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SUMMARY

Dense arrays allow sampling of seismic wavefield without significant aliasing, and surface
wave tomography has benefitted from exploiting wavefield coherence among neighbouring
stations. However, explicit or implicit assumptions about wavefield, irregular station spacing
and noise still limit the applicability and resolution of current surface wave methods. Here,
we propose to apply the theory of compressive sensing (CS) to seek a sparse representation
of the surface wavefield using a plane-wave basis. Then we reconstruct the continuous surface
wavefield on a dense regular grid before applying any tomographic methods. Synthetic tests
demonstrate that wavefield CS improves robustness and resolution of Helmholtz tomography
and wavefield gradiometry, especially when traditional approaches have difficulties due to
sub-Nyquist sampling or complexities in wavefield.

Key words: Computational seismology; Crustal imaging; Seismic tomography; Surface

waves and free oscillations; Wave propagation.

1 INTRODUCTION

In the last decade, we have witnessed the emergence of seismic
arrays with a large number of sensors (i.e. large-N arrays), such as
the USArray and the Nodal Seismic array at Long Beach, California,
thanks to community-wide collaborative efforts and technological
advances for portable instruments. As sensor technology continues
to improve in the future, it will become possible or even routine
to sample full seismic wavefield using larger and denser arrays.
Exploiting these new data requires development of wavefield-based
methods for Earth structure and earthquake source imaging. Several
such methods (e.g. earthquake backprojection and detection, surface
wave Helmholtz tomography) have already emerged and produced
significant impacts on our understanding of the Earth (Ishii e al.
2005; Lin & Ritzwoller 2011; Yao et al. 2011; Ben-Zion et al. 2015;
Hansen & Schmandt 2015; Inbal ez al. 2016).

Seismic data from array sensors are discrete samples of spa-
tially and temporally continuous wavefield. The temporal sampling
is usually sufficiently even and dense (e.g. sampling frequency of
20-100 Hz) to avoid aliasing within the usual seismological pe-
riod bands (frequency lower than 10 Hz), following the Nyquist—
Shannon sampling theorem. However, the spatial sampling by ar-
rays is usually not as dense or even as the temporal sampling,
constrained by availability of sensors and where sensors can be de-
ployed. Therefore, the Nyquist—Shannon sampling theorem cannot
be applied here straightforwardly, and there will be spatially aliasing
for seismic waves with half-wavelengths shorter than the average
sensor spacing. Additionally, local noise may be strong and vary

from sensor to sensor, making it difficult to compare neighbouring
records directly. How to reconstruct the original spatially continu-
ous wavefield from our discrete and uneven samples with noise is
a key question before further wavefield-based structure or source
imaging.

Compressive sensing (CS) is a novel sampling paradigm in
data acquisition (Candes & Wakin 2008; Davenport ef al. 2011),
and may apply to wavefield reconstruction from irregular spatial
samples (Hindriks & Duijndam 1999; Zwartjes & Sacchi 2006;
Herrmann et al. 2007; Herrmann & Hennenfent 2008; Hennenfent
et al. 2010). CS theory asserts that certain signals can be recovered
fully from relatively few measurements, provided that (1) the signal
of interest can be sparsely represented under certain basis/frame @
(i.e. sparsity), and (2) the sampling function ¥ is incoherent with
the basis/frame @ (i.e. incoherence, Candés & Wakin 2008). For
example, among many sparsity-promoting methods, we can solve
the following optimization problem

min {||¥®m —d||} + Alml|, } M

where the model vector m is a set of coefficients that sparsely rep-
resent the continuous wavefield to be sampled, s, by s = @m,
while d = Ws + n is a vector of samples of s with noise n. The
second term, A|m||,, imposes regularization over the coefficients
m. Ideally, to promote sparsity of m, we would choose p = 0 (i.e. £
minimization) that seeks the smallest number of non-zero values in
m. However, this is impractical because ¢, optimization problem is
non-convex and generally impossible to solve. Instead, it is common
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to choose p = 1 (i.e. £, minimization) as a proxy for £, minimiza-
tion to seek a sparse solution (Donoho 2006; Candes er al. 2008;
Davenport ef al. 2011). This approximation has been shown to work
remarkably well under many circumstances. Additionally, Candes
et al. (2008) demonstrated that a sequence of iteratively reweighted
¢, minimizations help to improve the quality of optimization. In
this paper, we will only use the plain ¢, minimization and leave the
reweighted ¢, minimization to a future discussion. Once the model
vector m is estimated, then the wavefield s can be reconstructed as
s = @m, at any desired coordinates.

CS is becoming increasingly popular in many fields (e.g. com-
pressive imaging, medical imaging, remote sensing and astron-
omy, Lustig et al. 2007; Bobin et al. 2008; Duarte et al. 2008;
Herman & Strohmer 2009), because natural signals of interests
often have proper bases/frames by which they can be sparsely rep-
resented. More specifically in geophysics, CS has been applied to
seismic data acquisition/processing and source imaging. For ex-
ample, Yao et al. (2011) used CS to image multiple point sources
during large earthquakes with high-frequency teleseismic P waves
on dense arrays. Herrmann ef al. applied CS extensively in denois-
ing and interpolating seismic profiles in exploration seismology
problems (Herrmann et al. 2007; Herrmann & Hennenfent 2008;
Hennenfent e al. 2010; Kumar et al. 2015), which share similar
objectives as in this study but usually deal with small spatial scales
and high-frequency body waves. Boehm ef al. (2016) applied CS to
overcome the bottleneck of massive memory requirements in full-
waveform 3-D adjoint tomography. There are also wide interests in
make seismic data acquisition more affordable using CS (Allegar
et al. 2017; Baraniuk & Steeghs 2017; Kumar et al. 2017).

