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ABSTRACT: We describe a new analysis tool called Stratified
unbinned Weighted Histogram Analysis Method (Stratified-
UWHAM), which can be used to compute free energies and
expectations from a multicanonical ensemble when a subset of the
parallel simulations is far from being equilibrated because of barriers
between free energy basins which are only rarely (or never) crossed at
some states. The Stratified-UWHAM equations can be obtained in the
form of UWHAM equations but with an expanded set of states. We
also provide a stochastic solver, Stratified RE-SWHAM, for Stratified-
UWHAM to remove its computational bottleneck. Stratified-
UWHAM and Stratified RE-SWHAM are applied to study three test topics: the free energy landscape of alanine dipeptide,
the binding affinity of a host−guest binding complex, and path sampling for a two-dimensional double well potential. The
examples show that when some of the parallel simulations are only locally equilibrated, the estimates of free energies and
equilibrium distributions provided by the conventional UWHAM (or MBAR) solutions exhibit considerable biases, but the
estimates provided by Stratified-UWHAM and Stratified RE-SWHAM agree with the benchmark very well. Lastly, we discuss
features of the Stratified-UWHAM approach which is based on coarse-graining in relation to two other maximum likelihood-
based methods which were proposed recently, that also coarse-grain the multicanonical data.

1. INTRODUCTION

Atomistic molecular dynamics (MD) simulations are widely
used to study biological systems today to understand how
structural ensembles are connected with biological functions.
However, straightforward MD simulations cannot be used to
study many biological problems since the time scales of
transitions between functionally important states are much
longer than the available simulation length determined by
today’s computational resources.1−4 The desire to simulate
structurally important transitions which occur on longer time
scales has driven the development of simulation hardware and
software.5−7 For example, the Anton supercomputer developed
by D. E. Shaw research is able to perform millisecond-scale
simulations for proteins in explicit solvent.7 The World
Community Grid (WCG) projects of IBM (https://www.
worldcommunitygrid.org) are able to combine the computa-
tional resources (∼105−106 cpus) donated by volunteers all
over the world to run molecular simulations whose goals are to
develop therapies to fight cancer and AIDS. The same desire
also encourages the development of enhanced sampling
methods such as umbrella sampling,8−10 replica exchange
(RE) techniques,11−16 and others.17−25 Compared with
straightforward MD simulations, those techniques show
significantly better sampling efficiency on specific problems.

The Weighted Histogram Analysis Method (WHAM) is a
powerful algorithm to compute free energies and expectations
from multicanonical ensemble data.26−30 Along with the
popularity of enhanced sampling methods running parallel
simulations at multiple thermodynamic and/or Hamiltonian
states, WHAM, which is a standard analysis tool associated with
those methods, has been studied by many researchers.31−42 The
most important improvement of WHAM is that a binless
extension called the multistate Bennett acceptance ratio
(MBAR) or unbinned WHAM (UWHAM) was intro-
duced.31,34,36 To avoid the requirements of very large memory
and computational power to solve the UWHAM equations
when the input data ensemble is large, we developed stochastic
solvers for the UWHAM equations based on resampling
techniques.43,44

When WHAM or UWHAM is applied, it is assumed that the
observations generated from each thermodynamic and/or
Hamiltonian state are drawn from a distribution Pα that is
close to equilibrium, where Pα is determined by the
Hamiltonian and/or thermostat temperature used in the
simulations. However, this assumption is not fulfilled if the
simulations at some thermodynamic and/or Hamiltonian states
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are far away from convergence. For example, on massive but
minimally communicating computational grids such as WCG, it
is convenient to run multiple independent short MD
simulations starting from different initial structures (which are
not chosen from global equilibrium) at a single or multiple
thermodynamic and/or Hamiltonian states. Here, our study
focuses on how to obtain the optimal estimates of density of
states, equilibrium distributions, and free energy differences for
multistate simulations if the simulations at some thermody-
namic and/or Hamiltonian state are far from convergence due
to barrier(s) that are infrequently (or never) crossed at these
states but frequently crossed at others. Simply combining all the
observations of unconverged short simulations at a thermody-
namic and/or Hamiltonian state as the input of that state for
UWHAM introduces statistical biases even when the
simulations at other thermodynamic and/or Hamiltonian states
have already converged. To solve this problem, we introduce a
powerful extension of UWHAM called Stratified-UWHAM. We
also introduce the corresponding stochastic solver for the
Stratified-UWHAM algorithm for cases where the input data
ensemble is very large.
The remaining part of the paper proceeds as follows: First we

review UWHAM (also called MBAR). Then we introduce
Stratified-UWHAM and its stochastic solver Stratified RE-
SWHAM. In the Results and Discussion section, we applied
Stratified-UWHAM and Stratified RE-SWHAM to analyze the
simulation data of three test systems  alanine dipeptide, a
host−guest binding complex, and a Brownian particle in a two-
dimensional double well potential. For the sake of simplicity,
for the remainder of this paper, we refer to each of the
thermodynamic and/or Hamiltonian states characterized by a
specific combination of a Hamiltonian function and thermody-
namic parameters as a “λ-state”. We refer to each conforma-
tional structure of a biological or physical system as a
“microstate” and to each free energy basin which is separated
from other basins by free energy barriers as a “macrostate”. A
macrostate cluster means a collection of one or more free
energy basins that can be transversed in the simulations.
The idea underlying Stratified-UWHAM is to coarse-grain

the configurational space into macrostate clusters and divide λ-
states of parallel simulations into two groups based on how
well-connected the coarse-grained network is at each λ-state.
The first group includes the λ-states at which the simulations
are “approximately” equilibrated among macrostate clusters,
namely, the fully connected λ-states. Notice that if a simulation
at any λ-state is fully converged or fully globally equilibrated,
running simulations at other λ-states additionally and applying
UWHAM are redundant because the true density of states can
be obtained from the fully converged simulation at that λ-state.
In this study, the λ-states in the first group are those λ-states at
which multiple transitions between macrostate clusters have
been observed in simulations so that the coarse-grained state
space is fully connected. The second group includes the λ-states
at which the simulations are only locally equilibrated within
each macrostate cluster, namely, the disconnected λ-states.
They are also referred to as “locally equilibrated λ-states”.

2. METHODS

2.1. Unbinned Weighted Histogram Analysis Method
(UWHAM). To illustrate basic ideas, we first review UWHAM36

(also called MBAR34). Suppose that Nα observations {Xi
(α): i =

1,...,Nα} are independently drawn from the αth distribution Pα
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where Zα is the partition function of the αth λ-state, xαi is the
coordinates of the microstate Xi

(α), and qα(xαi) is the
unnormalized probability of observing the microstate Xi

(α) at
the αth λ-state. For example, qα(xγi) equals exp{−βαEα(xγi)} in
the canonical ensemble, where xγi is the coordinates of the ith
observation observed at the γth λ-state Xi
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potential energy of the microstate Xi
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is the inverse temperature of the αth λ-state.
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where Ω(uαi) is the density of states of the reduced (energy)
coordinate uαi of the microstate Xi

(α). The maximum likelihood
estimates (MLEs) of the density of states Ω̂(uγi) and the
corresponding MLEs Ẑα given the data satisfy the coupled
equations
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The UWHAM estimate of the probability of observing uγi at the
αth λ-state is

̂ = ̂ Ω̂α γ α γ α γ
−p u Z u q u( ) ( ) ( )i i i
1

(4)

