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Abstract

A key question in cooperation is how to find the right partners and maintain cooperative
relationships. This is especially challenging for horizontally transferred bacterial symbionts
where relationships must be repeatedly established anew. In the social amoeba Dictyostelium
discoideum farming symbiosis, two species of inedible Burkholderia bacteria (Burkholderia
agricola and Burkholderia hayleyi) initiate stable associations with naive D. discoideum hosts
and cause carriage of additional bacterial species. However, it is not clear how the association
between D. discoideum and its carried Burkholderia is formed and maintained. Here, we look at
precisely how Burkholderia finds its hosts. We found that both species of Burkholderia clones
isolated from D. discoideum, but not other tested Burkholderia species, are attracted to D.
discoideum supernatant, showing that the association is not simply the result of haphazard
engulfment by the amoebas. The chemotactic responses are affected by both partners. We find
evidence that B. hayleyi prefers D. discoideum clones that currently or previously carried
Burkholderia, while B. agricola does not show this preference. However, we find no evidence of
Burkholderia preference for their own host clone or for other hosts of their own species. We
further investigate the chemical differences of D. discoideum supernatants that might explain the
patterns shown above using a mass spectrometry based metabolomics approach. These results

show that these bacterial symbionts are able to preferentially find and to some extent choose
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their unicellular partners. In addition, this study also suggests that bacteria can actively search for
and target phagocytic cells, which may help us better understand how bacteria interact with

immune systems.

Introduction

Mutualistic cooperation occurs at all levels of life. Cooperators often have mechanisms to find
partners and even to choose good partners over bad ones. Finding a partner is an important
aspect of mutualistic associations, particularly for the question of specialization. If partner
association is haphazard, or if partner finding abilities are weak, selection for mutualism may be
weakened or countered by the need to retain adaptations for surviving and reproducing in the
absence of partners. When partner finding is reliable, partners can more readily evolve to
specialize on each other. Mutualistic cooperation can also be favored by partner choice, which
requires partner finding that is effective enough to offer choices (No€, 2001). However, in
mutualisms with vertical transmission of symbionts, partner-finding adaptations may not be
necessary and could be lost. At this point, specialization to particular lineages can become

extreme.

Partner finding can have different modalities. For instance, in the pollination systems, plants
often use visual and/or olfactory signals to attract pollinators (Schaefer et al., 2004; Turchetto et
al., 2014). For mate choice in animals, mate finding can involve visual, olfactory and/or auditory
signals in different taxa (Candolin, 2003; Andersson and Simmons, 2006). For microbes, which
lack a sensory nervous system, partner finding is often mediated through chemicals either at a

distance such as quorum sensing in bacteria (Miller and Bassler, 2001), or via contact dependent



63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

recognition such as in social amoeba (Strassmann et al., 2011) and myxobacteria (Velicer and

Vos, 2009).

When bacterial symbionts actively find partners, it is likely to be through chemotaxis.
Chemotaxis is the directed movement of cells in a chemical gradient, which plays a major role in
many important biological processes (Wadhams and Armitage, 2004; Bagorda and Parent, 2008).
Multicellular organisms need chemotaxis for various developmental functions (Dormann and
Weijer, 2003; 2006) (for example, embryology, migration, and aggregation) and it is also
involved in processes like cancer metastasis (Roussos et al., 2011). Bacteria use it to search for
food, avoid toxins, and respond to changing environments (Wadhams and Armitage, 2004).
Bacterial chemotaxis can play important roles in symbiotic associations. Several studies have
reported evidence of chemotaxis of bacterial symbionts toward multicellular eukaryotic hosts,
including animals (Nyholm and Mcfall-Ngai, 2004a; Garren et al., 2014; Tout et al., 2015),
plants (Broek and Vanderleyden, 1995; Sood, 2003; Nilsson et al., 2006; Kiers and Denison,

2008) and fungi (Haq et al., 2014; Stopnisek et al., 2016).

There is little empirical evidence that bacterial chemotaxis is important in symbioses with
unicellular protist hosts. Protists are an extremely diverse paraphyletic grouping of generally
unicellular eukaryotic organisms that are not animals, plants, or fungi (Adl ef al., 2012). They
can interact with bacteria in multiple ways. Some of them are predators of bacteria, others are
victims of bacterial pathogens, and still others can even form symbiotic interactions (Greub and
Raoult, 2004; Brock et al., 2011; Brock et al., 2013; Stallforth et al., 2013; Schulz et al., 2014;
Amaro et al., 2015). However, because of the difficulties in cultivation of protists as well as the
commonness of unculturable bacterial symbionts, experimental studies of symbiotic relationships

between protists and bacteria so far have been limited to a few cultured model systems (Brock et
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al.,2011; Amin et al., 2012; Dziallas et al., 2012; Brock et al., 2013; Stallforth et al., 2013;
DiSalvo et al., 2015; Brock et al., 2016; Boscaro et al., 2017). Emerging techniques such as
single-cell sequencing could help to discover potential protist-bacteria interactions (Martinez-
Garcia et al., 2012). Still, little is known about partner attraction and choice in protist-bacteria
interactions. Progress is most likely or be made in simple model systems where the impact of

different partners can be understood and manipulated.