In this paper, we are essentially extending the CS approach to
the scales of global and regional seismology, and focusing on its
application to surface wave tomography. We aim to reconstruct sur-
face wavefield on dense seismic arrays, to improve the robustness
and resolution of structure imaging. To apply CS, first we need to
find the proper basis/frame by which wavefield can be represented
sparsely. There are many choices of basis/frame that are popular in
exploration seismology, such as discrete cosine transform, curvelet
(Candés & Demanet 2005), seislet (Fomel & Liu 2010) and wave
atom (Demanet & Ying 2007). Some of these bases/frames (e.g.
curvelet and wave atom) are constructed for purposes related to the
seismic wave equation, thus features mathematically optimal spar-
sity under certain assumptions. For example, Candés & Demanet
(2005) showed that the curvelet representation of wave propagators
(or more generally, solutions to linear hyperbolic differential equa-
tions) is optimally sparse and well organized, as long as the medium
is smooth or piecewisely smooth. This property makes curvelet an
ideal choice of frame for bandlimited wavefield reconstruction in
time domain (Herrmann & Hennenfent 2008). However, due to the
dispersive nature of surface waves, we find that it is more natural
to formulate the reconstruction problem in the frequency domain.
In other words, we will reconstruct wavefields for individual fre-
quencies, and estimate frequency-dependent phase velocity maps.
We will leave the construction and inversion of dispersion curves
for velocity structure as an independent problem, which can be
solved by different methods (Ritzwoller et al. 2001, 2003; Yang
et al. 2008; Haney & Tsai 2015), maybe jointly with receiver func-
tions (Julia et al. 2000; Bodin ef al. 2012; Shen et al. 2012). With
this frequency-domain setup, we find that surface wavefield can
be sparsely represented by a plane-wave basis (i.e. sparsity in the
wavenumber domain). Meanwhile, the spatially random sampling
function ¥ by seismic sensors is a network of Dirac functions,
which is incoherent with the plane-wave basis. Therefore, wavefield

reconstruction with the plane-wave basis satisfies the two require-
ments of CS, sparsity and incoherence.

Practically, to handle the large data volume in most geophysical
applications, we need an efficient £, minimization solver to find the
optimal reconstruction. Fortunately, many new and user-friendly
tools have been developed in the applied mathematics community
for problems in the form of eq. (1). Here, we will use the Templates
for First-Order Conic Solvers (TFOCS) package because of its
efficiency and robustness in our tests (Becker ez al. 2011). TFOCS is
library designed to construct efficient solvers for a variety of convex
optimization problems, especially those in sparse signal recovery.
Once the wavefield is reconstructed to a desired coordinates (e.g.
a denser regular grid), we can apply any wavefield-based method
with ease.

In the remainder of this paper, we will demonstrate how the
CS approach works for surface wave problems on dense 2-D ar-
rays. In Section 2, we will first briefly review current methods
of wavefield-based surface wave tomography, their explicit or im-
plicit assumptions and strengths/weaknesses. Then in Section 3, we
will present surface wavefield reconstruction using CS and apply
the current tomography methods to the reconstructed wavefield. In
Section 4, we will demonstrate the effectiveness of CS in surface
wave tomography by several synthetic examples, especially when
traditional approaches have difficulties due to sub-Nyquist sampling
or complexities in wavefield (e.g. strong multipathing and multiple
interfering sources).

2 WAVEFIELD-BASED SURFACE WAVE
TOMOGRAPHY

In the last decade, surface wave tomography methods based on either
earthquake data or ambient noise interferometry have made enor-
mous progresses in imaging shallow Earth structures. In particular,
deployment of the USArray triggered a series of new wavefield-
based methods, bringing unprecedented resolution to crustal and
upper-mantle structures across the contiguous US (Langston 2007b;
Liang & Langston 2009; Lin et al. 2009, 2013; Lin & Ritzwoller
2011; Ekstrom 2014, 2017; de Ridder & Biondi 2015; Jin & Gaherty
2015; Liu & Holt 2015; Bao et al. 2016). These wavefield-based
methods work well partly because the propagation of a narrow-
band single-mode surface wave approximately follows the 2-D wave
equation (Tanimoto 1990; Tromp & Dahlen 1993), easily sampled
by dense arrays:

1 *u(, 1)
cF )’ 0
or equivalently in the frequency domain,

(io)’

e, w)?
where c(7, w) is the phase velocity distribution for the centre angular
frequency , and u(7, t) or U (¥, w) is the 2-D surface wave potential
(in the time or the frequency domains, respectively), which for
Rayleigh waves can be related to vertical displacement by a local
amplification term (Tromp & Dahlen 1992; Lin et al. 2012). Here,
we assume that the local amplification terms are negligible, similar
to the assumptions made by Lin & Ritzwoller (2011) and de Ridder