2.2. Stratified-UWHAM. Our new method, called
Stratified-UWHAM, is based on the following conditions: the
λ-states are divided into two groups, (S1, S2), such that
(i) simulations are approximately equilibrated among the

macrostates for each of the λ-states in S1, or more generally, the
coarse-grained set of macrostates forms a connected network
for each λ-state and together they form a globally connected
network;
(ii) simulations are locally equilibrated within each macro-

state cluster (R1,...,RK) for each of the λ-states in S2 but may be
far from equilibrated among the macrostate clusters, or more
generally, for each λ-state within S2 the coarse-grained set of
macrostates forms a disconnected network.
These conditions can be captured by a stratified model,

which assumes that the set of observations {Xi
(α): i = 1,..., Nα} is

independently drawn from Pα for each α ∈ S1, and the set of
observations {Xi

(α): Xi
(α) ∈ Rk, i = 1,...,Nα} is independently

drawn from Pα restricted to macrostate clusters Rk for each α ∈
S2, i.e.,
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where qαk(x) = qα(x)δ{x ∈ Rk}, and δ{x ∈ A} denotes the
indicator function for a macrostate cluster A, and Zαk and Zα are
the partition functions. In other words, the set of observations
{Xi

(α): i = 1,...,Nα} is stratified into macrostate clusters (R1,...,RK)
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for each λ-state α in S2 such that simulations are only locally
equilibrated but are not stratified for each λ-state α in S1 where
transitions between macrostates are enhanced. The likelihood
of the simulated data from model 5 is
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The method of nonparametric maximum likelihood31 can be
used for estimating the density of states and subsequently free
energies and expectations.
The estimating equations from the maximization of eq 6 can

be obtained in the form of UWHAM equations eq 3 but with
an expanded set of λ-states. The idea is to split the K
disconnected macrostate clusters of each λ-state in the S2 group
into K λ-states. Suppose there is a new λ-state which is made of
the kth macrostate cluster of the γth λ-state. The Hamiltonian
function of this new λ-state is set to be the same as the
Hamiltonian function of the γth λ-state if the observation
belongs to the kth macrostate cluster and positive infinity if the
observation does not. Then all the observations in the kth
macrostate cluster at the γth λ-state are treated as the
observations observed at this new λ-state. This change of the
Hamiltonian function and regrouping of the observations are
equivalent to putting an infinite barrier covering the entire
outside of the kth macrostate cluster in the conformational
space. Suppose there are M1 λ-states in the S1 group and M2 λ-
states in the S2 group. After the expansion of λ-states, the total
number of λ-states increases from M = M1 + M2 to M = M1 +
∑α=1

M2 Kα, where Kα is the total number of macrostate clusters at
the αth λ-state in the S2 group. Then the MLEs of the density
of states and free energy differences of eq 6 can be obtained by
solving the UWHAM equations with an expanded set of λ-
states
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where the unnormalized probability of an observation uγi at a
new λ-state is
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for canonical ensembles. The population ratio between the mth
and nth disconnected macrostate clusters of a locally
equilibrated αth λ-state is estimated based on their free energy
difference
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2.3. Stratified Stochastic WHAM. There is a computa-
tional bottleneck in scaling up UWHAM. At minimum,

numerical solution of the UWHAM equations eq 3 requires
evaluating M unnormalized density functions q1(Xi), ..., qM(Xi)
at each observation Xi for i = 1,...,N. The total number of
function evaluations is of order n ̅M

2, where n ̅ = N/M is the
average sample size per distribution. These unnormalized
density values need to be either computed during every
iteration of the numerical solution or precomputed and stored
in memory. Such a high computational cost presents a serious
limitation on the use of UWHAM for large-scale simulations
(for example, M = 240 and N = 3.5 × 107 in our recent
work43,44). Although Stratified-UWHAM can be applied by
directly using the UWHAM software package developed before,
it can require much more memory and computational time to
converge because the total number of λ-states can increase
substantially.
To remove the computational bottleneck, we recently

developed the RE-SWHAM algorithm which solves the
UWHAM equations stochastically (see ref 43 for details). A
straightforward way to solve the Stratified-UWHAM equations
stochastically is by performing RE-SWHAM analyses as
described in ref 43 for the corresponding UWHAM equations
with an expanded set of λ-states. Note that the direct outputs of
RE-SWHAM are the estimates of conformational equilibrium
distributions at each λ-state. The estimates of free energy
differences (and the population ratios) between macrostate
clusters of a locally equilibrated λ-state can then be calculated
using thermodynamic cycles similarly as shown in Figure 2 and
discussed in detail in Section 3.1, while applying the “free
energy perturbation formula” (see eq 20 in ref 43).
We describe a different algorithm called Stratified RE-

SWHAM to solve the Stratified-UWHAM equations stochas-
tically by improving the above straightforward application of
RE-SWHAM. In the original implementation of RE-SWHAM,
every cycle consists of a move process and an exchange process,
the same as replica exchange simulations. The move process for
the next observation is chosen from the database of
observations at each λ-state according to the probability 1/
Nα, where Nα is the number of observations generated at that λ-
state. This move process in RE-SWHAM is analogous to the
move process of an explicit RE simulation when the MD
simulation period per cycle is so long that the initial and final
configurations of the MD simulation period are largely
uncorrelated. However, when the simulations at some λ-states
are only locally equilibrated within macrostate clusters and the
coarse-graining results in a disconnected network of macrostate
clusters, the move process in RE-SWHAM at these λ-states
needs to be adjusted accordingly as follows. In the stratified RE-
SWHAM analysis, the next observation is chosen from the data
elements in the same connected macrostate cluster (instead of
all the macrostates) with equal probability for each of the λ-
states in the stratified S2 group.
The procedure of running Stratified RE-SWHAM to analyze

simulation data is as follows:
1. A database of observations is constructed for each λ-state

using all the data elements observed at that λ-state. Each data
element is tagged by the macrostate which it belongs to.
2. Then Stratified RE-SWHAM is run in cycles like replica

exchange simulations:

• Move: For each λ-state, one data element is selected
from its database to associate with the replica at that λ-
state. At the fully connected λ-states, one of the data
elements is chosen with equal probability; at the
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disconnected λ-states, one of the data elements which are
in the same connected macrostate cluster as the data
element previously associated with the replica at that λ-
state is chosen with equal probability.

• Exchange: Replica exchange attempts are examined
according to the multicanonical exchange criterion. If
an exchange attempt is accepted, the replicas are
swapped, and the data elements associated with the
replicas are also swapped to the database of the other λ-
state.

• At the end of the cycle, the data element associated with
the replica at each λ-state is recorded as the output of
that λ-state.

3. The output of each λ-state is the estimate of the
equilibrium distribution of that λ-state. Further statistical
analyses can be applied to the data ensembles generated by
Stratified RE-SWHAM at those interested λ-states. Figure 1
illustrates the procedure of stratified RE-SWHAM.
Compared with RE-SWHAM with an expanded set of λ-

states, Stratified RE-SWHAM does not split the λ-states in the
S2 group into multiple new λ-states. In the Appendix, we show

that, without the splitting of locally equilibrated λ-states, the
output of Stratified RE-SWHAM at a locally equilibrated λ-state
is the estimate of the equilibrium distribution of that λ-state. In
particular, the population ratios can be estimated directly as
those in the estimate of the equilibrium distribution of that λ-
state from the output of Stratified RE-SWHAM, without
explicitly invoking the thermodynamic cycle. Therefore, in
addition to all of the advantages of RE-SWHAM over
UWHAM discussed in ref 43, one more benefit of using
Stratified RE-SWHAM to solve the Stratified-UWHAM
equations is that the number of λ-states does not increase
compared with the original system.

