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Abstract—This paper proposes a methodology to monitor and
control gene regulatory networks (GRNs) via noisy measurements
in an infinite observation space. Towards this end, we employ the
partially-observed Boolean dynamical systems (POBDS) signal
model. The proposed methodology consists of offline and online
steps. In the offline step, a family of point-based methods is
applied to the POBDS model to gather the necessary control
policy prior to the online (execution) step. This is accomplished
by developing efficient backup and belief expansion processes to
make the computation scale with the log of the number of states,
as opposed to the complexity of existing point-based methods,
which grows with the number of states. In the online step,
simultaneous monitoring and control is achieved by a one-step
look-ahead search procedure using the optimal state estimation
algorithm for the POBDS model, known as the Boolean Kalman
Filter (BKF), as well as the information gathered in the offline
step. The online one-step look-ahead process confers robustness to
changes in system dynamics, possibility of starting the execution
process before the completion of the offline step. The use of the
BKF for simultaneous monitoring and control during the online
stage can be key in assessing possible side effects of intervention.
The performance of the proposed methodology is investigated
through a comprehensive set of numerical experiments using
synthetic gene expression data generated from a melanoma gene
regulatory network.

Index Terms—Infinite-Horizon Control, Gene Regulatory Net-
works, Partially-Observed Boolean Dynamical Systems, Point-
Based Methods, Boolean Kalman Filter.

I. INTRODUCTION

A key purpose of control of gene regulatory networks
(GRNs) is to derive intervention strategies to avoid unde-
sirable states, such as those associated with disease. GRNs
play a crucial role in every process of life, including cell
differentiation, metabolism, the cell cycle and signal trans-
duction [1]]. It is often the case that the transcriptional state
of each gene is represented by O (OFF) or 1 (ON), and
the relationship among genes is described by logical gates
updated at discrete time intervals [2], i.e., through a Boolean
dynamical system. These models were first introduced as a
completely-observable, deterministic model by Kauffman and
collaborators [3]]. Several other models have been introduced
in the literature to mathematically capture the behavior of
gene regulatory networks. These models include probabilistic
Boolean network (PBN) [4], Bayesian networks [5]], and
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Boolean control networks [6]]. Several intervention strategies
were also developed for control of GRNs (e.g. [7]-[9]).

All aforementioned methods assume that the Boolean states
of the system are directly observable. But, in practice, this
is never the case. Modern transcriptional studies are based on
technologies that produce noisy indirect measurements of gene
activity, such as cDNA microarrays [10], RNA-seq [11], and
cell imaging-based assays [[12f]. Thus, the goal of this paper is
to obtain intervention strategies for gene regulatory networks
observed through noisy gene expression measurements to
beneficially alter network dynamics (e.g shifting the steady-
state mass from undesirable cell transcriptional states, such as
cell proliferation states that may be associated with cancer [7],
to desirable states).

Toward this end, we employ the partially-observed Boolean
dynamical system (POBDS) signal model [13]], [[14]. This
signal model is capable of addressing noisy observations as
well as incomplete measurements (e.g., some of the genes
in a pathway or gene network are not monitored). In the
POBDS model, there are two layers or processes: the Boolean
dynamical system, which is the hidden state process, while the
observation layer models the actual data that are available to
the researcher. Several tools for POBDSs have been developed
in recent years, such as the optimal filter and smoother
based on the minimum mean square error (MMSE) criterion
— as opposed to the maximum-a-posteriori (MAP) criterion
usually employed with finite state spaces — called the Boolean
Kalman Filter (BKF) [[13]], [[15] and Boolean Kalman Smoother
(BKS) [16]], respectively. In addition, particle filtering imple-
mentations of these filters, as well as schemes for simultaneous
state and parameter estimation for POBDS were introduced in
(L3]I, [14].

In [17], [18]], a state feedback controller for POBDSs was
proposed based on optimal infinite horizon control of the
Boolean state process, with the Boolean Kalman filter as state
observer. This method, which is called V_BKEF in this paper,
has similarities to the Q_MDP method introduced in [19] for
the general state space model, in which the control policy is
not obtained in the belief space. Although this type of con-
troller can be effective in some domains, the obtained policies
by these methods do not take informed control action and
might perform poorly in domains where repeated information
gathering is necessary [20]-[23]].

The methodology proposed in this paper is based on point-
based techniques [23]. With the advent of powerful com-
putation, point-based methods were developed to find the



approximate solution for partially-observed Markov decision
processes (POMDPs) [24]]. Several variations of these methods
have been developed recently [20], [25]-[28]. A basic point-
based method for POBDS with finite observation space was
introduced in [29]. Most existing point-based techniques are
designed to find control strategies for systems with finite
observation spaces. Despite several attempts to adapt these
techniques to systems with infinite or large observation spaces,
the very large computational complexity required effectively
prevents their application in real practical problems.

The proposed approach addresses these issues by developing
efficient backup and belief expansion processes, two key
elements in the family of point-based methods, which exploit
the Boolean vectorial structure of the state space and the gene
expression measurement model so that computation scales
with the log of the number of states (more on this below).
While the proposed backup and expansion processes allow
adaptation of any point-based method, we adopt two specific
point-based methods, PBVI [23]] and Perseus [20]], to gather
necessary information in the belief space before starting execu-
tion. Using information from this offline or planning stage, an
online controller is proposed, which combines a one-step look-
ahead search process and the Boolean Kalman Filter for both
monitoring and decision making purposes during the execution
process. Our numerical results indicate that the proposed
Perseus-POBDS and PBVI-POBDS methods both display a
smaller cost per step than the competing Q_MDP and V_BKF
methods. In addition, as the belief set size increases, the cost
per step achieved by the proposed algorithms approaches the
optimal cost of an ideal controller that has direct access to the
system states.

The main contributions of this paper can be summarized as
follows:

1) The proposed offline controller takes advantage of two
main features of the problem at hand, namely, the
Boolean vectorial structure of the state process and the
conditional independence of the gene-expression mea-
surements, to derive efficient backup and belief expan-
sion processes that scale with the log of the number of
states, allowing the application of the proposed method
to practical systems. The complexity of existing point-
based methods for infinite observation spaces scale with
the number of states, making them applicable only to
very small systems. For example, with 7 genes, as in
the Melanoma GRN example used in the numerical
experiments of Section VII, the proposed methodology
samples from a 7-dimensional Gaussian distribution,
while existing methods would sample from a Gaussian
distribution in a space of 27 = 128 dimensions.