& Biondi (2015). If we further assume that c(F, ) is sufficiently
smooth, then we can obtain the Helmholtz equation
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where 7() and A(F) are the traveltime and amplitude fields, re-
spectively. When the last term about amplitudes can be neglected
(e.g. high-frequency approximation), we obtain the eikonal equa-
tion (Wielandt 1993; Lin et al. 2009). Because both traveltimes
and amplitudes can be measured on 2-D dense arrays for individ-
ual earthquakes or virtual sources, we can apply eq. (4) to conduct
eikonal or Helmholtz tomography, and then average the phase ve-
locity maps from multiple sources for the final phase velocity map
(Lin et al. 2009; Lin & Ritzwoller 2011). Making local plane-wave
approximation to the solution of the wave equation (2) around a few
nearby stations, Langston (2007b) developed the wave gradiometry
to extract phase velocity, wave directionality, geometrical spread-
ing and radiation pattern from the spatial and temporal derivatives
of displacement, in the time or the frequency domains (Langston
2007a, b). Liu & Holt (2015) showed the connection between wave
gradiometry and Helmholtz tomography. When station density is
enough for us to sample the wavefield without spatial aliasing (i.e.
station spacing < half-wavelength), we can avoid most of the ap-
proximations above and return to the wave equations (2) and (3)
to solve for the phase velocity directly (de Ridder & Biondi 2015),
which we call wavefield gradiometry (WG) following de Ridder &
Curtis (2016) hereafter. de Ridder & Biondi (2015) even showed
that WG can be applied to raw ambient noise field consisting of
diffuse surface waves from multiple sources/scatterers.

Helmholtz/Eikonal tomography, wave gradiometry and WG all
take advantages of wavefield information sampled by dense arrays.
Therefore, we classify them as wavefield-based surface wave tomog-
raphy. More specifically, while time derivatives are relatively simple
to compute for seismograms, wavefield-based methods all involve
calculation of spatial derivatives of displacement or other attributes
(e.g. traveltime and amplitude), enabled by dense arrays. For exam-
ple, in Helmholtz tomography, spatial derivatives of traveltimes and
amplitudes need to be computed for individual earthquakes or vir-
tual sources (Lin & Ritzwoller 2011). In WG, the second-order spa-
tial derivatives of displacement are computed using finite-difference
(FD) approximations (de Ridder & Biondi 2015). These lead to two
major practical considerations of wavefield-based methods: (1) FD
approximation of derivatives on irregularly spaced stations, (2) sen-
sitivity to incoherence or noise at neighbouring stations. To mitigate
these difficulties, many pre-processing or post-processing methods
have been used, such as smoothing of the fields, stacking/averaging
over multiple earthquakes or virtual sources and calibration of the
irregular FD stencil (Langston 2007b; Lin & Ritzwoller 2011; de
Ridder & Curtis 2016). These ‘ad hoc’ methods often introduce
new implicit assumptions and significantly affect the quality of to-
mography models.

From the point view of wavefield sampling, these difficulties are
fundamentally due to operations applied to samples of the wave-
field, not the true wavefield. The ‘ad hoc’ treatments are actually
explicit or implicit assumptions about wavefield reconstructions.
For example, the minimum-curvature smoothing that is often ap-
plied in Helmholtz tomography is equivalent to assuming that trav-
eltime and amplitude fields of surface waves have certain levels
of smoothness (Lin e al. 2009; Lin & Ritzwoller 2011). The lo-
cal plane-wave approximation made in wave gradiometry assumes
that the phase velocity is homogeneous locally within the subar-
ray (Langston 2007a,b; Liang & Langston 2009). In WG, there are
relatively few assumptions, but the sampling points need to be reg-
ular and dense enough so that the FD stencil is accurate, at least
not biased systematically (de Ridder & Biondi 2015; de Ridder &
Curtis 2016). All these assumptions about wavefield stabilize the
solutions, but also limit the applications or accuracies. For exam-
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ple, complex wavefield with strong multipathing are often difficult
to analyse, and long duration of data or large number of events are
often required to suppress noise and artefacts.

3 SURFACE WAVEFIELD
RECONSTRUCTION

In this section, we will present a new wavefield reconstruction
method for surface wave tomography, using the theory of CS as
reviewed briefly in Introduction. Because the surface wave tomog-
raphy referred here is to invert for phase velocity maps for single
frequencies, we decide to formulate the wavefield reconstruction
problem in the frequency domain. As in any of the wavefield-based
methods, there are assumptions involved in reconstruction. Here,
we assume that surface wavefield for individual frequencies can be
sparsely represented by a plane-wave basis, or equivalently, sparse
in the wavenumber & domain. Although there is no mathematical
proof supporting this assumption, we will demonstrate its effective-
ness in Section 4 with synthetic examples. However, this intuition
about sparsity is not new in surface wave seismology. Teleseismic
surface waves distorted by multipathing and scattering are some-
times approximated by the sum of two plane waves with independent
amplitudes, phases and propagation directions (Forsyth ez al. 1998;
Yang & Forsyth 2006). This would correspond to a sparse solution
with only two non-zero plane-wave coefficients in our approach.