3. RESULTS AND DISCUSSION

3.1. Example 1: Alanine Dipeptide. To illustrate the
problem, first we study the free energy landscape of alanine
dipeptide (AlaD) in vacuum and in implicit solvent. The
Ramachandran plots of an AlaD molecule are shown in Figure
2b. In the picture, the A macrostate cluster contains the β/C5,
C7eq, and αR free energy basins on the left side of the plot, and
the B macrostate cluster contains the αL and C7ax free energy

Figure 1. An illustration of the Stratified RE-SWHAM algorithm. This drawing shows two λ-states with “grey” or “cyan” color. Each λ-state has two
macrostates A and B. The gray λ-state is locally equilibrated, while the simulations at the cyan λ-state are approximately equilibrated among the
macrostates. The white gap between macrostates at the gray λ-state represents an uncrossable barrier for the “move” procedure during the Stratified
RE-SWHAM analysis. Beforehand, we construct each λ-state a database which contains all the observations obtained from that λ-state, and each
observation is tagged by the macrostate which it belongs to. As shown in the picture, the observations are separated into two subgroups A and B.
Then Stratified RE-SWHAM is run in cycles, which consists of a “move” procedure and an “exchange” procedure. In the move procedure, Stratified
RE-SWHAM chooses an observation to associate with the replica at each λ-state. At the cyan λ-state, the next observation is chosen from the whole
database of that λ-state with equal probability. However, at the gray λ-state, the next observation is chosen from the subgroup which the previous
observation belongs to with equal probability. In the exchange procedure, if the exchange attempt is accepted, in addition to the swap of the replicas,
the observations associated with the replicas are also swapped to the database of the other λ-state. At the end of each cycle, the observation
associated with each replica is recorded as the output of Stratified RE-SWHAM.
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basins on the right side of the plot. The simulation of AlaD in
vacuum is ∼6 time faster per step than the simulation of AlaD
in implicit solvent (OBC GB model) using GROMACS.45,46

However, the free energy barriers between the A and B
macrostate clusters are much higher for AlaD in vacuum than
AlaD in implicit solvent because the electrostatic interaction
screening of water is absent. Consequently, it turns out that it is
much more computationally time-consuming to obtain the
equilibrium distribution of AlaD in vacuum by brute force
simulations. The first passage times of AlaD in implicit solvent
are τA→B = (78 ± 3) ns and τB→A = (1.33 ± 0.04) ns, and the
first passage times of AlaD in vacuum are τA→B = (2.6 ± 0.2) μs
and τB→A = (55 ± 4) ns. In this study, the equilibrium
distribution of AlaD in implicit solvent was obtained by replica
exchange simulations first. Then two independent simulations
of AlaD in vacuum, one starting from the A macrostate cluster
and the other from B, were run. See the Supporting
Information for simulation details. For both simulations, no
transitions between the A and B macrostate clusters were
observed during the first 100 ns. The goal is to apply UWHAM
to estimate the equilibrium distributions of AlaD in vacuum
based on the data generated by two 100 ns long independent
simulations of AlaD in vacuum and the previously obtained
equilibrium distribution of AlaD in implicit solvent. The two λ-
states of this model problem will be referred to as the implicit
solvent (I) state and the vacuum (V) state.
Figure 2b shows a typical thermodynamic cycle. To calculate

the free energy difference between the A and B macrostate
clusters at the vacuum state ΔFA→B

V , the standard procedure is
to calculate the two vertical legs, ΔFAV→I and ΔFBI→V using BAR
(or UWHAM), and calculate the lower horizontal leg ΔFA→B

I

using the population percentages of the two macrostate clusters
at the implicit solvent state obtained by simulations.47 Then the

free energy difference presented by the upper horizontal leg can
be calculated by

Δ = Δ + Δ + Δ→
→

→
→F F F FA B

V
A
V I

A B
I

B
I V

(10)

Given ΔFA→B
V , the equilibrium distribution of AlaD in vacuum

and the free energy difference between an AlaD molecule in
vacuum and in implicit solvent can be estimated. The results
obtained by using the thermodynamic cycle (eq 10) serve as
the benchmark for this model problem.
On the other hand, conventional UWHAM is inappropriate

to be applied straightforwardly to estimate the density of states
and free energy difference between an AlaD molecule in
vacuum and in implicit solvent. As mentioned previously, the
two simulations of AlaD in vacuum are far from converged in
100 ns because there have been no transitions between the two
macrostate clusters (β/C5, C7eq, αR) and (αL, C7ax). Simply
combining the two unconverged data sets at the same λ-state
does not provide an ensemble drawn from the Boltzmann
distribution of that λ-state. Therefore, the corresponding
UWHAM results are not correct. The difference between the
conventional UWHAM estimate of ΔFA→B

V and the benchmark
can be seen in Table 1. However, Stratified-UWHAM can be
used to process the same data to obtain an accurate estimate of
the free energy surfaces. We split the vacuum state into two λ-
states and applied Stratified-UWHAM to obtain the density of
states and free energy differences between λ-states for this new
system with an expanded set of λ-states. The free energy
difference between the A and B macrostate clusters at the
vacuum state ΔFA→B

V was calculated according to eq 9. As can
be seen in Table 1, ΔFA→B

V estimated by Stratified-UWHAM
agrees very well with the benchmark, and the Stratified RE-
SWHAM estimate also matches the benchmark within
statistical error.
We continued running the two independent MD simulations

at the vacuum states to obtain better converged raw data until
the conventional UWHAM estimates also match the bench-
mark. The evolution of the conventional UWHAM and
Stratified-UWHAM estimates is shown in Figure 3. As can be
seen, Stratified-UWHAM converges to the benchmark within
statistical error from the first data point where the simulation
time is 100 ns. On the contrary, it takes several microseconds
simulation time of AlaD in vacuum for the conventional
UWHAM estimate to reach a similar precision level as the
Stratified-UWHAM estimate. Figure 3 also shows the estimates
of ΔFA→B

V based on the independent MD simulations A and B.
That ΔFA→B

V converges on the same time scale when MD
simulations A and B are UWHAMMed as when the simulations
are considered individually reflects the fact that the macrostate
clusters must be connected in simulations A and B before the
two simulations can be UWHAMMed without bias. See more
discussion about the convergence of Stratified-UWHAM
estimates in the Supporting Information.

3.2. Example 2: β-Cyclodextrin Heptanoate Complex.
As the second example, we study the binding affinity of a host−
guest system  the β-cyclodextrin heptanoate complex. The

Figure 2. Thermodynamic cycle of alanine dipeptide (AlaD) in
vacuum and implicit solvent. (a) It is much more computationally
time-consuming to obtain the equilibrium distribution of AlaD in
vacuum than AlaD in implicit solvent by brute force simulations. (b)
The upper picture is the Ramachandran plot of AlaD in vacuum, and
the lower picture is the Ramachandran plot of AlaD in implicit solvent.
The free energy difference of the A and B macrostate clusters in
vacuum equals to the sum of the other three legs.