2) The proposed online controller method uses the policy
computed by the offline controller as well as a one-step
look-ahead search method for decision making process.
The main advantages of the proposed online controller
are the robustness in the presence of slight changes
in the system’s dynamics, possibility of starting the
execution process before the completion of the offline
step, improving the accuracy of the offline controller’s
policy, and ability of prescribing the proper control input

in real-time.

3) The proposed method is able to monitor and control
simultaneously the GRN during the online stage. This
can be crucial in assessing possible side effects of
control (e.g. in drug intervention), as well as capturing
possible changes in the dynamics of the system. This
is achieved by incorporating the optimal MMSE state
estimator, namely, the Boolean Kalman filter (BKF), into
the online controller process.

The article is organized as follows. In Section |lI} the POBDS
model is reviewed. Then, the infinite-horizon control problem
is formulated in Section In Section key components of
our point-based methods for POBDS are developed, followed
by the proposed offline and online controllers in Section
The simultaneous monitoring and control methodology is dis-
cussed in Section Results of a numerical experiment using
a melanoma gene regulatory network observed through syn-
thetic gene expression time series are reported and discussed
in Section Finally, Section contains concluding
remarks.

II. POBDS MODEL

In this section, the POBDS model is briefly introduced. It
consists of a state model that describes the evolution of the
Boolean dynamical system, which includes the system input,
and an observation model that relates the state to the system
output (measurements). More details can be found in [13],
[15].

A. POBDS State Model

Assume that the system is described by a state process
{Xy;k=0,1,...}, where X, € {0, 1} represents the activa-
tion/inactivation state of the genes at time k. The state of genes
is affected by a sequence of control inputs {uy; k =0,1,...},
where uy, takes values in a finite set U and represents a
purposeful control input into the system state. The states are
assumed to be updated at each discrete time through the
following nonlinear signal model:

Xp = f(Xp—1,u5-1) & ny, (D

fork =1,2,..., where f : {0,1}¢xU — {0,1} is a Boolean
function, called the network function, ny, € {0, 1}d is Boolean
transition noise, and “®” indicates componentwise modulo-2
addition. The process noise {ng;k = 1,2,...} is assumed
to be “white” in the sense that the noise values at distinct
time points are independent. It is also assumed that the noise
process is independent from the initial state X,.

Let (x!,...,x2") be an arbitrary enumeration of the possi-
ble state vectors. The controlled transition matrix of the state
process {Xy;k =0,1,...} will be required later:

(Mg(n));j = P(Xp =x' | Xp_1 =%/, up_; = u)

= P(n; = f(x/,u)®x’) , @)

foreachuec Uandi,j=1,...,2%



B. POBDS Observation Model

In this paper, we assume a POBDS observation model
that corresponds to Gaussian gene expression measurements
at each time point. This is an appropriate model for many
important gene-expression measurement technologies, such
as ¢cDNA microarrays [10] and live cell imaging-based as-
says [12]], in which gene expression measurements are contin-
uous and unimodal (within a single population of interest).

Let Yi = (Yr(1),...,Yx(d)) be a vector containing the
measurement at time k, for k = 1,2, ... The component Y(j)
is the abundance measurement corresponding to transcript j,

for y =1,...,d. We assume conditional independence of the
transcript counts given the state:
p(Yr =y | X} =x)
- 3)
= [[p(Yk() = y() | Xi(4) = x(5)),
j=1
and adopt the Gaussian model:
p(Yr(5) =y(d) | Xi(5) = x(4))
1 ) — ;)?
_ exp <_ (y(4) 2#;) ) G
2770? 20;
where p; and o; > 0 are the mean and standard deviation of
abundance of transcript j, respectively, for j =1,...,d.

According to the Boolean state model, there are two possible
states for the abundance of transcript j: high, if x(j) =1, and
low, if x(j) = 0. We thus model the parameters p; and o, as:

pi = py (1=x(j) + pjx(j),

o) = o (1—x(3)) + ot x(j). ®

where the parameters (u},09 > 0) and (pj,0; > 0) are the
means and standard deviations of the abundance of transcript
7 in the inactivated and activated states, respectively.

Based on equations @) and (3), the update matrix is a
diagonal matrix with diagonal elements given by:

(Tk( ))ii =P (Yk =Yy | Xy = Xi)
1
j=1 \/271' ;) (1 —xi(y)) + o; Xl(j))Q
[~ (y() = 1901 = x'(4)) — 1} (J)))
: p( Z]_l 2 (09(1 - xi(j)) + o}xi(5)) 7

(6)
for i = 1,...,2% Typical values for all parameters are given
in Section In practice, these values (e.g. the means or
standard deviations of the abundance of transcripts) might
not be fully-known. In that case, one can apply a maximum-
likelihood adaptive filter for POBDS [13]], [14] to the available
data sequence, prior to application of the proposed method, to
estimate these parameters.

IITI. INFINITE-HORIZON CONTROL

In this section, the infinite-horizon control problem for
the POBDS model is formulated. Our goal is to select the

appropriate external input u, € U at each time k to make the
network spend the least amount of time, on average, in unde-
sirable states (e.g., states corresponding to cell proliferation,
which may be associated with cancer [33]]).

We will assume that the system prediction matrix My (u)
and update matrix T (y) can only depend on time through the
control input u € U and measurement y € R, respectively.
We will thus drop the index k and write simply M (u) and
T(y).

Since the state of the system is not observed directly, all
that is available for decision making at each time step are the
observations up to the current time y1.5x = (y1,...,y%), and
the control inputs applied to the system at the previous times
Up.x—1 = (uy,...,ux_1). Rather than storing the history
of observations and control inputs, we record the probability
of the state given that information at each time step. This
probability distribution is known as the belief state at time k,

bi(i) = P(Xy =x" | y1.6, Uo:k—1) , (7

for i = 1,...,2% The initial belief state is simply the initial
state distribution, bg(i) = P(XO =x'), fori = 1,...,2%
Since 0 < b(¢) < 1 and Z 1 b(i) = 1, a belief vector by, is
a point in a (24 —1)- d1mens1ona1 simplex B, called the belief
space.

If b is the current belief state of the system, a control input
u is applied, and observation y is made, the new belief can
be obtained by using Bayes’ rule as:

T(y)M(u)b
bu Y (y) (u) , (8)
~ IT(y) M(u) bl
where || - ||; denotes the Li-norm of a vector. Thus, by using

the concept of belief state, a POBDS can be transformed
into a Markov decision process (MDP) with state transition
probability given by:

p(b’ | b,u) = / IT(y) M(u) by Iy =buy dy, (9)
yER?

where I/ —puy equals 1 if b’ = b"™¥ and 0 otherwise.