Taking Rayleigh waves as an example. We first Fourier transform
vertical-component seismic waveforms u(X;, ) to the frequency
domain as complex-valued U(X;, w), where X; are station locations.
Then for each frequency w, we conduct an optimization

argmin {||ww¢m —wU G, o)+ X||m||1} (5)

where m is a vector of plane-wave coefficients, ¥ and @ are sam-
pling function and plane-wave basis written in matrix form, respec-
tively (Candes et al. 2006). w is a weighting term applied to both
data and prediction. Because the plane-wave basis is non-local and
periodic in space, we set w to be a spatial Hann taper function to
avoid edge effects. This leads to worse wavefield reconstruction near
edges of the data domain with lower weighting. In the future, using
spatially localized basis/frame (e.g. wavelet and curvelet) may help
improve reconstruction near edges. We solve this convex £; opti-
mization problem (eq. 5) using the TFOCS package to achieve a
sparse k-domain representation of U(X;, w). The optimal damping
parameter A can be chosen by the L-curve approach for the best com-
promise between model complexity (more accurately, sparsity) and
data misfit (Hansen & O’Leary 1993). Finally, we reconstruct the
complete wavefield (e.g. on a denser, regular grid) U (¥, o) = @i,
where /7 is the estimated plane-wave coefficients.

As a simple synthetic example to demonstrate the procedures,
Fig. 1(a) shows a smooth non-dispersive checkerboard phase veloc-
ity model, and we simulated the surface wavefield from an earth-
quake located to the southwest of the data domain by a 2-D FD
method (Fig. 1a). Grid size of 12 km and time step of 1 s are used to
ensure numerical stability for periods down to 10 s. The data domain
has a dimension of 1536 km x 1536 km, similar to the USArray
footprint, and the input velocity model has an average velocity of
4 km s~! and &2 per cent maximum perturbations. Fig. 1(b) shows
a snapshot of the wavefield at time = 450s, with the amplitude
near the wave front slightly modulated by the velocity anomalies.
We then transform the seismogram U(X, ¢) at any point X to the
frequency domain as U(X, w), which in the following we simply
write as U(X) for any fixed frequency. The real part of synthetic
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Figure 1. Model setup for synthetic tests. (a) The finite-difference simulation domain and the checkerboard velocity model used in the synthetic tests; scale
and amplitude of velocity anomalies vary in different tests. The red star shows location of the source, and only synthetics within the dashed box, the data
domain, are used in wavefield reconstruction. The grid spacing is uniformly 24 km. (b) A snapshot of the simulated wavefield within the data domain (dashed
box) at time = 450 s. (c) The real part of complex-valued wavefield for the period of 40 s within the data domain (dashed box). (d) The sampled wavefield
obtained by randomly removing 75 per cent of the gridpoints in (¢) and adding independent white noise. Therefore, the grids are now irregular, and the average

station spacing is 48 km.

U(X) within the data domain for the period of 40 s is displayed in
Fig. 1(c), on a 64 x 64 grid. The grid size here is 24 km, decimated
from the 12 km FD simulation grid, but still approximately 1/7 of
the average wavelength for the 40-s-period Rayleigh waves, There-
fore, the wavefield on this dense regular grid can be considered
as the true wavefield. Fig. 1(d) is the ‘observed/sampled’ wave-
field U(X;) derived from the true wavefield by randomly removing
75 per cent of the gridpoints in Fig. 1(c) and adding independent
white noise with an rms amplitude of 5 per cent of the average sig-
nal rms amplitude. Note that in this case the sample points are not
truly random but have to be on the grid. However, the station spac-
ing and distribution are random enough to demonstrate the effects
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of random sampling. Our wavefield reconstruction method aims to
best recover the missing 75 per cent part of the wavefield based
on the observed 25 per cent part. The average station spacing is
48 km, still less than half of the average wavelength (A = 160 km),
thus satisfying the criteria of the Shannon—Nyquist sampling
theorem.

Appropriate damping parameter X in eq. (5) is important to avoid
overdamping or overfitting. For the synthetic examples in this paper,
it is relatively straightforward to choose A by cross-validation. For
real data, we may continue to use cross-validation or switch to the
L-curve method instead. Fig. 2(a) shows both the classical L-curve
(i.e. misfit of the observed 25 per cent versus model norm) and the
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Figure 2. (a) Choice of damping parameter. The blue line is the L-curve of the L2 misfit of sampled wavefield (Fig. 1¢) versus the L1 model norm in eq. (5).
The clear corner in the L-curve, which is often considered as the optimal damping, coincides almost exactly with the minimum of the predictive misfit (for
the missing 75 per cent data, red curve), implying consistent damping parameters favoured by the cross-validation and L-curve methods. (b) The distribution
of plane-wave coefficients in the wavenumber domain. Most large coefficients concentrate around the average wavenumber of 0.039 km~' for the 40-s period

surface waves with an average of 4 km s~! phase speed. Only 3 per cent of all the coefficients have absolute values larger than 0.01, which is 5 per cent of the
largest coefficient.
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Figure 3. (a) The real part of the wavefield reconstructed from the sampled wavefield in Fig. 1(d), and (b) the residuals compared to the true wavefield (Fig. 1c).
The residual is small in most areas except near the edges, due to the spatial weighting in eq. (5). Histograms in (c) show that residuals are less than 5 per cent
of the average amplitude in the central square, while much larger outside due to the edge effect. In this paper, we only invert the reconstructed wavefield within
the central square marked by the solid lines for velocity models.