Table 1. Free Energy Difference between the A and B Macrostate Clusters of AlaD in Vacuum ΔFA→B
V Estimated by the

Thermodynamic Cycle, the Conventional UWHAM, Stratified-UWHAM, and Stratified RE-SWHAMa

T cycle Stratified-UWHAM Stratified RE-SWHAM UWHAM

ΔFA→B
V (kcal/mol) 2.41 ± 0.04 2.42 ± 0.04 2.45 ± 0.05 0.1060 ± 0.0007

aStandard errors are estimated by the block bootstrap method.
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host, β-cyclodextrin (βCD), is a frustum-shaped molecule with
a hydrophobic interior core. The narrow opening end of βCD
is laced with 7 primary hydroxyls, and the wide opening end is
laced with 14 secondary hydroxyls. Because of its chemical
nature, βCD can bind with a number of ligands, therefore
serving as a classic “host” for the study of molecular recognition
phenomena. The guest molecule, heptanoate, consists of a
hydrophilic carboxylate group and hydrophobic alkyl groups. As
the hydrophobic alkyl groups of heptanoate are nested in the
cavity of βCD, the carboxylate group of heptanoate can form
hydrogen bonds with either the primary or the secondary
hydroxyls of βCD depending on the orientation of the
heptanoate molecule. As shown in Figure 4, the β-cyclodextrin

heptanoate complex has two binding states, which will be
referred to as the UP and DOWN macrostates. In our previous
research,15,43 we have studied the binding affinity of this host−
guest system by using BEDAM  a free energy method based
on replica exchange simulations. In BEDAM simulations, an
additional parameter λ is introduced to scale the interaction
between the host and the guest molecules from none to full
interaction. The features of β-cyclodextrin heptanoate binding

obtained using replica exchange serve as the benchmark for this
test case where we employ Stratified-UWHAM to combine and
analyze the results of independent (uncoupled) MD
simulations at each of the λ Hamiltonian states.
We ran two sets of 72 ns independent MD simulations at 300

K of the β-cyclodextrin heptanoate complex in implicit solvent
(AGBNP GB model48) at 16 λ-states: (0.0, 0.001, 0.002, 0.004,
0.01, 0.04, 0.07, 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0). The λ-
states are chosen to be the same as those in the previous
BEDAM simulations.15,43 At the λ = 0.0 state, there is no
interaction between the ligand and the receptor, and the
interaction is fully turned on at the λ = 1.0 state. However,
there is no replica exchange coupling among different λ-states.
We note that simulations which use computational grids
typically do not employ replica exchange; this observation
serves to motivate example 2. One set of independent
simulations was started from the UP macrostate, and the
other set was started from the DOWN macrostate. The
simulation details of this example can be found in ref 15. At the
seven λ-states with the largest λ values, because of the strong
interaction between heptanoate and βCD molecules, it is
difficult for the binding complex to switch between the UP and
DOWN macrostates. During the 72 ns simulations, no
transitions between the UP and DOWN macrostates were
observed at the λ = 1.0, 0.95, 0.9 states, and only one or two
transitions were observed at the λ = 0.8, 0.7, 0.6 states.
However, when the interaction between the ligand and the
receptor is further reduced (for λ values smaller than or equal
to 0.2), multiple transitions occurred. See the Supporting
Information for the number of transitions between macrostates
during each simulation. We applied conventional UWHAM,
Stratified-UWHAM, and Stratified RE-SWHAM to estimate the
population percentage of each macrostate of the β-cyclodextrin
heptanoate complex. To compare the equilibrium conforma-
tional ensembles estimated by different analysis methods based
on the raw data from the independent simulations at each of
the λ-states, we also examined the probability density of the
binding energies for each conformational ensemble.
The red line in Figure 5a shows the equilibrium population

percentages of the configurations in the DOWN macrostate at
each λ-state as determined from the benchmark replica
exchange data set. According to the benchmark, the population
percentage of the DOWN macrostate starts from 50% at the λ
= 0.0 state and continues increasing to the highest value 94.5%
at the λ = 0.8 state. Then the population percentage of the
DOWN macrostate decreases to 80.3% at the λ = 1.0 state. The
DOWN macrostate is more favorable at large λ values; this
comes from the larger entropy when the carboxylate group of
the heptanoate molecule is located in the wide opening of the
βCD molecule. Figure 5b shows the distributions of binding
energy of the β-cyclodextrin heptanoate complex at the λ = 1.0
state. Although the UP macrostate is less favorable at the λ = 1
state, heptanoate and βCD can form more hydrogen bonds,
resulting in more favorable (i.e., more negative) binding energy
in this macrostate, because of the flexibility of the primary
hydroxyls at the narrow opening end of βCD which can interact
with the heptanoate carboxylate of the UP macrostate. We
combined the data generated at each λ-state from the two sets
(UP and DOWN) of independent simulations and applied
conventional UWHAM to estimate the population percentage
of the DOWN macrostate. The results shown in Figure 5a
exhibit significant differences compared with the benchmark at
all the λ-states whose λ value is larger than 0.2. At the λ = 1.0

Figure 3. Dependence of the conventional UWHAM and Stratified-
UWHAM estimates of the free energy difference between the A and B
macrostate clusters of AlaD in vacuum ΔFA→B

V on the simulation
length of the simulations of AlaD in vacuum. The red line is the
benchmark  the estimates of thermodynamic cycle. The blue dashed
line is the estimates of Stratified-UWHAM when the vacuum state is
split into two new λ-states. The black dashed line is the estimates of
the conventional UWHAM estimates when the data at the vacuum
states are simply combined as the input of that λ-state. The green and
cyan dashed lines are the estimate based on the independent MD
simulations starting from the A and B macrostate clusters, respectively.
It takes MD simulations lasting several microseconds of AlaD in
vacuum for the conventional UWHAM estimates to match the
benchmark compared with Stratified-UWHAM which converges
within 100 ns. The Stratified-UWHAM estimates are visually identical
with the benchmark.

Figure 4. β-Cyclodextrin heptanoate binding complex. (a) UP
macrostate. (b) DOWN macrostate.
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state, the difference between the benchmark and the conven-
tional UWHAM estimate is as large as 38.6%. Not surprisingly,
Figure 5c shows that the conventional UWHAM estimate
(from the 32 independent simulations) of the distribution of
the binding energies at the λ = 1.0 state does not agree with the
benchmark either. Then we applied Stratified-UWHAM to
analyze the data generated by the independent parallel MD
simulations (Figure 5a and Figure 5d). In this case, the λ-states
with the largest seven λ values are considered to be only locally
equilibrated and are split into 14 new λ-states. As can be seen in
Figure 5a and Figure 5d, the Stratified-UWHAM estimates of
the population percentage of the DOWN macrostate at each λ-
state and the distribution of the binding energies at the λ = 1.0
state agree with the benchmark very well, and the estimates
obtained by the stochastic RE-SWHAM analysis are indis-
tinguishable from the Stratified-UWHAM estimates. In the
Supporting Information, we list the numerical results and
uncertainties of the population percentages of the DOWN
macrostate estimated by Stratified-UWHAM, Stratified RE-
SWHAM, and the benchmark. We also show the comparisons

of the probability density of binding energies estimated by
Stratified-UWHAM, Stratified RE-SWHAM, and the bench-
mark at all λ-states.