The amoeba proto-farming symbiosis with bacteria is a promising system for gaining insight into
the question about how cooperation in protist — bacteria interactions forms and is maintained
(Brock et al., 2011; Brock et al., 2013; Stallforth et al., 2013; DiSalvo et al., 2014; DiSalvo et
al., 2015; Brock et al., 2016). D. discoideum is a soil dwelling amoeba that is well known for its
unusual life cycle (Kessin, 2001). At the unicellular stage, vegetative cells eat bacteria through
phagocytosis and divide through binary fission. When bacterial prey are exhausted, amoebas
aggregate to form multicellular migratory slugs which ultimately become fruiting bodies. About
20% of the cells die to form a stalk while the rest differentiate into spores in the sorus, which sits
atop the stalk (Kessin, 2001). Some wild amoeba clones were collected in association with
different bacterial partners that can potentially be used as food and/or weapons (Brock et al.,
2011; Brock et al., 2013; Stallforth et al., 2013). We call these clones farmers because they can
seed and defend their crops in new environments (Brock et al., 2011). However, farming status is
caused by key bacteria associates belonging to the genus Burkholderia (DiSalvo et al., 2015).
Two clades (now named as B. agricola and B. hayleyi, and the amoeba clones that are carrying
them are called B. agricola farmers and B. hayleyi farmers, respectively) of Burkholderia can
initiate a stable association with naive D. discoideum hosts and are found within Dictyostelium

cells and spores. They are not good food sources for the amoebas but they benefit the amoebas
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by causing carriage of additional bacterial species some of which are released to seed new food
populations. The Burkholderia presumably benefit by living inside the amoebas and dispersing
in amoeba spores. Curing the amoebas of these Burkholderia eliminates this farming trait

(DiSalvo et al., 2015).

Both B. agricola and B. hayleyi can live on their own and can colonize new amoeba clones,
indicating they are facultative symbionts, probably with some horizontal transmission. This
raises the question that how the association between D. discoideum and its carried Burkholderia
is formed and maintained. It could be accidental, simply happening when the carried
Burkholderia are randomly ingested by the amoeba host. Alternatively, Burkholderia symbionts
may be able to preferentially find and choose their social amoeba partners. In this study, we will
test these hypotheses. Specifically, we conducted chemotaxis and metabolomics experiments to
answer the following questions: 1) Are Burkholderia symbionts attracted to their amoeba hosts?

2) How specific are these choices? 3) What small molecules are involved in these choices?

Materials and methods

Wild D. discoideum clones, media and culture conditions

This study used wild D. discoideum clones (N = 15) collected at Mountain Lake Biological
Station in Virginia (clones with a QS designation, 37°21° N, 80°31° W) and Little Butt’s Gap,
North Carolina (clones with a NC designation, 35°46° N, 82°20° W). We cured farmer D.
discoideum clones by treating them with tetracycline (DiSalvo et al., 2015). We grew D.
discoideum from previously frozen spores on SM/5 agar plates (2 g glucose, 2 g BactoPeptone

(Oxoid), 2 g yeast extract (Oxoid), 0.2 g MgCl,, 1.9 g KH,PO4, 1 g K;HPO4 and 15 g agar per
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liter) with food bacterium Klebsiella pneumoniae at room temperature (21°C). Specific clones

used in this study are listed in Table S1.

Burkholderia isolates from wild D. discoideum farmers

This experiment used carried Burkholderia isolates (N = 6) described in previous studies
(DiSalvo et al., 2015). We spotted the sorus contents of farmer clones individually on SM/5 agar
plates and assessed bacterial growth after 7 days at room temperature. We isolated single
colonies from these spots by restreaking bacteria on SM/5 agar medium up to three times. We
then identified clones via 16s rRNA gene sequencing (Brock et al., 2011; DiSalvo et al., 2015).
Phylogenetic analyses show these carried Burkholderia belong to two clades (now named as B.
agricola and B. hayleyi) (DiSalvo et al., 2015). We tested three B. agricola (B1qs70, Bl1qs159
and Blnc21) and three B. hayleyi (B2qs11, B2qs21 and B2nc28) Burkholderia clones. We also
used three non-carried Burkholderia species (Burkholderia unamae, Burkholderia tuberum,
Burkholderia silvatlantica) to see if attraction to D. discoideum is specific to the carried species
(Figure 1). Specific isolates used in this study are listed in Table S1. Recently, it has been
proposed to split the genus Burkholderia into two genera according to phylogenetic clustering:
(1) a genus retaining this name (mostly animal and plant pathogens) and (2) the genus
Paraburkholderia (environmental bacteria) (Sawana et al., 2014). However, there are debates
about this reclassification (Vandamme et al., 2017). Therefore, we continue to use the original

(Burkholderia) names for our species.

Motility test of Burkholderia isolates

Motility is the ability to move spontaneously and actively. We tested the motility of carried

Burkholderia isolates (N = 6) using swim and swarm plate assays according to procedures
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described earlier (Ha ef al., 2014a; b). For the swim assay, we prepared and used the swim plates
(SM/5 supplemented with 0.3% agar) the same day. For each isolate, we prepared the bacteria by
starting from the frozen clonal isolate and then incubating at room temperature (21°C) until
stationary phase was reached. We then inoculated 10 pL of bacteria suspensions (optical density
2.0) at the center of the plates, stabbing the pipette tip into the agar during inoculation (Ha et al.,
2014a). For the swarm assay, we also prepared and used the swarm (SM/5 supplemented with
0.8% agar) plates the same day. We inoculated 10 pL. of bacteria suspensions (optical density
2.0) at the center of the plates with the pipette tip close to the agar surface during inoculation (Ha
et al., 2014b). We inoculated all plates for 48 hours at 30°C and plates were kept upright and not
inverted. At 48 hours we measured the diameter of the colonial growth. We used non-motile (K.
pneumoniae) and three motile (Burkholderia unamae, Burkholderia tuberum, Burkholderia
silvatlantica) controls (Vandamme et al., 2002; Caballero-Mellado et al., 2004; Perin et al.,

2006). We did three replicates for each strain.
Preparation of supernatants with potential D. discoideum chemoattractants

