data (by
nearly a factor of 10x) sent to the server and made available
to potential attackers through the APIs.

Informing Waze Through News Media: After the above
updates, attackers could still track users who are actively using
the app. To further raise the awareness of the attack, we pitched
our work to Fusion (a major media outlet). On April 26, 2016,
Fusion covered our story, which went viral within 24 hours
with 204 followup reports from news media all around the
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world. This time, Waze immediately issued a response on
the next day [51] and a series of updates to the app. First,
Waze disabled the social feature in older versions (v3.8 or
lower). In addition, the new app uses special encoding on
the communication APIs so that the API parameters are no
longer human-readable. However, after some quick analysis,
we found the encoding was implemented with Google Protocol
Buffer. Based on standard format of the parameter values,
we managed to crack the encoding and extracted the new APIs
within a day. We validated that our attack still worked, and
informed Waze of our finding.

Working With Waze: As of May 2016, the product manager
of Waze reached out to us to start a collaboration to improve
Waze security. Since then, Waze started to require a two-factor
authentication through SMS before showing any identifiable
information to nearby users. More importantly, we strongly
suggested Waze removing the globally unique identifiers
(account creation time) and usernames. Waze followed our
suggestion and now it is very difficult to persistently track
users over multiple trips.

To assess the effectiveness of the SMS-based verification,
we tested to bypass this using temporal SMS services [21].
Our attempt succeeded. Once the account got verified, our
Sybil device can then communicate with Waze server to track
users. We reported our findings and also pointed them to our
proximity graph based defense ($VI). It is an on-going effort
to further raise the bar for attackers.

Thus far, our efforts have led to significant improvement
to the security and privacy in Waze. After the back-and-forth
interaction, much less amount of location information is shared
about users. Currently, only active users (who are driving on
the road with Waze app on the foreground) can be tracked.
In addition, we convinced Waze to remove the globally unique
identifiers of users, making it very difficult to track users
across multiple trips.

IX. BROADER IMPLICATIONS

While our experiments and defenses have focused strictly
on Waze, our results are applicable to a wider range of mobile
applications that rely on geolocation for user-contributed con-
tent and metadata. Examples include location based check-in
services (Foursquare, Yelp), mobile navigation systems (Waze,
Moovit), crowdsourced taxi services (Uber, Lyft), mobile
dating apps (Tinder, Bumble), anonymous mobile communities
(Yik Yak, Whisper) and location-based gaming apps (Poke-
mon Go).

These systems face two common challenges exposing them
to potential attacks. First, our efforts show that it is difficult
for app developers to build a truly secure channel between
the app and the server. There are numerous avenues for
an attacker to reverse-engineer and mimic an app’s API
calls, thereby creating “cheap” virtual devices and launching
Sybil attack [4]. Second, there are no deployed mechanisms
to authenticate location data (e.g., GPS report). Without a
secure channel to the server and authenticated location, these
mobile apps are vulnerable to automated attacks ranging from
nuisance (prank calls to Uber) to malicious content attacks
(large-scale rating manipulation on Yelp).
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A. Attacking Other Apps

To validate our point, we run a quick empirical analysis
on a broad class of mobile apps to understand how easy
it is to reverse-engineer their APIs and inject falsified data
into the system. We pick one app from each category includ-
ing Foursquare, Uber, Tinder, Yik Yak and Pokemon Go
(an incomplete list). We find that, although all the listed apps
use TLS/SSL to encrypt their network traffic, their APIs can be
fully exposed by the method in §IV. For each app, we were
able to build a light-weight client using python script, and
feed arbitrary GPS to their key function calls. For example,
with forged GPS, a group of Foursquare clients can deliver
large volumes of check-ins to a given venue without physically
visiting it; On Uber, one can distribute many virtual devices
as sensors, and passively monitor and track all drivers within
a large area (see §V). Similarly for Yik Yak and Tinder,
the virtual devices make it possible to perform wardriving
in a given location area to post and collect anonymous Yik
Yak messages or Tinder profiles. In addition, apps like Tinder
also display the geographical distance to a nearby user (e.g.,
1 mile). Attacker can use multiple virtual devices to measure
the distance to the target user, and “triangulate” that user’s
exact location [52]. Finally, for Pokemon Go, we can use
simulated devices to capture pokemons without physically
walking outside like other players do (cheating in the game).