3.3. Example 3: Dynamical Path Reweighting. Lastly,
we study the trajectories of a Brownian particle moving in a
two-dimensional double well potential. We apply UWHAM and
Stratified-UWHAM to analyze the path ensembles generated by
the transition path sampling method at different Hamiltonian
states. Inspired by previous research,49,50 the two-dimensional
potential function is defined via

= + − − − − +

− − + + + −

+ − + + − + + −

U x y k T y x y x y

x y x

x y x

( , )/( ) 1.25[64 ( 1) exp{ 4( 1) }

exp{ 4( 1) } exp{8( 1.25)}

exp{ 8( 1.25)} 4exp{ 4( 0.25)} 12exp{ 2 }]

B
2 2 2 2 2 2

2 2

2

(11)

Figure 6a shows the contours of this potential. As can be seen,
U(x, y)/kBT is symmetric with respect to a rotation about the y
axis. The minimum of U(x, y) equals 1.698kBT at (x = ±1.087,
y = 0.188) . To study the transition events between these two
free energy basins, we define the region where

Figure 5. Population percentage of the configurations in the DOWN macrostates and probability density of binding energy at the λ = 1.0 state. The
red line is the benchmark  the BEDAM (replica exchange simulation) results. (a) Comparison of the population percentages of the configurations
in the DOWN macrostate estimated by Conventional UWHAM, Stratified-UWHAM, Stratified RE-SWHAM (based on the raw data generated by
two sets of 72 ns independent MD simulations), and the benchmark. The blue stars are the Stratified-UWHAM estimates when the data at the
largest seven λ-states are clustered into UP and DOWN macrostates. The black circles are the Stratified RE-SWHAM estimates, and the black line
with dots is the conventional UWHAM estimates when the data at the unconverged λ-states are simply combined as the input of that λ-state. (b)
The probability density of binding energy at the λ = 1.0 state obtained by replica exchange simulations. The blue line is the probability density of
binding energy of the configurations in the UP macrostate, the green line is the probability density of binding energy of the configurations in the
DOWN macrostate, and the red line is the overall probability density of binding energy at the λ = 1.0 state. (c) Comparison of the probability
density of binding energy at the λ = 1.0 state estimated by conventional UWHAM to the 32 independent simulations and the benchmark. The bars
show the UWHAM estimates. (d) Comparison of the probability density of binding energy at the λ = 1.0 state estimated by Stratified-UWHAM,
Stratified RE-SWHAM, and benchmark. The blue dots are the Stratified-UWHAM estimates. The bars are the Stratified RE-SWHAM estimates. As
can be seen by comparing the four figures, only the Stratified-UWHAM and Stratified RE-SWHAM estimates agree with the benchmark.
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+ + − <x y( 1.087) ( 0.188) 1.0002 2
(12)

as the reactant (or A) region and

− + − <x y( 1.087) ( 0.188) 1.0002 2
(13)

as the product (or B) region. The barrier between the reactant
and product regions has two saddle points on the y axis. The
upper saddle point is located at (x = 0.000, y = 1.000), where
U(x, y) is 15.033 kBT, and the lower one is located at (x =
0.000, y = 0.039), where U(x, y) is 16.650kBT. Along the y axis,
the maximum potential between these two saddle points is
located at (x = 0.000, y = 0.574), where U(x, y) is 27.024kBT.
See the Supporting Information for the cross-section of U(x, y)
at x = 0. The pathways connecting the reactant and product
regions are separated into two distinct channels by the peak
around (x = 0.000, y = 0.574). To categorize paths according to
the positions where they cross the barrier between the reactant
and product regions, we examine the intersection points
between the path and the y axis (xc = 0, yc). If a path crosses the

y axis multiple times, the last intersection point is used. The
paths with yc larger than 0.574 are tagged as in the UP channel,
and the paths with yc smaller than 0.574 are tagged as in the
DOWN channel. In Figure 6a, we show two transition paths of
a Brownian particle connecting the reactant and product
regions. One transition path goes through the UP channel, and
the other goes through the DOWN channel.
The TPS method is applied to sample the path ensembles

connecting the reactant and product regions. In TPS
simulations, the trial paths are generated by the “shooting”
algorithm.18 As previous researchers found,49,51,52 like any
conventional Monte Carlo (MC) simulations, TPS, which is a
MC sampling in path space, can be trapped in local minima,
namely channels. Possible solutions to this problem include
combining the replica exchange algorithm with TPS51−53 or
applying different transition path sampling techniques.49 Notice
that the path channels in this example are analogous to the
macrostate clusters in the previous two examples. The goal is to
estimate the population percentage of the paths in each
channel.
Here we show how to overcome the “trapping” problem by

running independent parallel TPS at different Hamiltonian
states and reweighting paths by Stratified-UWHAM. First we
introduce a biasing potential to remove the peak which
separates transition paths into channels

= − − +V x y k T y x( , )/( ) 1.25(9.5185 exp{ 9[( 0.5741) /3]})B
2 2

(14)

In Figure 6b the contours of the potential U(x,y) − λV(x, y)
with λ = 1.0 are plotted. As can be seen, at the λ = 1.0 state the
peak around (x = 0, y = 0.574) is removed, and the two path
channels are merged. See the Supporting Information for the
cross-section of U(x, y) − V(x, y) at x = 0. Then two sets of
independent TPS simulations were run at λ = (0.0, 0.2, 0.4, 0.6,
0.8, 1.0) states. The initial paths of the first set of simulations
are in the UP channel, and the initial paths of the second set are
in the DOWN channel. Each TPS simulation generated 5
million paths connecting the reactant and product regions. At
the λ = 0.0 state, no transitions of paths between the two
channels were observed during the TPS simulations. In other
words, at λ = 0.0 state, TPS simulations of paths started in the
UP channel remain in the UP channel, while paths started in
the DOWN channel remain there. The changes of yc during
each TPS simulation are shown in the Supporting Information.
Then we applied conventional UWHAM, Stratified-UWHAM,
and Stratified RE-SWHAM to estimate the probability
percentage of the paths in the UP and DOWN channels.
One of us (B.W.Z.) has applied the Weighted Ensemble (WE)
algorithm to obtain the correct path ensemble for two-
dimensional potentials like the one shown in Figure 6.49,50

The WE results are used as the benchmark for this test. The
simulation details for Langevin dynamics, TPS, and WE can be
found in refs 54 and 23.
The red line in Figure 7a shows the population percentages

of the paths in the DOWN channel at different λ-states
obtained by the WE simulations. At the λ = 0.0 state, the paths
in the DOWN channel make up ∼29.3% of the whole path
ensemble. First we simply combined the data generated from
the same λ-state and applied the conventional UWHAM to
estimate the population percentage of the paths in each
channel. It can be seen from Figure 7a that the conventional
UWHAM estimate of the population percentage of the DOWN
channel shows significant differences compared with the

Figure 6. Two-dimensional double well potentials. (a) Contours of
the double well potential U(x, y) defined via eq 11. The red
trajectories show two paths connecting the reactant (A) and product
(B) regions. One goes through the UP channel, and the other goes
through the DOWN channel. (b) Contours of the biased potential
U(x,y) − V(x, y), where V(x, y) is defined via eq 14.
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benchmark at the smaller λ values. The difference is negligible
at the λ = 1.0 state but increases to 9% at the λ = 0.0 states.
Then we applied the Stratified-UWHAM to analyze the path
ensembles. For this case, the λ = 0.0, λ = 0.2, and λ = 0.4 states
are considered to be the locally equilibrated λ-states, and each is
split into two new λ-states. As can be seen from Figure 7a, the
Stratified-UWHAM estimates of the population percentage of
the paths in the DOWN channel at each λ-state agree with the
WE results very well. The estimates obtained from the Stratified
RE-SWHAM also match the benchmark results. In the
Supporting Information, we list the numerical results and
uncertainties of the population percentages of the paths in the
DOWN channel estimated by Stratified-UWHAM, Stratified
RE-SWHAM, and the benchmark.