We prepared D. discoideum supernatants (N = 15) from log-growth amoebas for the chemotaxis
experiment. We prepared log-growth amoebas by plating 2 x 10° spores in 200 pl K. pneumoniae
suspension in starvation buffer (2.25 g KH,PO,4 and 0.67 g K,HPO, per liter H,O) at an OD of
1.5 on SM/5 plates. We have previously determined that spore germination and amoeba log
growth occurs at about 32-36 h after plating (Brock ef al., 2013). When clones reached log-phase
growth, we collected amoebas using ice-cold starvation buffer and centrifuged the collected
amoebas/bacterial suspension at 1,500 g for 3 min to wash the amoebas clean of bacteria. We
washed the pelleted amoebas in an excess volume of ice-cold starvation buffer three to four

times to remove remaining bacteria.
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For the experiment, we placed 10® amoebas in a 15-ml conical tube containing starvation buffer
and we used a New Brunswick C1 Platform Shaker set at speed 25 to gently rotate the amoeba
suspension for 8 h at 21°C. At 8 h, we isolated the supernatant from the amoebas by centrifuging
the amoeba suspension in an Eppendorf Centrifuge 5804 R at 1,500 g for 3 min. We further
isolated the supernatants in an Eppendorf Centrifuge 5804 R at 12,000 g for 30 min at 4°C. We
decanted the supernatant to a fresh, sterile conical tube and placed the tube at 4 °C. We then
filtered the supernatants through a 0.2-mm sterile syringe filter (Millipore) and kept them at 4°C
until experimental set-up. To test if those amoebas were still viable after 8 h, we plated the
amoebas on SM/5 plate to see if they can aggregate and form fruiting bodies. All tested D.

discoideum clones were still able to form fruiting bodies.
Capillary chemotaxis assay for carried Burkholderia

To investigate the chemotactic responses of carried Burkholderia (N = 6) in response to amoeba
supernatants (N = 15), we used a capillary assay described previously (Mazumder ef al., 1999).
We used an Eppendorf tube as a chamber for holding 200 pl of bacterial suspension (OD 2.5) in
starvation buffer. We used a 2-cm 25-gauge needle (Becton Dickinson) as the chemotaxis
capillary and attached it to a 1-mL tuberculin syringe (Becton Dickinson) containing a 100 pl of
amoeba supernatant. After 4 h incubation at room temperature, we removed the needle syringe
from the bacterial suspension and collected the contents. We measured the accumulation of
bacteria in the capillaries using flow cytometry. We diluted the bacterial contents to a final
volume of 1.0 mL. For each assay, we added 1 pL of SYTO® BC bacteria stain (Component A)
and 10 pL of microsphere suspension (Component B) into the diluted bacteria. The mixture was
incubated at room temperature for 10 minutes. We then assayed the colored bacteria in a flow

cytometer equipped with a laser emitting at 488 nm. Fluorescence is collected in the fluorescein



198  channel. The forward scatter and fluorescence were collected with logarithmic signal

199  amplification. We calculated the number of bacteria using the number of microspheres (10° per
200 mlL) as a standard. There are three biological replicates for each experimental unit and each
201  replicate was measured three times. This design resulted in a total of 6 (carried Burkholderia) %
202 16 (amoeba supernatants and blank control) % 3 (biological replicates) x 3 (technical replicates
203  for bacterial counting) = 864 experimental units for the chemotaxis assay. This means there are
204 96 host-Burkholderia combinations, and for each combination there are 3 biological and 3

205 technical replicates. We used the mean of each host-Burkholderia combination for further

206  analysis.
207  Host preferences of Burkholderia

208  Next, we want to know how specific these chemotactic responses are and whether farmer
209  associated Burkholderia would prefer their original farmer hosts. We investigated host
210  preferences at both species and clone levels. We used the same chemotaxis dataset (N=96) for

211 this purpose. However, we analyzed and plotted B. agricola and B. hayleyi separately.

212 To investigate if carried Burkholderia are more attracted to host supernatants than non-carried
213 Burkholderia, we used 3 non-carried Burkholderia species (B. unamae, B. tuberum, and B.
214  silvatlantica) to see if attraction to D. discoideum is specific to the carried species. We used the

215  same capillary assay describes above.
216  Burkholderia — Burkholderia attractions

217  To investigate the potential chemotactic responses of carried Burkholderia (N = 6) in response to
218  their own secretions (N = 6), we used the same capillary assay described above, except that

219  amoeba supernatants were replaced by Burkholderia supernatants. To prepare Burkholderia

10



220  supernatants, we placed 8 ml of bacterial suspension (OD 1.5, 10° cells) in a 15-ml conical tube
221  containing starvation buffer and we used a New Brunswick C1 Platform Shaker set at speed 25
222 to gently rotate the Burkholderia suspension for 8 h at 21°C.We isolated the supernatants in an
223 Eppendorf Centrifuge 5804 R at 12,000 g for 30 min at 4°C. We then filtered the supernatants
224  through a 0.2-mm sterile syringe filter (Millipore) and use them for a modified capillary assay
225  (see above session). This design resulted in a total of 6 (Burkholderia) x 7 (Burkholderia

226  supernatants and blank) x 3 (replicates) = 126 experimental units.
227  Identification of potential attracting molecules using LC-MS/MS

228  We identified the potential attracting molecules in all 15 amoeba supernatants using liquid

229  chromatography-tandem mass spectrometry (LC-MS/MS). We performed LC-MS/MS

230  experiments on the Thermo Dionex UltiMate 3000 HPLC (Waltham, MA) and the Thermo Q
231  Exactive Plus mass spectrometer (Waltham, MA). We centrifuged the samples at 8000 rcf for 3
232 min prior to analysis. We loaded 5 pL from each sample to the Thermo Acclaim Pepmap 100
233 CI18 column (Waltham, MA) by solvent A at 5 uL/min flow rate. After that, samples were eluted
234 by a linear gradient at 500 nL/min and further separated by a homemade column. The column
235  was 100-um-inner-diameter and 12-cm-length silica tubing packed with Magic C18 AQ reversed
236  phase material. The gradient was increased from 98% solvent A and 2% solvent B to 2% A and
237 98% B in 50 min. Solvent A was 0.1% formic acid in water and solvent B was 0.1% formic acid
238  in 80% acetonitrile and 20% water (v:v). The analyte was ionized and introduced into the mass
239  spectrometer by the Thermo Nanospray Flex Ion Source (Waltham, MA) in positive mode. Each
240  amoeba supernatant was run once due to logistic reason, resulting a total of 15 datasets for 15

241  amoeba supernatants.