cross-validation curve (i.e. predictive misfit of the missing 75 per of the reconstructed wavefield (black square in Fig. 3) to avoid the
cent versus model norm). The clear corner in the classical L-curve edge effects. Using a spatially localized basis/frame (e.g. wavelet
coincides almost exactly with the minimum of the predictive misfit, and curvelet) may help reduce or eliminate the edge effects in the
implying consistent damping parameters favoured by both L-curve future.

and cross-validation methods. Using the optimal damping param- Once the wavefield U(%, w) is reconstructed for all interested
eter, we invert for the plane-wave coefficients and reconstruct the frequencies, then U can be inverse Fourier transformed to the time
wavefield on the same 64 x 64 grid as input (Fig. 3a). Fig. 2(b) shows domain, and we can apply the methods reviewed in Section 2 directly
the distribution of the resulted sparse plane-wave coefficients in the (Liang & Langston 2009; Lin & Ritzwoller 2011; de Ridder &
wavenumber domain. Fig. 3(b) displays the difference between the Biondi 2015). However, due to the dispersive nature of surface
reconstructed wavefield and the true wavefield (Fig. 1¢), and only waves, we prefer to operate directly on U(X, w) in the frequency
near the edges of the data domain we observe substantial devia- domain, using the frequency-domain equivalents of the wavefield-
tions (Fig. 3¢). The poor reconstruction near edges is related to the based methods. Specifically in the following, we will apply the
spatial weighting term, w in eq. (5), as discussed above. In this Helmbholtz tomography (Lin & Ritzwoller 2011) and the WG (de
paper, tomography techniques are only applied to the centre quarter Ridder & Biondi 2015).
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Figure 4. Velocity models estimated by applying Helmholtz tomography and wavefield gradiometry (WG) to the observed (Fig. 1d) and CS-reconstructed

wavefield (Fig. 3a). The area displayed here is the centre square in Fig. 3.

To apply frequency-domain Helmholtz tomography, we need to
derive amplitude and traveltime fields from U (¥, w). While the am-
plitude field 4(F) = U, w)| is straightforward to calculate, we
need to unwrap the phase of U(¥, w), between —m and 7, to a
continuous field of traveltime t(F) + 7, where 7, is an arbitrary
constant. Here, we use the classical Goldstein algorithm developed
for Interferometric Synthetic Aperture Radar (InSAR) phase un-
wrapping (Goldstein et al. 1988). Phase reconstruction on grids
with near-zero amplitudes may be unstable, so we apply a mask
to the areas with amplitude smaller than 5 per cent of the average
amplitude. This is similar to the common practices in InSAR data
processing to mask areas of substantial decorrelation (e.g. vegeta-
tion and damage). In the last decade, more robust and efficient 2-D
or 3-D phase unwrapping methods have been developed in the
InSAR community (Chen & Zebker 2002; Bioucas-Dias &
Valadao 2007; Hooper & Zebker 2007), which will likely improve
our results, especially if the phase field is complicated. However, for
most of the current synthetic tests, we find the Goldstein algorithm
to be adequate. Figs 4(a) and (b) show the models recovered from
traditional Helmholtz tomography and CS—Helmholtz tomography
(i.e. frequency-domain Helmholtz tomography applied to the CS-
reconstructed wavefield), respectively. Both models are very close
to the true model, with normalized coefficients of 92 per cent and 95
per cent when cross-correlated with the true velocity model, respec-
tively. Note that traditional Helmholtz tomography use a narrow-
band filter in the time domain, while in CS—Helmholtz tomography,
we average the results from individual frequency slices within the
same band for the final image.

It proves inaccurate to apply WG directly to the irregularly spaced
observations with noise (Fig. 4c), because irregular FD must be used
to calculate the second-order spatial derivatives in eq. (3) and noise
can be enhanced substantially. This difficulty of WG in evaluation
of the spatial derivatives was also discussed by de Ridder & Curtis
(2016) as a major challenge to the WG method. Fig. 4(c) shows the
model estimated by WG using an irregular FD approximation based
on Fornberg (1988), with additional smoothing afterward. Although
the general pattern of fast and slow anomalies is consistent with the
true model, the details are quite different, with a normalized cross-
correlation coefficient of 55 per cent. However, if we apply WG to
the CS-reconstructed wavefield on a dense regular grid, we recover
a much better model, as shown in Fig. 4(d), with a normalized
cross-correlation coefficient of 95 per cent. We attribute the great
improvement to both the dense regular grid that enables better FD
approximation, and the removal of the added incoherent noise that
cannot be represented sparsely by plane waves. It is possible that
another irregular FD approximation or calibration may substantially

improve (Fig. 4c). But essentially, we are proposing a new method
to compute the FDs in WG by wavefield reconstruction followed by
a regular-grid FD.

4 MORE SYNTHETIC EXAMPLES

In this section, we will demonstrate the CS of seismic wavefield
using more synthetic examples. Specifically, we want to explore
the performance of CS with sub-Nyquist sampling and complex
wavefield.