When the simulations at the λ-states with a substantial barrier
between the paths have not converged, the conventional
UWHAM estimates of the probabilities of the UP and DOWN
channel paths at these λ-states strongly depend on the number
of UP and DOWN channel paths which are input to UWHAM
because the conventional UWHAM always assumes the input
data ensemble at each λ-state is independently drawn from the
distribution described by eq 1 or eq 31. Therefore, the
difference between the conventional UWHAM estimates and
the true values at the λ = 0.0 state can be much larger than the
case that the numbers of paths in the UP and DOWN channels
generated at the λ = 0.0 state are equal (as shown in Figure 7a).
To show this effect, we fixed the number of paths in the UP
channel at the λ = 0.0 state in the input path ensemble nU but
changed the number of paths in the DOWN channel at the λ =
0.0 state in the input path ensemble nD so that the population
ratio nD/(nD + nU) ranges from 1% to 90%. Then these input
path ensembles with different value of nD/(nD + nU) were fed to
the conventional UWHAM, Stratified-UWHAM, and Stratified
RE-SWHAM to estimate the population percentage of the
paths in each channel at the λ = 0.0 state. The results are shown
in Figure 7b. As expected, the conventional UWHAM estimates
for the population percentage of the path in the DOWN
channel at the λ = 0.0 state strongly depend on the ratio nD/(nD
+ nU) and change from 20% to 75% when nD/(nD + nU)
changes from 1% to 90%, while the benchmark is ∼29.3%. On
the other hand, the Stratified-UWHAM and Stratified RE-
SWHAM estimates are independent of the initial condition
(i.e., the ratio nD/(nD + nU)) and agree with the benchmark.
To further compare path ensembles, we also measured the

probability density of transition-event durations for each path
ensemble. The definition of transition-event durations is the
number of Brownian steps between the Brownian particle last
leaving the reactant region and first arriving in the product
region, namely the path length.54−58 Figure 8a shows the
probability density of transition-event durations of paths in
each channel and overall path ensemble at the λ = 0.0 states
obtained by WE simulations. As can been seen, although the
paths in the DOWN channel are less favorable compared with
the paths in the UP channel, their average path length is
shorter. This makes sense because if a pathway goes through a
steeper barrier, namely a less favorable path channel, the
Brownian particle has less freedom to wander along the optimal
pathway, which ends in a shorter average path length.54 In
Figure 8b, we compare the probability densities of transition-
event durations at the λ = 0.0 state estimated by the
conventional UWHAM, Stratified-UWHAM, and Stratified
RE-SWHAM when the population ratio nD/(nD + nU) is
80%. As can be seen, the conventional UWHAM estimate
shows a significant difference compared with the benchmark.
However, the Stratified-UWHAM and Stratified RE-SWHAM
estimates are indistinguishable, and both agree with the
benchmark very well, which confirms that both Stratified-
UWHAM and Stratified RE-SWHAM correctly estimate the
weight of each individual path. In the Supporting Information,
we show the comparisons of the probability density of
transition-event durations estimated by Stratified-UWHAM,
Stratified RE-SWHAM, and the benchmark at all λ-states when
the number of paths in the UP and DOWN channels in the
input path ensemble are equal.

3.4. Discussion. Stratified-UWHAM requires that the
conformational space be coarse-grained. This can be done
based on preliminary simulations or from biophysical knowl-

Figure 7. Population percentage of the paths in the DOWN channel.
The red line is the benchmark  the results obtained by weighted
ensemble (WE) simulations. The blue stars are the Stratified-
UWHAM estimates when the data at the smallest three λ-states are
clustered into UP and DOWN states, the black circles are the Stratified
RE-SWHAM estimates, and the black line with dots is the
conventional UWHAM estimates when the data at the locally
equilibrated λ-states are simply combined as the input of that λ-
state. (a) Comparison of the population percentages of the paths in
the DOWN channel at each λ-state estimated by conventional
UWHAM, Stratified-UWHAM, Stratified RE-SWHAM, and bench-
mark when the number of the paths in the UP and DOWN channels
in the input path ensembles are equal. (b) Comparison of the
population percentages of the paths in the DOWN channel at the λ =
0.0 state estimated by conventional UWHAM, Stratified-UWHAM,
Stratified RE-SWHAM, and benchmark when the population ratio nD/
(nD + nU) changes from 1% to 90%, where nD is the number of paths
in the DOWN channel at the λ = 0.0 state in the input path ensemble,
and nU is the number of paths in the UP channel at the λ = 0.0 state in
the input path ensemble. As can be seen by comparing the two figures,
only the Stratified-UWHAM and Stratified RE-SWHAM estimates
agree with the benchmark, and the conventional UWHAM estimate
for the λ = 0.0 state strongly depends on the population ratio nD/(nD +
nU).
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edge, but a more general and practical method is to partition
the conformational space following procedures used to
construct Markov States Models. MSMs are a natural choice
for the preparation of Stratified-UWHAM for the following
reasons: MSMs build up a network which coarse-grains the free
energy landscape. The states in the MSM network are defined
based on structural (order parameters) and kinetic criteria.
Each state in an MSM corresponds to a cluster of
conformations that constitute a basin (or collection of basins)
in the free energy landscape, and the transition rates between
states in an MSM reflect the properties of the corresponding
(free) energy barriers. The stratified-UWHAM S1 and S2 groups
of λ-states can be determined by the following procedure:
• choose a set of λ-states as reference states to build the

MSM using prior knowledge and/or run preliminary
simulations, choosing, for reference, those biased simulations
where the relaxation between the slowly equilibrating basins are
enhanced.
• cluster the data from the other λ-states into MSM states

using the same definition of MSMs used in the first step.
• identify disconnected macrostates or macrostate clusters

based on ergodicity analyses for each λ-state in each of the

biased simulations. One macrostate cluster may contain one or
many basins.
• the biased λ-states whose macrostate clusters are fully

connected are assigned to the S1 group; the λ-states which
include disconnected macrostate clusters are assigned to the S2
group. For some problems, the most straightforward
applications of the Stratified-UWHAM algorithm will fail
when metastable basins merge or separate as the Hamiltonian
function and/or thermodynamic parameters of the λ-states
change. To account for this it may be necessary to build into
the UWHAM stratification procedure more detailed informa-
tion about the correspondence between basins at different λ-
states.
Two maximum likelihood-based methods, the dynamic

histogram analysis method (DHAM) and the general
transition-based reweighting analysis method (TRAM),59−62

were proposed recently to provide free energy estimates for
multistate simulations when the simulations at some λ-states
are only locally equilibrated. As we propose for Stratified-
UWHAM, both DHAM and TRAM require building MSMs
first for further analyses. In addition to providing estimates of
equilibrium distributions, both DHAM and TRAM analysis
methods provide estimates of the transition rates between
states of the MSMs which are not accessible by the Stratified-
UWHAM analysis. Here we comment on the three methods
and explain some possible advantages and drawbacks of
Stratified-UWHAM for estimating equilibrium populations.
DHAM calculates the estimates of transition rates between

states of MSMs first. Then the equilibrium distributions are
obtained by solving the eigenvalue equation for the transition
matrix. Suppose there are nb states in the MSM, then for the
αth λ-state the transition matrix is T(α), where the element Tij

(α)

represents the probability of the system transitioning from the
ith state to the jth state during lag time Δt. The log likelihood
function of observing nij

(α) transitions from the ith state to the
jth state at the αth λ-state during the simulation is59
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DHAM supposes that the transition matrix element Tij
(α) at the

αth λ-states can be written as Tij
(α) = f j

αcij
(α)Tij, where cij

(α) is a bias
factor, Tij is the ijth elements of an unbiased transition matrix T,
and f j

α is a normalization factor. With this assumption, DHAM
maximizes the likelihood function LD = ∏α=1