Now, let ¢(x%,u) be a bounded cost of control for state x*
and control input u, for i = 1,...,2% and u € U. Collect
all these costs in a vector g(u) = [c(x!,u) ... ¢(x2*,u)]”
of size 2%. The costs can be transformed to belief space as
follows:

2d
g(b,u) = Zc(xi,u)b(z) = g(uw)’b (10)
i=1
The goal of infinite-horizon control is to minimize
Joo = E|> 7" g(br,ux) bo] : (11)
k=1

where bg is the known initial belief state, and the discount
factor v places a premium on minimizing the costs of early
interventions as opposed to later ones, which is sensible from
a medical perspective [8]]. The classical results proved in [34]]
for MDPs can be used here. For an infinite-horizon control



problem with discount factor ~y, the Bellman operator for the
belief space B can be written as follows:

T(J)(b) = min [ga,,u) o

:mm{guﬁb+v/

uecl ye

p(b" | b,u) J(b') db’]
'eB

I7(y)M(wbl), J<b“vY>dy} .
Rd

(12)
However, since the belief b is in the (2% — 1)-dimensional
simplex B, computing the Bellman operator in (I12) for all
belief points is not possible.

It has been shown in [35] that, under minimal regularity
conditions, the cost function can be modeled by the lower
envelope of a finite set of linear functions. These linear
functions are described by a-vectors (row vectors). Given the
set A of all a-vectors, the cost function for a given belief
point b can be obtained as:

J(b) = min ab, (13)

acA
where the multiplication of each a-vector (row vector) and b
(vertical vector) results in a scalar which is the expected cost
for a given belief point.

Fig. |l| represents the partitions created by three c-vectors
over continuous belief space for a system with only two states
(d = 1). The solid line shows the approximate cost over belief
space in this case. The regions over which each a-vector
dominates are also specified in Fig. [I]

Cost Function (J(b))

0 0.2 0.4 0.6 0.8 1
Belief (b(1))

Fig. 1: a-vectors in belief space of a system with two states
(d=1).

The idea is to perform “backup” over the a-vectors instead
of the Bellman operator in for computation of the optimal
policy. Exact value iteration [36] achieves this exactly. How-
ever, exponential growth of the a-vectors limits application
of this method to only toy examples with few states and
measurements. In the next section, an approximate solution
for computing the Bellman operator in equation (I2)) using
the point-based technique will be discussed.

IV. POINT-BASED TECHNIQUE FOR POBDS

Point-based techniques were developed to approximate the
optimal cost function based on a finite number of points in

an infinite belief space [20], [23]], [25]-[27]. Consider the
following simplification of equation (12):

T[J](b)

g(u)’b

= min
uclU

g PR (minabu’y) dy}
yERd ac

= min

T
min g(u)' b

' . T(y) M(u)b
”/yeRUT(”M(“)b”l <51é?“||T<y>M<u>b||1>dy]

= min _g(U)T b+ /yeRd min o T'(y) M(u) b dy]

— 3 T
= g letw)

—1—7/ argmin  aT(y)M(u)bdy|b.
yERI aT(y)M (u):a€A

(14
One can now write a compact backup operation that generates
a new «-vector for a specific belief b as follows:

backup(A,b) = argmin aupb, (15)

ay,p:ucl
where
_ T
Qyb = g(u)
argmin (16)

Jr’y/ aT(y)M(u)bdy.
yeR? aT(y)M (u):ax€A

The idea behind most point-based methods is to select a finite
set of beliefs and approximate the optimal cost function by
performing the backup operator on this finite set. In the follow-
ing sections, two key ingredients of all point-based methods,
which are the computation of backup operator in (I5)—(16)
and the selection of a finite subset of belief points from set B,
are developed for the POBDS model.

A. Backup Operator

Point-based methods were mostly designed to deal with
finite observation spaces; however, we are dealing with mea-
surements in an uncountably infinite space (y € R?). The
usual approach to address that is to quantize the observation
space into a finite set. However, that may introduce a large de-
gree of error in the decision making task. Instead, we employ
a sampling-based dynamical partitioning of the observation
space for backup computation, which is described next.

From (I6), one can see that for given b € B and u € U,
the integrand can only assume |A| values over the observation
space. Hence, the observation space can be partitioned at most
into |A| equivalent parts, and one can replace the integral in
equation by a summation:

aup = 9w +7 Y aF(YQ") M(u),
acA

a7)

where

Yo = {y eR?

argmin o’ T(y) M(u)b = Ot} , (18)
a’eN



and F(Y5") is a diagonal matrix defined by:

b,u _ B
(F(Ya ))” /erg,u(T(y))“ dy,

fori=1,...,2%
Partitioning of measurement space in (I7) can be obtained
by computing the partition boundaries:

{y € R? | @ T(y) M(u) b — a,, T(y) M(u) b = 0},
(20
for all distinct @, &, € A. However, finding a closed form
analytical solution for (20) is not feasible.

In this paper, we use Monte Carlo sampling to approximate
the computation in (I7)—(T9). This approximation is performed
by drawing from a proposal distribution P(y | b,u) and
approximating Y2 and F(Y5"), for a € A.

Assuming Gaussian proposal distributions, let

19)

o ~ N (o] Dingl(0)?, - (07)
yij ~N ([, ug)" Diag[(o1)?, ..., (03)%]") |
for j = 1,..., N,, where the parameters (19,07 > 0) and
(,u;,ajl- > 0) are the means and standard deviations of the

abundance of transcript j in the inactivated and activated
states, respectively, which are assumed to be known (c.f. @).
Given an input u € U, we define

¥ = o, (la—AM(u)b) + y1; e (AM(u)b), (22)

for j = 1,..., Ns, where 14 is the vector of size d with all
element equal to 1, “e” denotes componentwise multiplication
of vectors, and A = [x!,... 7x2d] is a d x 2% matrix containing
all Boolean states of the system.