B. New Countermeasures in the Wild

After our initial report was published, we have observed
new countermeasures from these apps. For example, Yik Yak
uses HMAC (keyed-hash message authentication code) to
authenticate their APIs. The app embeds a key in the binary
to generate authentication code. Any API calls without the
code are not accepted. In this case, the attacker will need to
extract the key from binary to build a Sybil device. In addition,
apps like Twitter and Periscope have adopted SSL pinning to
spot self-signed certificates. Attacker will need to replace the
pinned certificate in order to set up the HTTPS proxy to inspect
API calls. Further research is needed to empirically understand
the usage and effectiveness of different countermeasures in the
wild.

X. RELATED WORK

Security in Location-Based Services: Location-based ser-
vices face various threats, ranging from rogue users reporting
fake GPS [2], [53], to malicious parties compromising user
privacy [54]. A related study on Waze [55] demonstrated
that small-scale attacks can create traffic jams or track user
icons, with up to 15 mobile emulators. Our work differs in
two key aspects. First, we show that it’s possible to reverse
engineer its APIs, enabling light-weight Sybil devices (simple
scripts) to replace full-stack emulators. This increase the scale
of potential attacks by orders of magnitude, to thousands of
Waze clients per commodity laptop. The impact of thousands
of virtual vehicles is qualitatively different from 10-15 mobile
simulators. Second, as possible defenses, [55] cites known
tools such as phone number/IP verification, or location authen-
tication with cellular towers, which have limited applicability
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(see §6). In contrast, we propose a novel proximity graph
approach to detect and constrain the impact of virtual devices.

Researchers have proposed to preserve user location pri-
vacy against map services such as Waze and Google. Ear-
lier studies apply location cloaking by adding noise to the
GPS reports [56]. Recent work use zero-knowledge [57] and
differential privacy [58] to preserve the location privacy of
individual users. Our work differs by focusing on the attacks
against the map services.

Mobile Location Authentication: Defending against forged
GPS is challenging. One direction is to authenticate user
locations using wireless infrastructures: WiFi APs [29], [30],
cellular base stations [29], [30] and femtocells [59]. Devices
must come into physical proximity to these infrastructures
to be authenticated. But it requires cooperation among a
wide range of infrastructures (also modifications to their soft-
ware/hardware), which is impractical for large-scale services
like Waze. Our work only uses a small number of trusted
infrastructures to bootstrap, and relies on peer-based trust
propagation to achieve coverage. Other researchers have pro-
posed “peer-based” methods to authenticate collocated mobile
devices [34], [60], [61].

Different from existing work, we use peer-based collocation
authentication to build proximity graphs for Sybil detection,
instead of directly authenticating a device’s physical location.

XI. CONCLUSION

We describe our efforts to identify and study a range of
attacks on crowdsourced map services. We identify a range
of single and multi-user attacks, and describe techniques to
build and control groups of virtual vehicles (ghost riders) to
amplify these attacks. Our work shows that today’s mapping
services are highly vulnerable to software agents controlled
by malicious users, and both the stability of these services
and the privacy of millions of users are at stake. While our
study and experiments focus on the Waze system, we believe
the large majority of our results can be generalized to crowd-
sourced apps as a group. We propose and validate a suite
of techniques that help services build proximity graphs and
use them to effectively detect Sybil devices. Throughout this
work, we have taken active steps to isolate our experiments
and prevent any negative consequence on real Waze users. We
also proactively informed Waze team of theses attacks, and
worked with them to mitigate the threat.
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