M L(α), where L(α) is
defined by eq 15. Notice that the transition probabilities at
different λ-states are coupled by the bias factor. If the bias
factors for the transition rates {cij

α} are known, DHAM provides
better estimates of equilibrium populations than conventional
UWHAM for multistate simulations when the simulations at
some λ-states are far from being equilibrated.59 However, the
challenge of applying DHAM is that the bias factors {cij

α} are
usually unknown and may be difficult to construct for arbitrary
multistate simulations. In contrast, the analogous quantities in
Stratified-UWHAM  the probabilities of observing a
microstate at different λ-states qα(uγi) in eq 3  are more
readily obtained from the Hamiltonian and thermodynamic
parameters of the multistate simulations.
In the TRAM method, the estimates of equilibrium

distributions and transition rates of MSMs are calculated
simultaneously. The maximum likelihood function of TRAM is
a product of the maximum likelihood functions of binless

Figure 8. Probability densities of transition-event durations at the λ =
0.0 state. (a) The probability density of transition-event durations at
the λ = 0.0 state obtained by WE simulations. The blue line is the
probability density of transition-event durations of the paths in the UP
channel, the green line is the probability density of transition-event
durations of the paths in the DOWN channel, and the red line is the
overall probability density of transition-event durations at the λ = 0.0
state. (b) Comparison of the probability density of transition-event
durations at the λ = 0.0 state estimated by Stratified-UWHAM,
Stratified RE-SWHAM, and the benchmark when the population ratio
nD/(nD + nU) is 80%. The blue dots are the Stratified-UWHAM
estimates, the bars are the Stratified RE-SWHAM estimates, and the
dashed line is the conventional UWHAM estimates. The conventional
UWHAM estimates show a significant difference compared with the
benchmark, while Stratified-UWHAM and Stratified RE-SWHAM
estimates agree with the benchmark very well.
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WHAM (population counts) and DHAM (transition counts).62

Unlike Stratified-UWHAM, TRAM stratifies every λ-state into
configuration states (macrostates) of MSMs. The local free
energy of each configuration state at each λ-state is calculated
during each iteration of TRAM analysis: the free energy
differences between the same configuration states at different λ-
states are calculated in a binless manner; the free energy
differences between configuration states at each λ-state are
calculated based on the transition counts and the detailed
balance condition. Those calculations form multiple thermody-
namic cycles like the one shown in Figure 2b. The optimal and
consistent estimates of all the legs in the thermodynamic cycles,
namely the free energy differences, and the transition rates are
obtained simultaneously by maximizing the likelihood function.
In ref 62 TRAM was applied to obtain the thermodynamic and
kinetic information on a protein−ligand binding complex
successfully, while the MBAR/UWHAM or WHAM analysis
was found to be unfeasible or less efficient.
Stratified-UWHAM and TRAM each have strength and

weakness. Stratified-UWHAM is an algorithm that focuses on
equilibrium populations, not kinetics. The transition counts
observed during the multistate simulations are not used to
estimate the equilibrium distributions, and Stratified-UWHAM
does not provide estimates for transition rates although there
are methods which can infer transition rates from equilibrium
distributions estimated from multicanonical simulations.63−67

When we solve the Stratified-UWHAM equations, the λ-states
in the S1 group (fully connected λ-states) are not split into new
λ-states so that the density of states obtained by Stratified-
UWHAM is global (or globally normalized). Therefore, the
existence of at least one λ-state in the S1 group seems to be
essential for applying Stratified-UWHAM. However, it is worth
pointing out that this is not a requirement of Stratified-
UWHAM. Suppose there is a system which has three
macrostates. The simulations at one λ-state are approximately
equilibrated between the first and the second macrostates, and
the simulations at another λ-state are approximately equili-
brated between the second and the third macrostates. If the
sampled phase space of the second macrostate at these two λ-
states are well overlapped,68,69 these two λ-states together are
equivalent to one approximately globally equilibrated λ-state.
For such cases, either Stratified-UWHAM or Stratified RE-
SWHAM can be used to obtain the global density of states. A
practical criterion to validate the application of Stratified-
UWHAM is that if Stratified RE-SWHAM is used to analyze
the raw data, each replica shall have resampled every macrostate
of every λ-state during the analysis. In other words, in Stratified
RE-SWHAM, which is a multicanonical resampling analysis
analogous to multicanonical simulations such as replica
exchange, all the macrostates need to be fully connected
when the data at all λ-states are combined in order to produce
converged results.
On the other hand, as the name implies, TRAM is a

transition-based reweighting analysis method. Because TRAM
stratifies every λ-state, it does not depend on the population
ratios of different states of the MSM at each λ-state, but
approximately converged transition counts connecting states at
each λ-state are essential for TRAM to obtain the global density
of states. Note that unconverged transition counts can pollute
the TRAM estimates, as unconverged population counts
pollute the conventional UWHAM estimates as described
previously in Section 3. Because each transition matrix element
at each λ-state is an unknown parameter to be determined by

the maximum likelihood algorithm, TRAM has thousands more
variables to solve than Stratified-UWHAM. Further work on
TRAM and Stratified-UWHAM may benefit from the develop-
ment of a “population-plus-transition-based” reweighting
algorithm which inherits the strengths of both methods.

4. CONCLUSION
We have developed a new analysis tool called Stratified-
UWHAM to compute the density of states and free energies for
data ensembles generated by multistate simulations when a
subset of the simulations is only locally equilibrated, macrostate
clusters may be disconnected at some λ-states, and their
population estimates are far from equilibrium. To remove the
computational bottleneck of Stratified-UWHAM, we developed
a stochastic solver for the Stratified-UWHAM equations by
extending the RE-SWHAM algorithm. As has been shown
above, the Stratified-UWHAM equations can be solved in the
form of UWHAM equations with an expanded set of λ-states,
and the Stratified-UWHAM equations can be solved stochas-
tically in the form of the original RE-SWHAM with a simple
restraint introduced in the move procedure.
Stratified-UWHAM and Stratified RE-SWHAM have been

applied to three model systems. First, we constructed the free
energy surfaces of an alanine dipeptide molecule in vacuum by
analyzing the data generated by two independent MD
simulations of AlaD in vacuum starting from different
macrostate clusters and the known equilibrium distributions
of AlaD in implicit solvent which can be computed rapidly.
Compared with Stratified-UWHAM and Stratified RE-
SWHAM, the conventional UWHAM requires much longer
MD simulations to produce estimates matching the benchmark
within statistical error. Second, we studied the binding affinity
of the β-cyclodextrin heptanoate complex by running two sets
of independent MD simulations starting from different
macrostates at 16 λ-states. Since the barrier between the
“UP” and “DOWN” macrostates of this system is “infinitely”
high at some λ-states, conventional UWHAM failed to estimate
the equilibrium distribution at those λ-states correctly.
However, the Stratified-UWHAM and Stratified RE-SWHAM
estimates agree with the benchmark replica exchange
simulation results very well. In the third example, we showed
how to overcome the “trapping” problem of the transition path
sampling algorithm by running TPS in a two-dimensional
double well potential at multiple λ-states independently and
using Stratified-UWHAM and Stratified RE-SWHAM to
analyze the path ensemble. As far as we know, this is the first
time the Onsager-Machlup action-based path sampling
algorithm has been combined with a UWHAM type analysis
tool to study kinetics.
Stratified-UWHAM requires that the conformational space

be coarse-grained. For the three examples we discussed above,
the coarse-graining was done based on our preliminary
knowledge about the system. For an arbitrary problem, we
proposed that one can partition the conformational space using
Markov States Models and suggested a procedure to identify
locally equilibrated λ-states and macrostate clusters. Features of
Stratified-UWHAM were compared with DHAM and TRAM.
Compared with TRAM and DHAM, one drawback of the
current version of Stratified-UWHAM is the requirement of
manually determining locally equilibrated λ-states and macro-
state clusters for each λ-state. However, this is necessary in
order to avoid feeding UWHAM biased information which can
pollute the estimates of the density of states. Algorithms to