Next the set {y% }é\f:sl is partitioned into |A| subsets

YoU = {5’j

for « € A. Then one need to approximate F(YZ2Y)
in equation , for @« € A. To do so, we define 2¢
target distributions P(y | x%),i = 1,...,2¢ and compute the
weights resulting from the ratio of target over proposal as
follows:

e P (TEY),
CT e e T ITE Mwb]

for j = 1,...,Ns, i = 1,....,2% Here w™’ specifies the
weight associated with the jth particle y7' and ith target. Then,
the ith diagonal element of F(YE") can be approximated
using the weights as follows:

argmin o T(y%) M(u)b = 04} ;o (23
a’€A

(24)

1 wi
(F(Y37u))11 I~ ey — Z w; 5J , (25)
21 v {7 y3eY2h}
fori =1,...,2% As the Monte-Carlo sample size N, grows to

infinity, the previous approximation is guaranteed to converge
to the true value; see for example [37].

The backup procedure for given b and A is summarized
in algorithm |1} To appreciate the efficiency of the proposed
sampling process, let us assume a GRN with 27 states.
Direct application of a standard point-based technique requires

drawing enough Monte Carlo (MC) samples to represent
a 2?-dimensional Gaussian distribution, while the proposed
sampling process requires a much smaller number of MC
samples to represent a d-dimensional Gaussian distribution,
so that the algorithm complexity scales up with the log of the
number of states. This is achieved by exploiting the Boolean
vectorial structure of the state of genes as well as the gene-
expression measurement model. These computational savings
allow the application of the proposed method to practical
problems involving several genes.

Algorithm 1 BACKUP (A,b)
Initial Sampling:

1: Draw {y0,;,¥1,5:5 =1,..., Ns} from .
Dynamical Partitioning:

2: for u € U do
3: Vi=750,;0(la—AM(u)b) + 31, e (AM(u)b),j =1,...,Ns
4: for o € A do
5: Ybu = {75 | argmaxa'T(&}l)JW(u)b = a}
al’eA
6: fori=1,...,2%do
. uj _ (T(&;)):: -
T Wit = rem M by d T o Ne
8: F(Ybu i1 = —_—— u u.J
(FYa™) SR 2igmevhny Wi

9: end for
10: aup = g7+ Xoepa F(YSY) M(u).
11: end for
12: end for

Backup Process:
13: o = argminau.’b: uel,ccA Xu,b b
14: uP = argmin,,. ey qen @u,b b

15: return (a®, uP)

B. Belief Expansion

Point-based methods were designed to bound the size of
the cost function by computing the cost only over a finite
belief set and optimizing the cost function using the point-
based procedure. Choosing the belief set has a major effect
on the performance of the policy obtained by these methods.
Several belief expansion processes have been developed for
adaptation of point-based techniques to infinite observation
spaces [21]]. These methods are mostly based on two main
facts:

Expansion based on reachability: The basic idea is that the
belief set should be expanded into areas in which the system
has more chance of observing them during the execution stage.

Expansion based on coverage: As it was mentioned before,
the belief space is a (2% — 1)-dimensional simplex B, and in
order to achieve good results, the belief set should be expanded
throughout the continuous belief space. This fact will become
clear in Section [V] when the upper bound error by the PBVI
method is computed.

Next, we develop our expansion procedure for the POBDS
model, which addresses both aforementioned criteria. Assum-
ing that B is the set of current belief, for each b € B, first
we generate {¥¢ j,¥1,;}, from , and y}' from , for all
u € U. Notice that these samples are from P(y | b, u), and




as a result they meet the reachability criterion. One should
compute successor beliefs as follows:

T(y?) M(u)b
pp = LD Mwb 26)
IT(y7) M(u) b1
fori=1,...,N, and u € U. Among all N, x |U| successor

beliefs, we chose the one with the largest minimum distance
from set B, so as to increase the coverage and diversity of
the belief set. The belief expansion procedure is summarized
in Algorithm [2] It should be emphasized that similar to the
proposed backup process, the belief expansion process is built
on the efficient sampling process derived in and thus
achieves similar computational savings, i.e., its complexity
scales with the log of the number of states.

Algorithm 2 BELIEF_EXPANSION (B)
Initialization:
1: B+~ B
2: Bhew < 0
Initial Sampling:
3: Draw {y0,j,¥1,j,J = 1,..., Nc} from .
Belief Expansion:
: for b € B do
forucUandi=1,...,N. do
¥y =¥o0,i0(1lag—AM(u)b) +yi,; e (AM(u)b)

pu = _TEH M b
i T TG MW bl

end for

R AN

b* = Argmaxpu. ;—1,...,Ne,ucl ming ¢ g/ [[b} — bl1
10: Brew « Bnew Ub*

11: B’ + B'ub*

12: end for

13: return Bjew

V. PROPOSED OFFLINE AND ONLINE CONTROLLERS

In this section, we describe the offline and online steps of
our proposed point-based methodology, which are based on
the backup and belief expansion procedures introduced in the
previous section.

A. Offline Controller

Our offline controllers are based on two popular point-based
methods, PBVI [23]] and Perseus [20].

1) Point-Based Value lIteration for POBDS: The point-
based value iteration (PBVI) was first developed in [23] to
find the optimal control policy of partially-observed markov
decision processes (POMDPs) with finite observation spaces.
In this section, this method is adapted for POBDS control with
an infinite observation space, by using the backup and belief
expansion processes presented in Section

Our proposed method, called PBVI-POBDS, is presented in
algorithm [3| and contains two main steps:

PBVI update step: The method starts with the initial belief
set Bo = {bg} and Ag = {ap} (a common choice for initial
apis ag(j) = ﬁ max;—; _adyey ¢(x,u),j=1,...,d).
In the mth iteration, the backup operator presented in algo-
rithm [1] is applied to all beliefs b € B,,,_; to create the A,,

set. The process continues until the difference between the
costs for all beliefs in B,,,_1 in two consecutive iterations gets
smaller than a prespecified threshold. Notice that the order of
performing the backup operation on the belief points in B,,,_1
is arbitrary.

Belief expansion step: The current belief set B,,_1 is ex-
panded using the expansion process presented in algorithm [2]
for the next step of the PBVI Update step. With this procedure,
the size of the belief set will double after each iteration. The
stopping criterion for this method is the size of the belief set
being greater than a prespecified number NFBVI,

Algorithm 3 PBVI-POBDS
Initialization:

Bo < {bo}.

Ao + {ao}.

m < 0.

while |B,,| < NFBVI do
Backup Process:

b

5: m < m + 1.
6: Yo+ Am—1.
7. J4(b) < minger, ab, forall b € Bp_1.
8

e+ 0.
9: repeat
10: e+ e+ 1.
11: Yo + 0.
12: for b € B,,,_1 do
13: aP « BACKUP(Y._1,b).
14: Y.+ Y. U{aP}.
15: J/(b) + aPb.
16: end for

17: until maxpep,, ; [Ji(b) — J._;(b)| > e
Belief Expansion Process:

18: B,, < B,,—1 UBELIEF_EXPANSION (B, _1).