4.1 Wavefield CS with sub-Nyquist sampling

One important advantage of wavefield CS is to reconstruct wavefield
with fewer samples than required by classic sampling theory. In the
example above, the average station spacing is still shorter than half
of the average wavelength, therefore can be considered relatively
dense. Here based on the same simulation setup as in Section 3
(except within an enhanced maximum velocity perturbations of£5
per cent), we reduce the target period from 40 to 30 s to generate
a wavefield of shorter average wavelength, ~120 km (Fig. 5a).
Then we retain only 12.5 per cent of the gridpoints randomly as
the ‘observed’ wavefield, half of the samples in the test above, as
shown in Fig. 5(b). The average station spacing is ~68 km, slightly
larger than the 60 km spacing required by the Nyquist—Shannon
sampling theorem. In fact, it becomes difficult to visually identify
the propagation direction in Fig. 5(b), due to the aliasing effect.
After choosing an appropriate damping parameter based on the L-
curve approach (Fig. 5¢), we reconstruct the wavefield as shown in
Fig. 5(d), which is visually very similar to the true wavefield (Fig. 5a)
and only deviates near the edges (Fig. 5e). Applying WG to the CS-
reconstructed wavefield recovers the velocity model well in the
centre quarter (Fig. 5f; normalized cross-correlation coefficient 97
per cent), suggesting a highly accurate reconstruction even though
the sampled wavefield is aliased.

To further demonstrate wavefield CS in scenarios of sub-Nyquist
sampling, we reduce the number of observational grids by another
half, retaining only 6.25 per cent of the grids in Fig. 5(a). Thus,
the sampled wavefield, as shown in Fig. 6(a), has an average sta-
tion spacing of 96 km, substantially larger than the 60 km spacing
required by the Nyquist—Shannon sampling theorem. The aliasing
effect is so severe that it is impossible to visually identify wave
propagation direction in Fig. 6(a). However, we are still able to
reconstruct a full wavefield (Fig. 6b) that visually resembles the
true wavefield (Fig. 5a), except near edges (Fig. 6¢). This level of
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Figure 5. Wavefield CS for 30 s period with 12.5 per cent of the gridpoints. (a) and (b) show the simulated and sampled wavefields, respectively. The average
station spacing is ~68 km, slightly larger than the 60 km spacing required by the Nyquist-Shannon theorem for the average wavelength of 120 km. (c)
L-curve of observed misfit versus model norm, and cross-validation (CV) curve of predictive misfit versus model norm. The observed and predictive misfits are
normalized by their sample sizes (12.5 per cent versus 87.5 per cent). We choose the damping parameter at the L-curve corner, which also matches well with
the minimum of the predictive misfit. (d) and (e) display the reconstructed wavefield and its deviation from the true wavefield. (f) Velocity model estimated by
applying wavefield gradiometry to the CS-reconstructed wavefield within the centre square of (e).

sub-Nyquist reconstructing accuracy is somewhat expected from the
CS approach, but also suggests that our choice of plane-wave basis
for surface wavefield of individual frequencies is at least appro-
priate (not necessarily optimal). The velocity model from applying
WG to the CS-reconstructed wavefield reproduces well the over-
all patterns, but not the details or amplitudes (Fig. 6d; normalized
cross-correlation coefficient 87 per cent). This is probably because
some details of the wavefield are still missing after CS.

4.2 CS of complex wavefield

Here, we explore how complex wavefield may affect the reconstruc-
tion and tomography. One common cause of complex wavefield is
multipathing over strong velocity heterogeneities. Here, we simulate
the multipathing effect with the same setup as in Fig. 1(a), but with
+15 per cent maximum velocity perturbations, which are stronger
than perturbations in most long-period tomographic models but
not uncommon in some recent short-period surface wave models
(Ekstrom 2014, 2017). Fig. 7(a) is a snapshot of the simulated
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wavefield, with clear multipathing as well as focusing/defocusing
effects. In this case, traditional Helmholtz tomography in the time
domain would face difficulties when measuring traveltimes by cross-
correlating or phase tracking, because interferences of the multiple
arrivals cause the waveforms to change rapidly. However, in CS—
Helmholtz tomography, because ‘traveltime’ is derived by unwrap-
ping phase in frequency domain, all arrivals’ contribution to the
wavefield is taken into account appropriately.

After transferring the synthetics from the time to the frequency
domains and retain 25 per cent of the gridpoints randomly (48 km
average spacing), we get the sampled wavefield for the period of 30 s
(Fig. 7b). We then reconstruct the full wavefield from the sampled
wavefield, as shown in Fig. 7(c), which again only deviates from
the true wavefield near the edges (Fig. 7d). Due to the multipathing
effect, the wavefield has more complicated patterns than wavefields
from models with weaker anomalies (Fig. 7c versus Fig. 1c). In
particular, destructive interferences cause near-zero amplitude and
unstable phase unwrapping in some areas. In CS—Helmholtz to-
mography, we mask these unstable areas before applying Goldstein
phase unwrapping. Therefore, the CS—Helmbholtz velocity model is
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Figure 6. Similar to Fig. 5, but with only 6.25 per cent of the gridpoints used in reconstruction. The average station spacing is 96 km, significantly larger than
required by the Nyquist-Shannon sampling theorem. (b) shows the wavefield reconstructed from the sampled wavefield in (a), and the difference from the true
wavefield (Fig. 5a) is only substantial near edges (c). (d) displays the CS-WG velocity model estimated from the reconstructed wavefield.

incomplete, even though in most areas the velocity perturbations are
well recovered (Fig. 7e; normalized cross-correlation coefficient 86
per cent). CS—WG has no difficulty in dealing with wave interfer-
ences and recovers the complete velocity model well, as shown in
Fig. 7(f) with a normalized cross-correlation coefficient of 94 per
cent.