242 Metabolomics analysis
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Data from LC-MS/MS based untargeted metabolomic experiments are highly complex, therefore
we subjected the results to analysis by XCMS Online (Smith ef al., 2006; Tautenhahn et al.,
2012; Gowda et al., 2014). The data files were converted to mzXML format by MSConvert with
peak picking filter enabled. The parameters were as follows: centWave for feature detection, A
m/z =5 ppm, min peak width = 5 s, max peak width = 40s; obiwarp for retention time correction

with profStep = 1; minfrac = 0.5, bw = 10, and mzwid = 0.025 for chromatographic alignment.

Compounds of interest can sometimes be identified from the differences between two groups
(Gowda et al., 2014). Because the strongest group differences from our capillary assays was
between supernatants from D. discoideum (farmers) carrying Burkholderia versus D. discoideum
not carrying Burkholderia (non-farmers and cured farmers), we performed a two-group
comparison between D. discoideum carrying (six farmers) and not carrying (six cured farmers
and three non-farmers) Burkholderia by processing pairwise jobs at XCMS Online (Gowda et
al., 2014). We selected Mann-Whitney test (with false discovery rate adjusted p-value) for the
two-group comparisons at XCMS Online (Gowda et al., 2014). For the features that are not
identified by MS/MS, we identified them by searching their accurate mass in the METLIN
database. All candidates have a mass differences less than Sppm, which is limited by the
resolution of the mass spectrometer. Adducts such as [M+NH,4]" are included, but restricted to
the specified charge states of the features. For unknown charge states, both +1 and +2 charges

are included.
Statistical analyses

Partner attraction and choice

12
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For chemotaxis experiments, the accumulation of Burkholderia in response to the amoebal
secretions was expressed in terms of a chemotaxis index. Because tested Burkholderia differ
somewhat in their motility (Figure S1), we normalized the chemotaxis index using the motility
data. We calculated the chemotaxis index value as: number of bacteria/motility (diameter of

swimming assay). We performed the experiment as a nested factorial design.

We analyzed the chemotaxis index data with a generalized linear model (GLM) with lognormal
distribution in the Genmod procedure of SAS 9.3 (SAS Institute, Inc.). All blank controls had
zero bacteria, so to simplify the model and eliminate this source of non-normality, we excluded
them from the model. In these analyses, symbiont species (two levels: B. agricola and B.
hayleyi), Host type (five levels: non-farmers, B. agricola farmers, B. hayleyi farmers, cured B.
agricola farmers and cured B. hayleyi farmers) and their interactions were used as fixed factors.
Burkholderia clone and amoeba clone were nested within symbiont species and host type,

respectively. Relevant pairwise comparisons were conducted using Tukey's post hoc tests.

Because we only had three levels of Burkholderia clones and host clones, we didn’t assign them
as random factors in the model (Bolker et al., 2009). However, we did run a separate generalized
linear mixed model (in the Glimmix procedure of SAS 9.3 (SAS Institute, Inc.)) in which they
were included as random factors (nested within symbiont species and host type), and the results

were consistent with our fixed-effects model (Table S2).

A significant symbiont species main effect would indicate chemotactic divergence between the
two Burkholderia species, a significant host type main effect would indicate that different host
types invoke different chemotactic responses, and a significant symbiont species x host type

interaction would indicate that chemotactic responses are affected by both partners.
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Host preferences of Burkholderia

To test host preferences of carried Burkholderia at both species and clone levels, we used the
same chemotaxis dataset (N=90) for this purpose. However, we analyzed and plotted B. agricola
and B. hayleyi separately. Host preference by carried Burkholderia at species level (N = 90) was
analyzed using One-way nested ANOVA, in which Burkholderia clone was nested within source
of supernatant (other species, own species and own species cured). Relevant pairwise
comparisons were conducted using Tukey's post hoc tests. Host preference by Burkholderia at
clone level (N = 90) was analyzed using One-way nested ANOVA, in which Burkholderia clone
was nested within source of supernatant (other host, own host and own host cured). Relevant

pairwise comparisons were conducted using Tukey's post hoc tests.

To investigate host attraction of carried versus non-carried Burkholderia, we used the same
chemotaxis dataset (N=90), as well as an additional dataset from non-carried Burkholderia
(N=27). We compared the chemotaxis index among B. agricola, B. hayleyi and non-carried
Burkholderia using One-way nested ANOVA, in which Burkholderia clone was nested within
symbiont type (B. agricola, B. hayleyi and non-carried Burkholderia). Relevant pairwise

comparisons were conducted using Tukey's post hoc tests.

Chemotaxis index data were log-transformed to improve normality. Because all blank controls
had zero bacteria, they were excluded from the analyses. Transformed data passed the normality

test (Kolmogorov—Smirnov test) and tested for homogeneity of variance (Levene’s test).

Results

Burkholderia motility
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All Burkholderia in symbiosis with D. discoideum are motile but do not have social swarming

motility

Chemoattraction would have little effect unless the carried Burkholderia are motile, so first of all
we want to know if they can move. We tested this by using standard plate-based bacterial
swimming and swarming assays (Ha et al., 2014a; b), with non-motile Klebsiella pneumoniae as
a negative control and three motile Burkholderia (B. unamae (Caballero-Mellado et al., 2004), B.
tuberum (Vandamme et al., 2002) and B. silvatlantica (Perin et al., 2006)) as positive controls.
We found that all six carried Burkholderia clones are motile, though they differ in motility
(movement diameters across the plate ranging from 2.078 to 2.951 cm while non-motile K.
pneumoniae is 0.853 cm, Figure S1). However, there are no significant differences among B.
agricola (B1gs70, B1qs159 and Blnc21), B. hayleyi (B2qs11, B2gs21 and B2nc28), and the
three non-carried Burkholderia species (N =9, F»=0.313, P =0.743), indicating that this is
likely to be an ancestral trait not particularly evolved for symbiosis. In the swarm assay, all nine

tested clones lack swarming ability (Figure S2). So Burkholderia swim but do not do so socially.