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00651
J. Chem. Theory Comput. 2017, 13, 4660−4674

4670

http://dx.doi.org/10.1021/acs.jctc.7b00651


combine states of MSMs into macrostates and identify
disconnected macrostate clusters based on raw simulation
data can be automated.25 We proposed a criterion to validate
the application of Stratified-UWHAM: if Stratified RE-
SWHAM is used to analyze the raw data, each replica shall
have resampled every macrostate of every λ-state during the
analysis. Unlike DHAM or TRAM, Stratified-UWHAM does
not require the bias factors for transition rates at different λ-
states or approximately converged transition counts between
states of MSMs to obtain equilibrium distributions. Last but not
least, the stochastic version of Stratified-UWHAM, Stratified
RE-SWHAM, provides a practical analysis tool for multistate
simulations on massive computational grids.14

■ APPENDIX

A. Stratified RE-SWHAM
Stratified RE-SWHAM is a resampling technique we developed
to solve the Stratified-UWHAM equations stochastically by
using the replica exchange simulation protocol (see Figure 1).
Like RE simulations, at the end of each cycle, the observation
associated with each replica is recorded as the output of
Stratified RE-SWHAM. Here we use the alanine dipeptide
problem as an example to show that the output of Stratified RE-
SWHAM for a λ-state in the S2 set which contains disconnected
macrostate clusters is the estimate of the equilibrium
distribution of that λ-state. Therefore, the splits of locally
equilibrated λ-states are not necessary.
In the AlaD problem, the implicit solvent state (I state) is a

fully-connected λ-state; the vacuum state (V state) is a locally
equilibrated λ-state with two disconnected macrostate clusters.
Suppose the replica at the V state is resampling the
observations of the A macrostate cluster by the move
procedure. During Stratified RE-SWHAM, to switch the replica
at the V state to resample the observations of the B macrostate
cluster requires (i) the other replica at the I state is associated
with an observation in the B macrostate cluster, (ii) an
exchange attempt of these two replicas is accepted. Therefore,
the probability of switching the replica at the V state from
resampling the A macrostate cluster to resampling the B
macrostate cluster is

⟨Ψ + − − ⟩p U U U U( )I
B

I
A

V
B

V
A

I
B

V I
( ) ( ) ( ) ( ) ( )

A B( ) ( ) (16)

where pI
(B) is the probability that the observation associated

with the replica at the I state belongs to the B macrostate
cluster. UV

(X) and UI
(X) are the potential energies of an

observation of the “X” macrostate cluster at the V state and
the I state, respectively. Notice they are the energy values of the
same microstate at different λ-states and suppose the energies
are in units of kBT. Ψ is the Metropolis function to determine
the acceptance ratio70

Ψ = −x x( ) min(1, exp[ ]) (17)

The angle brackets and subscript V(A)I(B) represent the
ensemble average when the observation associated with the
replica at the V state belongs to the A macrostate cluster and
the observation associated with the replica at the I state belongs
to the B macrostate cluster.
Similarly, if the replica at the V state is resampling the B

macrostate cluster, the probability of switching the replica to
resample the A macrostate cluster is
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Because of the requirement of detailed balance, the forward and
backward currents of a replica moving between the A and B
macrostate clusters at the V state are equal, which yields
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where pV
(X) is the probability that the observation associated

with the replica at the V state belongs to the “X” macrostate
cluster.
The Metropolis exchange criterion in the Stratified RE-

SWHAM analyses satisfies
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Integrating the equation over the configuration space leads to

∫

∫
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where QY
(X) is the canonical configurational integral of the “X”

macrostate cluster at the “Y” λ-state
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Y
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Eq 21 can be rewritten as
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Namely, the log ratio of the acceptance probability ⟨Ψ(UI
(A) +

UV
(B) − UV

(A) − UI
(B)) ⟩V(A)

I
(B)over ⟨Ψ(UI

(B)+UV
(A) − UV

(B) −
UI

(A))⟩V(B)
I
(A) provides the estimate of the free energy difference

between the two vertical legs in Figure 2b.
Combining eqs 19 and 23 yields
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Eq 24 shows the ratio of pV
(B) over pV

(A) provides the estimate of
the upper leg in Figure 2b. Because at the end of each cycle, the
observation associated with the replica at the V state is recorded
as the output of Stratified RE-SWHAM at the V state (see
Figure 1), (pV

(A)/pV
(B)) equals the population ratio of the A

macrostate cluster over the B macrostate cluster in the output
of the V state. In other words, the output of Stratified RE-
SWHAM at the V state is the estimate of the equilibrium
distribution of the V state.
There is another subtle difference between RE-SWHAM

with an expanded set of λ-states and Stratified RE-SWHAM.
During the analysis of RE-SWHAM with an expanded set of λ-
states, an observation in a macrostate cluster of a locally
equilibrated λ-state can possibly be exchanged only with an
observation in the same macrostate cluster at another λ-state
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because of the infinite barrier covering the outside of that
macrostate cluster at the corresponding expanded λ-state.
Therefore, the number of observations in a macrostate cluster
of a locally equilibrated λ-state stays as a constant. During the
analysis of Stratified RE-SWHAM, because an observation in a
macrostate cluster of a locally equilibrated λ-state is allowed to
be exchanged with any observation at another λ-state if the
exchange attempt is accepted (see Figure 1), the number of
observations in a macrostate cluster of a locally equilibrated λ-
state fluctuates by ±1. However, if the total number of
observations in each macrostate cluster at each λ-state is large,
such fluctuations become negligible.

B. Onsager-Machlup Action-Based Path Ensemble
In Section 3.3, we apply Stratified-UWHAM to analyze the path
ensembles of a Brownian particle moving in a two-dimensional
double well potential. The stochastic dynamics of the Brownian
particle in this two-dimensional space is governed by the
overdamped Langevin equation

γ
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= +

= +
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where Fx and Fy are the forces acting on the particle, γ is the
friction constant, and Rx(t) and Ry(t) are the thermal noise
taken from Gaussian functions with zero mean and correlation
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D = kBT/γ in eq 26 is the diffusion constant.
Given the two-dimensional potential U(x, y), the probability

of a (N − 1)-steps path connecting the reactant region and the
product region is
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p(xi, xi+1; U) and p(yi, yi+1; U) in eq 27 are the single-step
transition probabilities
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and Δt is the time interval of a single step. By combining eq 27
and eq 28, the probability of a path can be written as a single
exponential function
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where A[x(t), y(t), U(x,y) ] is called the Onsager-Machlup
action “functional”.71 Compared with the probability of a
microstate of a mechanical system governed by the canonical
ensemble, the action functional of a path is analogous to the
potential energy of a microstate. With this understanding, many
enhanced sampling methods and analysis tools which have been
developed to explore the conformational space such as replica
exchange and UWHAM can be applied straightforwardly to the
transition path space.53,72,73 The transition path sampling
(TPS) method is a MC simulation in the path space to draw
pathway Xi

α:i = 1, ···, Nα according to the distribution

∼
−

α
α α α
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where Zα is the normalizing constant (analogous to the
partition function of a canonical ensemble) of the αth λ-
state.17,18
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