Another cause of wavefield complexity is interference of waves
from multiple simultaneous sources, such as a large earthquake
with extended rupture and duration. An extreme example of this
kind of complexity is the microseism noise wavefield, which is ex-
cited by distributed continuous sources in the ocean or near the
coast. For this kind of complexity, traditional Helmholtz tomogra-
phy has trouble in measuring amplitudes and traveltimes. de Ridder
& Biondi (2015) applied WG directly to the ambient noise field on
a dense array and retrieved high-resolution velocity models without

cross-correlating long durations of noise records. In Section 3, we
demonstrated that CS helps improve WG resolution and robustness
by first reconstructing the full wavefield. Here, we test if CS still
recovers wavefield accurately with interfering waves.

Fig. 8(a) shows a synthetic wavefield snapshot, due to five sources
of random amplitudes distributed to the southwest corner of the sim-
ulation domain. Here, the velocity perturbation is £5 per cent, the
same as in Section 4.1 and Fig. 5, so the complex wavefield patterns
are mostly due to the five interfering wave fronts. The real part of
the wavefield for a single period (30 s) is displayed in Fig. 8(b),
after removing 75 per cent of the grids. The average station spacing
is 48 km. Fig. 8(c) shows the CS-reconstructed wavefield, which
is only substantially different from the true wavefield near edges
(Fig. 8d). This suggests that, at least for a small number of simulta-
neous sources, CS is still able to recover the full wavefield accurately
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Figure 7. Synthetic test with complex wavefield due to strong multipathing. (a) This shows a snapshot of the broad-band wavefield traveling through
a checkerboard velocity model with £15 per cent maximum velocity perturbations. Inset shows the synthetic seismogram at the red triangle, with two
multipathing arrivals. The real part of the wavefield for the period of 30 s is displayed in (b), after 75 per cent of the grids being removed. The average station
spacing is 48 km. (¢) The CS-reconstructed wavefield, displaying complex patterns due to multipathing. (d) Difference of the reconstructed wavefield from the
true wavefield. The centre square marked by solid lines is where velocity model has been estimated using Helmholtz tomography (e) and wavefield gradiometry

(f). The blank areas in (e) are caused by masks to avoid unstable phase unwrapping for gridpoints with near-zero amplitudes.

under the sparsity assumption. Applying Helmholtz tomography
and WG to the reconstructed wavefield both produce good veloc-
ity models (Figs 8e and f; normalized cross-correlation coefficients
95 per cent and 97 per cent, respectively), which is somewhat sur-
prising considering that similar level of wavefield complexity in
Fig. 7 caused difficulties in phase unwrapping in certain areas. This
may be related to the fact that wave interference is more strongly
frequency dependent than multipathing within a narrow band.

4.3 CS to recover small-scale heterogeneities

In wavefield-based imaging/tomography, spatial resolution is con-
trolled by both seismic wavelength and station density. In this last
example, we aim to test how well CS can preserve information
within wavefield on small-scale heterogeneities, and whether better
resolution is possible over traditional methods. The example setup
is the same as in previous tests, but each high- or low-velocity block
in the input checkerboard model now has a spatial dimension of
128 km x 128 km, smaller than the 192 km x 192 km in previous

models. Our target period is 45 s and the average seismic wave-
length is 180 km. We then retain only 9 per cent of the gridpoints
to produce an average station spacing of 80 km (Fig. 9a), smaller
than half of the average wavelength but larger than half of the
block size. This means that our sampling is super-Nyquist for the
waves but the spatial pattern of velocity model is not well sampled
(Fig. 9¢). Therefore, if we apply traditional Helmholtz tomography
to the wavefield samples, the commonly used minimum-curvature
smoothing of traveltimes and amplitudes cannot preserve details of
the fields and will produce distorted velocity model with smeared
blocks and underestimated anomalies (Fig. 9d; normalized cross-
correlation coefficient 78 per cent). On the other hand, if we apply
Helmbholtz tomography and WG to the CS-reconstructed wavefield
(Fig. 9b), we recover well the spatial patterns of velocity model, even
though the amplitude of anomaly is still underestimated (Figs 9¢ and
f; normalized cross-correlation coefficients 90 per cent). This sug-
gests that the assumptions behind wavefield CS actually help better
preserve details of the wavefield about small-scale heterogeneities,
hence improve resolution of tomography.
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Figure 8. Similar to Fig. 7, but for a synthetic test with 5 per cent velocity perturbations, yet a complex wavefield caused by interferences of waves from five

simultaneous sources in the southwest corner of the simulation domain.