19: Ay +— Ye.

20: end while

21: return (A,,)

Assuming A,, is the set of vectors obtained by the PBVI-
POBDS method in mth iteration, the cost function for any
belief point b in the belief space B is defined as:

Jm(b) = argminab.
aclN,

27

In the rest of paper, J,, represents the cost function approx-
imated by the PBVI-POBDS in the mth iteration over the
whole belief space B. Similarly, J* denotes the optimal cost
function over the whole simplex B. In addition, we use the
term ||.J,, — J*|| to refer to the maximum absolute difference
between the cost function J,, and J* over the whole belief
space B.

In order to study the accuracy of the proposed PBVI offline
controller, let ep, be the maximum distance between any
belief point in the (2¢ — 1)-dimensional simplex B and the
belief set B,,, and let gyax and gmin be the maximum and
minimum possible costs, respectively, for any state x and



control input u € U:

€p,, = max min ||b—b’||1,
b’ €B beB,,
_ i
Gmax = ueU,irerl{ai},(...,Qd} C(X 7u) ) (28)
Jmin = min c(x',u).

uel,ie{l,...,24}

The following results, which are adapted from [23]], are proved
in the Appendix.

Lemma 1: If T and T are the optimal transformation and
transformation applied by Algorithm [3] respectively, then

1T [Jm1] = T[Jm-1]llo0 < (gmai(__jmm) e, - (29)
Theorem 1: The error of Algorithm 3| for any belief set B,

and any horizon m is bounded by

(gmax - gmin)

1 2 €B,, -
(1-7)

In addition, for a sufficient large horizon m, the distance

between J,, and the optimal infinite horizon cost J* is
bounded by

[ Jm = JTlleo < (30)

* (gmax - gmin)
[Tl <

The previous results show, in particular, that the difference
between .J,,, and J* becomes small for large m. The analysis
does not include the error introduced in the backup procedure
in Algorithm [I] due to Monte-Carlo sampling; however, this
error can be made as small as wanted by simply increasing
the Monte-Carlo sample size N.

2) Randomized Point-Based Value Iteration (Perseus) for
POBDS: Another successful offline controller for general
POMDPs with finite observation spaces is called Perseus [20].
Unlike the PBVI algorithm, which doubles the size of belief
set and also computes backup for all belief points at each time
step, the Perseus algorithm considers a fixed belief set in all
iterations and the backup is performed only for few beliefs
at each iteration. The idea behind the Perseus method is to
perform a randomized backup that decreases or at least does
not increase the cost of all belief points at each time step.
As in the case of the PBVI method, the Perseus method is
adapted for POBDS control with an infinite observation space,
by using the backup and belief expansion processes presented
in Section

Our proposed method, called Perseus-POBDS, is presented
in Algorithm [4] and contains two main steps:

Belief Generation: The algorithm starts by searching
through belief space and finding NT°™ reachable belief points
with good coverage in belief space B, based on the belief
expansion procedure in Algorithm [2]

Perseus Backup: In the second step of algorithm, the
Perseus update process starts by initializing Ag = {apo},
where a(j) = ﬁarg MaXyey—1... 24 ¢(x',u), for j =
1,...,2% to guarantee the reduction of cost at each iteration
of Algorithm [4] The initial cost of belief points are Jo(b) =
apb, for all b € B. In the mth iteration of the method,
one belief point b is selected randomly from the current set

€8, +7" |15 = |loo - B1)

.....

B. The backup o for this belief point is computed using
Algorithm [I] One of the two following cases can occur: 1)
aPb < J,,_1(b): In this case all belief points b’ € B such
that a®b’ < J,,_1(b’), i.e., all belief points whose their
costs reduce under backup vector aP, are removed from B. In
addition, aP is added to set A,,, for next set of a-vectors. 2)
aPb > J,,_1(b): the belief point b is removed from B, and
the a-vector in the set A,,_; which minimizes the cost for
this belief point is added to A,,. Continuing the above process
until B is empty completes one step of the Perseus update.
Next, one should check the change in the cost functions over
two consecutive iterations of the method for different beliefs.
If the change is smaller than a prespecified threshold for all
belief points, the algorithm stops and returns A,,; otherwise,
one restarts the process with the entire set B again.

In contrast to PBVI, for which the size of A is close to the
size of the belief set B, the size of A obtained by the Perseus
method is usually much smaller than the size of B. This fact
reduces the computational costs of the backup procedure in
Algorithm [I} which is directly affected by the size of A set.
In addition, the computational cost of the Perseus method is
not significantly affected by the size of belief set B, so that
the latter can be chosen to be very large in comparison to
a belief set used in the PBVI method. Further comparative
analysis between the PBVI and Perseus methods are given in
Section

Algorithm 4 Perseus-POBDS
Initialization:

1: B« {bo}

Belief Expansion Process:

2: while |B| < NT°™ do
3: B+ BELIEF_EXPANSION (B).
4: B+ BUB.
5: end while
Backup Process:
6: ao(j) + ﬁ maxX, cy .y od e(x?,u), forj=1,...,2%
7: Ag + {0}
8: Jo(b) + aob, forall b € B.
9: m + 0.
10: repeat
11: m <+ m + 1.
12: A 0.
13: B + B.
14: while B # () do
15: Choose a random belief point b € B.
16: aP «— BACKUP(A,,_1,b).
17: if aPb < Jm—1(b) then
18: Jm(®)=aPb’ forb’ € B:aPb’ < J,_1(b)
19: B+ {b €B:ab > J,_1(b)}
20: else
21: B + B — {b}.
22: aP = arg mingrey, ' b
23: Jm(b) =aPb.
24: end if
25: A < A U {aP}.

26: end while
27: until maxpep |Jm(b) — Jm—1(b)| < &.
28: return (A,,)




B. Online Controller

Both offline controllers introduced in the previous section
are applied before starting execution to obtain the set A, which
approximates the optimal cost over the whole continuous belief
space B. While the policy obtained by the offline controller can
be used for control of the GRN, we propose an efficient online
controller that uses the information derived in the offline stage,
and combines a one-step look-ahead process and the Boolean
Kalman Filter, which is the optimal MMSE state estimator.
The online controller introduces robustness against (small)
changes in the dynamics during the execution process; allows
starting the execution process before the completion of the
offline step; improves the accuracy of the offline controller’s
policy; and is capable of prescribing the proper control input
in real-time.

