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ABSTRACT

Considerable research attention has been recently devoted to the study of periodic structures given their
unique wave dispersion. Phononic crystals and acoustic metamaterials have emerged as two main categories
of such periodic structures that can exhibit radically different band gap characteristics. Here, we present a
novel configuration that combines hybrid wave attenuation attributes culminating in enhanced metadamping
and energy dissipation properties. The results are compared with a benchmark example from literature to show
the potential of the new design.
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1. INTRODUCTION

The development of periodic structures was intended for solid state and optical applications1–5 and has been
expanded to include hierarchical mechanical systems including discrete spring-mass lattices, composite beams,
and flexural plates.6–15 Such periodic structures can be categorized into two main categories: Phononic Crystals
(PCs) (Figure 1a) and Acoustic Metamaterials (AMs) (Figure 1b). In the simpler discrete cell mode, the unit
cell of a PC exhibits a periodic change in material or geometrical properties, or a combination thereof. Owing
to their periodic nature, waves propagating within certain frequency ranges fail to propagate in the periodic
medium due to impedance mismatches caused by Bragg scattering effects. Such frequency ranges are referred
to as band gaps.16,17 On the other hand, AMs are another class of periodic structures that comprise locally
resonant components which are supported by by the outer (host) structure. Such a configuration creates band
gaps at a subwavelength scale which, as a result, can be tuned to considerably lower frequencies.18–25 Band gaps
in AMs occur near the natural frequencies of the resonators due to the emergence of a negative effective mass.26

As such, these band gaps are solely dependent on the mechanical properties of the local resonance source, which
provides more design flexibility.

In this paper, a new model is proposed which exhibits qualitative properties of both PCs and AMs. The
new system, referred to herein as a Phononic Resonator (PR) (Figure 1c), comprises a unit cell which contains
a non-local resonating component. The cell contains two discrete masses, ma and mb. The neighboring ma

masses are connected via a spring ka, while a resonator mass mb is sandwiched between each two ma masses
and is connected to them via two springs of stiffness kb each. A PR structure, given the appropriate choice
of parameters, can exhibit both Bragg scattering and local resonance band gaps. Further, the PR is shown
to generate higher metadamping (i.e. larger damping ratios with the same amount of damping) which can
outperform both AMs and PCs.27
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Figure 1. Unit cell of (a) Phononic Crystal (PC), (b) Acoustic Metamaterial (AM), and (c) Phononic Resonator (PR)
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2.UNDAMPEDDISPERSIONRELATION

Adispersioncurveistherelationshipbetweenthewavenumberβofapropagatingwaveandtheexcitation
frequencyω. Thisrelationshipcanbeusedtoidentifybandgapsasregionswhereafrequencysolutionthat
correspondstoarealwavenumberdoesnotexist. Here,weshowthedevelopmentofthedispersionrelation
forthePR,sincetheAMandPCcounterpartsarewellestablished.27,28 Toderivethedispersionrelation,we
obtainequationsofmotionofaPRunitcellasfollows:

mäui+ca(2̇ui−u̇i+1−u̇i1)+ka(2ui−ui+1−ui1)−cb(̇vi+1 +̇vi−2̇ui)−kb(vi+1+vi−2ui)=0 (1a)

mb̈vi+2cḃvi+2kbvi−cb(̇ui1+̇ui)−kb(ui1+ui)=0 (1b)

Wefirstconsidertheundampedcasewhere ca=cb=0. UponsubstitutingtheBlochtheorem
29intothe

undampedPRequationsofmotion,thedispersionrelationisfoundbysolvingtheeigenvalueproblemtoget:

mambω
4−2(kb(mb+ma)+kamb(1−cos̄β))ω

2+(4kakb+2k
2
b)(1−cos̄β)=0 (2)

ThedispersionrelationcanthenbenormalizedusingΩ= ω
ω0
whereω0=

kb
mb
andcastinanon-dimensional

form:

Ω4−(2(1+µ)+
2µ

κ
(1−cos̄β))Ω2+(

4µ

κ
+2µ)(1−cos̄β)=0 (3)

whereµ= mb
ma
,κ= kb

ka
,and̄βisthedimensionlesswavenumber.Eq.(3)representsthefree-waveformulation

ofthedispersionrelation,wherethewavenumberissweptovertheirreducibleBrillouinzone(̄β∈[0,π]).The
driven-waveformulation,ontheotherhand,producesthewavenumberasafunctionofthefrequency,i.e.β̄(ω),
whichcanbefoundbyreformulatingEq.(3)asβ̄=cos 1Φ(Ω)suchthat:

Φ(Ω)=1−
κ

2µ

Ω4−2(1+µ)Ω2

Ω2−(2+κ)
(4)

UponinspectionofthedispersionrelationinEq.(3),itisnoticedthattheopticbandcanbemanipulatedto
resembleeithertheopticbandstructureofaPCorAMwithavariationofthesystemparameters.Theoptic
branchofanAMhasapositivegroupvelocityandthatofthePChasanegativeone. GiventhataPRcan
mimicboththeAMandthePC,aturningpointfortheopticbranchhastoexistwherethenon-zerosolution
ofthedispersionrelationatβ̄=0isequaltotheasolutionatβ̄=πasanindicationofaflatopticbranch.
SubstitutingbackintoEq.(3),itcanbeshownthattheturningconditionissatisfiedif2µ=κwheretheoptic
dispersionbranchisflatandthegroupvelocitywillbeequaltozero.For2µ>κ,theopticbandbehavesin
amannerconsistentwithAMandpossesapositivegroupvelocity,whilefor2µ<κtheopticbandresembles
theopticbandofaPCwithanegativegroupvelocity. Asaspecialcase,thePRsystemcanalsoresemblea
homogeneouslatticewithnobandgapifµ= κ

2+κ.ThesecasesaregraphicallysummarizedinFigure2.