Partner attraction and choice

Carried Burkholderia chemotax towards amoeba supernatant and B. hayleyi prefers farmer

Supernatant

To test whether carried Burkholderia are attracted to their amoeba hosts, we used amoeba
supernatant as a stand-in for the actual amoebas to rule out any amoeba action. We used the
supernatants as chemoattractants in a capillary chemotaxis assay. We tested three clones each of
B. agricola and B. hayleyi with supernatants from five host types: B. agricola farmers, B. hayleyi

farmers, non-farmers, cured B. agricola farmers and cured B. hayleyi farmers, using three

15
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different amoeba clones from each. Amoeba supernatants invoked a strong chemotactic response
by the carried Burkholderia (Figure 2), as shown by the accumulation of bacteria in supernatant-
containing syringes while no bacteria were found in the control syringes (containing KK2
buffer). To further investigate what kind of partner attraction exists, we analyzed the dataset

using a generalized linear model.

We found a significant symbiont species x host type interaction (Table 1A), indicating two
Burkholderia species behave differently in response to the five different host types (Figure 2). To
establish the nature of these interactions, we next investigated the potential effects of the
symbionts and hosts in chemotactic responses by host type (Table 1B) and by symbiont species

(Table 1C) respectively.

When analyzed by host type, pairwise comparisons suggest that there was no difference between
B. agricola and B. hayleyi in response to all host types (Table 1B, Figure 2). These results

suggest that both B. agricola and B. hayleyi are equally attracted to amoeba supernatants.

When analyzed by symbiont species, multiple comparisons suggest that different host types
invoke different chemotactic responses (Table 1C, Figure 2). All host types induced equal
responses to B. agricola (Table 1C, Figure 2). However, B. agricola farmers and B. hayleyi
farmers are generally more attractive to B. hayleyi compared to non-farmers (Table 1C, Figure

2).

Removal of Burkholderia from farmer clones decreases chemotactic responses in B. hayleyi

To investigate if the presence of Burkholderia would make any differences to the chemotactic
responses, we removed the Burkholderia from both B. agricola and B. hayleyi farmers. When

Burkholderia were removed from their farmer hosts, these cured farmers induced similar

16



351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

chemotactic responses as non-farmers (Figure 2, Table 1C). B. agricola and B. hayleyi were
equally attracted to non-farmers and cured farmers (Figure 2, Table 1C). In addition, two species
respond differently to curing of hosts (Figure 2, Table 1C). Removal of B. agricola seemed to
have no effect to their chemotactic responses (Figure 2, Table 1C). However, removal of B.
hayleyi decreases the chemotactic responses compared to uncured farmers (Figure 2, Table 1C,

both B. agricola and B. hayleyi farmers).

Taken together, these results suggest that all carried Burkholderia are attracted to D. discoideum
clones from which they were isolated. However, B. hayleyi exhibits specific choice towards the

uncured farmer D. discoideum clones while B. agricola does not.

Host preferences of Burkholderia

Next, we want to know how specific these chemotactic responses are and whether farmer
associated Burkholderia would prefer their original farmer hosts. We investigated host
preferences at three different levels and ask three corresponding questions: 1) Are carried
Burkholderia more attracted to host secretions than non-carried Burkholderia? 2) Are B. agricola
and B. hayleyi Burkholderia more attracted to their own hosts of their species; 3) Is each

Burkholderia clone more attracted to its own host?

Host attraction of carried Burkholderia versus non-carried bacteria

We find strong evidence that chemotactic responses to D. discoideum hosts are relatively specific
to carried Burkholderia. There are significant differences in attraction to D. discoideum among
B. agricola, B. hayleyi and the three non-carried Burkholderia tested (One way nested ANOVA,
F6=29.393, P=0.001). Both B. agricola (pairwise Tukey tests, P < 0.001) and B. hayleyi

(pairwise Tukey tests, P < 0.001) are more attracted to host secretions than are non-carried
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Burkholderia (Figure 3A). All blank controls invoked zero response (no bacteria in both blank
controls, Figure 3A). B. tuberum, which is within the same major clade as the carried
Burkholderia (Estrada-de los Santos et al., 2013; DiSalvo et al., 2015), does not show higher
attraction to D. discoideum compared to non-carried B. unamae (Tukey post hoc test, P =0.198,

Figure S3) and B. silvatlantica (Tukey post hoc test, P = 0.677, Figure S3).

To further investigate how other bacteria respond to amoeba secretions, we performed additional
experiments on 9 strains of 7 different bacterial species (Pseudomonas aeruginosa, Serratia
marcescens, Bacillus subtilus, Staphylococcus aureus, Burkholderia fungorum, Burkholderia
xenovorans, Escherichia coli (536), E. coli (ColF6c), E. coli (IA152)). For logistical reasons, we
only tested them on one amoeba supernatant (QS9). We found that all tested bacterial species
showed some degree of attraction to amoebal secretion (Figure S4), and they differed in their
chemotactic responses (one way ANOVA, P <0.001, Figure S4). However, these attractions are
significantly weaker compared to those of carried symbionts (Figure S5). Carried symbionts
showed significantly higher attraction than non-carried Burkholderia (pairwise Tukey tests, P =
0.018, Figure S5) and other bacterial species (pairwise Tukey tests, P <0.001, Figure S5) to
amoeba secretion, while there is no difference between non-carried Burkholderia and other

bacterial species (pairwise Tukey tests, P = 0.277 Figure S5).

Preference for hosts of the same Burkholderia species

We find no evidence that B. agricola and B. hayleyi are more attracted to hosts of their own
species (Figure 3B). For B. agricola, the one-way ANOVA of chemotaxis index on the measure
of host preference revealed no statistically significant main effect (One way nested ANOVA, F,,

6 =0.690, P =0.523), indicating that no host preference was found in B. agricola for B. agricola
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hosts (Figure 3B). For B. hayleyi, no statistically significant main effect was found either (One

way nested ANOVA, F', 6=1.197 P=0.354).
Host preference of specific clone

At the clone level, the statistical patterns here are exactly the same as in the previous section:
there is no evidence that shows Burkholderia clones are more attracted to their own host (Figure
3C). Again, B. agricola show no host specificity (one way nested ANOVA, F, ¢=0.182, P=
0.835, Figure 3C). B. hayleyi also have no statistically significant main effect (One way nested

ANOVA, F, ¢=0.897 P=0.430).
Contribution of Burkholderia — Burkholderia attractions to overall chemotactic responses

As farmer clones are carrying Burkholderia throughout our experimental procedure (except in
the cured treatments), it is possible that these carried Burkholderia may also secrete attractive
compounds into the amoeba supernatants being tested. Therefore, our overall chemotactic
responses could be affected by the Burkholderia — Burkholderia attractions. To test this, we
performed an additional experiment to test the attractiveness of Burkholderia secretions. We
prepared Burkholderia supernatants from equal (or slightly higher) number of Burkholderia (10°
cells) as in the amoeba supernatant experiment (versus 10° amoeba cells, and each amoeba has 2

— 10 Burkholderia bacteria inside, L. Shu, personal observations).