Given A and the belief by at time k during the execution
step, the online controller chooses u; by performing a one-
step look-ahead search as:

u, = argmin {(g(u)T
ueclU (32)

+ 7/ argmin -~ aT(y)M(u) by dy) bk] .
yER? aeA T (y) M(u)

The control input in (32)) can be obtained by performing the
backup operator introduced in Algorithm 1] as:

u, = BACKUP(A, by,). (33)

The previous equation summarizes the entire action performed
by the online controller at time step k. The robustness of
the proposed online controller to small changes in dynamics
during the execution process comes from the fact that one
can apply the one-step look-ahead policy without having to
recompute the offline control policy. Furthermore, for large
GRNs in which convergence of offline controller might be
slow, the online controller can be executed in parallel with the
offline controller.

The following result, which is proved in the Appendix,
guarantees that a better control policy is reached after the one-
step look-ahead search from the current belief state.

Theorem 2: Let J be the cost obtained based on results of
offline controller (Algorithm (3| or , JEA be the cost after
performing a look-ahead mapping from current cost function
J, and J* be the optimal cost function. Then,

TEA = T oo < YT = T*|loo - (34)

The previous result ignores the error introduced in the
backup procedure in Algorithm [I] due to Monte-Carlo sam-
pling; however, as mentioned previously, this error can be
made as small as wanted by simply increasing the Monte-
Carlo sample size N,.

VI. POINT-BASED METHODOLOGY TO MONITOR AND
CoNTROL POBDS

In this section, the proposed procedure to monitor and
control partially-observed Boolean dynamical systems is pre-
sented.

First, we describe briefly the optimal filtering problem,
which consists of obtaining the optimal minimum mean square
error (MMSE) Boolean estimator Xle,f of the current state,
given the sequence of observations y1.; = (y1,...,yr) and
control input ug.x—1 = (ug, ..., Ux_1).

For a Boolean vector v € {0,1}%, define the binarized
vector ¥, such that V(i) = 1 if v(i) > 1/2 and V(i) = 0
otherwise, for ¢ = 1,...,d, the complement vector v¢, such
that v¢(i) = 1 — v(4), for ¢ = 1,...,d, and the Li-norm
[IvlL = Zle |[v(i)|]. It has been proven in [[13]] that the
MMSE estimator is given by:

Xih = EXk [ y1k uoik—1] (35)
with optimal conditional MSE as:
MSE(XkMui | Y1k, Uoik—1)
= || min {E Xk | y1:k: woir—1], (36)

E Xk | yimuok-1]} |

where the minimum is computed componentwise. Both the
optimal filter and its MMSE can be computed by a recursive
matrix-based procedure, called the Boolean Kalman Filter
(BKF) [15].

The combination of the BKF and the previously described
online and offline controllers provides the scheme for POBDS
monitoring and control, as can be seen in the the schematic
diagram in Fig [2] First, an offline controller is run before
starting execution to gather the necessary information over
the belief space. Then, during execution, the BKF estimates
the belief state as well as the Boolean state at each time point
given the latest available information. The estimated belief at
each time point and the results of offline controller are used
by the online controller to select the appropriate control input.
The procedure is summarized in Algorithm [3}

1’

. MS
Xk

BKF

bl.;

Yk+1

uy BACKUP
(Online Controller) |

System

A

A

Offline
Controller

Fig. 2: Schematic diagram of the proposed point-based
methodology for POBDS monitoring and control.

VII. NUMERICAL EXPERIMENTS

In this section, we report the results of an extensive set
of numerical experiment using a Boolean model for a gene
regulatory network implicated in metastatic melanoma [38].
The network contains 7 genes: WNTS5A, pirin, SIO0P, RET1,
MART1, HADHB and STC2. The regulatory relationship for



Algorithm 5 POBDS Monitoring and Control

OFFLINE STEP
1: Run an offline controller (Algorithm or@ to obtain A.
ONLINE STEP
2: Initialization: bo (i) = P (Xo = xi) ,fori=1,...,2%
3: ug « BACKUP(bg,A).
4: for k =1,2,... do

5: Posterior Update:
_ Tyke)M(uk—1)br—1
k= .
1T(yx) M(ug—1) br—1ll1

6 MMSE Estimator Computation: Xaﬁ = Aby.
7: MSE(y1:k, u0:k—1) = || min{Aby, (Abg)} 1.
8 Online Controller: uy < BACKUP(bg,A).
9: end for

this network is presented in Table [l The ith output binary
string specifies the output value for ¢th input gene(s) in binary
representation. For example, the last row of Table [I] specifies
the value of STC2 at current time step k from different pairs
of (pirin,STC2) values at previous time step k£ — 1:

(pirin=0, STC2=0);,_; — STC2,=1
(pirin=0, STC2=1);,_; — STC2;=1
(pirin=1, STC2=0);_; — STC2;,=0
(pirin=1, STC2=1);,_; — STC2;=1

In the study reported in [39], the activation status of gene
WNTS5A was found to be highly predictive of cells with prop-
erties typically associated with high metastatic competence
versus those with low metastatic competence. Therefore, an
intervention that blocked the WNTSA gene from being acti-
vated might substantially reduce WNTS5A’s ability to induce
a metastatic phenotype. For more information, the reader is
referred to [38]].

TABLE I: Boolean functions for the melanoma gene regulatory
network.

Genes Input Gene(s) Output
WNT5A  HADHB 10

pirin pirin, RET1, HADHB 00010111
S100P S100P, RET1, STC2 10101010
RET1 RET1, HADHB, STC2 00001111
MART1  pirin, MART1, STC2 10101111
HADHB  pirin, S100P, RET1 01110111
STC2 pirin, STC2 1101

In [40], reduction of WNTS5A’s activation is accomplished
indirectly, through the control of other gene activities. Accord-
ingly, in our experiments, the intervention is applied to either
RET1 or HADHB. In practice, control would be accomplished
by means of drugs targeted at those genes. The cost of control
is assumed to be 1 for any taken intervention and O when
there is no intervention. Since the goal of control is preventing
WNTS5A gene to be upregulated, the cost function is defined

as follows:

e(xd ) = 4 + n2|[ullx
’ n2[[ullx

if WNT5A is 1 for state j,
if WNT5A is O for state j.
(37
where 7); is the cost of observing undesirable states and 7
denotes the cost of taking intervention over any gene. These
constants (1, and 73) should be set at the start of process
based on the severity of undesirable conditions and cost of
intervention process.