5 DISCUSSION

The synthetic examples above show the advantages and disadvan-
tages of the Helmholtz tomography and WG. Operating on the
traveltime and amplitude fields in Helmholtz tomography makes it
more robust to random noise, and the minimum-curvature smooth-
ing works remarkably well when the target velocity model has only
weak gradients. In contrast, WG makes less assumptions so it ap-
plies well to much more complicated wavefield, either due to very
heterogeneous structures or complex sources. However, WG is very
sensitive to noise with its second-order spatial derivatives directly
on irregular samples.

Our CS method helps improve both methods. For Helmholtz to-
mography in complex wavefield, CS works in the frequency domain
and helps take into account wave interferences appropriately. We
measure the ‘traveltime’ field by unwrapping the phase of recon-
structed wavefield, which proves much more robust and accurate
than measurements in the time domain for a complex wavefield.
Future replacement of the Goldstein algorithm with more advanced
phase unwrapping algorithms, especially the ones that combine
multiple frequencies, should further improve the accuracy and ro-
bustness. For WG, CS helps remove significant numerical errors due
to irregular FDs and random noise. In some sense, CS WG makes
relatively few assumptions and applies to the most general cases of
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surface wave tomography, even for a very complex wavefield. More
advanced WG that considers anisotropy and attenuation should also
be able to benefit from the CS wavefield reconstruction.

One key requirement of CS is incoherence between the sampling
function and the representing basis/frame. In this study, incoherence
is guaranteed by the random spatial sampling of the wavefields. If
we choose a regular sampling with sub-Nyquist station spacing,
it is impossible to recover wavefield accurately according to the
Nyquist—Shannon sampling theorem. On the other hand, not all
different kinds of random sampling are equally effective. In the tests
discussed above, the random sampling is relatively uniform without
obvious clustering of stations or large gaps in data. For a given array
geometry [e.g. the Southern California Seismic Network (SCSN)
or the USArray], synthetic tests will be necessary to investigate its
resolving power at different frequencies. For future seismic arrays,
optimal design of the sampling regime for a particular problem may
help reduce acquisition cost and improve accuracy and is worthy
of further investigation (Allegar et al. 2017; Baraniuk & Steeghs
2017).

Another benefit of the CS approach is that it can efficiently
reduce incoherent noise, which is not sparse under certain wave
bases/frames (e.g. plane waves and curvelets). This feature is
not demonstrated in depth in this paper, but CS has been a
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Figure 9. Synthetic test on wavefield CS’s sensitivity to small-scale heterogeneities. (a) Sampled wavefield at 45 s period with an average station spacing of
80 km, and (b) the reconstructed wavefield. (c) Input velocity model within the centre square in (a) and (b), with stations shown in white triangles. The block
size of velocity anomalies is 128 km x 128 km. (d)—(f) display the recovered velocity models from traditional Helmholtz tomography applied to the sampled
wavefield, Helmholtz tomography and WG applied to the CS-reconstructed wavefield, respectively.

popular denoising approach in exploration seismology
(Hennenfent & Herrmann 2006; Herrmann et al. 2007). Noise
and gaps in data will introduce uncertainties to the reconstructed
wavefield, which are difficult to quantify with our current convex
optimization methodology (i.e. TFOCS). A new class of method
called Bayesian CS (Ji et al. 2008), although computationally more
expensive, can provide posterior probability distribution function
that can be used to identify areas with large uncertainties. Therefore
in the future, we may be able to mask areas with large uncertainties
to avoid overinterpreting parts of the reconstructed wavefield that
are corrupted by noise or not well sampled.

6 CONCLUSIONS

In this paper, we have presented a new wavefield reconstruction
method based on the theory of compressing sensing. We make a fun-
damental assumption that 2-D surface wavefield is optimally sparse
under the plane-wave representation, that is, sparse in the wavenum-
ber domain. We choose a combination of the plane-wave basis and
sparsity-promoting £, optimization in reconstructing the complete
wavefield from irregularly sampled and noisy data. We apply the
method to single-frequency surface waves sampled by 2-D dense
arrays. Helmholtz tomography or WG applied to the reconstructed
wavefield delivers improved velocity models compared with the
ones from the same methods applied to the original wavefield. The
improvements are especially obvious when sampling is sparser than

required by the Nyquist—-Shannon sampling theorem, or when wave-
field is complicated by multipathing/scattering/distributed sources.

The CS idea is not limited to 2-D surface wave tomography. In-
stead, it is a more general scheme about how to best reconstruct
the seismic wavefield with dense arrays. We can potentially apply
backprojection, earthquake detection, reverse time migration, or
any other wavefield-based method to the reconstructed wavefield.
In many of these other cases, we will be working on body waves,
which are solutions to 3-D wave equation but recorded on 2-D free
surface. Therefore, we may need to operate in the time domain
and extend to 3-D basis/frame, or use ensemble Kalman filter to
connect 2-D snapshots of the wavefield (Hoshiba & Aoki 2015).
Similar challenges exist in InNSAR data processing, which has spa-
tially dense and uniform samples for a large area but irregular and
sparse samples in time. How to reconstruct the full spatiotemporal
deformation field (at different time scales) is a common challenge
for seismology and geodesy (Riel ez al. 2014).
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