Overall, Burkholderia supernatants invoked a very minor chemotactic response (chemotaxis
index: 235.51 £ 43.98, mean £ S.E.), which is less than 1% compared to that of amoeba
supernatants (chemotaxis index: 40247.31 + 1709.207, mean + S.E.) by the carried Burkholderia
(Figure 2 and Figure 4). A Mann-Whitney U test indicated that amoeba supernatants were

statistically significantly more attractive to carried Burkholderia than the Burkholderia
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supernatants (Namoera = 6, Nwrkhotderia = 6, U = 0.000, P = 0.002). Taken together, these data
suggest that the global chemotactic responses are unlikely to be strongly affected by the

Burkholderia — Burkholderia attractions.

Within the Burkholderia — Burkholderia attraction experiment, most Burkholderia supernatants
actually invoked zero chemotactic response (Figure 4). Interestingly, most of the chemotaxis
response happened in one specific B. agricola clone, B1gqs70 (Figure 4). Clone B1gs70 both
attracted most other clones and was attracted to most other clones. However, it is not clear why

this clone shows a different pattern.

Composition of the attractive supernatant

Global analysis of extracellular metabolites

To begin to identify potential chemoattractants and to look for chemical differences that might
explain the patterns shown above, we explored the extracellular metabolites of each D.

discoideum clone using an untargeted metabolomics approach. We found both qualitative and
quantitative variations in base peak intensity of chromatograms across different D. discoideum

clones (Figure 5A).

To investigate the global pattern of D. discoideum supernatants, we further identified the
metabolites using HPLC-MS/MS and analyzed the dataset using XCMS Online (Tautenhahn et
al., 2012; Gowda et al., 2014). XCMS is a widely used, cloud-based platform designed to
process untargeted metabolomics data (Smith et al., 2006; Tautenhahn et al., 2012; Huan et al.,
2017). Overall, a large number of features was identified in each clone, ranging from 16214 to
22431 (Figure 5B). To visualize the level of similarity of individual D. discoideum clones, we

analyzed the dataset using a non-metric multidimensional scaling (Figure 5C). Farmers (blue
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dots) and non-farmers (black dots) are generally clustered together. However, cured farmers (red
dots) are scattered and distinct, with one exception, from both farmers and non-farmers (Figure
5C). Interestingly, based on the chemotaxis experiment, non-farmers and cured farmers are
equally attractive to both species of Burkholderia, even though they actually differ widely in
their metabolomics compositions. In addition, we found considerable variation within cured
farmers. These results suggest that cured farmers are not as similar to non-farmers as we
expected, and the presence of Burkholderia makes a big difference to the metabolomics profiles

of D. discoideum hosts.

Identification of potential chemoattractants

Compounds of interest can sometimes be identified from the differences between two groups
(Gowda et al., 2014). The strongest group difference from our capillary assays was between
supernatants from D. discoideum (farmers) carrying Burkholderia versus D. discoideum not
carrying Burkholderia (non-farmers and cured farmers). This approach might identify
compounds that were specific to farmers or it might identify compounds that were generally

important in attracting Burkholderia, but present more in farmers.

We therefore performed a group comparison of metabolites between farmers and non-
farmers/cured farmers. We identified 155 features that were altered with fold changes greater
than 2 and p-values less than 0.01 (Figure 6A). Of these, 52 features have higher abundances in

farmer groups (Figure 5), so these are candidate chemoattractants to B. hayleyi.

One potential caveat of the XCMS approach is its false positive features. To investigate this we
validated these 52 features by manually checking the extracted ion chromatogram at XCMS

Online and removing the ones with low signal to noise ratio. Furthermore, we found that the
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461  isotopic peaks of the same compound could be identified as individual features. Therefore, we
462  checked the isotopic pattern of each feature on their mass spectra in raw data and reassigned the
463  monoisotopic peak as the m/z value. We finally identified 18 features that are candidates of

464  attractants to B. hayleyi (Table 2).

465  Among those 18 features, 12 were isolated by the mass spectrometer to generate fragment ion
466  spectra. MS/MS data of the other 6 features were not obtained due to their low abundance and
467  the limited capability of the mass spectrometer. We tried to identify those 12 features by

468  carefully examining their fragment ion spectra. First, we compared the m/z difference between
469  major peaks against residue mass of the 20 amino acids to distinguish peptides from other

470  metabolites. Incomplete peptide sequences are proposed by following series of b and y ions on
471  the spectra. Because we can’t distinguish between b and y ions, the reverse of the sequences
472 shown in Table 2 may also be possible. Interestingly, all 6 peptides we found are proline-rich
473  peptides. Two sets of peptides, m/z = 657.6403 and 663.3154, m/z = 670.2897 and 675.2771,
474  have almost identical fragment ions. They could be peptides with the same sequence but

475  different modifications or adducts. All peptide sequences were blasted against non-redundant
476  protein sequences for D. discoideum and Burkholderia using BLASTP (Altschul et al., 1997).
477  All peptides yielded perfect hits in the D. discoideum database, but none of them did in

478  Burkholderia, indicating these peptides are from amoebas rather than Burkholderia. Top hits are

479  selected and shown in Table 2.