The noise process ny, in (I)) is assumed to have independent
components distributed as Bernoulli(p), where parameter p >
0 corresponds to the amount of “perturbation” to the Boolean
state process — the closer it is to p = 0.5, the more chaotic the
system will be, while a value of p close to zero means that
the state trajectories are nearly deterministic, being governed
tightly by the network function.

In all the numerical experiments, we assume the same

fixed set of values for the system parameters, summarized in
Table [

TABLE II: Parameter values used in all experiments.

Parameter Value
Number of genes d 7
Transition noise intensity p 0.05
Initial belief b (), i = 1,...,128 1/128
Mean read counts u?, u;,j =1,...,7 30, 60
Standard deviation o) = o}, j =1,...,7 10, 15
Discount factor ~y 0.95
Control genes RET1, HADHB

Constants in Cost Function (37) m =05 n2=1

Number of backup samples Ng 1000
Number of expansion samples N 1000
Threshold e in Algorithm [3] and [f] 0.05

PBVI belief size NYBV! 32, 128, 512, 1024, 2048

Perseus belief size NFe"s 500, 1000, 5000, 10000, 50000

Value Iteration Threshold 8 [17] 108

We compare the proposed methodology against the
V_BKEF [17] and Q_MDP [19] algorithms. Briefly, let Jgpg €
R2" and psps(x’) € U, for i = 1,...,2%, be the optimal
infinite-horizon cost and control policy corresponding to the
directly-observable Boolean dynamical system. The V_BKF
algorithm is a simple sate-feedback controller that uses the
BKF as state observer. Thus, for a given belief state by at
time step k, the control input u; by V_BKF is chosen as:

w) B = pps(Aby), (33)
where X%ﬁ = Aby, is the optimal MMSE estimate of state.

As for the Q_MDP method, define the a-vectors:

aQMPP — o(0)T 4 4 (Jpps)T M(u). (39



for u € U. For a given belief state by at time k, Q_MDP
selects the control input uy, as:

MDP
ue MR,

(40)

= argmin ag-
uel

One can see Q_MDP the same as a point-based controller with

only |U]| fixed a-vectors in A, such that the number and values

of these vectors do not depend on measurement model.

The experiment is performed for both RET1 and HADHB
as control genes. We recorded the average cost per step and
rate of correct state estimation over 1000 time steps, repeated
50 times for randomly selected initial belief states. We also
recorded the average running time in seconds, based on a PC
with an Intel Core i7-4790 CPU@3.60 GHz clock and 16 GB
of RAM. The results are displayed in Table [ITI}

We can observe that the proposed Perseus-POBDS and
PBVI-POBDS both display a smaller cost per step than the
Q_MDP and V_BKF methods, i.e., they are more effective
in keeping the system away from bad states where WNTSA
is activated, especially in the presence of high measurement
noise. The reason of course is that the underlying Boolean
dynamical system is less identifiable in the presence of noisy
measurements, and therefore, the policies obtained by Q_MDP
and V_BKEF, which are both based on the results for the under-
lying Boolean dynamical system, become less valid. Naturally,
the superior performance of the Perseus-POBDS and PBVI-
POBDS controllers come at a much higher computation time
(which is mostly due to the offline controller step, while online
execution times are comparable).

The RET1 gene seems to be a better control input for
reducing the activation of WNTSA, as lower cost can be seen
under the RET1 control gene in comparison to the HADHB
gene in all cases.

We can see that Perseus-POBDS outperforms PBVI-
POBDS, by a small margin. This is related to the larger belief
set considered by the Perseus offline controller. In fact, the
smaller number of a-vectors kept in A by Perseus speeds
up the computation of the backup process in Algorithm [T,
allowing the use of a larger belief set, and as a result
more coverage over the belief space. This fact can also be
appreciated by considering the similar running times achieved
by both methods, despite the fact that Perseus uses 50,000
belief points compared to 2048 for PBVI.

Finally, the rate of correct state estimation by the BKF
is better for smaller measurement noise, as expected. Fig. 3]
displays sample trajectories of the WNT5A gene under control
of the HADHB gene and without control, for the less noisy
data. The vertical dashed lines show the time points at which
the value of the HADHB control gene is flipped. Estimation is
accurate in both cases. Note that more frequent activation of
WNTS5A, i.e., a larger rate of undesirable states, can be seen
in the case of the system without control.

To further investigate the performance of our proposed
algorithms, we plotted in Fig. [] the average cost per step
as a function of belief set size, for high measurement noise
(¢) = 0 = 15). The red and blue horizontal lines correspond
to the average cost obtained by the Q_MDP and V_BKF
methods respectively, whereas the green line represents the

Original Trajectory Estimated Trajectory by BKF

System under Control of HADHB

T T T T T
20 40 60 80 100
Time

System without Control

—
n
[
=z
o — —
T T T
60 80

100

Time

Fig. 3: Original (black lines) and estimated trajectory (blue
lines) of WNTS5A under control of HADHB gene and system
without control. The vertical dashed lines specify the time
points at which the value of the HADHB control gene is
flipped.

lower bound in cost corresponding to control of the system
with directly observed states. Clearly, the performance of the
proposed algorithms improves and gets asymptotically close
to the lower bound as the size of the belief set grows.

\ V_BKF Q_MDP vi |
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Belief Set Size

32 128
Belief Set Size

512 1024 2048

Fig. 4: Average cost per step as a function of the belief set
size. Blue and red lines correspond to Q_MDP and V_BKF
methods, respectively, while the green line refers to control of
the system with directly observed states.

Next, we compared a naive method for partitioning the
observation space to the proposed sampling-based partitioning
scheme discussed in Section [V-Al Since the variance of
activated and inactivated states are assumed to be the same
(J? = O'Jl», j=1,...,7), a naive discretization of observation
space, which is obtained by finding the intersection of two
distributions P(y(j) | x(j) = 0) and P(y(j) | x(j) = 1), is
given by:

04 4t

naive ( »\ __ H J H J
() =252
for j = 1,...,d. Using this naive partitioning process, the
space of each observation variable is divided into two parts

y (41)



TABLE III: Average results for different methods.