ThePRisalsocapableofcreatingattenuationthatresemblesbothPCandAMdesigns(asseenfromthe
imaginarycomponentof̄βinFigure2).Ananti-resonancefrequency,̂ΩR=

√
2+κ,canoccurwithintheband

gapwhenthePRbehavessimilartoanAM.Thisanti-resonancecanbefoundbysettingthedenominatorof
Φ(ω)inEq.(4)tozero;yieldingunboundedattenuation [̄β]asexpectedfromanAM-likebehavior.30ThePR
canalsohavebandgapscausedpurelybyBraggscatteringiftheanti-resonanceβ̄frequencyoccursoutsidethe
rangeofthebandgap(Figure2).
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Figure 2. Dispersion diagram of the Phononic Resonator (PR) at different combinations of the mass and stiffness ratios

3. DAMPING PROPERTIES OF PR

To analyze the damping properties of a phononic resonator, dampers are inserted into the model parallel to each
spring, and labeled ca and cb. A new dispersion relation for PR that includes these dampers can be derived
using a similar methodology as presented earlier, which can be shown to be:

λ4 + aλ3 + bλ2 + cλ+ d = 0 (5)

where:

a =
2cb(ma +mb) + 2camb(1− cos β̄)

mamb
(6a)

b =
2kb(ma +mb) + 2(kamb + 2cacb + c2b)(1− cos β̄)

mamb
(6b)

c =
4(cakb + kacb + cbkb)(1− cos β̄)

mamb
(6c)

d =
2kb(2ka + kb)(1− cos β̄)

mamb
(6d)

The equivalent dispersion relations for damped AM and PC can be found in literature.27,28 A solution of the
dispersion relations takes the following form:

λs(β) = −ξs(β)ωs(β)± ωds(β), s = 1, 2 (7)

where ωds is the damped resonant frequency of the system, and s = 1, 2 refers to the acoustic and optic
dispersion branches, respectively. ξs is the damping ratio for a given wave number and can be calculated using
ξs(β) = −<[ξs(β)]/Abs[ξs(β)], while ωs is the undamped resonant frequency. The differences in ξs across the wave
number spectrum when comparing different designs with like-valued dampers is an effect of the metadamping
phenomenon. Designs with higher damping ratios across the wave number spectrum can attenuate incident
waves more efficiently with the same amount of material damping compared to those with lower damping ratios.
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Figure 3. Dispersion diagram of a damped PR, AM, and PC with a mass ratio of µ = 5 and stiffness ratios of (a) κ = 1/5
and (b) κ = 5

In order to accurately compare different models, it must first be ensured that the systems are statically
equivalent, meaning that they all must have the same long wave speed, or that their acoustic dispersion branches
have the same initial slope (cstat). To ensure a fair comparison, we use a benchmark example from literature with
the following set of parameters: ma = 1 and ka = 1, mb = 5 (i.e. µ = 5), κ = 1/5, ωPC

0 = 100, and ωAM
0 = 40.9.

For an equivalent cstat of PR, the adjusted ωPR
0 is equal to 38.9 resulting in a long wave speed of cstat = 83.3

for all three models. The damping coefficients ca = cb = 40 are used for all three systems. However, since the
PR has three dampers in each unit cell as compared to an AM and a PC, the value of cb is halved. Figure 3
shows the damping ratios across the optic and acoustic bands for the benchmark examples (Figure 3a) as well
as for the same parameters but with κ = 5 (Figure 3b). As can be seen from Figure 3, increasing the stiffness
ratio gives the PR a higher damping ratio when compared to the AM and the PC. Although the PR behaves as
a PC at κ = 5, the damping ratios are higher than those of the AM (which have typically demonstrated larger
metadamping effects27).

AM
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PR Metadamping 
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Figure 4. Metadamping comparison as a function of cstat for µ = 5 and (a)κ = 1/5 and (b) κ = 5

ξsum in Figure 3 is a metric of the total damping ratio across both the optic and acoustic branch for each
model, and can be found using ξsum(β) = ξ1(β) + ξ2(β). The summed damping ratio ξsum for each model can
be integrated over wave numbers ranging from 0 to π to give a metadamping metric ξtotsum. If cstat is swept over
a range of values while keeping the same mass and stiffness ratios (by changing the value of ω0), a graph can
be constructed to view the differences in effective metadamping across all the cstat values. Figure 4 shows ξtotsum
as a function of cstat for all three models where higher values of ξtotsum imply enhanced metadamping effects. In
both Figures 4a and 4b, the PR clearly outperforms the PC in terms of total metadamping. For Figure 4a, the
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AM has slightly higher total metadamping than PR. However, as in the case of Figure 4b, the PR has higher
total metadamping than both AM and PC. This confirms the trend observed in Figure 3 where a PR is capable
of exhibiting a larger metadamping effect than that of the AM given the right choice of parameters.

4. CONCLUSION

The phononic resonator (PR) is a hybrid design that exhibit characteristics of both phononic crystals (PCs) and
acoustic metamaterials (AMs). The unique ability of the PR dispersion curve to behave similar to either AM or
PC allows for greater flexibility in the design of metamaterials as well as their tunability. The PR design has also
been shown to exhibit larger metadamping effects for the same damping values when compared to equivalent
AM and PC designs and given the suitable choice of parameters.
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