480  After identification of peptides, we submitted the MS/MS results of the remaining 6 metabolites
481  to MassBank (Horai ef al., 2010), mzCloud (mzcloud.org), HMDB (Wishart et al., 2013) and
482  METLIN (Smith et al., 2005) for spectra matching. However, we were unable to match fragment

483  ion spectra of most of the metabolites. They could be new metabolites or ones in the database
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without MS/MS information. Their exact mass and assigning MS/MS peaks are listed in Table 2.
We identified one feature (m/z = 251.1633) as 3,5-di-tert-butyl-4-hydroxybenzoic acid with high
confidence. 3,5-di-tert-butyl-4-hydroxybenzoic acid (C;5H2,03) is a carboxylic acid. We are not
able to find any related literatures on its biological function. However, some evidence links it to

another chemical butylated hydroxytoluene (BHT), which is an artificial antioxidant agent.

For the features that are not identified by MS/MS, we found 2 - 158 candidates for each feature
by searching their accurate mass in the METLIN database (Supplementary Information 2). All
candidates have a mass difference less than Sppm, which is limited by the resolution of the mass
spectrometer. Due to structure variation and limitation of the database, we are unable to
determine the exact structures of those features. However, the compound has an m/z=168.5831 is

likely to be a tripeptide and the compound of 496.3019 can be a lipid molecule.

Discussion

This study has identified mechanisms for forming and maintaining Dictyostelium — Burkholderia
symbioses. We show that partner finding plays a significant role in this mutualistic associations
of microbial systems. Out study suggests that active partner finding by bacteria is an important
feature not just in mutualisms with animals and plants, but also with protists. Our study also
highlights that chemotaxis is an important modality of partner finding, just like visual, olfactory

and auditory cues are in other cooperative interactions such as mating choice or pollination.

We can now reject the hypothesis that initiation of associations is no more complex than the
haphazard ingestion of Burkholderia by amoebas. We can also reject the hypothesis that the
attraction to Dictyostelium is a trait of Burkholderia in general. The genus Burkholderia belongs

to the class B-Proteobacteria and is widely distributed in the environment. They are abundant in
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soil and they can be associated with a wide range of plants (Elliott et al., 2009), invertebrates
(Kikuchi et al., 2005; Garcia et al., 2014) and fungi (Stopnisek et al., 2016). The two species of
carried Burkholderia are more attracted to amoeba secretions than are the non-carried
Burkholderia species we tested. This shows that the association of these two Burkholderia
species with D. discoideum is not a random or accidental infection process. Instead, the
association is sought out specifically by those Burkholderia that live inside D. discodeum,
strongly suggesting that this chemotaxis is a partner-finding adaptation. Other non-carried
bacterial species did show a very small amount of attraction to Dictyostelium supernatants,
suggesting that the partner-finding adaptation is likely evolved from a more generalized

response.

However, we did not find much evidence for carried Burkholderia making specialized choices
among hosts. One exception is that the B. hayleyi, but not the B. agricola, prefers farmer clones
over non-farmer and cured farmer clones. Why they would be attracted specifically to infected
hosts is uncertain but this evidence might suggest that B. hayleyi is more co-evolved with
amoeba farmers perhaps because of a longer history of co-evolution with D. discoideum than B.
agricola in nature. To validate this hypothesis, further comparative studies between these two
species are needed. However, co-evolution with respect to attraction does not appear to be very
specific. Burkholderia clones are not specifically attracted to their own particular host clone, nor
to other hosts of their own species. This suggests that host clone switching or horizontal
transmission may occur often enough to prevent the more specific co-evolution that can occur
under strict vertical transmission. Though these bacteria are endosymbionts that live inside the

host (DiSalvo et al., 2015), they are apparently not obligate endosymbionts. They can still grow
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independently of their hosts in the lab, and their retention of motility suggests that they also do

SO 1n nature.

This kind of chemotaxis mediated partner finding mechanism has only been reported in the
interactions between bacteria and their multicellular eukaryotic hosts (Sood, 2003; Nyholm and
McFall-Ngai, 2004b; Butler and Camilli, 2005; Nilsson et al., 2006; Haq et al., 2014; Tout et al.,
2015; Stopnisek et al., 2016). For instance, in the rhizobia-legume system free-living rhizobia
are attracted to the environment around legume root hairs through chemotaxis (Pandya et al.,
1999; Wadhams and Armitage, 2004; Kiers and Denison, 2008). In another model symbiosis, the
squid-vibrio system, the marine bacterium V. fischeri uses chemotaxis to move towards and
colonize the squid (E. scolopes) light organs (Nyholm and McFall-Ngai, 2004b). Our study
shows that bacteria can use the same partner finding mechanism to interact with unicellular
eukaryotic hosts and suggests that bacterial chemotaxis is a general feature of eukaryotic host-

bacterial symbioses.

We used metabolomics to try to identify candidate chemoattractant compounds, exploiting
differences between farmers versus non-farmers and cured farmers. For our short list of
candidates that passed quality controls, six did not yield useful MS/MS data. Among the
remaining twelve were six proline-rich peptides. The rest failed to generate hits in the databases,
with the exception of 3,5-di-tert-butyl-4-hydroxybenzoic acid. Previous studies suggest that 3,5-
di-tert-butyl-4-hydroxybenzoic acid is involved in the metabolic pathway of (BHT) in rat and
human (Daniel ef al., 1968; Yamamoto ef al., 1991). In addition, some phytoplankton, including
the green algae Botryococcus braunii and three different cyanobacteria (Cylindrospermopsis
raciborskii, Microcystis aeruginosa and Oscillatoria sp.) are capable of producing BHT, which

may link to the reactive oxygen species (ROS) production in these species (Babu and Wu, 2008;
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Dey et al., 2016). However, this compound seems unlikely to be of biological origin and could
simply be a breakdown product of the preservative BHT (Jon Clardy, pres. comm.). Among the
rest of unknown features, additional identification by searching their accurate mass in the
METLIN database suggests that the compound has an m/z=168.5831 is likely to be a tripeptide
and the compound of 496.3019 can be a lipid molecule (Supplementary Information 2). These
results indicate that attraction of the symbionts is likely related to various metabolism processes.
However, finding the exact chemoattractants is going to require additional work. Metabolites
from amoebae are produced in extremely low quantities, which makes it virtually impossible to
do a full structure elucidation via NMR (Barnett and Stallforth, 2017). Due to these difficulties, it
is likely that natural products from the social amoebae have to be discovered through

heterologous expression of the respective gene clusters (Barnett and Stallforth, 2017).