RETI HADHB
O';J = a;. Method Cost/Step Time |B| |A| State Rate Cost/Step Time |B| |A] State Rate
Perseus-POBDS 0.83 718552 50000 103 0.56 0.95 712490 50000 148 0.56
s PBVI-POBDS 0.86 723326 2048 1223 0.56 0.99 738293 2048 1523 0.55
Q_MDP 1.08 201 - 2 0.54 1.39 2.02 - 2 0.56
V_BKF L1t 2.04 - - 0.56 1.46 2.04 055
Perseus-POBDS 0.81 712029 50000 94 0.92 0.92 7193.07 50000 131 0.92
0 PBVI-POBDS 0.81 739563 2048 1053 0.92 0.93 723629 2048 1472 091
Q_MDP 0.82 2.00 - 2 0.92 0.96 2.00 - 2 0.92
V_BKF 0.83 2.01 - - 0.92 0.97 201 091
and the observation space will be mapped into a size-2? finite 24

observation set, which allows the application of the original
Perseus or PBVI methods developed for finite measurement
spaces.

For this comparison, RET1 is used as a control gene and
the Perseus offline controller with 10,000 belief states is
employed. Figs. [6] and [3] display normalized histogram plots
of observed states using 50 trajectories with 10,000 time steps
each, comparing the naive and proposed partitioning methods,
respectively. The histograms over desirable and undesirable
states are shown by blue and red colors respectively (recalling
that the undesirable states are those where WNTSA is acti-
vated). For comparison, Fig. [7] displays the same plot for the
case where the system runs without any intervention.
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Fig. 5: Normalized histogram plots of observed states for

Perseus controller with naive partitioning of the observation
space.

It is clear that the system under control of the proposed
partitioning method visited undesirable states less often than
the naive partitioning case. Both approaches naturally perform
better than the case with no control, which displays almost
equal frequencies of visits to desirable and undesirable states.

VIII. CONCLUSION

In this paper a methodology for simultaneous monitoring
and control of partially-observed gene regulatory networks
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Fig. 6: Normalized histogram plots of observed states for
Perseus controller with the proposed sampling-based dynami-
cal partitioning of the observation space.
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Fig. 7: Normalized histogram plots of observed states with no
control.

was presented. The POBDS signal model was used for mod-
eling gene regulatory networks. We introduced backup and
expansion procedures to deal with an infinite observation
space. Point-based controllers were developed by employing
the proposed backup and expansion procedures in combination
with offline controllers for finite observation spaces. While



any point-based method can be adopted for offline control,
we used the PBVI and Perseus methods, which led to the
PBVI-POBDS and Perseus-POBDS control algorithms.

To improve the policy obtained by the offline controller,
an online controller was developed based on a one-step look-
ahead search and the Boolean Kalman Filter during execution
step. The ability of the proposed methodology to obtain good
control policies were demonstrated by numerical experiments
involving a Boolean model of a melanoma gene regulatory
network observed through noisy gene expression data.

Future work will consider developing effective and robust
adaptive controllers for large POBDS. In addition, the signal
model used in this paper assumes the synchronous update of
the network states; future work will consider the extension
of the methodology to asyncronous networks, which can
be accomplished by adding latent timing variables to the
state vector.

APPENDIX

A. Proof of Lemma 1

Assume that the maximum error of having belief set B,,
instead of the whole continuous belief space is caused by b’ €
B, and let b be the closest Li-norm belief point in B,, to b’.
Furthermore, assume that o and o’ are the vectors which are
minimal at b and b’ respectively. The maximum possible error
caused by having B,,, is ab’ — a’b’. Thus, based on the fact
that at belief point b, ab < a’b, one can obtain this error as:

T[] = T[Tm-1]loe < ab’ =D’
= ab’ —a'b’' + (a'b — a'b)
< ab’'—a'b'+a'b—ab
= (@' —a)(b-b),
(42)
By Holder’s inequality, we have (o’ — a) (b — b’) < |la' —
| | —b’||1 . To be able to find the upper bound for ||a’ —
| 00, one can find the maximum possible distance in L; norm
between a-vectors for large enough m as:

/

o — max o(x',u)+va,
uel,ief1,...,24} (43)
o = min c(x',u) +ya
uel ,ief1,...,24} ( ’ ) T

By solving the above equations for o and o’ and sub-
SUIUUNG Gmax = MAXyuey ief1,... 24} c(x’,u) and gmin =
mingey jeq1,...,243 ¢(X', 1), the maximum bound for [|a’ —
|0 can be obtained as:
9max — Ymin
1—v 7
Furthermore, the maximum L; norm of the ||b —b/||; is ep,,
define in equation (28). Now, replacing equation and
into equation (@2)), the upper bound of having finite belief set
(B,,) can be obtained as:

1T [Jm-1] = T[Tm—1]llso

||a/_aHoo < (44)

IN

la’ = el [[b = b'lx

(gmax - gmin)

T ¢R
I—v

(45)
<

B. Proof of Theorem 1

Using the latest set of a-vectors computed by Algorithm [3]
at time m — 1, one can write J,,, = T[Jm_l]. Furthermore,
Jr = T[Jr_,] where T is the optimal transformation. For
a large enough m, we have T[J}] = J}, = J*, then using

triangle inequality we have:

[ Tm = T Moo < 1 Jm = Jplloe + [T = T oo - (46)
By further simplification of the first term, we have:
[Jm = Imlleo = ”T[Jmfl] i Ay ||

T ma] = Tl llloo s

where the last expression is obtained by use of triangle
inequality. For the second part of last expression in equa-
tion (47), since the operator 7' is the optimal operator, it is
guaranteed that:

1T Jm—1] = Tlgllloo < ¥l Im-1 = Jpallec,  (48)
Lemma 1 specifies the upper bound for the first term in right
hand side of equation (#7). Thus:

1T Jm—1] = T Tm—1]lloo + 7 [[Tm—-1 =I5 11l
(gmax - gmin)
1—
(gmax - gmin)
< dmex T dmin) ep
(1—=9)?

The last term can be obtained easily by the using the geometric
sum. Equation completes the first part of the proof of
Theorem 2. Replacing the first term in the right hand side of
equation (46) by the bound obtained in equation (9), and also
the fact that ||.J,, — J*||ecc <™ ||Jo — J*||c0, completes the
proof of the theorem.

IN

(49)

IN

€8, + Y [ Im—1 — It

C. Proof of Theorem 2

Let T be the optimal mapping, and 7%* be a mapping cor-
responding to the look-ahead policy for J (cost obtained by the
offline controller). Since the look-ahead policy optimizes its
control policy with regard to J*, we have: T[J*] = TVA[J*].
Now, using the triangular inequality we have:

1754 = T llee = ITH4[J] = T*|oo
ITYA ] = Tl

H T = T loo
= [T ) = T[Tl

SANT = T loe = 7e.

IN

(50)
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