Our study also has some implications for human disease and health. Amoebas have served as
model systems for studying ecology, evolution and biology of pathogenic bacteria (Horn and
Wagner, 2004; Hoffmann et al., 2014; Tosetti et al., 2014). D. discoideum cells are professional
phagocytes, and the core function of the innate immune response is evolutionarily conserved
between amoebas and human professional phagocytic cells (Kessin, 2001). Our study shows that
bacteria can actively move towards phagocytic cells. This is quite interesting because generally
bacteria are thought to evade phagocytic killing rather than running into it (Casadevall, 2008).
However, given that amoebas have interacted with bacteria for a long time, even before animals
appeared (McFall-Ngai et al., 2013; Strassmann and Shu, 2017), it is not surprising that some
bacteria have evolved mechanisms that specifically target and exploit phagocytic cells and this

could affect how these bacteria interact with our immune systems.
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Future research should address the reverse question, whether Dictyostelium is particularly
attracted to B. hayleyi and B. agricola. The fitness consequences to the host are context
dependent and sometimes negative; it is costly to carry Burkholderia in circumstances (high
food) where the farming trait is unnecessary (Brock et al., 2011). If the amoebas are attracted by
these Burkholderia it would suggest that the relationship is a net beneficial one; if they are
repelled, it would suggest the opposite. Future research should also address the genetic basis of
these interactions, given that several chemotaxis related genes have been identified in related

species (Kim et al., 2007; Kumar et al., 2013; Angus et al., 2014).
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Shu et al. Figure legends

Figure 1. Schematic flow chart of experimental design. The experiment explores if different
groups of Burkholderia are able to preferentially find and choose their wild D. discoideum
partners with a chemotaxis assay. The Burkholderia phylogeny shows two distinct species of
symbionts, B. hayleyi and B. agricola (DiSalvo et al., 2015), with the position of B. tuberum
strongly supported by subsequent analyses (T. Hasselkorn, pers. comm.). We used amoeba
supernatants as chemoattractants and counted the number of bacteria in the syringe using flow
cytometry. We further analyzed the amoeba supernatants using a metabolomics approach. We
identified the potential attracting molecules using liquid chromatography/mass spectrometry

(LC-MS/MS).

Figure 2. Both species of farmer-associated Burkholderia isolates are attracted to amoeba
secretions. The figure represents combined boxplot/violin plot diagram. Because all blank
controls are zero, they are excluded from the figure (violin plot cannot be created). Results show
D. discoideum supernatants invoked a strong chemotactic response by the carried Burkholderia,
and that chemotaxis responses are affected by both partners. Significant differences in
chemotactic responses are indicated by different letters, which reflect results of a post hoc
Tukey’s HSD test (Table 1). Letters apply both within and between panels (letters are the same).

However, comparison between the two panels is in a pairwise pattern (vertical columns).

Figure 3. Carried Burkholderia are more attracted to D. discoideum secretions than are
non-carried Burkholderia, but they do not prefer hosts of their own clones or species. To

investigate how specific these chemotactic responses are and whether carried Burkholderia
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would prefer their original hosts, we studied host preferences at three different levels. The figure
shows mean + SEs of chemotactic responses. A) Carried Burkholderia were more attracted to D.
discoideum secretions (from all clones) than non-carried Burkholderia. B) B. hayleyi and B.
agricola did not prefer hosts of their own species. C) Each Burkholderia clone did not prefer its
own host clone. Significant differences in chemotactic responses are indicated by different
letters, which represent results of one-way nested ANOVA test and followed by a post hoc
Tukey’s honestly significantly different (HSD) test. Letters apply within panel A, B and C. For

panel B and C, letters apply within B. hayleyi and B. agricola.

Figure 4. Only clone B. agricola B1qs70 shows much Burkholderia- Burkholderia. The figure
represents a heat map of the chemotactic responses using Burkholderia supernatant or a blank
control. The chemotactic responses of the carried Burkholderia are indicated by varying color
intensities according to the legend at the top of the figure. The Y-axis represents Burkholderia
supernatants and the X-axis represents each Burkholderia clone. The color key represents the

value of the chemotaxis index.

Figure 5. Metabolomics analysis of extracellular metabolites in supernatant of D.
discoideum. Tested clones are identified by QS or NC numbers, with a trailing “C” indicating
that the clone was cured of its symbiont. A) HPLC-MS analysis of D. discoideum extracellular
metabolites. Base peak ion (BPI) chromatograms obtained from the 15 D. discoideum clones are
shown. The Y-axis represents relative abundance and the X-axis represents retention time. B)
Heat map of all identified extracellular metabolites from 15 D. discoideum clones. The
abundance of each metabolite is indicated by varying color intensities according to the legend at
the top of the figure. The color key represents the Z score, the deviation from the mean by

standard deviation units. C) Non-Metric multidimensional scaling analysis to show the similarity
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of extracellular metabolites from 15 D. discoideum clones. Colors indicate different D.

discoideum. Blue, farmer clones. Black, non-farmer clones. Red, cured farmer clones.

Figure 6. Group comparison to identify farmer specific molecules. Cloud plot of differences
between farmers and non-farmers plus cured farmer of 155 features with p-value <0.01 and fold
change > 2. The y coordinate of each feature corresponds to the mass-to-charge ratio of the
compound as determined by mass spectrometry. Features whose intensity is increased in farmers
are shown on the top plot in green, whereas features whose intensity is decreased in farmers are
shown on the bottom plot in Red. The diameter of each bubble corresponds to the log fold
change of the feature: the larger the bubble, the larger the fold change. The intensity of the
feature’s color represents the statistical significance of the fold change, where features with low

p-values are brighter compared to features with high p-values.
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